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Abstract

Many applications in machine learning and decision making rely on procedures to1

aggregate human preferences. In such tasks, individuals express ordinal preferences2

over a set of items by voting, rating, or comparing them. We then aggregate these3

data into a ranking that reveals their collective preferences. Standard methods for4

preference aggregation are designed to return rankings that arbitrate conflicting5

preferences between individuals. In this work, we introduce a paradigm for selective6

aggregation where we abstain from comparison rather than arbitrate dissent. We7

summarize collective preferences as a selective ranking – i.e., a partial order that8

reflects all collective preferences where at least 100 · (1 − τ)% of individuals9

agree. We develop algorithms to build selective rankings that achieve all possible10

trade-offs between comparability and disagreement, and derive formal guarantees11

on their recovery and robustness. We conduct an extensive set of experiments on12

real-world datasets to benchmark our approach and demonstrate its functionality.13

Selective rankings provide a simple collective lever: set τ to expose disagreement,14

abstain rather than arbitrate, and constrain downstream algorithms to consensus.15

1 Introduction16

Many of our most important systems rely on procedures where we elicit and aggregate human17

preferences. In such systems, we ask a group of individuals to express their preferences over a set of18

items through votes, ratings, or pairwise comparisons. We then use these data to order items in a way19

that represents their collective preferences as a group. Over the past century, we have applied this20

pattern to reap transformative benefits from collective intelligence in elections [1], online search [2],21

and model alignment [3].22

Standard methods for preference aggregation represent collective preferences as a ranking – i.e., a23

total order over n items where we can infer the collective preference between items by comparing24

their positions. Real-world preference data are noisy, strategic, and shift across populations, making25

total orders brittle. Rankings reflect an approximate summary of collective preferences because26

it is impossible to define a coherent order when individuals disagree. This impossibility – which27

is enshrined in foundational results such as Condorcet’s Paradox [1] and Arrow’s Impossibility28

Theorem [4] – has cast preference aggregation as an exercise in arbitration.29

In many use cases for rankings, we do not need a total order. Abstaining on contested pairs30

and keeping only well-supported comparisons yields more robust outcomes. When we aggregate31

preferences to rank colleges, a total order can strongly influence where students apply and how32

institutions invest [see e.g., 5–8]. When we aggregate preferences to predict helpfulness [9], a total33

order can lead us to build models that are aligned with the preferences of a slim majority [10].34
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Figure 1: Comparison of collective preferences for 5 users over n = 4 items. Standard rankings
arbitrate disagreement and hide it. Selective aggregation returns a partial order (tiers): items in
different tiers are comparable, and any such comparison overrules at most 100·τ% of users. The
tiers make disagreement explicit — e.g., τ = 0 gives unanimous {A,B} ≻ {C,D}, while τ = 2/5
recovers a total order if one accepts overruling up to 40%.

By fixing τ , we can accept only consensus-backed comparisons, resist gaming, and shape system35

behavior.36

In this work, we propose to address these challenges through selective aggregation. In this paradigm,37

we express collective preferences as a tiered ranking – i.e., a partial order where we are only allowed38

to compare items in different tiers. We view tiers as a simple solution to avoid the impossibility of39

arbitration: given a pair of items where individuals express conflicting preferences, we can place40

them in the same tier to abstain from comparison. We capitalize on this structure to develop a new41

representation for collective preferences that can reveal disagreement, and new algorithms that can42

allow us to control it.43

1. We introduce a paradigm for preference aggregation where we summarize collective prefer-44

ences as a selective ranking – i.e., a partial order where each comparison aligns with the45

preferences of at least 100(1− τ)% of users.46

2. We develop algorithms to construct all possible selective rankings for a preference aggre-47

gation task. Our algorithms are fast, easy to implement, and behave in ways that are safe48

and predictable, and we provide an open-source Python library for selective preference49

aggregation, available on anonymized repository.50

3. We conduct a study of preference aggregation in modern use cases and demonstrate how51

selective aggregation can be used to learn from subjective annotations in a case study in52

toxicity detection. Our results show how selective rankings can promote transparency and53

robustness compared to existing approaches.54

Related Work55

Our work is motivated by applications that must aggregate conflicting preferences. In machine56

learning, this appears in data annotation and alignment due to ambiguity, subjectivity, or expertise57

gaps [3, 11–17]. In medicine, conflicts reflect uncertainty about ground truth [18–21]; in content58

moderation, they reflect differences in opinion [22, 23].59

Our approach connects to social choice [24], which develops voting rules and impossibility results [4,60

25–27]. Few works consider abstaining from arbitration via partial orders; abstention is often61

infeasible in settings like elections that require a single winner [28].62

We complement rank-aggregation methods [2, 29–31] and coarser representations such as bucket63

orderings [32–34, and refs.]. Whereas bucket orderings treat within-block items as “equivalent,” our64

tiered ranking treats within-tier items as “incomparable.”65

2 Framework66

We consider a standard preference aggregation task where we wish to order n items in a way that67

reflects the collective preferences of p users. We start with a dataset where each instance πk
i,j68
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represents the pairwise preference of a user k ∈ [p] := {1, . . . , p} between a pair of items i, j ∈ [n]:69

πk
i,j =


1 if user k strictly prefers i to j ⇔ i

k
≻ j

0 if user k is indifferent ⇔ i
k∼ j

−1 if user k strictly prefers j to i⇔ i
k
≺ j

Pairwise preferences can represent a wide range of ordinal preferences, including labels, ratings, and70

rankings. In practice, we can convert all of these formats to pairwise preferences as described in71

Appendix A.2. In what follows, we assume that datasets contain all pairwise preferences from all72

users for the sake of clarity. We describe how to relax this assumption in Appendix B, and work with73

datasets with missing preferences in Section 3.74

Collective Preferences as Partial Orders Standard approaches express collective preferences as a75

ranking – i.e., a total order over n items where we can compare any pair of items. We consider an76

alternative approach in which we express collective preferences as a tiered ranking:77

Definition 2.1. A tiered ranking T is a partial ordering of n items into m disjoint tiers T :=78

(T1, . . . , Tm). Given a tiered ranking, we denote the collective preferences as:79

πi,j(T ) :=


1 if i ∈ Tl, j ∈ Tl′ for l < l′,

−1 if i ∈ Tl, j ∈ Tl′ for l > l′,

⊥ if i, j ∈ Tl for any l

Tiers provide a way to abstain from arbitration. Given a pair of items where users disagree, we can80

place them in the same tier and “agree to disagree.” Given a tiered ranking T , we can only make81

claims about collective preferences by comparing items in different tiers. In what follows, we say82

that a pairwise comparison between items i, j is valid if πi,j(T ) ̸= ⊥. We refer to a valid pairwise83

comparison as a selective comparison.84

Selective Aggregation Selective ranking Sτ is a partial order that maximizes the number of85

comparisons that align with the preferences of at least 100 · (1 − τ) of users. Given a dataset of86

pairwise preferences over n items from p users, we can express Sτ as the optimal solution to an87

optimization problem over the space of all tiered rankings T:88

max
T∈T

Comparisons(T )

s.t. Disagreements(T ) ≤ τp
(SPAτ )

Here, the objective maximizes the number of valid comparisons in a tiered ranking T :89

Comparisons(T ) :=
∑

i,j∈[n]

I [πi,j(T ) ̸= ⊥]

The constraints restrict the fraction of individual preferences that can be contradicted by any valid
comparison in T90

Disagreements(T ) := max
i,j∈[n]

∑
k∈[p]

I
[
πi,j(T ) = 1, πk

i,j ̸= 1
]

The dissent parameter τ limits the fraction of individual preferences that can be violated by any91

selective comparison. Given a selective ranking Sτ that places item i in a tier above item j, at most92

100 · τ% of users may have stated i ̸≻ j.93

We restrict τ ∈ [0, 0.5) to guarantee that the selective ranking Sτ aligns with a majority of users,94

and is unique (see Appendix A.2 for a proof). In this regime, we can set τ to trade off coverage for95

alignment as shown in Fig. 3.96

We present an algorithm to construct selective rankings in Algorithm 1.97

Algorithm 1 constructs a selective ranking from a dataset of pairwise preferences and a dissent98

parameter τ ∈ [0, 0.5). The procedure first builds a directed graph over items (VI , AI). Here, each99

vertex corresponds to an item, and each arc corresponds to a collective preference that we must not100
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Algorithm 1 Selective Preference Aggregation

Input: {πk
i,j}i,j∈[n],k∈[p] preference dataset

Input: τ ∈ [0, 0.5) dissent parameter

1: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n]

2: VI ← [n]
3: AI ← {(i→ j) | wi,j > τp}
4: VT ← ConnectedComponents(VI , AI)
5: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI}
6: l1, . . . , l|T | ← TopologicalSort(VT , AT )

Output: Sτ ← (Tl1 , Tl2 , . . . , Tl|T |) τ -selective ranking

contradict in a tiered ranking. Given (VI , AI), the procedure then builds a directed graph over tiers101

(VT , AT ). In Line 4, it calls the ConnectedComponents routine to identify the strongly connected102

components of (VI , AI) which become the set of supervertices VT = {T1, . . . , T|VT |}, where each103

supervertex contains items in the same tier. In Line 5, it defines arcs between tiers – drawing an104

arc from T to T ′ whose respective elements are connected by an arc in AI . Given (VT , AT ), the105

procedure determines an ordering among tiers by calling the TopologicalSort routine in Line 6. In this106

case, the graph will admit a topological sort as it is a directed acyclic graph.107

We provide guarantees in Appendix B.108

3 Experiments109

In this section, we present an empirical study of selective aggregation on real-world datasets. Our goal110

is to benchmark the properties and behavior of selective rankings with respect to existing approaches111

in terms of transparency, robustness, and versatility. We include additional results in Appendix D,112

and code to reproduce our results on anonymized repository.113

3.1 Setup114

We evaluate on 5 preference datasets (Table 1). Each encodes user choices (votes/ratings/rankings);115

we convert these to pairwise comparisons with ties and build rankings using our method and baselines.116

We compute solution paths via Algorithm 2 and report three representative points:117

• SPA0: τ = 0 (unanimous comparisons only).118

• SPAmin: smallest τ > 0 yielding ≥2 tiers (minimal disagreement to state any preference).119

• SPAmaj: largest τ < 0.5 (max claims without overruling a majority).120

Baselines:121

• Voting rules: Borda [35] and Copeland [36].122

• Sampling: MC4 [2], which ranks by the stationary distribution of a Markov chain induced by123

random walks over user preferences.124

• Median rankings: Kemeny [37] minimizes collective disagreement; we report an exact ILP (CPLEX125

v22 [38]) and a heuristic (BioConsert [39]).126

3.2 Results127

We summarize the specificity, disagreement, and robustness of rankings from all methods and all128

datasets in Table 1. In what follows, we discuss these results.129

On Transparency Standard approaches hide arbitration: a total ranking reveals neither how many130

users were overruled nor which items are contested. Selective rankings expose both. As shown in131

Appendix D.1, the dissent parameter quantifies the maximum overruled fraction per comparison, and132

tiers localize disagreement—only across-tier comparisons are allowed, while same-tier pairs imply at133

least τ disagreement (e.g., Duke–Columbia).134
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Selective Standard

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland MC4 Kemeny

nba
n = 7 items
p = 100 users
28.6% missing
NBA [40]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
7

0.0%
0.0%

2.0%
42.9%

2
3

0.0%
0.0%

6.4%
28.6%

4
1

0.0%
0.0%

8.3%
–
7
1

4.8%
19.0%

8.3%
–
7
1

4.8%
19.0%

7.9%
–
6
1

0.0%
19.0%

8.1%
–
7
1

4.8%
14.3%

survivor
n = 39 items
p = 6 users
0.0% missing
Purple Rock [41]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
94.9%

2
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

6.8%
–

39
1

1.3%
2.6%

6.6%
–

36
1

0.8%
1.8%

6.4%
–

35
1

0.8%
3.1%

6.7%
–

39
1

0.9%
1.6%

lawschool
n = 20 items
p = 5 users
0% missing
LSData [42]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
40.5%

4
12

0.0%
0.0%

0.3%
36.8%

6
12

0.0%
0.0%

3.1%
4.2%

15
2

0.0%
0.0%

4.7%
–

20
1

1.6%
3.7%

4.2%
–

20
1

1.1%
2.6%

4.2%
–

19
1

0.5%
2.6%

4.1%
–

20
1

29.5%
45.8%

csrankings
n = 175 items
p = 5 users
0.0% missing
Berger [43]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
175

0.0%
0.0%

0.0%
98.9%

2
1

0.0%
0.0%

0.1%
95.5%

3
1

0.0%
0.0%

12.3%
–

175
1

0.8%
3.1%

12.2%
–

168
1

0.8%
1.7%

12.2%
–

170
1

0.1%
0.1%

13.7%∗

–
175∗

1∗
9.0%∗

11.1%∗

sushi
n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [44]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
10

0.0%
0.0%

13.6%
64.4%

2
8

0.0%
0.0%

42.6%
0.0%

10
1

0.0%
0.0%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

2.2%
11.1%

42.6%
–

10
1

2.2%
11.1%

Table 1: Comparability, disagreement, and robustness of rankings for all methods on all datasets.
We report the following metrics for each ranking: Disagreement Rate, i.e., the fraction of collective
preferences that conflict with user preferences; Abstention Rate, i.e., the fraction of collective
preferences that abstain from comparison; # Tiers, the number of tiers or ranks. # Top Items, i.e., the
number of items in the top tier or rank. ∆-Sampling, the average fraction of collective preferences that
are inverted when we drop 10% of individual preferences; and ∆-Adversarial, the maximum fraction
of collective preferences that are inverted when we flip 10% of individual preferences, respectively.

Unlike traditional methods, a single winner or total order appears only when supported by a majority.135

In Table 1, we obtain a single winner in 4/5 datasets and a full order in 1/5. On law, the most granular136

solution (SPAmaj) yields two “top” schools (Stanford, Yale). On sushi, a single winner and total137

order emerge only at τ = 0.48, indicating substantial contention.138

On Robustness Representing collective preferences as a total ranking can change dramatically139

under small perturbations to individual preferences [45–47]. This sensitivity is structural: in a ranking140

over n items, any change can affect
(
n
2

)
pairwise preferences. In contrast, selective rankings group141

items into m ≤ n tiers, restricting the number of comparisons that can change and thereby improving142

robustness. In Table 1, we quantify this via the expected rate of inverted collective preferences under143

small perturbations: ∆-Sampling and ∆-Adversarial measure inversions from dropping or flipping144

10% of individual preferences. For each dataset and method, we repeat these perturbations 100 times145

and report the mean inversion rate relative to the original ranking.146

4 Learning by Agreeing to Disagree147

Preference aggregation is used to align models with group preferences (e.g., toxicity or helpfulness).148

We collect user annotations and aggregate them into training labels [48]. In subjective or ambiguous149

settings [13, 19, 23], majority vote can skew toward the majority [3, 10], in domains including150

online platforms. We examine how selective aggregation mitigates this by exposing and controlling151

disagreement.152

Setup We build a toxicity classifier using DICES [49] with n=350 conversations and p=123 users.153

Labels are yki ∈ {1,−1, 0} for {toxic, benign, unsure}. Users are split into ptrain=5 (to form154

training labels) and ptest=118 (to evaluate individual-level performance). We construct aggregate155

training labels (three variants) from the train group, dropping “unsure” (0) and aggregating only156

{−1, 1}. We represent these labels as yMaj
i , yBorda

i , ySPA
i , and yExp

i .157

We process the training labels from each method to ensure that we can use a standard training158

procedure across similar methods. We use the training labels from each method to fine-tune a159

BERT-Mini model [50] and denote these models as fSPA, fMaj, fBorda, fExpert. We evaluate how each160
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Expert

Majority

Borda

Selective
28.2%

29.9%
39.2%
39.9%

37.8%
37.8%

43.9%
43.2%

49.5%
50.5%

49.5%
49.8%

28.5%
38.4%
39.8%

44.5%

0% 20% 40% 60%
Collective Error Rate

LabelError
PredictError

Test
Train

(a) Group-level errors on DICES. LabelError = avg.
disagreement with annotators; PredictError = avg. dis-
agreement of model predictions. Train: ptrain=5; Test:
ptest=118. SPA is lowest on both.

ExpertSPA

Majority Borda
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40%

60%
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0% 20% 40% 60% 80%
Threshold Value

P
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rt
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n 
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(b) CDF of user-level BER on held-out users
(ptest=118). Higher is better.

method performs with respect to individuals and users in terms of the following measures:161

BERk(f
all) := 1

2FPRk(f
all) + 1

2FNRk(f
all)

LabelError(yall) := 1
p

p∑
k=1

BERk(y
all)

PredictError(f all) := 1
p

p∑
k=1

BERk(f
all)

We evaluate the performance of each in terms of the balanced error rate for clarity as the data for162

each user exhibits class imbalance that changes across users. We include additional details on our163

setup in Appendix D.5.164

Results We summarize group- and individual-level results in Section 4. SPA minimizes collective165

disagreement: label error 28.2% (cf. 37.8% with yMaj). Alignment in labels carries through to166

predictions: fSPA has prediction error 29.9% (train) and 39.9% (test) vs. 38.4% and 44.5% for fBorda.167

Across test users ptest=118, roughly 60% achieve individual BER ≤ 40% under ySPA, compared to168

∼ 20% for yBorda and yMaj.169

Labels that encode collective preferences help: the large label error for yExp indicates many users170

disagree with the expert. Results are reported at BER-optimized thresholds; similar patterns hold at171

other operating points (e.g., TPR ≥ 90%), where binary-label baselines such as majority vote may172

underperform.173

5 Concluding Remarks174

In many applications where we aggregate human preferences, disagreement is “signal, not noise” [11].175

In this work, we developed foundations to aggregate preferences in a way that can reveal disagreement176

and allow us to control it. Selective aggregation compares only on consensus, resisting adversarial177

flips and missing data by abstaining on contested pairs. The main limitation of our work stems from178

algorithm design: the algorithms we have developed in this work are designed to be simple, versatile,179

and safe. To this end, they behave conservatively in tasks where datasets contain a large number of180

missing preferences.181

In these cases, we can still represent collective preferences as a selective ranking, but the output may182

collapse into a single tier. This behavior is intentional: it signals that any claim about the collective183

preferences could be invalidated once the missing preferences are elicited. Looking forward, we184

can extend our paradigm to such settings by adopting probabilistic assumptions [see e.g., 32] and by185

developing procedures to streamline preference elicitation.186
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A Supplementary Material for Section 2392

A.1 Notation393

We provide a list of the notation used throughout the paper in Table 2.394

Object Symbol Description
Items i ∈ [n] := {1, . . . , n} The objects being ordered, for which users have expressed preferences.
Users k ∈ [p] := {1, . . . , p} Individuals expressing preferences for given items.
Individual preferences πk

i,j ∈ {−1, 0, 1} Pairwise preference between items i and j for user k.
Tiered ranking T A partial ordering of n items into m tiers
Collective preference πi,j(T ) ∈ {−1, 0, 1} The preference between items i and j in a given ranking.
Selective ranking Sτ The partial order returned by solving SPAτ (D).
Dissent parameter τ ∈ [0, 1

2 ) The admitted dissent between two items i and j.

Table 2: Notation

A.2 Encoding Individual Preferences as Pairwise Comparisons395

Representation Notation Conversion
Labels yki ∈ {0, 1} πk

i,j = I
[
yki > ykj

]
− I

[
yki < ykj

]
Ratings yki ∈ [m] πk

i,j = I
[
yki > ykj

]
− I

[
ykj > yki

]
Rankings rk : [n]→ [n] πk

i,j = I
[
rk(i) > rk(j)

]
− I

[
rk(i) < rk(j)

]
Table 3: Data structures that capture ordinal preferences over n items. Each representation can be
converted into a set of

(
n
2

)
pairwise preferences in a way that ensures (and assumes) transitivity.

Item-level representations require fewer queries but may be subject to calibration issues between
annotators.

One of the benefits in developing machinery to aggregate preferences is that it can provide practitioners396

with flexibility in deciding how to elicit and aggregate the preferences. In practice, such choices397

involve trade-offs that we discuss briefly below. Specifically, eliciting pairwise preferences from398

users requires more queries than other approaches [51]. However, it may recover a more reliable399

representation of ordinal preferences than ratings or rankings [i.e., 52]. In tasks where we work with a400

few items, we can elicit preferences as ratings, rankings, or pairwise comparisons. In tasks where we401

elicit rankings, we can convert them into pairwise comparisons without a loss of information. In this402

case, eliciting pairwise comparisons can test implicit assumptions such as transitivity. In tasks where403

we elicit labels and ratings, the conversion is lossy – since we are converting cardinal preferences404

to ordinal preferences. In practice, this conversion can resolve issues related to calibration across405

users [see e.g, 53, 54]. In theory, it may also resolve disagreement [27].406
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B Theoretical Guarantees407

In this section, we present formal guarantees on the stability and recovery of selective rankings.408

On the Recovery of Condorcet Winners We often aggregate preferences to identify items that are409

collectively preferred to all others. Consider, for example, a task where we aggregate votes to select410

the most valuable player in a sports league or ratings to fund the most promising grant proposal [55].411

In Theorem B.1, we show that we can identify these “top” items from a solution path of selective412

rankings.413

Theorem B.1. Consider a preference aggregation task where a majority of users prefer item i0 to all414

other items. There exists a threshold value τ0 ∈ [0, 0.5) such that, for every τ > τ0, every selective415

ranking Sτ will place i0 as the sole item in its top tier.416

Theorem B.1 provides a formal recovery guarantee that ensures we recover a Condorcet winner or a417

Smith set [see e.g., 56] when they exist. In practice, the result implies that we can identify such “top418

items” by constructing and inspecting a solution path of selective rankings.419

In tasks where a majority of users prefers an item to all others, the solution path will contain a420

selective ranking whose top tier consists of a single item. In this case, we can recover the “single421

winner” and report the threshold value τ0 as a measure of consensus.422

In tasks where such a majority does not exist, every selective ranking Sτ for τ ∈ [0, 0.5) will include423

at least two items in the top tier. In settings where we aggregate preferences to identify a “single424

winner,” we can point to the solution path as evidence that no such winner exists and use it as a signal425

that further deliberation is required [see e.g., 57].426

Stability with Respect to Missing Preferences Standard methods can output rankings that change427

dramatically once we elicit missing preferences [45–47]. In Proposition B.2, we show that we can428

build a selective ranking that abstains from unstable comparisons by setting missing preferences to429

πk
i,j = 0.430

Proposition B.2. Given a preference dataset with missing preferences Dinit, let:431

• Dtrue ⊇ Dinit be a complete dataset where we elicit missing preferences; and432

• Dsafe ⊇ Dinit be a complete dataset where we set missing preferences to πk
i,j = 0.433

For any dissent value τ ∈ [0, 1
2 ), let Ssafe

τ and Strue
τ denote selective rankings for Dsafe and Dtrue,434

respectively. Then for any selective comparison πi,j(S
safe
τ ) ∈ {−1, 1}, we have:435

πi,j(S
safe
τ ) = πi,j(S

true
τ ).

Proposition B.2 provides a simple way to ensure stability when working with datasets where we are436

missing preferences from certain users for certain items. In such cases, we can always build a S that437

is “robust to missingness” in the sense that it will abstain from comparisons that may be invalidated438

once we elicit missing preferences.439

Stability with Respect to New Items In Proposition B.3, we characterize the stability of selective440

aggregation as we add a new item to our dataset.441

Proposition B.3. Consider a task where we start with a dataset of all pairwise preferences from442

p users over n items, which we then update to include all pairwise preferences for a new n + 1th443

item. For any τ ∈ [0, 1
2 ), let Sn

τ and Sn+1
τ denote selective rankings over n items and n+ 1 items,444

respectively. Then for any two items i, j ∈ [n], we have:445

πi,j(S
n+1
τ ) ∈ {−1, 1}, πi,j(S

n+1
τ ) ̸= −πi,j(S

n
τ )

The result shows that adding a new item to a selective ranking will either maintain each comparison446

or abstain. That is, adding a new item can only collapse items that were in different tiers into a single447

tier. However, it cannot lead items in the same tier to split. Nor can it lead items in different tiers to448

invert their ordering.449
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B.1 Proof of Correctness450

Lemma B.4. Consider the graph before running condensation or topological sort, but after451

pruning edges with weights below τp. Items can be placed in separate tiers without violating452

Disagreements(T ) ≤ τp if and only if there is no cycle in the graph involving those items.453

Proof. We start by connecting the edges in a graph to conditions on the items in a tiered ranking and454

eventually expand that connection to show the one-to-one correspondence between cycles and tiers.455

First note that for any items i, j: wi,j > τ ⇐⇒
∑p

k=1 1
[
πk
i,j ̸= 1

]
> τp. This follows trivially456

from the definition of wi,j :=
∑p

k=1 1
[
πk
i,j ̸= 1

]
. From this, we know that if and only if there exists457

an arc (i, j) that is not pruned before condensation, we cannot have a tiered ranking with πT
i,j = −1458

without violating Disagreements(T ) ≥ τp.459

If there exists a cycle in this graph, then we know the items in that cycle must be placed in the same460

tier. To show this, consider some edge i, j in the cycle. We know item j cannot be in a lower tier than461

i without violating the disagreements property, from the above. So item j must be in the same or a462

higher tier. But item j has an arrow to another item, k, which must be in the same or a higher tier463

than both j and i, and so on, until the cycle comes back to item i. This corresponds to the constraint464

that all items must be in the same tier.465

If a set of items is not in a cycle, then these items do not need to be placed in the same tier. If the466

items are not in a cycle, then there exists a pair of items (i, j) such that there is no path from j to i.467

Thus i can be placed in a higher tier than j without violating any disagreement constraints. Thus not468

all items in this set need to be placed in the same tier.469

Thus we have shown that for a graph pruned with a given value of τ , items can be placed in separate470

tiers for a tiered ranking based on that same parameter τ , if and only if there is no cycle in the graph471

involving all of these items.472

473

We draw on this Lemma to prove the main result:474

Theorem B.5. Given a preference aggregation task with n items and p users, Algorithm 1 returns the475

optimal solution to SPAτ for any dissent parameter τ ∈ [0, 1
2 ).476

Proof of Theorem B.5. Consider that items in our solution are in the same tier if and only if they477

are part of a cycle in the pruned graph (i.e., if and only if they are in the same strongly connected478

component). So items are in the same tier if and only if they must be in the same tier for the solution479

to be feasible. No other feasible tiered ranking could have any of these items in separate tiers. So no480

other tiered ranking could have any more tiers, or any more comparisons. To do so would require481

placing some same-tier items in different tiers. Thus, our solution is maximal with respect to the482

number of tiers, and with respect to the number of comparisons.483

B.2 Proof of Uniqueness484

Theorem B.6. The optimal solution to SPAτ is unique for τ ∈ [0, 0.5).485

Proof of Theorem B.6. Let T denote an optimal solution to SPAτ . We will show that the optimality486

T is fully specified by: (1) the items in each tier and (2) the ordering between tiers. That is, if we487

were to produce a tiered ranking T ′ that assigns different items to each tier, or that orders tiers in a488

different way would be suboptimal or infeasible.489

Consider a tiered ranking T that is feasible with respect to SPAτ for some τ ∈ [0, 0.5). Let T ′ denote490

a tiered ranking where we swap the order of two tiers in T . We observe that the T ′ must violate a491

constraint. To see this, consider any pair of items i, j such that πi,j(T ) = 1 before the swap, but492

πj,i(T
′) = 1 after the swap. One such pair must exist for any swapping of tier orders, because all493

tiers are non-empty. Because we elicited complete preferences, one of the following conditions must494
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hold:495 ∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp (1)

∑
k∈[p]

I
[
πk
j,i ̸= 1

]
> τp (2)

Assuming that T was an optimal solution to SPAτ , we observe that the condition in Eq. (1)496

must be violated because the original optimal solution was valid. Thus, we must have that497 ∑
k∈[p] I

[
πk
j,i ̸= 1

]
> τp. This implies that Disagreements(T ′) > τp for this tiered ranking.498

Thus, swapping the order of tiers violates constraints because τ < 0.5.499

Now note that any separation of items from within the same tier is not possible without violating a500

constraint. This follows from Lemma B.4, which states that items that are part of a cycle in our graph501

representation of the problem1, must be in the same tier for a solution to be valid. And, as specified502

in our algorithm, we know our optimal solution has tiers only where there are cycles in the graph503

representation of the problem. So any tiers in the optimal solution cannot be separated.504

We can still merge two tiers together without violating constraints, but such an operation reduces505

the number of comparisons and would no longer be optimal. And after merging two tiers, the only506

valid separation operation would be simply to undo that merge (since any other partition of the507

items in that merged tier, would correspond to separating items that were within the same tier in508

the optimal solution). So we cannot use merges as part of an operation to reach a valid alternative509

optimal solution.510

So we know that for the optimal solution, we cannot separate out any items within the same tier, and511

we cannot reorder any of the tiers. Merging, meanwhile, sacrifices optimality. Thus, the original512

optimal solution is unique.513

B.3 Constructing All Possible Selective Rankings514

We start with a proof for Proposition B.8.515

Proof of Proposition B.8. Recall that in Algorithm 1, an edge (i, j) with weight wi,j is excluded if516

at least τp users disagree with the preference j ≻ i. We observe that wi,j =
∑

k∈[p] I
[
πk
i,j ≥ 0

]
517

corresponds the number of users who disagree with the preference j ≻ i. Given a dataset, denote the518

set of dissent values that could lead to different outputs as:519

W = {0} ∪

τ ′ | ∃i, j : τ ′ =

1

p

∑
k∈[p]

I
[
πk
i,j ≥ 0

] < 1
2


This corresponds to the set of unique wi,j/p for all i, j, with the value 0 included as well. To see this,520

note wi,j =
∑

k∈[p] I
[
πk
i,j ≥ 0

]
. We will now show the following Lemma, which will resolve the521

original claim.522

Lemma B.7. Given any two adjacent elements a, b ∈ W ∪ { 12}. All dissent values in τ ∈ [a, b) lead523

to the same selective ranking as the selective ranking for τ = a.524

Proof. To show this, note that there exists no edge i→ j such that ap < wi,j < bp. If there did exist,
then we would have

a <
wi,j

p
< b.

This would imply that W would have to include an additional between a and b. But a and b are525

adjacent inW . This is a contradiction.526

Since there exists no edge i→ j such that ap < wi,j < bp, there exists no edge such that the decision527

to include its arc in the graph changes based on what value of dissent we select in [a, b). Recall that528

we exclude i→ j iff wij ≥ τp529

1after pruning edges of weight below τ
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Now that we know that for any two adjacent values a, b inW ∪ { 12}, all dissent values in [a, b) lead530

to the same tiered ranking as with dissent value a, we know that for any dissent value τ ∈ [0, 1
2 ), the531

largest value of τ ′ ∈ W that is ≤ τ will lead to the same tiered ranking. Simply substitute τ in for a,532

and the smallest value above τ inW ∪ { 12} for b (such a value exists, on both sides, because 0 and 1
2533

are both ∈ W ∪ { 12}, and τ ∈ [0. 12 )).534

Thus we have shown the required claim.535

536

Recovering All Selective Rankings Algorithm 1 is meant to recover a selective ranking in settings537

where we can set the value of τ a priori (e.g., τ = 0% to enforce unanimity). In many applications,538

we may wish to set τ after seeing the entire path of selective rankings. In a funding task where we539

only have the resources to fund 3 proposals, for example, we can choose the smallest value of τ from540

the solution path such that the top tier contains ≤ 3 proposals. In cases where a top three does not541

exist, this can lead us to save resources or increase our budget. In a prediction task where labels542

encode collective preferences, we could aggregate annotations with a selective ranking and treat τ as543

a hyperparameter to control overfitting.544

In these situations, we can produce a solution path of selective rankings– i.e., a finite set of selective545

rankings that covers all possible solutions to SPAτ for τ ∈ [0, 1
2 ) [c.f. 58]. We observe that a finite546

solution path must exist as each selective ranking is specified by the arcs in Line 3. In practice, we can547

compute all selective rankings efficiently by: (1) identifying a smaller subset of dissent parameters to548

consider as per Proposition B.8; and (2) re-using the graph of strongly connected components across549

iterations.550

Proposition B.8. Given a dataset of pairwise preferences D, let SW denote a finite set of selective551

rankings for dissent parameters in the set:552

W =
{

w
p < 1

2 | w =
∑
k∈[p]

I
[
πk
i,j ≥ 0

]
for i, j ∈ [n]

}
∪ {0}

Let Sτ be a selective ranking for an arbitrary dissent value τ ∈ [0, 1
2 ). Then, SW contains a selective553

ranking Sτ ′ such that Sτ ′ = Sτ for some dissent value τ ′ ≤ τ.554
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Figure 3: All possible selective rankings for the task in Fig. 1 where we aggregate the preferences
of p = 5 users over n = 4 items {A,B,C,D}. We show the comparability and disagreement of
each solution to SPAτ on the left, and their selective rankings on the right. Here, the solution for
τ ∈ [0, 1

5 ] reveals that all users unanimously prefer {A,B} to {C,D}. The solution for τ ∈ ( 15 ,
2
5 ],

reveals that we can recover a single winner if we are willing to make claims that overrule at most 1
user, while the solution for τ ∈ ( 25 ,

1
2 ] reveals we can only recover a total order if we are willing to

overrule at most 2 users.
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We describe this procedure in Algorithm 2. Both Algorithms 1 and 2 run in time O(n2p) – i.e., they555

are linear in the number of individual pairwise preferences elicited (see Appendix B.4). As we show556

in Fig. 4, the resulting approach can lead to an improvement in runtime in practice.557
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Figure 4: Runtimes to produce all selective rankings for a synthetic task with p = 10 users and n
items (see Appendix A.2 for details). We show results for a naïve approach where we call Algorithm 1
for all possible dissent values, and the solution path algorithm in Appendix A.2. All results reflect
timings on a consumer-grade CPU with 2.3 GHz and 16 GB RAM.

Algorithm We present an algorithm to construct a solution path of selective rankings in Algorithm 2.558

Algorithm 2 Solution Path Algorithm

Input: D = {πk
i,j}i,j∈[n],k∈[p] preference dataset

1: S = {} initialize solution path

Construct Initial Preference Graph for τ = 0

2: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n] wi,j = # preferences claiming i ⪰ j

3: VI ← [n] Vertices represent items

4: AI ← {(i→ j) | wi,j ≥ 0} Arcs for observed preferences

Construct Selective Rankings for All Possible Dissent Values

5: W ← {wi,j for all i, j ∈ [n] | wi,j < ⌈p2⌉} ∪ {0} Set of dissent parameters (see Proposition B.8)

6: for τ ∈ W do
7: AI ← AI/{(i→ j) ∈| wi,j ≥ τp} Add arcs with support ≥ τp

8: VT ← ConnectedComponents((T,AT )) Group items into tiers

9: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI} Add edges between items to supervertex

10: (l1, . . . , l|VT |)← TopologicalSort((VT , AT )) Sort components based on directed edges

11: Sτ ← (Tl1 , . . . , Tl|VT |)

12: S ← S ∪ {Sτ}
13: end for
Output: S Selective rankings that cover the comparison-disagreement frontier

Given a preference dataset Algorithm 2 returns a finite collection of selective rankings S that achieve559

all possible trade-offs of comparability and dissent. The procedure improves the scalability by560

restricting the values of the dissent parameter τ as per Proposition B.8 in Line 2, and by reducing561

the overhead of computing graph structures. In this case, we construct the preference graph once in562

Line 4, and progressively add arcs with sufficient support in Line 7.563

Algorithm 2 assumes a complete preference dataset – i.e., where we have all pairwise preferences564

from all users. In practice, we can satisfy this assumption by imputing missing preferences to 0 as565

described in Proposition B.2. Alternatively, we can also add an additional step after Line 7 to check566

that the item graph (VI , AI) remains connected.567

Details on Synthetic Dataset in Fig. 4 We benchmarked Algorithm 2 against Algorithm 1 in568

Fig. 4 on synthetic preference aggregation tasks where we could vary the number of users and items.569

We fixed the number of users to p = 10 users. For each user k ∈ [p], we sampled their pairwise570

preferences as πk
i,j ∼ Uniform(1, 0,−1).571
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B.4 Proofs of Algorithm Runtime572

Algorithm 1 Line 1 computes a sum while visiting each pairwise preference for each judge, taking573

O(n2p) time. All subsequent steps are linear in the graph size: both ConnectedComponents and574

TopologicalSort are linear in input size, and the other steps are just operations on each edge. So the575

total runtime is O(n2p).576

Algorithm 2 Note that |W| = ⌈p2⌉, because wij only takes integer values and there are ⌈p2⌉ integers577

between 0 and ⌈p2⌉ inclusive of 0 and exclusive of ⌈p2⌉. so the for loop runs ⌈p2⌉ times, and everything578

in the loop runs in time linear in the graph size, so O(n2). Thus the whole runtime of the loop is579

O(n2p). The preprocessing, as before, is O(n2p) time. Note that computing W can be done in580

O(n2p) time: just iterate through all wij for each of the ⌈p2⌉ possible distinct values, and add the581

value to W if it occurs at least once. Thus the total runtime is the sum of a constant number of582

O(n2p) steps, meaning the total runtime is O(n2p).583
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C Supplementary Material for Appendix B584

This appendix provides proofs and additional results to support the claims in Appendix B.585

C.1 On the Top Tier586

Theorem C.1. Consider a preference aggregation task where at most α < 1
2 of users strictly prefer587

one item over all other items. Given any τ ∈ [0, 1
2 ), the tiered ranking from SPAτ will include at588

least two items in its top tier.589

Proof. We show the contrapositive: having > (1− τ) users rank an item first guarantees having only590

one item in the top tier. Without loss of generality, call an item with > (1− τ) users rating a specific591

item first A. Consider WLOG any other item B. No more than τ users claim either of B ≻ A or592

B ∼ A, because we know > (1− τ) users claim A ≻ B. So for any tiered ranking that places some593

other item B in the same tier as A, we could instead place A above all other items in that tier, and594

have one more item. Since the result of our algorithm must have the maximal number of tiers, we595

cannot have a case where A is in the same tier as any other item.596

Lemma C.2. Consider a preference aggregation task where a majority of users strictly prefer an597

item i0 over all items i ̸= i0. There exists some threshold dissent τ0 ∈ [0, 1
2 ) such that for all τ > τ0,598

every selective ranking we obtain by solving SPAτ will place i0 as the sole item in its top tier.599

Proof. Let α denote the fraction of users who strictly prefer i0 over all items. Since α > 1
2 , we600

observe that at most 1−α < 1− 1
2 users can express a conflicting preference. Given any item i ̸= i0,601

let τ0 = 1− α denote the fraction who users who believe either of i ≻ i0 or i ∼ i0. For any tiered602

ranking that places i0 and i in the same tier, we could instead place i above all other items in that tier,603

and have one more tier. Since our algorithm returns a tiered ranking with the maximal number of604

tiers, we cannot have a case where i is in the same tier as any other item.605

C.2 On Missing Preferences606

Proof of Proposition B.2. If we are missing preferences, our algorithm’s behavior is to assume all607

missing preferences would be in disagreement with any asserted ordering. This exactly corresponds608

to the actual disagreement if the true values are all asserted equivalence/indifference, and an upper609

bound on dissent if the preferences are directional. By doing this, we guarantee that the disagreement610

property will be satisfied under any possible missingness mechanism, even a worst-case adversarial611

mechanism. We denote missingness as πk(i, j) =? if the preference is missing. This property is612

trivial to show. Consider that613

Disagreements(T ) := max
i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ̸= 1

]
≤ max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

1
[
πk
i,j ∈ {0,−1, ?}

]
= max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ∈ {0,−1}

]
if we we set all missing values πk

i,j =? to πk
i,j = 0

Given that overall disagreement when preferences are imputed cannot increase, we have that614

πi,j(S
true
τ ) = πi,j(S

safe
τ ).615

More formally: from the disagreements argument above, we know that Dsafe has the same or more616

disagreements for any preference than does Dtrue. Every selective comparison in Ssafe
τ corresponds617

to a pair of items in distinct strongly connected components under the constraints from Dsafe (see618

Lemma B.4). When we relax to only the constraints from Dtrue, we cannot have more disagreement619

for any preferences, so those items will remain in distinct strongly connected components. Since they620

remain in distinct strongly connected components, Lemma B.4 tells us the two items will not be in621

the same tier.622

20



To show that the two items will have the same ordering in both tiered rankings, note that even under623

Dtrue there must be a constraint on one of the two directions of the preference2. And that constraint624

will still hold underDsafe, which is no less constrained thanDtrue. Thus, Strue
τ cannot have a preference625

in the opposite direction from Ssafe
τ626

627

C.3 On the Distribution of Dissent628

A selective ranking only allows comparisons that violate at most τp of preferences in a dataset. In629

practice, these violations may be disproportionately distributed across users or items. For example,630

we may have a task with τ = 1
p where the same user disagrees with all comparisons in a dataset.631

Alternatively, the violations may be equally distributed across users – so that there is no coalition632

of users who agrees with all preferences. In Remark C.3, we bound the number of users who can633

disagree with a selective ranking.634

Remark C.3. A τ -selective ranking contradicts the preferences of at most p2

4 · τp users.635

The result in Remark C.3 only applies in tasks where the number of users exceeds the number of636

selective comparisons. In other tasks – where the number of selective comparisons exceeds the637

number of users – the statement is vacuous as we cannot rule out a worst-case where every user638

disagrees with at least one comparison.639

Proof. We observe that a selective ranking with a single tier makes no claims. Thus we can restrict our640

attention to cases where the τ -selective ranking contains at least two tiers. Given a selective ranking641

with more than 2 tiers, then any user who disagrees with the ranking of items from non-adjacent tiers,642

also disagrees with the ranking of two items in adjacent tiers. So every user with a conflict must643

disagree about the ordering of at least one pair of items in adjacent tiers. This bounds the number of644

users who disagree as τ times the number of distinct pairs of items in adjacent tiers. This is because645

no more than τ proportion of users can disagree with any one pairing.646

The number of distinct, adjacent-tier pairs is of the form
∑|T |−1

l=1 nlnl+1 where tier ; contains nl647

items, and all the tiers together contain all n items (
∑

i=l |T |nl = n). This quantity is maximized648

when we have |T | = 2 tiers that contain n
2 items each (rounding if n is odd). In this case, the649

maximum value is n
4 (or slightly below if n is odd). The worst case is tight, achieved with two tiers,650

each with half the items, and an even number of items.651

C.4 On Stability with Respect to New Items652

We start with a simple counterexample to show that selective rankings do not satisfy the “independence653

of irrelevant alternatives” axiom [4].654

Example C.4 (Selective Rankings do not Satisfy IIA). Consider a preference aggregation task where655

we have pairwise preferences from 2 users for 2 items i and j where both users agree that i ≻ j.656

User 1 : i ≻ j

User 2 : i ≻ j

In this case, every τ -selective ranking would be πi,j(T ) = 1 for any τ ∈ [0, 0.5).657

Suppose we elicit preferences for a third item z, and discover that each user asserts that z is equivalent658

to a different item:659

User 1 : i ∼ z ≻ j ←→ i ≻ j z ≻ j i ∼ z

User 2 : i ≻ j ∼ z ←→ i ≻ j j ∼ z i ≻ z

In this case, every τ -selective ranking would be πi,j(T ) = 0 for all τ ∈ [0, 1
2 ). This violates IIA660

because the relative comparison πi,j(T ) changes depending on the preferences involving z.661

2Given a dataset of complete preferences and τ ∈ [0, 1
2
), at least one of the following must hold:∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp or

∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp. This is because for the former claim to be true,

we’d need at least (1− τ)p preferences to be 1, which then forces the latter claim to be false because we’ve set
(1− τ)p > τp values to be something other than -1.
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Proposition C.5. Consider a preference aggregation task where for a given τ ∈ [0, 1
2 ) we construct

a selective ranking Sn using a dataset D of complete pairwise preferences from p users over n items
in the itemset [n]. Say we elicit pairwise preferences from all p users with respect to a new item n+ 1
and construct a selective ranking Sn+1 for the same τ over the new itemset [n+ 1]. Given any two
items i, j ∈ [n], we have that

(πi,j(Sn+1) = πi,j(Sn)) ∨ (πi,j(Sn+1) = 0).

Proof. It is sufficient to show the following:662

• When πi,j(Sn) ̸= −1, we never have πi,j(Sn+1) = −1663

• When πi,j(Sn) ̸= 1, we never have πi,j(Sn+1) = 1.664

Given a dataset of complete pairwise preferences and τ ∈ [0, 1
2 ), at least one of the following665

conditions must hold:666

Condition I:
∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp

Condition II:
∑
k∈[p]

I
[
πk
i,j ̸= −1

]
> τp

This is because for Condition I to be False, we would need at least (1 − τ)p preferences to be 1,667

which then forces Condition II to be true because we have set (1− τ)p > τp values to be something668

other than −1.669

Consider WLOG that Condition I holds. If
∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp, then we know that πi,j(Sn) ̸=670

1. Otherwise we would violate the disagreement constraint in SPAτ . Note that eliciting preferences671

for a new item does not change
∑

k∈[p] I
[
πk
i,j ̸= 1

]
. So we still have

∑
k∈[p] I

[
πk
i,j ̸= 1

]
> τp,672

and we still have πi,j(Sn+1) ̸= 1. Thus, we have that both πi,j(Sn) ̸= 1 and πi,j(Sn+1) ̸= 1.673

We can apply a symmetric argument to show Condition II holds. In this case, we would have that674 ∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp and see that both πi,j(Sn) ̸= −1 and πi,j(Sn+1) ̸= −1.675

This guarantees that the claim of Proposition B.3 cannot be violated. When πi,j(Sn) = 0 so too does676

πi,j(Sn+1) = 0. When πi,j(Sn) ̸= −1 we never have πi,j(Sn+1) = −1, when πi,j(Sn) ̸= 1 we677

never have πi,j(Sn+1) = 1. Thus we have proven the claim by cases.678
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Figure 5: Consensus rankings of U.S. law schools from selective preference aggregation and standard
voting rules for the lawschool dataset. On the left, we show selective rankings SPAmin and SPAmaj
for dissent values of τmin = 1

5 and τmax = 2
5 . On the right we see Borda on the full dataset, and

Borda90 after removing 10% of pairwise preferences — illustrating sensitivity to missing data.

D Supplementary Material for Sections 3 and 4679

In what follows, we include additional details and results for the experiments in Section 3 and our680

demonstration in Section 4.681

D.1 Descriptions of Datasets682

Dataset p n Format Description
nba 7 Coaches 100 Voters Ballots 2021 NBA Coach of the Year Award, where sports journalists vote for

the top 3 coaches

lawschool 5 Rankings 26 Schools Rankings Top U.S. law schools ranked by 5 organizations based on academic
performance, reputation, and other metrics in 2023.

survivor 6 Fans 39 Seasons Rankings Rankings task where 6 fans of the show Survivor rank seasons 1-40
from best to worst.

sushi 5,000 Respondents 10 Sushi Types Pairwise Benchmark recommendation dataset collected in Japan, where partici-
pants provided pairwise preferences over 10 different types of sushi:
ebi (shrimp), anago (sea eel), maguro (tuna), ika (squid), uni (sea
urchin), ikura (salmon roe), tamago (egg), toro (fatty tuna), tekka-maki
(tuna roll), and kappa-maki (cucumber roll).

csrankings 5 Subfields 175 Departments Rankings Rankings of computer science departments from csrankings.org based
on research output in AI, NLP, Computer Vision, Data Mining, and
Web Retrieval.

Table 4: Overview of datasets. We consider five datasets from salient use cases of preference
aggregation.

D.2 List of Metrics683

In what follows, we provide detailed descriptions of the metrics in Table 1.684
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Metric Formula Description

AbstentionRate(T )
1

n(n− 1)

∑
i,j∈[n]

I [πi,j(T ) = ⊥] Given a selective ranking over n items T , the ab-
stention rate represents the fraction of pairwise
comparisons where we abstain.

DisagreementRate(T ,D) 1

n(n− 1)p

∑
k∈[p]

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T ), πi,j(T ) ̸= ⊥

]
Given a ranking over n items T , the disagreement
rate represents the fraction of individual prefer-
ences in D that disagree with the collective prefer-
ences in T .

#Tiers(Sτ ) |Sτ | Given a selective ranking Sτ , the number of tiers.
For standard methods, each rank is converted to a
tier.

#TopItems(Sτ ) |T1| Given Sτ = (T1, . . . , Tm), the number of items
in the top tier. For standard methods, each rank is
converted to a tier.

DisagreementPerUser(T ,D) median
k∈[p]

1

n(n− 1)/2

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T )

]
The median fraction of preference violations across
users.

∆ Sampling (T,D) median
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j ̸= 0

]∑
i,j∈[n] I [Ti,j ̸= 0]

]
Given the ranking produced on the full dataset T ,
the median proportion of collective preferences
that are inverted when we drop 10% of preferences.
We construct a bootstrap estimate by applying the
method to Nb datasets where we randomly drop
10% of all preferences and obtain Nb rankings
{T 1, . . . , TNb}.

∆ Adversarial (T,D) max
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j

]
̸= 0∑

i,j∈[n] I [Ti,j ̸= 0]

]
Given the original ranking T , the maximum pro-
portion of collective preferences inverted when
we flip 10% of individual preferences. We con-
struct a bootstrap estimate where we first apply
the method to Nb datasets where we randomly flip
10% of all preferences and obtain Nb rankings
{T 1, T 2, . . . , TNb}.

Table 5: Metrics used to evaluate comparability, disagreement, and robustness of rankings in Table 1
and Appendix D.4

D.3 Selective Ranking Paths685

We present the solution paths of selective rankings for each dataset in Section 3 in Fig. 6 to Fig. 10.686
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Figure 6: Selective rankings for the nba dataset (n = 7 items and p = 100 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).
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Figure 7: Selective rankings for the survivor dataset (n = 39 items and p = 6 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).
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Figure 8: Selective rankings for the sushi dataset (n = 10 items and p = 5000 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right). Note that only a subset of dissent values are shown for clarity, focusing on the largest areas of
change.
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the tradeoff between comparison and disagreement (left) and the unique rankings over the dissent
path (right). We show the top 10 items, sorted by tier and alphabetically within each tier.
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Figure 10: Selective rankings for the lawschool dataset (n = 20 items and p = 5 users). We show
the tradeoff between comparison and disagreement (left) and the unique rankings over the dissent
path (right).
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D.4 Expanded Table of Results687

We include an expanded version of our results for all methods and all datasets in Appendix D.4. This688

table covers the same results as in Table 1, but includes the following additional metrics:689

1. ∆ Abstentions [Intervention], which measures the proportion of strict collective preferences690

(e.g., A ≻ B or A ≺ B) that turn into ties or abstentions in the ranking that we obtain after691

running the method on a modified dataset.692

2. ∆ Specifications [Intervention], which measures the proportion of ties or abstentions that693

turn into ties or abstentions in the ranking that we obtain after running the method on a694

modified dataset.695

We report these values for same interventions we consider in Section 3, namely: Sampling, where we696

run the method on a dataset where we randomly omit 10% of individual preferences; and Adversarial,697

where we run the method on a dataset where we randomly flip 10% of individual preferences. Each698

value corresponds to a bootstrap estimates where we perform the same estimate 100 times. For clarity,699

we list the ∆− Sampling as ∆− Inversions−−Sampling, and ∆− Adversarial−−Inversions.

Selective Standard

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland MC4 KemenyExact KemenyHeuristic

nba
n = 7 items
p = 100 users
28.6% missing
NBA [40]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1
7

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

2.0%
0.0%

42.9%
2
3

0.2600
0.0%
0.0%
9.5%
9.5%
0.0%

19.0%

6.4%
4.8%

28.6%
4
1

0.4900
0.0%
0.0%
0.0%
0.0%

28.6%
28.6%

8.3%
4.8%

–
7
1
–

4.8%
19.0%

0.0%
0.0%
0.0%
0.0%

8.3%
4.8%

–
7
1
–

4.8%
19.0%
0.0%
0.0%
0.0%
4.8%

7.9%
9.5%

–
6
1
–

0.0%
19.0%
4.8%
4.8%
0.0%

33.3%

8.1%
9.5%

–
7
1
–

4.8%
14.3%
0.0%
0.0%
0.0%
0.0%

8.1%
9.5%

–
7
1
–

4.8%
14.3%
0.0%
0.0%
0.0%
0.0%

survivor
n = 39 items
p = 6 users
0.0% missing
Purple Rock [41]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

94.9%
2
1

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.2%
0.1%

42.5%
5
1

0.1667
0.0%
0.0%
0.0%
5.1%

52.4%
57.5%

0.2%
0.1%

42.5%
5
1

0.3333
0.0%
0.0%
0.0%
0.0%

57.5%
57.5%

6.8%
7.2%

–
39

1
–

1.3%
2.6%
0.0%
0.0%
0.0%
0.0%

6.6%
7.1%

–
36

1
–

0.8%
1.8%
0.4%
0.4%
0.1%
0.4%

6.4%
6.8%

–
35
1
–

0.8%
3.1%
0.1%
0.3%

80.0%
89.5%

6.7%
7.1%

–
39
1
–

0.9%
1.6%
0.0%
0.0%
0.0%
0.4%

6.7%
7.1%

–
39
1
–

0.9%
1.6%
0.0%
0.0%
0.0%
0.4%

lawschool
n = 20 items
p = 5 users
0% missing
LSData [42]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

40.5%
4

12
0.0000

0.0%
0.0%
0.0%
0.0%

59.5%
59.5%

0.3%
0.0%

36.8%
6

12
0.2000

0.0%
0.0%

11.1%
0.0%

28.2%
0.0%

3.1%
1.6%
4.2%

15
2

0.4000
0.0%
0.0%
0.0%
0.5%

95.8%
95.8%

4.7%
4.2%

–
20

1
–

1.6%
3.7%
0.0%
0.0%
0.0%
0.0%

4.2%
2.6%

–
20

1
–

1.1%
2.6%
0.0%
0.0%
0.0%
1.6%

4.2%
2.6%

–
19
1
–

0.5%
2.6%
0.0%
0.0%

55.8%
64.2%

4.1%
2.1%

–
20
1
–

29.5%
45.8%
0.0%
0.0%
0.0%
0.0%

4.1%
2.1%

–
20
1
–

29.5%
45.8%
0.0%
0.0%
0.0%
0.0%

csrankings
n = 175 items
p = 5 users
0.0% missing
Berger [43]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

175
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.0%
0.0%

98.9%
2
1

0.2000
0.0%
0.0%
0.0%
0.0%
1.1%
0.0%

0.1%
0.1%

95.5%
3
1

0.4000
0.0%
0.0%
0.0%
0.0%
4.5%
4.5%

12.3%
12.3%

–
175

1
–

0.8%
3.1%
0.0%
0.0%
0.0%
0.0%

12.2%
12.6%

–
168

1
–

0.8%
1.7%
0.1%
0.1%
0.0%
0.1%

12.2%
12.3%

–
170

1
–

0.1%
0.1%

94.4%
94.4%
0.0%
0.0%

–
–
–
–
–
–
–
–
–
–
–
–

13.7%
13.5%

–
175

1
–

9.0%
11.1%
0.0%
0.0%
0.0%
0.0%

sushi
n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [44]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

10
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

13.6%
13.3%
64.4%

2
8

0.0020
0.0%
0.0%
0.0%
0.0%

35.6%
0.0%

42.6%
42.2%
0.0%

10
1

0.4998
0.0%
0.0%
0.0%
0.0%

100.0%
100.0%

42.6%
42.2%

–
10

1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%

15.6%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%
0.0%

700

D.5 Supplementary Material for Section 4701

Selective Aggregation with Binary Annotations A key challenge in applying SPA to the DICES702

dataset is that it elicits categorical labels for each item individually, rather than comparative ratings.703

This conversion can create unnecessary equivalence, where a pairwise preference is inferred as a tie704

(πk
i,j = 0). This is not a reflection of a user’s true judgment but an artifact of two limitations: (1)705

users annotate items individually rather than comparing them, and (2) the annotations are restricted706

to {0, 1} instead of granular ratings. For example, a user may believe item A is significantly more707

toxic than item B, but the conversion results in a tie if both were labeled "toxic" a distinction that is708

lost in this setting.709

We address this by running a variant of selective aggregation where we construct aggregate labels710

from users who express a strict preference between items – i ≻ j or j ≻ i. In addition, we assume711
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Figure 11: ROC model curves on the training set for all four methods. We highlight the label for
each method closest to tpr> 90% on labels with a large dot. fSPA is the only method whose chosen
operating point keeps the true-positive rate above 80 % on the model output while controlling FPR.

that users who have not asserted an opinion (because of dataset scope) are “deferring judgment" to712

those who have.713

For each pair of items i, j ∈ [n], we define:714

• si,j :=
∑

k∈[p] I
[
πk
i,j = 1

]
denote number of users who strictly prefer item i to item j715

• sj,i :=
∑

k∈[p] I
[
πk
i,j = −1

]
denote the number of users who strictly prefer item j to item716

i.717

• The aggregate preference weight wi,j as the proportion of users who strictly prefer i to j718

among those who expressed a strict preference, scaled to n items. Note that all item pairs719

had at least 1 preference:720

wi,j := n · si,j
si,j + sj,i

In this setup, the dissent parameter τ no longer maintains its standard interpretation because users721

may not assign a preference to each item, and items may be assigned different weights. As a result,722

we produce selective rankings for all possible dissent parameters that lead to a connected graph in723

Algorithm 2. In this case, the maximum dissent value is set to a threshold value where Line 4 returns724

a disconnected graph.725

D.6 Model Training726

All experiments used 5-fold cross-validation on the training split. We fine-tuned a BERT-Mini model;727

all fine-tuning experiments used 5-fold cross-validation on the training split. We optimized with a728

learning rate of 2× 10−5 for up to 25 epochs, employing early stopping. We trained in mini-batches729

of size 16 and enabled oversampling of minority classes in each batch.730

731
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