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Abstract

Hybrid dynamical systems result from the
combination of a set of continuous-variable
with a discrete-event system that can be
influenced by the environment and encom-
passes systems like legged robots and air-
crafts. Model-based control of these systems
is challenging, particularly when the systems
are complex (high-dimensional non-linear dy-
namics) and the switching conditions are not
perfectly known. We propose a model-free
actor-critic learning framework, MoE-Diff, that
leverages energy-diffusion for multi-modal ac-
tion generation with contrastive loss enabling
scalable, compositional, and robust decision-
making across complex tasks. We use MoE-
Diff for control of hybrid systems in apriori
unknown environments. Qualitative and ab-
lation studies attribute this improvement to
MoE-Diff’s ability to learn interpolatable repre-
sentations and distinct behavior modes across
experts enabling compositional generalization
and adaptation to unseen scenarios.

1 Introduction

Reinforcement Learning (RL) algorithms are typically
developed under the assumption of continuous system
dynamics that are invariant to the environment that a
system is operating in. However, many systems exhibit
hybrid dynamics, i.e., where there is switch in the mode
of the governing dynamics due to the operating envi-
ronment (e.g., a race-car on a partially wet track) or
due to the system’s configuration itself (e.g., a legged
robot when a leg contacts the ground [24], or a power-
train [4]). The problem of controlling such hybrid sys-
tems is well studied for low-dimensional piecewise affine
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systems [18,19], but remains a challenge for general non-
linear systems, particularly in settings where the deploy-
ment environment is apriori unknown.

Optimization-based Model Predictive Control (MPC)
techniques have been applied to such systems, where dis-
crete mode switches result in mixed-integer formulations
that are often intractable without relaxations [5, 22].
They also scale poorly to higher-dimensional systems
and require expert knowledge for accurate model design.
The latter is particularly challenging for novel environ-
ments since it requires knowing where mode switches can
occur. While some recent work explores learning system
models from data [14], hybrid systems remain largely
underexplored in this context.

Learning based approaches enable flexible modeling of
dynamics by learning optimal policies directly from data,
without explicit system models, and have shown success
in adaptive, robust control of complex systems [1, 17].
However, its effectiveness relies on the diversity of ex-
periences in the training data. This translates to ob-
serving transitions between modes of the hybrid system.
Without such data, learned policies may perform well
in isolated modes but fail catastrophically at or close to
mode boundaries, especially when transition regions are
not known in advance.

Example 1 Consider an autonomous vehicle navigat-
ing in an environment with varying terrain types—such
as dry asphalt, wet roads, and snow. Each surface in-
duces different dynamics due to varying friction, corre-
sponding to distinct operational modes. As the vehicle
transitions between these terrains, its active dynamics
mode changes, yielding a hybrid system. Safe, real-time
control of these systems remains a challenge as shown in
Figure 1 where the trajectory in blue illustrates a policy
trained to perform well on asphalt and ice individually
that fails to handle transitions between them and skids off
the track. In contrast, a policy trained in hybrid environ-
ments can better anticipate and adapt to mode switches.
The trajectory in red slows down into the corner and ac-
celerates out of it without crashing.

Contributions of this work. To address these chal-
lenges, we propose MoE-Diff, a model-free online RL
framework. Our key contributions are as follows:
▷MoE-Diff learns an energy-diffusion-based policy repre-



Figure 1: Vehicle trajectories (right to left) in a hybrid envi-
ronment with switches between different surfaces. The blue
trajectory illustrates the difficulty of controlling hybrid sys-
tems without mode switching awareness.

sentation that captures multi-modal and interpolatable
behaviors. This enables smooth adaptation across hy-
brid dynamic modes by supporting dynamic switching
between discontinuous control strategies.
▷ We parameterize the actor as a Mixture of Experts
(MoE), that allows learning of a set of experts, continu-
ous sub-policies, and an interpretable routing mechanism
that selects expert(s) based on the input state. Each ex-
pert specializes in a distinct mode of behavior, support-
ing modular control over hybrid dynamics.
▷ MoE-Diff enables end-to-end learning and frames con-
trol of hybrid systems as iterative energy minimization,
allowing the composition and interpolation of dynamic
modes to adapt in apriori unknown environments.

We evaluate our approach through extensive simu-
lations in racing environments [23]. MoE-Diff demon-
strates performance on par with the baseline methods
on standard tasks with slight differences to training. It
also significantly outperforms the baselines in zero-shot
generalization tasks to out-of-distribution settings. In
particular, we evaluate policies in novel racetrack con-
figurations where MoE-Diff consistently succeeds. We
also demonstrate the significance of training policies in
hybrid settings, to improve implicitly balancing reward
maximization with conservative behavior under mode
uncertainty and quantitatively show how this leads to
general improvements in performance.

2 Related Works
We briefly cover existing literature on the control of hy-
brid systems, dividing it into two categories: one for
control-theoretic methods and the other for reinforce-
ment learning-based techniques.

2.1 Model-based Control of Hybrid
Systems

Most recent model-based control-theoretic work on hy-
brid systems leverages optimization-based model pre-

dictive control (MPC). Learning-based approaches have
gained traction in MPC for complex nonlinear sys-
tems by improving predictive accuracy through Bayesian
models (e.g., Gaussian Processes, Bayesian Neural Net-
works), which naturally capture uncertainty and enable
probabilistic safety constraints [14,37]. Safe model learn-
ing for safety-critical systems has also been explored,
though under the assumption of uni-modal system dy-
namics [3, 21].
Introducing discrete variables in MPC results in mixed-
integer optimization problems [32], which are compu-
tationally challenging for nonlinear systems [6, 10] due
to poor scaling with larger optimization horizons which
are necessary for performance. Heuristic approximations
are commonly used to mitigate this [33]. In cases where
the hybrid models are unknown, unsupervised clustering
has been applied to learn piecewise linear hybrid mod-
els [2, 11].

2.2 Reinforcement Learning for Control of
Hybrid Systems

Recent work uses deep learning to learn control barrier
functions for stability and safety [38], with some enabling
smooth transitions between hybrid modes [27]. Rein-
forcement learning has also been applied to hybrid sys-
tem control [25, 29], though often without emphasizing
mode transitions driven by environmental changes, a key
aspect highlighted in Figure 1.
While model-based approaches have traditionally been
used for hybrid systems, model-free RL provides an alter-
native by learning directly from interaction, without re-
quiring system identification or explicit mode-switching
logic. However, this poses a significant challenge: the
policy must infer and adapt to different dynamic regimes
on the fly, while maintaining stability and robustness
across discontinuous transitions.
Generative Models for Policy Learning. Recent
work has explored the use of diffusion models for be-
havioral cloning and offline RL [1, 7, 17, 39], demon-
strating their effectiveness in capturing multi-modal be-
havior, modeling discontinuities, and composing skills.
These models have shown strong performance in do-
mains with complex dynamics, such as legged locomo-
tion [16] and autonomous driving [43], where traditional
unimodal policies struggle to generalize. Building on
these advances, energy-based formulations extend dif-
fusion models by incorporating task-aligned objectives
through learned energy functions [9, 20], enabling im-
proved generalization to out-of-distribution (OOD) sce-
narios and better multi-task adaptation. By coupling
contrastive learning with diffusion, they provide struc-
tured, interpretable policies that score trajectories based
on semantic or reward-driven criteria. Despite these ad-
vances, most existing methods work in the offline RL
setting, where policies are trained on static datasets and
lack the ability to explore or adapt to novel scenarios.
This limits their effectiveness in dynamic environments,
motivating the need for online RL to enable contin-
ual learning and policy refinement through interaction.



DIPO [41] introduces a policy improvement method for
diffusion-based agents without backpropagating through
the full diffusion chain, but its gradient-based updates
may drift from the behavior policy, limiting exploration.
QSM [30] uses score-matching objectives, which are sen-
sitive to errors in the value function. QVPO [8] builds
on DIPO [41] by proposing a Q-weighted diffusion loss,
but remains susceptible to mode collapse.
In contrast, we propose a model-free, energy-
diffusion framework for online RL that enables
multi-modal control and adaptation to unseen
scenarios. This is particularly important for hybrid
dynamics, where policies must interpolate between pre-
viously encountered modes and produce smooth transi-
tions across discontinuous modes.

3 Problem Statement and Preliminaries
We begin by introducing the class of systems and the
problem statement addressed in Section 3.1, followed by
background for our proposed solution in Section 3.2.

3.1 Hybrid Systems

We consider a hybrid system with state st ∈ S ⊂ Rn,
control input at ∈ A ⊂ Rm, and discrete-time dynamics
of the form:

st+1 =

M∑
m=1

δm(st, at) (f
m(st, at;µm) + wm

t ) (1)

Here, {fm : S × A → S}Mm=1 are mode-specific dy-
namics models, with each being characterized by a par-
ticular (likely latent) parameter vector µm. wm

t denotes
mode-specific process noise. The indicators δm(st, at) :
S × A → {0, 1} select the active mode at time t. Since
only one mode can be active at a time, the domain
S ×A is partitioned into mutually exclusive regions i.e.,∑M

m=1 δ
m(st, at) = 1. We drop the arguments of δm

henceforth for brevity.
This formulation models systems whose behavior

switches due to environmental variation or internal con-
figuration. For instance, terrain-driven transitions (Ex-
ample 1) depend on position, while legged robots may
switch dynamics based on contact configurations real-
ized by different gaits. In either case, switching is
often governed by latent variables, posing challenges
for control. The dynamics equation 1 can also be
viewed switches between parametrized MDPs, Mset =
{(S,A, Tµm

, R, γ)}Mm=1 where Tµm
(·) = fm(·;µm). The

switching MDP is defined as,

Mδ = (Mset, Tδ), Tδ =

M∑
m=1

δmTµm
(2)

Here, R : S × A → [rmin, rmax] is the bounded reward
function and γ ∈ [0, 1] is the discount factor. Poli-
cies define probability densities π(a | s) : S × A →
[0,∞), from which actions are sampled. A trajectory

τ = {(st, at, st+1)}T−1
t=0 is generated under π via transi-

tions defined by Tδ where at ∼ π(a | st).

Problem 1 Given a system subject to the switching
MDP defined in equation 2, we aim to learn a control
policy πθ(a | s) online that maximizes the expected return
J(π) = Eτ∼π[

∑
t=0 γ

trt] from interactions with environ-
ments where {δm}Mm=1 are known. When deployed to
unseen environments, these policies must control the hy-
brid system even when the switching functions {δm}Mm=1
are a priori unknown.

3.2 Denoising Diffusion Probabilistic
Models

Denoising Diffusion Probabilistic Models [15, 28, 36] is a
class of generative models that transforms a data distri-
bution into an isotropic Gaussian distribution by adding
noise (forward process) and learns to denoise it using
a neural network (reverse process), referred to as the
denoiser. For the forward process, given a dataset D
of actions corresponding to various behavior modes, let
x0 ∼ q(x0) denote the data distribution, where the su-
perscript indicates the diffusion timestep k ∈ {0, . . . ,K}.
The subscript t corresponds to the MDP timestep. We
use bold notation (e.g., x) to represent a sequence or
batch. In forward process, Gaussian noise is incremen-
tally added to the data point x0 using a variance schedule
βk across K timesteps, resulting in a continuous Markov
chain:

q(xk | xk−1) := N (xk;
√

1− βkx
k−1, βkI), (3a)

q(xk | x0) = N (xk;
√
ᾱkx

0, (1− ᾱk)I). (3b)

By the Markov property of the forward process, the
marginal distribution of the noisy sample at diffusion
timestep k can be expressed as a conditional of the data

point q(xk | x0), where αk = 1− βk and ᾱk =
∏k

s=0 αs.
Eventually, as K → ∞, xk converges to an isotropic
Gaussian distribution. During the reverse process, De-
noising Diffusion Probabilistic Models (DDPM) sam-
ples from the prior distribution p(xk) = N (xk; 0, I)
and then iteratively denoises it using a learned model
pθ(x

k−1 | xk) = N (xk−1;µθ(x
k, k),Σθ(x

k, t)), which
aims to approximate q(xk−1 | xk,x0), where θ de-
notes the learnable parameters. The training objec-
tive is to minimize the variational lower bound (VLB):

LVLB = Eq(x0:K)

[
log pθ(x

0:K)
q(x1:K |x0)

]
, which can be simpli-

fied, following [15], to the loss function as follows, where
U denotes uniform sampling over timesteps:

Ek∼U[1,K],x0∼D,ϵ∼N (0,I)

[
||ϵ− ϵθ(

√
ᾱkx

0 +
√
1− ᾱkϵ, k)||2

]
.

(4)

4 MoE-Diff: Method

We aim to learn a policy to generalize to unseen hybrid
scenarios as described in Problem 1 and Example 1. In
this section, we introduce MoE-Diff, which builds on the
following key components: (i) learning to model different
dynamic modes in the environment (which are unknown
a priori), (ii) preventing mode collapse during training, a
common issue in RL where modes associated with higher



R
ou

te
r

M
ul

ti-
he

ad
 L

ay
er

M
er

ge
 L

ay
er

x K iters
B. Diffusion Actor

x History

A. Replay Buffer C. Critic

Execute actions

Collect

Action Gradient 
Ascent

Bellman Target

Update buffer

Figure 2: MoE-Diff Overview. A. A replay buffer
stores past observations collected from environment in-
teractions. B. The Diffusion Actor, parameterized as a
MH-MoE [40], takes a noisy action input ak and itera-
tively denoises it to produce a0, conditioned on the state
and diffusion timestep; this final action is executed in
the environment. C. The Critic, following [13], estimates
Bellman residuals, and the action gradient ∇aQϕ(s, a) is
used to refine actions during policy improvement. The
refined action is then appended back to the buffer.

Q-values dominate the learned policy, and (iii) learning
an interpretable policy that allows flexible composition
of dynamic modes to sample actions that can adapt to
novel hybrid scenarios. An overview of the method is
provided in Figure 2, and the algorithm is detailed in
Algorithm 1.

4.1 Energy-Diffusion Policy for Hybrid
Dynamics

Policy Representation. To model complex multi-
modal dynamics, we parameterize the RL policy as
the reverse process of diffusion model: πθ(a | s) =
pθ(a

0:N | s) [15, 39], where the final action from the re-
verse sampling chain is used for RL evaluation. The
reverse process is iterative, transforming samples drawn
from an isotropic Gaussian distribution into the action
distribution conditioned on the state.

ak−1 |ak =
ak

√
αk

− βk√
αk(1− ᾱk)

ϵθ(a
k, s, k) +

√
βkϵ, (5a)

ϵ ∼ N (0, I), for k = K, . . . , 1. (5b)

Policy Learning. For the policy improvement step,
instead of injecting Q-value function guidance directly
into the reverse diffusion process [39], which requires
backpropagating through the entire diffusion chain. We
follow the approach in [41] and adopt action gradient
ascent for policy improvement, as shown in line 14 of
Algorithm 1. We use the double Q-learning strategy
from [13] to obtain Q-value estimates. This forms the
basis of our policy improvement step, coupled with a
conditional diffusion loss modified from equation 4. Al-
though a Q-weighted update rule can be used [8], our
experiments show that it leads to unstable training and
more susceptible to mode collapse.

LD(θ) = E
[
∥ϵ− πθ(

√
ᾱka

0 +
√
1− ᾱkϵ, s, k)∥2

]
(6)

where the expectation is computed over s, a0 ∼ D, ϵ ∼
N (0, I), k ∼ U [1,K].

Algorithm 1 MoE-Diff- Training

1: Initialize Diffusion actor πθ, critics Qϕ1 , Qϕ2 , tar-
get networks πθ′ , Qϕ′

1
, Qϕ′

2
, buffer D ← ∅, Set noise

schedule {αk}Kk=1 with ᾱk =
∏k

j=1 αj , action update
size η

2: for iteration e = 1, . . . , E do
3: for timestep t = 0, . . . , T do
4: Observe state st and sample actions iteratively:

a0t ∼ πθ(· | st) ▷ by Eq. 5
5: Reward: rt = R(st, at) ▷ optionally

a′t = at + ϵ; ϵ ∼ N (0, I)
6: Store (st, at, st+1, rt) in buffer D
7: end for
8: for update step g = 1, . . . , G do
9: Sample batch (s, a, r, s′) from replay buffer

10: Update parameters ϕ following [13] ▷ Train
Q-function

11: Update parameters θ using the losses in equa-
tion 6, 7 ▷ Train Diffusion Policy

12: for c = 1, . . . , C do
13: a0,c+1 ← a0,c + η∇aQϕ(s, a)

∣∣
a=a0,c ▷

Q-guided Action Refinement
14: Add refined action to buffer: D ← D ∪

{(s, a0,C)}
15: end for
16: end for
17: end for

Contrastive Loss. While DDPM enables learning of
expressive multi-modal action distributions, it remains
limited in its ability to generalize to unseen scenarios,
particularly those that require switching and interpola-
tion between previously observed dynamics modes. To
address this, we reframe the problem of modeling hy-
brid dynamics as an energy minimization task, where the
policy iteratively recovers optimal actions by sampling
from a learned energy landscape that captures general-
izable control behavior. We define the energy of a state-
action pair at diffusion timestep k as a scalar value, com-
puted by summing over the relevant dimensions of the

learned energy vector: Eθ =
∑ddim

i=1 [πθ(a, s, k)]i where
ddim denotes the dimensionality of the action consid-
ered for energy evaluation. This formulation encour-
ages the model to assign low energy (high-likelihood)
to ground-truth actions and higher energy to corrupted
(i.e., unsafe) alternatives. To learn global energy land-
scape, we introduce a contrastive loss that penalizes
cases where corrupted actions receive lower energy than
the true ones. To generate negative samples, we per-
turb the ground-truth action using additive Gaussian
noise: a− = a∗ + λϵ, where λ is a hyperparameter and
ϵ ∼ N (0, I). The contrastive loss is then defined as:

LC(θ) = − log

(
e−πθ(x,a

∗,k)

e−πθ(x,a∗,k) + e−πθ(x,a−,k)

)
. (7)

As a result, the policy learns smooth and interpolatable
action representations across diverse hybrid dynamics



modes.

4.2 Key Design Decisions
To model multi-modal and hybrid dynamics with inter-
pretable and interpolatable behavior, we parameterize
the actor using a Multi-Head Mixture-of-Experts (MH-
MoE) network. MH-MoE [40] enables finer-grained con-
trol and better task adaptation by a multi-head mech-
anism for generating sub-tokens and routing them in-
dependently through sparsely activated experts. This
promotes expert specialization and efficient utilization.

Token Routing via Softmax Gating. Each input
embedding is split into multiple sub-tokens, which are
independently routed to a pool of experts. A softmax
gating mechanism is used to assign routing weights based
on the similarity between sub-token representations and
learned expert-specific routing keys. To promote better
expert utilization and avoid collapse into a few domi-
nant experts, we adopt noisy top-k routing [35], where
small Gaussian noise is added to the gating logits prior
to selecting the top-k experts for each sub-token.

Router z-Loss for Stability. To prevent peaked ex-
pert distributions and stabilize training, we incorporate
the router z-loss [44], a regularization term defined as

LZ = λz ·E[(log
∑N

p=1 exp(lp))
2], where lp are the gating

logits over experts and λz is a small regularization co-
efficient. This encourages smoother expert assignments
and mitigates mode collapse in the routing mechanism.

Training Objective. The overall training objective
involves alternating updates between the actor and critic
networks, with action gradient ascent steps as shown
in lines 9–14 of Algorithm 1. Specifically, the actor is
trained using the combined loss: L(θ) = LD + LC + LZ,
where LD is the diffusion loss, LC is the contrastive loss,
and LZ is the router z-loss regularizer. The critic is up-
dated according to the Bellman residual using the double
Q-learning formulation [13].

5 Simulation Studies and Results
We aim to answer the following questions through our
simulation studies,
▷ Generalization under hybrid dynamics. How well
do MoE-Diff and baseline methods generalize across in-
creasing levels of hybrid complexity, ranging from unseen
single-mode settings to fully hybrid rollouts?
▷ Multi-Modality. Do the proposed models scale effec-
tively to complex hybrid rollouts and exhibit multimodal
behavior under diverse switching patterns?
▷ Implicit dynamic awareness through hybrid
training. Does training in hybrid environments enable
the policy to implicitly recognize and adapt to changes
in dynamics, even without explicit friction information?
▷ Zero-Shot Generalization to Novel Tasks. Can
hybrid-trained policies generalize zero-shot to novel
tasks, such as navigating unseen racetracks or adapting
online to new obstacles like wedges?

To address the above questions, we evaluate our model
on three challenging environments with hybrid system
dynamics a racetrack environment. All experiments are

implemented in Python 3.8 and executed on a 12-core
CPU with an RTX A6000 GPU.

5.1 Baselines
UP-True [42]: An algorithm that attempts to learn a
universal policy and receives ground truth information
of the parametric assignments and switching functions
in equation 1. While the original paper uses TRPO,
we re-implement the algorithm with SAC [12] since it
yields better results
SAC [12, 31]: is an off-policy actor-critic algorithm
based on the maximum entropy reinforcement learning
framework. In this framework, the actor aims to
simultaneously maximize the expected return and the
policy entropy.
PPO [31, 34]: An on-policy policy gradient technique
that improves stability during training policy updates by
maximizing a clipped surrogate objective that prevents
significant changes in the policy between successive
updates.
SAC-Switching: Here, we train separate policies cor-
responding to different coefficients of friction. This can
be seen as training an expert for each friction coefficient
and switching between them. This cannot generalize
to environments with unseen friction coefficients. We
also aim to demonstrate that this fails to generalize
to hybrid settings, validating the benefits of the MoE
component in the architecture.
SAC-MoE: A variant of SAC where the actor network
is parameterized as a MoE instead of an MLP, enabling
the learning of a set of experts, continuous sub-policies
that are composed via a learned router to handle hybrid
dynamics. The module is trained in an end-to-end
fashion.
DiPo ⊕ C: A Diffusion Policy variant of MoE-Diff
where the actor in Algorithm 1 is parameterized with
an MLP instead of a MoE. Note that this variant uses
the losses defined in equations 6 and 7. .

UP-True and SAC-Switching are provided with
ground-truth knowledge of where the friction changes
occur even in deployment settings. Since UP-True also
has ground-truth friction knowledge during training, this
baseline is treated as an oracle. SAC, SAC-MoE and
PPO do not observe friction values during training.
DiPo ⊕ C and MoE-Diff learn to estimate friction val-
ues over the course of training.

5.2 Racetrack Results
Here, we evaluate policies in a racing environment [23]
where agents are rewarded for maintaining speeds close
to 25m/s. Hybrid dynamics arise due to spatially
varying friction along the racetrack, especially affect-
ing behavior at high speeds and sharp turns. The con-
trol policy must learn to adapt to low-friction regions
and demonstrate caution around corners, without prior
knowledge of mode switch locations. Obstacles line the
track boundaries, and episodes terminate upon collision.
The reward includes speed and track progress compo-
nents, with penalties for collisions and excessive actions.



Friction setup Policy

SAC SAC-Switching UP-True MoE-Diff

0.5 98.65 (89.67) 313.16 (55.56) 223.81 (99.53) 207.78 (1.32)
0.4 68.87 (62.60) NA 225.32 (80.87) 204.73 (0.77)
0.3 28.91 (16.25) 239.99 (62.67) 109.29 (76.97) 150.48 (78.37)
0.25 15.14 (9.08) NA 34.43 (26.49) 23.30 (23.08)

[1.0, 0.5] 30.44 (21.96) 37.54 (19.59) 45.89 (26.20) 207.48 (1.26)
[0.3, 0.5] 39.44 (21.04) 140.48 (98.51) 65.44 (46.97) 205.72 (0.83)
[0.25, 0.4] 39.94 (20.23) NA 43.45 (23.79) 168.75 (65.21)

Table 1: Performance of single friction environment-
trained policies. Policies are evaluated on single friction
environments in the first half, and on hybrid friction racetracks
in the second half.

Policy Single Friction Env. Hybrid Friction Env.

0.5 0.3 [1.0, 0.5] [0.3, 0.5]

SAC-A 274.95 (36.56) 33.30 (21.35) 268.36 (69.70) 40.82 (18.30)
SAC-B 243.73 (79.98) 18.89 (9.34) 197.31 (102.44) 34.09 (17.77)
SAC-C 257.58 (59.65) 103.26 (75.60) 242.24 (77.06) 180.70 (103.45)

UP-True-A 222.64 (96.17) 37.80 (20.33) 120.09 (84.90) 43.99 (18.16)
UP-True-B 150.14 (110.17) 29.37 (20.76) 68.84 (51.33) 36.00 (17.16)
UP-True-C 271.71 (16.08) 87.07 (62.88) 277.65 (36.93) 66.59 (34.70)

Table 2: Importance of training in informative hybrid
environments. Policies are learnt in hybrid environments.
“SAC-A” denotes SAC trained in environments generated us-
ing hybrid friction environment generation approach A as de-
scribed in Section 5.2.

Friction setup Evaluation Setting 1 Evaluation Setting 2

SAC UP-True SAC-MoE DiPo ⊕ C MoE-Diff SAC UP-True SAC-MoE DiPo ⊕ C MoE-Diff (Single) MoE-Diff

0.5 257.6 (59.7) 271.7 (16.1) 273.3 (1.7) 211.2 (1.7) 246.2 (2.0) 104.9 (80.3) 111.2 (69.0) 224.0 (52.2) 158.1 (83.8) 196.0 (40.4) 224.4 (69.1)
0.4 246.2 (61.8) 263.5 (22.3) 239.8 (57.7) 208.6 (1.6) 246.1 (2.2) 58.8 (54.4) 105.9 (66.9) 218.0 (51.0) 116.3 (76.4) 195.0 (27.1) 162.3 (85.6)
0.3 103.3 (75.6) 87.1 (62.9) 109.4 (65.8) 176.3 (59.8) 95.2 (57.5) 26.2 (17.1) 81.1 (55.2) 182.2 (62.4) 44.8 (36.3) 192.0 (2.5) 75.0 (52.5)

[1.0, 0.5] 242.2 (77.1) 277.6 (36.9) 279.9 (1.8) 216.6 (1.9) 252.0 (1.4) 176.7 (100.9) 142.7 (82.5) 224.9 (52.8) 160.9 (89.0) 194.4 (40.1) 232.8 (58.4)
[0.3, 0.5] 180.7 (103.4) 66.6 (34.7) 155.2 (80.0) 208.3 (1.98) 123.5 (75.4) 49.6 (44.5) 100.2 (66.3) 211.5 (59.5) 120.1 (82.4) 192.6 (39.7) 233.6 (51.6)
[0.25, 0.4] 29.1 (17.0) 39.5 (18.5) 34.8 (17.6) 191.4 (43.7) 33.5 (18.4) 29.5 (37.3) 95.1 (60.6) 189.9 (70.4) 88.8 (71.4) 189.7 (26.4) 144.2 (78.2)

Table 3: Performance of hybrid friction environment-trained policies. Each policy is evaluated under two evaluation
settings. The top and bottom halves evaluate single and hybrid-friction tracks respectively.

We compare policies trained under two environment
configurations,
Single Friction Environments: The entire track uses
a single friction coefficient per episode. After each
episode, a new coefficient is picked to ensure balanced
sampling across µ ∈ {1.0, 0.5, 0.3}, preventing any one
value from dominating the dataset. No mode transitions
are observed in training.
Hybrid Friction Environments: Friction varies
across the track, forming a switching MDP as defined
in equation 2. Friction transitions are placed at turns
(as visualized in Figure 3, leveraging the knowledge that
high speed and steering angle induce significant lateral
friction forces. We use two friction coefficients per en-
vironment: one active at turns and the other active ev-
erywhere else. Hence, each hybrid setup is defined by a
coefficient pair.

Figure 3: Visualizing of the hybrid training environment.
The blue patches have one friction coefficient while the rest
of the track has a different coefficient.

All agents are trained on µ ∈ {1.0, 0.5, 0.3} and eval-
uated on their ability to generalize to unseen friction
values and layouts in two scenarios:
Evaluation Setting 1 : Same track layout as training, but
with friction transitions at previously unseen locations.

Evaluation Setting 2 : A completely new track layout
with friction transitions unseen during training.

We first evaluate policies trained in single friction en-
vironments under Evaluation Setting 1. As shown in the
first half of Table 1, these policies perform well in sin-
gle friction environments. SAC-Switching can be seen as
learning separate expert policies for µ ∈ {0.5, 0.4, 0.3}.
When provided with ground truth knowledge of δm equa-
tion 1, it is no surprise that this policy performs best as
it simply picks the expert corresponding to a fixed value
of µ for the entire trajectory. However, this approach,
along with the other baselines still suffers from a lack
of ability to zero-shot generalize to hybrid environments
as seen from the second half of the table, often crash-
ing at turns where friction coefficient switches occur. In
contrast, MoE-Diff demonstrates reasonably good per-
formance with significantly less variance compared to the
baselines on single friction tracks with µ ∈ {0.5, 0.4}. It
also retains performance when deployed to unseen hy-
brid environments even though these switching transi-
tions are not observed in its training dataset. We now
consider training in hybrid friction environments. De-
signing such environments during training is non-trivial
due to the need to balance data collection across coeffi-
cient pairs and avoid overfitting to easier settings. After
each episode, we must choose which coefficient pair to
sample next. We evaluate three strategies,
A: Maintain balanced sampling across all coefficients,
similar to the single friction setup.
B: Cycle through all coefficient pairs in a fixed order.
C: With probability p = 0.95, select the coefficient pair
with the lowest average episode reward (over a moving
window of size 10). With probability 1− p, sample a co-
efficient pair from the distribution characterized by how
many episodes it has been since each coefficient pair was
last used.



Figure 4: (a) Trajectories plots for different policies on a zero-shot generalization task to a previously unseen racetrack
layout with friction changes. (b) Visualization of vehicle boxes over a sharp turn section of the track. (c) Velocity
plots corresponding to the turn in (b) across different policies.

Table 2 compares SAC and UP-True policy performance
using each strategy. Approach C generally outperforms
the others across both single and hybrid test environ-
ments, as it balances targeted exploration of challeng-
ing coefficient pairs with coverage of the full set of co-
efficient pairs somewhat similar to active domain ran-
domization [26]. Approach A learns a policy that is not
conducive to low friction coefficients hence performing
exceeding well on higher friction coefficients but failing
in lower friction environments. This is because driving
lower friction coefficients can be seen as harder tasks and
simply maintaining a balance between all friction coeffi-
cients in the dataset results in a policy that converges to
good performance on the easier tasks, i.e., higher friction
coefficients. All subsequent hybrid training results use
approach C.

We evaluate these policies on both the evaluation set-
tings previously described. Table 3 shows that hybrid
training improves performance in evaluation setting 1
across most models in both single and hybrid evalua-
tion environments when compared against the values re-
ported in Table 1. Samples that reflect transitions be-
tween friction values seem to allow the model to get a
better understanding of the hybrid dynamics of the sys-
tem. The table also shows that the models that learn
to estimate friction coefficients i.e., SAC-MoE, DiPo⊕C
and MoE-Diff are capable of generalizing to unseen set-
tings, better than even UP-True which has ground truth
friction knowledge. In this setting, there is no one
model that performs better than the others consistently.
MoE-Diff and SAC-MoE show the ability to generalize
to previously the previous unseen racetrack layout with
DiPo⊕ C not being as conservative as it should. In con-
trast, MoE-Diff trained in single environments demon-
strates remarkable consistency across the rewards re-
ported for different settings which is due to the conser-
vative policy it learns.

A visualization of the resulting trajectories for a sub-
set of policies that perform the best in evaluation set-
ting to for a hybrid friction environment [0.3, 0.5] is
visualized in Figure 4. We see that MoE-Diff trained
in single friction environments lags behinds the others
slightly and exhibits the largest dip in velocity when
making the turn which reflects the conservative values
previously discussed. In contrast, DiPo⊕ C has velocity
higher than the others and accelerates out of the turn
the fastest, exhibiting a more aggressive policy leading
to an early crash.

6 Conclusion

Summary. In conclusion, we introduce the challenge of
controlling hybrid systems where the environment plays
a role in determining when the system switches between
different dynamics modes. Training in hybrid environ-
ments generally improves the performance of policies in
unseen hybrid environments, demonstrating the impor-
tance of observing transitions between different dynam-
ics modes during training. We further show how us-
ing diffusion and mixture-of-expert components in policy
learning can significantly improve performance over poli-
cies that receive ground truth friction knowledge in new
environments. models that showing the import. How-
ever, the approach outlined here is not without limita-
tions.

Limitations and Future Work. The curriculum
learning approach does not scale with an increase in
the number of parametric variables that affect the sys-
tem dynamics. Also, control over a lookahead horizon
could significantly improve performance and reduce con-
servatism in the policy. Extending the policies to ac-
count for such lookahead remains for future work.
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