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Abstract

Many applications in machine learning and decision making rely on procedures to
aggregate human preferences. In such tasks, individuals express ordinal preferences
over a set of items by voting, rating, or comparing them. We then aggregate these
data into a ranking that reveals their collective preferences. Standard methods for
preference aggregation are designed to return rankings that arbitrate conflicting
preferences between individuals. In this work, we introduce a paradigm for selective
aggregation where we abstain from comparison rather than arbitrate dissent. We
summarize collective preferences as a selective ranking — i.e., a partial order that
reflects all collective preferences where at least 100 - (1 — 7)% of individuals
agree. We develop algorithms to build selective rankings that achieve all possible
trade-offs between comparability and disagreement, and derive formal guarantees
on their recovery and robustness. We conduct an extensive set of experiments on
real-world datasets to benchmark our approach and demonstrate its functionality.
Selective rankings provide a simple collective lever: set T to expose disagreement,
abstain rather than arbitrate, and constrain downstream algorithms to consensus.

1 Introduction

Many of our most important systems rely on procedures where we elicit and aggregate human
preferences. In such systems, we ask a group of individuals to express their preferences over a set of
items through votes, ratings, or pairwise comparisons. We then use these data to order items in a way
that represents their collective preferences as a group. Over the past century, we have applied this
pattern to reap transformative benefits from collective intelligence in elections [1], online search [2],
and model alignment [3].

Standard methods for preference aggregation represent collective preferences as a ranking —i.e., a
total order over n items where we can infer the collective preference between items by comparing
their positions. Real-world preference data are noisy, strategic, and shift across populations, making
total orders brittle. Rankings reflect an approximate summary of collective preferences because
it is impossible to define a coherent order when individuals disagree. This impossibility — which
is enshrined in foundational results such as Condorcet’s Paradox [1] and Arrow’s Impossibility
Theorem [4] — has cast preference aggregation as an exercise in arbitration.

In many use cases for rankings, we do not need a total order. Abstaining on contested pairs
and keeping only well-supported comparisons yields more robust outcomes. When we aggregate
preferences to rank colleges, a total order can strongly influence where students apply and how
institutions invest [see e.g., 5-8]. When we aggregate preferences to predict helpfulness [9], a total
order can lead us to build models that are aligned with the preferences of a slim majority [10].
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Figure 1: Comparison of collective preferences for 5 users over n = 4 items. Standard rankings
arbitrate disagreement and hide it. Selective aggregation returns a partial order (tiers): items in
different tiers are comparable, and any such comparison overrules at most 100-7% of users. The
tiers make disagreement explicit — e.g., 7 = 0 gives unanimous {A, B} >~ {C, D}, while 7 = 2/5
recovers a total order if one accepts overruling up to 40%.

By fixing 7, we can accept only consensus-backed comparisons, resist gaming, and shape system
behavior.

In this work, we propose to address these challenges through selective aggregation. In this paradigm,
we express collective preferences as a tiered ranking — i.e., a partial order where we are only allowed
to compare items in different tiers. We view tiers as a simple solution to avoid the impossibility of
arbitration: given a pair of items where individuals express conflicting preferences, we can place
them in the same tier to abstain from comparison. We capitalize on this structure to develop a new
representation for collective preferences that can reveal disagreement, and new algorithms that can
allow us to control it.

1. We introduce a paradigm for preference aggregation where we summarize collective prefer-
ences as a selective ranking — i.e., a partial order where each comparison aligns with the
preferences of at least 100(1 — 7)% of users.

2. We develop algorithms to construct all possible selective rankings for a preference aggre-
gation task. Our algorithms are fast, easy to implement, and behave in ways that are safe
and predictable, and we provide an open-source Python library for selective preference
aggregation, available on anonymized repository.

3. We conduct a study of preference aggregation in modern use cases and demonstrate how
selective aggregation can be used to learn from subjective annotations in a case study in
toxicity detection. Our results show how selective rankings can promote transparency and
robustness compared to existing approaches.

Related Work

Our work is motivated by applications that must aggregate conflicting preferences. In machine
learning, this appears in data annotation and alignment due to ambiguity, subjectivity, or expertise
gaps [3, 11-17]. In medicine, conflicts reflect uncertainty about ground truth [18-21]; in content
moderation, they reflect differences in opinion [22, 23].

Our approach connects to social choice [24], which develops voting rules and impossibility results [4,
25-27]. Few works consider abstaining from arbitration via partial orders; abstention is often
infeasible in settings like elections that require a single winner [28].

We complement rank-aggregation methods [2, 29-31] and coarser representations such as bucket
orderings [32-34, and refs.]. Whereas bucket orderings treat within-block items as “equivalent,” our
tiered ranking treats within-tier items as “incomparable.”

2  Framework

We consider a standard preference aggregation task where we wish to order n items in a way that

reflects the collective preferences of p users. \72Ve start with a dataset where each instance ﬂﬁ j
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represents the pairwise preference of a user k € [p] := {1,...,p} between a pair of items 7, j € [n]:

k

1 if user k strictly prefersito j < i > j

™ zk i = 0 if user k is indifferent ik J
k

—1 if user k strictly prefers jtoi < ¢ < j

Pairwise preferences can represent a wide range of ordinal preferences, including labels, ratings, and
rankings. In practice, we can convert all of these formats to pairwise preferences as described in
Appendix A.2. In what follows, we assume that datasets contain all pairwise preferences from all
users for the sake of clarity. We describe how to relax this assumption in Appendix B, and work with
datasets with missing preferences in Section 3.

Collective Preferences as Partial Orders Standard approaches express collective preferences as a
ranking — i.e., a total order over n items where we can compare any pair of items. We consider an
alternative approach in which we express collective preferences as a tiered ranking:

Definition 2.1. A ftiered ranking T is a partial ordering of n items into m disjoint tiers T :=
(Th,...,T,,). Given a tiered ranking, we denote the collective preferences as:

1if ieT,jeTy forl <,
Fi’j(T) =< —1 if 1€1y,j €Ty for > l/,
L if 4,5 €T; forany!

Tiers provide a way to abstain from arbitration. Given a pair of items where users disagree, we can
place them in the same tier and “agree to disagree.” Given a tiered ranking 7', we can only make
claims about collective preferences by comparing items in different tiers. In what follows, we say
that a pairwise comparison between items 1, j is valid if ; ;(T') # L. We refer to a valid pairwise
comparison as a selective comparison.

Selective Aggregation Selective ranking S, is a partial order that maximizes the number of
comparisons that align with the preferences of at least 100 - (1 — 7) of users. Given a dataset of
pairwise preferences over n items from p users, we can express S, as the optimal solution to an
optimization problem over the space of all tiered rankings T

max Comparisons(7")
rer (SPA,)
s.t. Disagreements(7") < 7p

Here, the objective maximizes the number of valid comparisons in a tiered ranking 7:

Comparisons(T') := Z Im; ;(T) # 1]

i,j€[n]

The constraints restrict the fraction of individual preferences that can be contradicted by any valid
comparison in T’

Disagreements(7) := max I[m;(T) = 1,7rzlfj #1]
i,5€[n] ke
The dissent parameter T limits the fraction of individual preferences that can be violated by any
selective comparison. Given a selective ranking S that places item ¢ in a tier above item 75, at most
100 - 7% of users may have stated ¢ * j.

We restrict 7 € [0,0.5) to guarantee that the selective ranking .S, aligns with a majority of users,
and is unique (see Appendix A.2 for a proof). In this regime, we can set 7 to trade off coverage for
alignment as shown in Fig. 3.

We present an algorithm to construct selective rankings in Algorithm 1.

Algorithm 1 constructs a selective ranking from a dataset of pairwise preferences and a dissent
parameter 7 € [0, 0.5). The procedure first builds a directed graph over items (V;, Ar). Here, each
vertex corresponds to an item, and each arc corresponds to a collective preference that we must not



101
102
103
104

106
107

108

110
111
112
113

114

115
116
117

118

119

120

121

122

123
124

125
126

127

128
129

130
131
132
133
134

Algorithm 1 Selective Preference Aggregation

Input' {ﬂ'fj }z ,J€[n],kE[p] preference dataset
Input T E [0 0. 5) dissent parameter
L Wij < Ppepp L [7F; > 0] foralli,j € [n]

2: Vi« [ ]

30 A < {(i = j) | wi; > Tp}

4: Vp + ConnectedComponents(V;, Aj)

5: Ap « {(T =T |FieT,jeT :(i—j) €A}

6: l1,...,lp| < TopologicalSort(Vr, Ar)
Output S — (7_'11 s 11l27 .. ﬂIT\) T-selective ranking

contradict in a tiered ranking. Given (V;, Ay), the procedure then builds a directed graph over tiers
(Vir, Ar). In Line 4, it calls the ConnectedComponents routine to identify the strongly connected
components of (V7, Ay) which become the set of supervertices Vi = {11, ..., T}y, |}, where each
supervertex contains items in the same tier. In Line 5, it defines arcs between tiers — drawing an
arc from T to T whose respective elements are connected by an arc in A;. Given (Vr, A7), the
procedure determines an ordering among tiers by calling the TopologicalSort routine in Line 6. In this
case, the graph will admit a topological sort as it is a directed acyclic graph.

We provide guarantees in Appendix B.

3 Experiments

In this section, we present an empirical study of selective aggregation on real-world datasets. Our goal
is to benchmark the properties and behavior of selective rankings with respect to existing approaches
in terms of transparency, robustness, and versatility. We include additional results in Appendix D,
and code to reproduce our results on anonymized repository.

3.1 Setup

We evaluate on 5 preference datasets (Table 1). Each encodes user choices (votes/ratings/rankings);
we convert these to pairwise comparisons with ties and build rankings using our method and baselines.
We compute solution paths via Algorithm 2 and report three representative points:

* SPAy: 7 = 0 (unanimous comparisons only).

* SPAnin: smallest 7 > 0 yielding > 2 tiers (minimal disagreement to state any preference).
* SPAp,;: largest 7 < 0.5 (max claims without overruling a majority).

Baselines:

* Voting rules: Borda [35] and Copeland [36].

* Sampling: MC4 [2], which ranks by the stationary distribution of a Markov chain induced by
random walks over user preferences.

* Median rankings: Kemeny [37] minimizes collective disagreement; we report an exact ILP (CPLEX
v22 [38]) and a heuristic (BioConsert [39]).

3.2 Results

We summarize the specificity, disagreement, and robustness of rankings from all methods and all
datasets in Table 1. In what follows, we discuss these results.

On Transparency Standard approaches hide arbitration: a total ranking reveals neither how many
users were overruled nor which items are contested. Selective rankings expose both. As shown in
Appendix D.1, the dissent parameter quantifies the maximum overruled fraction per comparison, and
tiers localize disagreement—only across-tier comparisons are allowed, while same-tier pairs imply at
least 7 disagreement (e.g., Duke—Columbia).
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Selective Standard
Dataset Metrics SPA;  SPAu, SPA,, Borda Copeland MC4 Kemeny

Disagreement Rate 0.0% 2.0% 6.4% 8.3% 8.3% 7.9% 8.1%
Abstention Rate  100.0%  42.9%  28.6% - - - -
# Tiers 1 2 4

nba
n = T7items

p = 100 users
28.6% missing
NBA [40]

7 7 6 7
# Top Items 7 3 1 1 1 1 1

A Sampling 0.0% 0.0% 0.0% 4.8% 4.8% 0.0% 4.8%
A-Adversarial 0.0% 0.0% 0.0% 19.0% 19.0% 19.0%  14.3%
Disagreement Rate 0.0% 0.2% 02%  6.8% 6.6% 6.4% 6.7%
Abstention Rate ~ 94.9%  42.5%  42.5%

2 5 5

survivor _ . - -
n = 39 items 39 36 35 39

" b users # Tiers
B 0% missine #Top ltems 1 1 1 1 1 1 1
Purolo R'odf[ m ASampling  00%  00% 00% 13%  08%  08% 09%
P A-Adversarial ~ 0.0%  0.0%  0.0% 2.6%  18%  3.1%  16%
Lawscnool DisagreementRate ~ 00%  03% 3.1% 47%  42%  42%  4.1%
ff;(i]i(l:m Abstention Rate ~ 40.5%  36.8%  4.2% - - - -
e # Tiers 4 6 15 20 20 19 20
{]’77 5 Sers # Top Items 12 12 2 1 1 1 1
Lglg‘:“:‘['% ) ASampling  0.0%  00% 00% 1.6% 1%  05% 295%

A-Adversarial 0.0% 0.0%  0.0% 3.7% 2.6% 2.6% 45.8%

Disagreement Rate 0.0% 0.0% 0.1%  12.3% 12.2% 122%  13.7%*
Abstention Rate  100.0%  98.9%  95.5%
1

csrankings
n 75 items

e # Tiers 2 3075 168 170 175"
b= 5 users # Top Items 175 1 1 1 1 1 1"
0.0% missing ° - . . . 5 g o
Berger [43] Asampling  00%  00%  00% 08%  08%  01% 9.0%
® A-Adversarial — 00%  00%  0.0% 3.0%  17%  0.1% 11.1%"

Disagreement Rate 0.0% 13.6% 42.6% 42.6% 42.6% 42.6%  42.6%
Abstention Rate  100.0%  64.4% 0.0% - - - -

sushi
n = 10 items

7= 5,000 osers # Tiers 1 2 10 10 10 10 10
0.0% missing #Top ltems 10 8 1 1 1 1
Kamishima [44] ASampling  0.0%  0.0%  00% 00%  00% = 22%  22%

* A-Adversarial — 0.0%  0.0%  00% 22% = 22% 111% 111%

Table 1: Comparability, disagreement, and robustness of rankings for all methods on all datasets.
We report the following metrics for each ranking: Disagreement Rate, i.e., the fraction of collective
preferences that conflict with user preferences; Abstention Rate, i.e., the fraction of collective
preferences that abstain from comparison; # Tiers, the number of tiers or ranks. # Top Items, i.e., the
number of items in the top tier or rank. A-Sampling, the average fraction of collective preferences that
are inverted when we drop 10% of individual preferences; and A-Adversarial, the maximum fraction
of collective preferences that are inverted when we flip 10% of individual preferences, respectively.

Unlike traditional methods, a single winner or total order appears only when supported by a majority.
In Table 1, we obtain a single winner in 4/5 datasets and a full order in 1/5. On 1aw, the most granular
solution (SPAp,;) yields two “top” schools (Stanford, Yale). On sushi, a single winner and total
order emerge only at 7 = 0.48, indicating substantial contention.

On Robustness Representing collective preferences as a total ranking can change dramatically
under small perturbations to individual preferences [45—47]. This sensitivity is structural: in a ranking
over n items, any change can affect (g) pairwise preferences. In contrast, selective rankings group
items into m < n tiers, restricting the number of comparisons that can change and thereby improving
robustness. In Table 1, we quantify this via the expected rate of inverted collective preferences under
small perturbations: A-Sampling and A-Adversarial measure inversions from dropping or flipping
10% of individual preferences. For each dataset and method, we repeat these perturbations 100 times
and report the mean inversion rate relative to the original ranking.

4 Learning by Agreeing to Disagree

Preference aggregation is used to align models with group preferences (e.g., toxicity or helpfulness).
We collect user annotations and aggregate them into training labels [48]. In subjective or ambiguous
settings [13, 19, 23], majority vote can skew toward the majority [3, 10], in domains including
online platforms. We examine how selective aggregation mitigates this by exposing and controlling
disagreement.

Setup We build a toxicity classifier using DICES [49] with n=350 conversations and p=123 users.
Labels are y¥ € {1,—1,0} for {toxic, benign, unsure}. Users are split into p™"=5 (to form
training labels) and p"*'=118 (to evaluate individual-level performance). We construct aggregate
training labels (three variants) from the train group, droppin§ ;‘unsure” (0) and aggregating only

{—1,1}. We represent these labels as y)'¥, yBorda ySPA - and 3P,

We process the training labels from each method to ensure that we can use a standard training
procedure across similar methods. We use the training labels from each method to fine-tune a
BERT-Mini model [50] and denote these models as fSPA, fMai fBorda - fExpert We evaluate how each
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agreement of model predictions. Train: p™"=5; Test:
p'*'=118. SPA is lowest on both.

method performs with respect to individuals and users in terms of the following measures:

BER (") := LFPR,(f") + $FNR,(f")

LabelError(y™) := ZBER )

k=1
P
PredictError(f") := %Z £

We evaluate the performance of each in terms of the balanced error rate for clarity as the data for
each user exhibits class imbalance that changes across users. We include additional details on our
setup in Appendix D.5.

Results We summarize group- and individual-level results in Section 4. SPA minimizes collective
disagreement: label error 28.2% (cf. 37.8% with y™M%). Alignment in labels carries through to
predictions: fSPA has prediction error 29.9% (train) and 39.9% (test) vs. 38.4% and 44.5% for fBerda,
Across test users p''= 118 roughly 60% achieve individual BER < 40% under 35*A, compared to
~ 20% for gBorda and yM

Labels that encode collective preferences help: the large label error for y®*P indicates many users
disagree with the expert. Results are reported at BER-optimized thresholds; similar patterns hold at
other operating points (e.g., TPR > 90%), where binary-label baselines such as majority vote may
underperform.

5 Concluding Remarks

In many applications where we aggregate human preferences, disagreement is “signal, not noise” [11].
In this work, we developed foundations to aggregate preferences in a way that can reveal disagreement
and allow us to control it. Selective aggregation compares only on consensus, resisting adversarial
flips and missing data by abstaining on contested pairs. The main limitation of our work stems from
algorithm design: the algorithms we have developed in this work are designed to be simple, versatile,
and safe. To this end, they behave conservatively in tasks where datasets contain a large number of
missing preferences.

In these cases, we can still represent collective preferences as a selective ranking, but the output may
collapse into a single tier. This behavior is intentional: it signals that any claim about the collective
preferences could be invalidated once the missing preferences are elicited. Looking forward, we
can extend our paradigm to such settings by adopting probabilistic assumptions [see e.g., 32] and by
developing procedures to streamline preference elicitation.
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A Supplementary Material for Section 2

A.1 Notation

We provide a list of the notation used throughout the paper in Table 2.

Object Symbol Description

Items i€ [n]:={1,...,n} The objects being ordered, for which users have expressed preferences.
Users ke p]:={1,...,p} Individuals expressing preferences for given items.

Individual preferences Trf ;€ {-1,0,1} Pairwise preference between items ¢ and j for user k.

Tiered ranking T A partial ordering of n items into m tiers

Collective preference  m; ;(T) € {—1,0,1}  The preference between items 4 and j in a given ranking.

Selective ranking Sr The partial order returned by solving SPA, (D).

Dissent parameter T € [0, %) The admitted dissent between two items 7 and j.

Table 2: Notation

A.2 Encoding Individual Preferences as Pairwise Comparisons

Representation Notation Conversion

Labels yF € {0,1} my =0yf > ] =Ty} <yh]

Ratings yF € [m] wﬁj =T[yF > yﬂ —1I [yf > yk]

Rankings rn] = [n] owf; =Tk > RG] =T [rR() < ()]

Table 3: Data structures that capture ordinal preferences over n items. Each representation can be
converted into a set of (g) pairwise preferences in a way that ensures (and assumes) transitivity.
Item-level representations require fewer queries but may be subject to calibration issues between
annotators.

One of the benefits in developing machinery to aggregate preferences is that it can provide practitioners
with flexibility in deciding how to elicit and aggregate the preferences. In practice, such choices
involve trade-offs that we discuss briefly below. Specifically, eliciting pairwise preferences from
users requires more queries than other approaches [51]. However, it may recover a more reliable
representation of ordinal preferences than ratings or rankings [i.e., 52]. In tasks where we work with a
few items, we can elicit preferences as ratings, rankings, or pairwise comparisons. In tasks where we
elicit rankings, we can convert them into pairwise comparisons without a loss of information. In this
case, eliciting pairwise comparisons can test implicit assumptions such as transitivity. In tasks where
we elicit labels and ratings, the conversion is lossy — since we are converting cardinal preferences
to ordinal preferences. In practice, this conversion can resolve issues related to calibration across
users [see e.g, 53, 54]. In theory, it may also resolve disagreement [27].
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B Theoretical Guarantees
In this section, we present formal guarantees on the stability and recovery of selective rankings.

On the Recovery of Condorcet Winners We often aggregate preferences to identify items that are
collectively preferred to all others. Consider, for example, a task where we aggregate votes to select
the most valuable player in a sports league or ratings to fund the most promising grant proposal [55].
In Theorem B.1, we show that we can identify these “top” items from a solution path of selective
rankings.

Theorem B.1. Consider a preference aggregation task where a majority of users prefer item i to all
other items. There exists a threshold value To € [0,0.5) such that, for every T > T, every selective
ranking S will place iy as the sole item in its top tier.

Theorem B.1 provides a formal recovery guarantee that ensures we recover a Condorcet winner or a
Smith set [see e.g., 56] when they exist. In practice, the result implies that we can identify such “top
items” by constructing and inspecting a solution path of selective rankings.

In tasks where a majority of users prefers an item to all others, the solution path will contain a
selective ranking whose top tier consists of a single item. In this case, we can recover the “single
winner” and report the threshold value 7 as a measure of consensus.

In tasks where such a majority does not exist, every selective ranking S, for 7 € [0, 0.5) will include
at least two items in the top tier. In settings where we aggregate preferences to identify a “single
winner,” we can point to the solution path as evidence that no such winner exists and use it as a signal
that further deliberation is required [see e.g., 57].

Stability with Respect to Missing Preferences Standard methods can output rankings that change

dramatically once we elicit missing preferences [45-47]. In Proposition B.2, we show that we can

build a selective ranking that abstains from unstable comparisons by setting missing preferences to
k

;= 0.

Proposition B.2. Given a preference dataset with missing preferences D™, let:
o DU D Dt he g complete dataset where we elicit missing preferences; and
o Dsfe D Dt pe q complete dataset where we set missing preferences to ﬂ'fi ;=0

For any dissent value T € [0, 1), let S5 and S™ denote selective rankings for D and D™,
respectively. Then for any selective comparison m; ;(S5%¢) € {—1,1}, we have:

i (S5°) = w5 (ST°).

Proposition B.2 provides a simple way to ensure stability when working with datasets where we are
missing preferences from certain users for certain items. In such cases, we can always build a S that
is “robust to missingness” in the sense that it will abstain from comparisons that may be invalidated
once we elicit missing preferences.

Stability with Respect to New Items In Proposition B.3, we characterize the stability of selective
aggregation as we add a new item to our dataset.

Proposition B.3. Consider a task where we start with a dataset of all pairwise preferences from
p users over n items, which we then update to include all pairwise preferences for a new n + 1"
item. For any T € [0, %) let S™ and S+ denote selective rankings over n items and n + 1 items,
respectively. Then for any two items i, j € [n], we have:

i (S7) € {=1,1}, mi s (S77) # —mi i (S7)

The result shows that adding a new item to a selective ranking will either maintain each comparison
or abstain. That is, adding a new item can only collapse items that were in different tiers into a single
tier. However, it cannot lead items in the same tier to split. Nor can it lead items in different tiers to
invert their ordering.
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B.1 Proof of Correctness

Lemma B.4. Consider the graph before running condensation or topological sort, but after
pruning edges with weights below 7p. Items can be placed in separate tiers without violating
Disagreements(7") < 7p if and only if there is no cycle in the graph involving those items.

Proof. We start by connecting the edges in a graph to conditions on the items in a tiered ranking and
eventually expand that connection to show the one-to-one correspondence between cycles and tiers.

First note that for any items ,j: w; ; > 7 <= > p_;1 [wf i # 1} > 7p. This follows trivially
from the definition of w; ; :== Y 7_, 1 [Wf ;7 1] . From this, we know that if and only if there exists
an arc (i, 7) that is not pruned before condensation, we cannot have a tiered ranking with 7ri7jj =-1
without violating Disagreements(7") > 7p.

If there exists a cycle in this graph, then we know the items in that cycle must be placed in the same
tier. To show this, consider some edge ¢, j in the cycle. We know item 5 cannot be in a lower tier than
1 without violating the disagreements property, from the above. So item j must be in the same or a
higher tier. But item j has an arrow to another item, k, which must be in the same or a higher tier
than both j and ¢, and so on, until the cycle comes back to item 7. This corresponds to the constraint
that all items must be in the same tier.

If a set of items is not in a cycle, then these items do not need to be placed in the same tier. If the
items are not in a cycle, then there exists a pair of items (7, j) such that there is no path from j to .
Thus 7 can be placed in a higher tier than j without violating any disagreement constraints. Thus not
all items in this set need to be placed in the same tier.

Thus we have shown that for a graph pruned with a given value of 7, items can be placed in separate
tiers for a tiered ranking based on that same parameter 7, if and only if there is no cycle in the graph
involving all of these items.

O

We draw on this Lemma to prove the main result:

Theorem B.5. Given a preference aggregation task with n items and p users, Algorithm 1 returns the
optimal solution to SPA, for any dissent parameter 7 € [0, %)

Proof of Theorem B.5. Consider that items in our solution are in the same tier if and only if they
are part of a cycle in the pruned graph (i.e., if and only if they are in the same strongly connected
component). So items are in the same tier if and only if they must be in the same tier for the solution
to be feasible. No other feasible tiered ranking could have any of these items in separate tiers. So no
other tiered ranking could have any more tiers, or any more comparisons. To do so would require
placing some same-tier items in different tiers. Thus, our solution is maximal with respect to the
number of tiers, and with respect to the number of comparisons. O

B.2 Proof of Uniqueness

Theorem B.6. The optimal solution to SPA is unique for 7 € [0, 0.5).

Proof of Theorem B.6. Let T denote an optimal solution to SPA .. We will show that the optimality
T is fully specified by: (1) the items in each tier and (2) the ordering between tiers. That is, if we
were to produce a tiered ranking 7" that assigns different items to each tier, or that orders tiers in a
different way would be suboptimal or infeasible.

Consider a tiered ranking 7" that is feasible with respect to SPA for some 7 € [0, 0.5). Let 7" denote
a tiered ranking where we swap the order of two tiers in 7. We observe that the 7" must violate a
constraint. To see this, consider any pair of items 4, j such that 7; ;(T') = 1 before the swap, but
7;,:(T") = 1 after the swap. One such pair must exist for any swapping of tier orders, because all
tiers are non-empty. Because we elicited complete preferences, one of the following conditions must
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hold:

S Lk, #1] > (1)
k€[p]
Z I[rk, #1] >7p )
ke(p)

Assuming that 7' was an optimal solution to SPA., we observe that the condition in Eq. (1)
must be violated because the original optimal solution was valid. Thus, we must have that
> ke L[5 #1] > 7p. This implies that Disagreements(7”) > 7p for this tiered ranking.
Thus, swapping the order of tiers violates constraints because 7 < 0.5.

Now note that any separation of items from within the same tier is not possible without violating a
constraint. This follows from Lemma B.4, which states that items that are part of a cycle in our graph
representation of the problem', must be in the same tier for a solution to be valid. And, as specified
in our algorithm, we know our optimal solution has tiers only where there are cycles in the graph
representation of the problem. So any tiers in the optimal solution cannot be separated.

We can still merge two tiers together without violating constraints, but such an operation reduces
the number of comparisons and would no longer be optimal. And after merging two tiers, the only
valid separation operation would be simply to undo that merge (since any other partition of the
items in that merged tier, would correspond to separating items that were within the same tier in
the optimal solution). So we cannot use merges as part of an operation to reach a valid alternative
optimal solution.

So we know that for the optimal solution, we cannot separate out any items within the same tier, and
we cannot reorder any of the tiers. Merging, meanwhile, sacrifices optimality. Thus, the original
optimal solution is unique. O

B.3 Constructing All Possible Selective Rankings

We start with a proof for Proposition B.8.

Proof of Proposition B.8. Recall that in Algorithm 1, an edge (¢, j) with weight w; ; is excluded if
at least 7p users disagree with the preference j > i. We observe that w; ; = Zke[p] I [Wf ;2 0]

corresponds the number of users who disagree with the preference j > <. Given a dataset, denote the
set of dissent values that could lead to different outputs as:

1
W={0yu< 7 |3i,j:7" = »

DI 20l | <3
1

kelp

This corresponds to the set of unique w; ; /p for all ¢, j, with the value 0 included as well. To see this,
note w; j = > erp I [7F; > 0] . We will now show the following Lemma, which will resolve the
original claim.

Lemma B.7. Given any two adjacent elements a,b € W U {3 }. All dissent values in T € [a,b) lead
to the same selective ranking as the selective ranking for T = a.

Proof. To show this, note that there exists no edge ¢ — j such that ap < w; ; < bp. If there did exist,
then we would have

w -
a< —2L < b
p

This would imply that YV would have to include an additional between a and b. But a and b are
adjacent in W. This is a contradiction.

Since there exists no edge ¢ — j such that ap < w; ; < bp, there exists no edge such that the decision
to include its arc in the graph changes based on what value of dissent we select in [a, b). Recall that
we exclude i — j iff w;; > 7p

lafter pruning edges of weight below 7
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Now that we know that for any two adjacent values a, b in W U {3}, all dissent values in [a, b) lead
to the same tiered ranking as with dissent value a, we know that for any dissent value 7 € [0, %), the

largest value of 7/ € W that is < 7 will lead to the same tiered ranking. Simply substitute 7 in for a,
and the smallest value above 7 in WW U {%} for b (such a value exists, on both sides, because 0 and %

are both € WU {3}, and 7 € [0.3)).

Thus we have shown the required claim.

Recovering All Selective Rankings Algorithm 1 is meant to recover a selective ranking in settings
where we can set the value of 7 a priori (e.g., 7 = 0% to enforce unanimity). In many applications,
we may wish to set 7 after seeing the entire path of selective rankings. In a funding task where we
only have the resources to fund 3 proposals, for example, we can choose the smallest value of 7 from
the solution path such that the top tier contains < 3 proposals. In cases where a top three does not
exist, this can lead us to save resources or increase our budget. In a prediction task where labels
encode collective preferences, we could aggregate annotations with a selective ranking and treat 7 as
a hyperparameter to control overfitting.

In these situations, we can produce a solution path of selective rankings—i.e., a finite set of selective
rankings that covers all possible solutions to SPA; for 7 € [0, £) [c.f. 58]. We observe that a finite
solution path must exist as each selective ranking is specified by the arcs in Line 3. In practice, we can
compute all selective rankings efficiently by: (1) identifying a smaller subset of dissent parameters to
consider as per Proposition B.8; and (2) re-using the graph of strongly connected components across
iterations.

Proposition B.8. Given a dataset of pairwise preferences D, let Sy denote a finite set of selective
rankings for dissent parameters in the set:

W={%<ilw=>Y T[rf;>0]fori,je[n]}uU{0}
ke(pl

Let S; be a selective ranking for an arbitrary dissent value T € [0, %) Then, Syy contains a selective
ranking S, such that S, = S; for some dissent value 7" < T.

100% ----
'
> 80% \ A B
5 60% TR B B
E |
Q o !
= 40% : C
o
S 20% : N B
. D
% -
0.0 0.1 0.2 0.3 04 05 [0.0,0.2) [0.2,0.4) [0.4,0.5)
Disagreement Disagreement

Figure 3: All possible selective rankings for the task in Fig. 1 where we aggregate the preferences
of p = 5 users over n = 4 items {4, B, C, D}. We show the comparability and disagreement of
each solution to SPA- on the left, and their selective rankings on the right. Here, the solution for
7 € [0, £] reveals that all users unanimously prefer {4, B} to {C, D}. The solution for 7 € (1, 2],
reveals that we can recover a single winner if we are willing to make claims that overrule at most 1
user, while the solution for 7 € (2, 1] reveals we can only recover a total order if we are willing to

572
overrule at most 2 users.
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571

are linear in the number of individual pairwise preferences elicited (see Appendix B.4). As we show
in Fig. 4, the resulting approach can lead to an improvement in runtime in practice.

50 . 50.25
H Naive
40 Path
2 30.7
£30 5
c
é
20 15.0s
10 7.0s
095 085 %185
100 250 500 1000

# Iltems

Figure 4: Runtimes to produce all selective rankings for a synthetic task with p = 10 users and n
items (see Appendix A.2 for details). We show results for a naive approach where we call Algorithm 1
for all possible dissent values, and the solution path algorithm in Appendix A.2. All results reflect
timings on a consumer-grade CPU with 2.3 GHz and 16 GB RAM.

Algorithm We present an algorithm to construct a solution path of selective rankings in Algorithm 2.

Algorithm 2 Solution Path Algorithm

Input: D = {ij}i,je[n],ke[p] preference dataset
1I: §= {} initialize solution path
Construct Initial Preference Graph for T = 0
2: Wy 5 — Zke[p] I |:7Tf7j Z O] for all Z,] S [n] w;,; = # preferences claiming © = j
3: V] — [n] Vertices represent items
4: A[ < {(’L — j) | Wi, j > 0} Arcs for observed preferences
Construct Selective Rankings for All Possible Dissent Values
50 W+ {’LUZ'J' for all Z,] S [n] ‘ Wi, 5 < [%1} U {O} Set of dissent parameters (see Proposition B.8)
6: forr € Wdo
7: A[ — A[/{(Z — j) €| Wi, 5 Z Tp} Add arcs with support > Tp
8: Vi < ConnectedComponents((T, Ar)) Group items into tiers
9: AT — {(T — T/) | di e T,] S T (Z — j) S A[} Add edges between items to supervertex
10: (ll, N l\VT |) — TOpOlOgiCﬂlSOft((VT, AT)) Sort components based on directed edges

11: ST<—(Tl1,...,TlWT‘)

12: S+ SuU{s:}

13: end for

Olltpllt: S Selective rankings that cover the comparison-disagreement frontier

Given a preference dataset Algorithm 2 returns a finite collection of selective rankings S that achieve
all possible trade-offs of comparability and dissent. The procedure improves the scalability by
restricting the values of the dissent parameter 7 as per Proposition B.8 in Line 2, and by reducing
the overhead of computing graph structures. In this case, we construct the preference graph once in
Line 4, and progressively add arcs with sufficient support in Line 7.

Algorithm 2 assumes a complete preference dataset — i.e., where we have all pairwise preferences
from all users. In practice, we can satisfy this assumption by imputing missing preferences to 0 as
described in Proposition B.2. Alternatively, we can also add an additional step after Line 7 to check
that the item graph (V7, Ay) remains connected.

Details on Synthetic Dataset in Fig. 4 We benchmarked Algorithm 2 against Algorithm 1 in
Fig. 4 on synthetic preference aggregation tasks where we could vary the number of users and items.
We fixed the number of users to p = 10 users. For each user k& € [p], we sampled their pairwise
preferences as ﬂﬁj ~ Uniform(1,0, —1).
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B.4 Proofs of Algorithm Runtime

Algorithm 1 Line 1 computes a sum while visiting each pairwise preference for each judge, taking
O(n?p) time. All subsequent steps are linear in the graph size: both ConnectedComponents and
TopologicalSort are linear in input size, and the other steps are just operations on each edge. So the
total runtime is O(n?p).

Algorithm 2 Note that [W| = [£], because w;; only takes integer values and there are [ £] integers

between 0 and [ £ inclusive of 0 and exclusive of [£]. so the for loop runs [ ] times, and everything
in the loop runs in time linear in the graph size, so O(n?). Thus the whole runtime of the loop is
O(n?p). The preprocessing, as before, is O(n?p) time. Note that computing WV can be done in
O(n?p) time: just iterate through all w;; for each of the [£] possible distinct values, and add the
value to W if it occurs at least once. Thus the total runtime is the sum of a constant number of

O(n?p) steps, meaning the total runtime is O(n?p).
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ss¢  C  Supplementary Material for Appendix B
s85 This appendix provides proofs and additional results to support the claims in Appendix B.

sss C.1 On the Top Tier

587 Theorem C.1. Consider a preference aggregation task where at most o < % of users strictly prefer

sss  one item over all other items. Given any T € [0, %) the tiered ranking from SPA, will include at
589 least two items in its top tier.

590 Proof. We show the contrapositive: having > (1 — 7) users rank an item first guarantees having only
s91  one item in the top tier. Without loss of generality, call an item with > (1 — 7) users rating a specific
sz item first A. Consider WLOG any other item B. No more than 7 users claim either of B > A or
se3 B ~ A, because we know > (1 — 7) users claim A > B. So for any tiered ranking that places some
594 other item B in the same tier as A, we could instead place A above all other items in that tier, and
595 have one more item. Since the result of our algorithm must have the maximal number of tiers, we
596 cannot have a case where A is in the same tier as any other item. O

s97 Lemma C.2. Consider a preference aggregation task where a majority of users strictly prefer an
se8 item ig over all items i # ig. There exists some threshold dissent T € [0, %) such that for all T > T,
599 every selective ranking we obtain by solving SPA, will place iq as the sole item in its top tier.

600 Proof. Let o denote the fraction of users who strictly prefer ¢y over all items. Since o > %, we

601 observe thatatmost 1 —a < 1 — % users can express a conflicting preference. Given any item ¢ # g,
602 let 79 = 1 — «a denote the fraction who users who believe either of ¢ > iy or ¢ ~ ig. For any tiered
603 ranking that places ¢y and ¢ in the same tier, we could instead place ¢ above all other items in that tier,
604 and have one more tier. Since our algorithm returns a tiered ranking with the maximal number of

605 tiers, we cannot have a case where 1 is in the same tier as any other item. O

e0s C.2 On Missing Preferences

607 Proof of Proposition B.2. If we are missing preferences, our algorithm’s behavior is to assume all
608 missing preferences would be in disagreement with any asserted ordering. This exactly corresponds
609 to the actual disagreement if the true values are all asserted equivalence/indifference, and an upper
610 bound on dissent if the preferences are directional. By doing this, we guarantee that the disagreement
611 property will be satisfied under any possible missingness mechanism, even a worst-case adversarial
612 mechanism. We denote missingness as 7 (7, j) =7 if the preference is missing. This property is
613  trivial to show. Consider that

Disagreements(7') := max I [wﬁj # 1]
< max 1[xF; €{0,-1,7}]

= max I [ﬂf,j € {0, —1}] if we we set all missing values Trﬁj =7to Wﬁj =0

614 Given that overall disagreement when preferences are imputed cannot increase, we have that
615 ;,5(SF) = m; 5 (S5).

616 More formally: from the disagreements argument above, we know that D% has the same or more
s17 disagreements for any preference than does D™, Every selective comparison in S5 corresponds
s18  to a pair of items in distinct strongly connected components under the constraints from D% (see
619 Lemma B.4). When we relax to only the constraints from D™, we cannot have more disagreement
620 for any preferences, so those items will remain in distinct strongly connected components. Since they
621 remain in distinct strongly connected components, Lemma B.4 tells us the two items will not be in
622 the same tier.

20



623
624
625
626

627

628

630
631
632
633
634

635

636
637
638
639

640
641
642
643
644

646

647
648
649
650
651

652

653

655
656

657

658
659

660
661

To show that the two items will have the same ordering in both tiered rankings, note that even under
D" there must be a constraint on one of the two directions of the preference®. And that constraint
will still hold under D%, which is no less constrained than D¢, Thus, Stre cannot have a preference
in the opposite direction from S

O

C.3 On the Distribution of Dissent

A selective ranking only allows comparisons that violate at most 7p of preferences in a dataset. In
practice, these violations may be disproportionately distributed across users or items. For example,
we may have a task with 7 = %} where the same user disagrees with all comparisons in a dataset.
Alternatively, the violations may be equally distributed across users — so that there is no coalition
of users who agrees with all preferences. In Remark C.3, we bound the number of users who can
disagree with a selective ranking.

.2
Remark C.3. A T-selective ranking contradicts the preferences of at most Z- - 7p users.

The result in Remark C.3 only applies in tasks where the number of users exceeds the number of
selective comparisons. In other tasks — where the number of selective comparisons exceeds the
number of users — the statement is vacuous as we cannot rule out a worst-case where every user
disagrees with at least one comparison.

Proof. We observe that a selective ranking with a single tier makes no claims. Thus we can restrict our
attention to cases where the 7-selective ranking contains at least two tiers. Given a selective ranking
with more than 2 tiers, then any user who disagrees with the ranking of items from non-adjacent tiers,
also disagrees with the ranking of two items in adjacent tiers. So every user with a conflict must
disagree about the ordering of at least one pair of items in adjacent tiers. This bounds the number of
users who disagree as 7 times the number of distinct pairs of items in adjacent tiers. This is because
no more than 7 proportion of users can disagree with any one pairing.

The number of distinct, adjacent-tier pairs is of the form Z}ﬂ_l nyn;4+1 where tier ; contains n;
items, and all the tiers together contain all n items (3, _, |T'|n; = n). This quantity is maximized
when we have |T'| = 2 tiers that contain % items each (rounding if n is odd). In this case, the
maximum value is % (or slightly below if n is odd). The worst case is tight, achieved with two tiers,
each with half the items, and an even number of items. O

C.4 On Stability with Respect to New Items
We start with a simple counterexample to show that selective rankings do not satisfy the “independence
of irrelevant alternatives” axiom [4].

Example C.4 (Selective Rankings do not Satisfy IIA). Consider a preference aggregation task where
we have pairwise preferences from 2 users for 2 items ¢ and j where both users agree that ¢ > j.

Userl: ¢>j
User2: ¢>j
In this case, every T-selective ranking would be 7; ;(7') = 1 for any 7 € [0,0.5).

Suppose we elicit preferences for a third item 2, and discover that each user asserts that z is equivalent
to a different item:

Userl: i~2z>7 = i>3J 2>=7 1~z
User2: t>=jr~z = i>=7 Jj~Z i>2

In this case, every 7-selective ranking would be 7; ;(T) = 0 for all 7 € [0, 3). This violates IIA
because the relative comparison 7; ;(T") changes depending on the preferences involving z.

Given a dataset of complete preferences and 7 € [0, %) at least one of the following must hold:
ke I [7f; #1] > Tpor > kem I [rF; # —1] > 7p. This is because for the former claim to be true,

we’d need at least (1 — 7)p preferences to be 1, which then forces the latter claim to be false because we’ve set
(1 = 7)p > 7p values to be something other than -1.
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Proposition C.5. Consider a preference aggregation task where for a given T € [0, %) we construct

a selective ranking Sy, using a dataset D of complete pairwise preferences from p users over n items
in the itemset [n). Say we elicit pairwise preferences from all p users with respect to a new item n + 1
and construct a selective ranking S,, 1 for the same T over the new itemset [n + 1]. Given any two
items i, j € [n], we have that

(75,5 (Sn41) = 7,5 (Sn)) V (7,5 (Sny1) = 0).
Proof. 1t is sufficient to show the following:

* When 7; ;(S,,) # —1, we never have 7; ;(Sp4+1) = —1
» When 7, ;(S,) # 1, we never have m; ;(S,41) = 1.

1

Given a dataset of complete pairwise preferences and 7 € [0, 5

conditions must hold:

), at least one of the following

Condition I: Z I [wﬁj # 1} > Tp
kelp]

Condition I: Y T[rf; # —1] > 7p
ke(p]

This is because for Condition I to be False, we would need at least (1 — 7)p preferences to be 1,
which then forces Condition II to be true because we have set (1 — 7)p > 7p values to be something
other than —1.

Consider WLOG that Condition I holds. If 37, -/ T [7F; # 1] > 7p, then we know that 7; ;(S,) #
1. Otherwise we would violate the disagreement constraint in SPA . Note that eliciting preferences
for a new item does not change »-, . T [7F; # 1]. So we still have Y-, T [nf; # 1] > 7p,
and we still have 7; ;(S,41) # 1. Thus, we have that both 7; ;(S,,) # 1 and m; ;(Sp+1) # 1.
We can apply a symmetric argument to show Condition II holds. In this case, we would have that
Ykep Lmh; # —1] > 7p and see that both 7; ;(S,,) # —1 and 7; j(Sn+1) # —1.

This guarantees that the claim of Proposition B.3 cannot be violated. When 7; ;(S,,) = 0 so too does

7i,j(Sn+1) = 0. When 7, ;(S,) # —1 we never have ; j(S,+1) = —1, when 7; ;(S,,) # 1 we
never have 7; ;(S,+1) = 1. Thus we have proven the claim by cases. O
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Figure 5: Consensus rankings of U.S. law schools from selective preference aggregation and standard
voting rules for the lawschool dataset. On the left, we show selective rankings SPAy;, and SPAy;
for dissent values of 7, = é and Ty = % On the right we see Borda on the full dataset, and
Bordagg after removing 10% of pairwise preferences — illustrating sensitivity to missing data.

D Supplementary Material for Sections 3 and 4

In what follows, we include additional details and results for the experiments in Section 3 and our

demonstration in Section 4.

D.1 Descriptions of Datasets

Dataset p n Format  Description

nba 7 Coaches 100 Voters Ballots 2021 NBA Coach of the Year Award, where sports journalists vote for
the top 3 coaches

lawschool 5 Rankings 26 Schools Rankings  Top U.S. law schools ranked by 5 organizations based on academic
performance, reputation, and other metrics in 2023.

survivor 6 Fans 39 Seasons Rankings Rankings task where 6 fans of the show Survivor rank seasons 1-40
from best to worst.

sushi 5,000 Respondents 10 Sushi Types Pairwise ~ Benchmark recommendation dataset collected in Japan, where partici-
pants provided pairwise preferences over 10 different types of sushi:
ebi (shrimp), anago (sea eel), maguro (tuna), ika (squid), uni (sea
urchin), ikura (salmon roe), tamago (egg), toro (fatty tuna), tekka-maki
(tuna roll), and kappa-maki (cucumber roll).

csrankings 5 Subfields 175 Departments  Rankings Rankings of computer science departments from csrankings.org based

on research output in AI, NLP, Computer Vision, Data Mining, and
Web Retrieval.

Table 4: Overview of datasets. We consider five datasets from salient use cases of preference

aggregation.

D.2 List of Metrics

In what follows, we provide detailed descriptions of the metrics in Table 1.
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Metric Formula Description

1 . . . .

Py Z I[m;;(T) = 1] Given a selective ranking over n items T', the ab-

n(n—1) ijein] stention rate represents the fraction of pairwise
comparisons where we abstain.

AbstentionRate(T")

DisagreementRate(7", D) _ Z Z I [wfl # i (T), 7 5(T) # L] Given a ranking over n items 7', the disagreement
n(n—1)p ke[p] irj€ln] ' rate represents the fraction of individual prefer-
ences in D that disagree with the collective prefer-

ences in 1.

#Tiers(S;) |S7] Given a selective ranking S;, the number of tiers.
For standard methods, each rank is converted to a
tier.

#Topltems(S;) [T1] Given S; = (T1,...,Ty,), the number of items
in the top tier. For standard methods, each rank is
converted to a tier.

1
DisagreementPerUser(7, D) median ——— Z I[xf 5 #mis(T)] The median fraction of preference violations across
kelpl n(n—1)/2 el users.

Zz,je[n] I [Tiﬂ # Tib,] ATy # OATibJ # 0}:|

Given the ranking produced on the full dataset 7',
the median proportion of collective preferences
that are inverted when we drop 10% of preferences.
We construct a bootstrap estimate by applying the
method to N}, datasets where we randomly drop
10% of all Igreferences and obtain N rankings
{T%,..., TN},

be{l,.. Ny}

A Sampling (7', D median
pling (7, D) [ S LT £ 0]

Given the original ranking 7', the maximum pro-
portion of collective preferences inverted when
we flip 10% of individual preferences. We con-
struct a bootstrap estimate where we first apply
the method to IV, datasets where we randomly flip
10% of all preferences and obtain N}, rankings
{rt,1?,..., TN}

e LT AT AT, #0ANTP.] #0
A Adversarial (T, D) . {rlnaxN , [Zwe[n] [T # TV i ] # }
e{1,....Np

Zi,je[n] T [Tw # 0]

Table 5: Metrics used to evaluate comparability, disagreement, and robustness of rankings in Table 1
and Appendix D.4

D.3 Selective Ranking Paths

We present the solution paths of selective rankings for each dataset in Section 3 in Fig. 6 to Fig. 10.

100% .
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80% Thibodeau
Q
E - - === = re Snyder
< 60% '
2 r Rivers
2 I
@
2 40% ! Nash
E I
© ! Malone
20% !
: McMillan
0% & - === —-—-— 1 0.0 0.1 0.2 0.3 0.4 0.5
0.0 0.1 0.2 0.3 0.4 0.5 Max Disagreement

Max Disagreement

Figure 6: Selective rankings for the nba dataset (n = 7 items and p = 100 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).
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Figure 7: Selective rankings for the survivor dataset (n = 39 items and p = 6 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).
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Figure 8: Selective rankings for the sushi dataset (n = 10 items and p = 5000 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right). Note that only a subset of dissent values are shown for clarity, focusing on the largest areas of
change.
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Figure 9: Selective rankings for the csrankings dataset (n = 175 items and p = 5 users). We show
the tradeoff between comparison and disagreement (left) and the unique rankings over the dissent
path (right). We show the top 10 items, sorted by tier and alphabetically within each tier.
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Figure 10: Selective rankings for the lawschool dataset (n = 20 items and p = 5 users). We show
the tradeoff between comparison and disagreement (left) and the unique rankings over the dissent
path (right).
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D.4 Expanded Table of Results

We include an expanded version of our results for all methods and all datasets in Appendix D.4. This
table covers the same results as in Table 1, but includes the following additional metrics:

1. A Abstentions [Intervention], which measures the proportion of strict collective preferences
(e.g., A > Bor A < B) that turn into ties or abstentions in the ranking that we obtain after
running the method on a modified dataset.

2. A Specifications [Intervention], which measures the proportion of ties or abstentions that
turn into ties or abstentions in the ranking that we obtain after running the method on a
modified dataset.

We report these values for same interventions we consider in Section 3, namely: Sampling, where we
run the method on a dataset where we randomly omit 10% of individual preferences; and Adversarial,
where we run the method on a dataset where we randomly flip 10% of individual preferences. Each
value corresponds to a bootstrap estimates where we perform the same estimate 100 times. For clarity,

we list the A — Sampling as A — Inversions — —Sampling, and A — Adversarial — —Inversions.
Selective Standard
Dataset Metrics SPA)  SPA,, SPA,; Borda Copeland MC4 KemenyExact KemenyHeuristic
Disagreement Rate 0.0% 2.0% 6.4% 8.3% 8.3% 7.9% 8.1% 8.1%
Median Disagreement per User 0.0% 0.0% 4.8% 4.8% 4.8% 9.5% 9.5% 9.5%
Abstention Rate  100.0%  42.9%  28.6% - - - - -
nba # Tiers 1 2 4 7 7 6 7 7

#Top Ttems 1 1 1 1 1

3 1
n=Titems Dissent  0.0000 0.2600 04900 - - - - -
0.0%

p = 100 users

55 6% missing A Inversions Sampling ~ 0.0%  0.0% 48%  48%  00% 4.8% 4.8%
NBA [40] A Inversions Adversarial —— 0.0%  0.0%  00% 19.0%  19.0%  19.0% 14.3% 14.3%
A Specifications Sampling ~ 0.0%  95%  00%  00%  00%  4.8% 0.0% 0.0%

A Specifications Adversarial — 0.0%  9.5%  00%  0.0%  00%  48% 0.0% 0.0%

A Abstentions Sampling ~ 0.0%  00%  28.6%  00%  00%  00% 0.0% 0.0%

A Abstentions Adversarial  0.0%  19.0%  286%  00%  48%  333% 0.0% 0.0%

Disagreement Rate  0.0%  02%  02% 68%  66%  64% 6.7% 6.7%

Median Disagreement per User ~ 0.0%  01%  0.1% 72%  7.1%  68% 7.1% 7.1%

Abstention Rate ~ 94.9%  425%  42.5% - - - - -

# Tiers 2 5 5 39 36 35 39 39

# Top ltems 1 1 1 1 1 1 1 1

S users Dissent  0.0000 0.1667 03333 - - - - -
£.0% missin Alnversions Sampling ~ 0.0%  00%  00% 13%  08%  0.8% 09% 0.9%
Purple R’wkp[ a1) Alnversions Adversarial — 0.0%  0.0%  00%  2.6%  18%  3.1% 1.6% 1.6%
A Specifications Sampling ~ 0.0%  00%  00% 00%  04%  0.1% 0.0% 0.0%

A Specifications Adversarial ~ 0.0%  5.1%  00% 00%  04%  03% 0.0% 0.0%

A Abstentions Sampling ~ 0.0%  524%  575% 00%  01%  800% 0.0% 0.0%

A Abstentions Adversarial ~ 0.0%  57.5% 57.5% 0.0%  04%  89.5% 0.4% 0.4%

Disagreement Rate ~ 0.0%  03%  3.% 47%  42%  42% 4.1% 4.1%

Median Disagreement per User ~ 0.0%  0.0%  1.6% 42%  26%  2.6% 2.1% 21%
Abstention Rate ~ 40.5%  36.8%  4.2% - - - - -

# Tiers 4 6 15 20 20 19 20 20

# Top ltems 12 12 2 1 1 1 1 1
Dissent  0.0000  0.2000  0.4000 - - - - -

Alnversions Sampling ~ 0.0%  0.0%  00% 16%  11%  05% 29.5% 29.5%

LSData 431 Alnversions Adversarial — 0.0%  00%  00% 37%  2.6%  26%  458% 45.8%
- A Specifications Sampling ~ 0.0%  11.1%  00%  0.0%  00%  0.0% 0.0% 0.0%
A Specifications Adversarial —~ 00%  00%  05% 00%  00%  00% 0.0% 0.0%

A Abstentions Sampling ~ 59.5%  282%  958% 0.0%  00%  558% 0.0% 0.0%

A Abstentions Adversarial ~ 59.5%  0.0%  958% 0.0%  1.6%  64.2% 0.0% 0.0%

Disagreement Rate ~ 0.0%  0.0%  0.1% 123%  122%  122% - 13.7%

Median Disagreement per User ~ 0.0%  0.0%  0.1% 123%  12.6%  123% - 13.5%
Abstention Rate  100.0% ~ 98.9%  95.5% - - - - -

. # Tiers 1 2 3001 168 170 - 175
o o #Top Items 175 1 1 1 1 1 - 1
- * Dissent  0.0000  0.2000  0.4000 - - - - -
f; Od’m";‘f“"‘n Alnversions Sampling ~ 0.0%  0.0%  0.0%  0.8% 08%  0.1% - 9.0%
Berger [43] & A Inversions Adversarial — 0.0%  00%  00%  3.1%  17%  01% - 11.1%
A Specifications Sampling ~ 0.0%  0.0%  0.0%  00%  01%  94.4% - 0.0%

A Specifications Adversarial — 0.0%  0.0%  00%  0.0%  01%  944% - 0.0%

A Abstentions Sampling ~ 0.0%  11%  45%  00%  00%  0.0% - 0.0%

A Abstentions Adversarial  00%  00%  45% 00%  0.1%  0.0% - 0.0%

Disagreement Rate  0.0%  13.6%  42.6% 42.6%  42.6%  42.6%  42.6% 42.6%

Median Disagreement per User ~ 0.0%  13.3%  422% 422%  422%  422%  422% 42.2%

Abstention Rate  100.0%  644%  0.0% - - - - -

# Tiers 1 2 10 10 10 10 10 10

f,”j“llo items #Top Items. 10 8 1 1 1 1 1 1
5000 wers Dissent  0.0000 0.0020 04998 - - - - -
B 0% missin Alnversions Sampling ~ 0.0% ~ 00%  00% 00%  00%  22% 22% 22%
Kamishima [944] Alnversions Adversarial —~ 0.0%  0.0%  0.0% 22%  22%  11.1% 11.1% 11.1%
amishima A Specifications Sampling ~ 0.0%  00%  0.0% 00%  00%  0.0% 0.0% 0.0%
A Specifications Adversarial —~ 0.0%  00%  00%  0.0%  00%  0.0% 0.0% 0.0%

A Abstentions Sampling  0.0%  35.6% 100.0%  00%  00%  00% 0.0% 0.0%

A Abstentions Adversarial  0.0%  0.0% 100.0% 00%  00%  15.6% 0.0% 0.0%

D.5 Supplementary Material for Section 4

Selective Aggregation with Binary Annotations A key challenge in applying SPA to the DICES
dataset is that it elicits categorical labels for each item individually, rather than comparative ratings.
This conversion can create unnecessary equivalence, where a pairwise preference is inferred as a tie
(Wﬁ ; = 0). This is not a reflection of a user’s true judgment but an artifact of two limitations: (1)
users annotate items individually rather than comparing them, and (2) the annotations are restricted
to {0, 1} instead of granular ratings. For example, a user may believe item A is significantly more
toxic than item B, but the conversion results in a tie if both were labeled "toxic" a distinction that is

lost in this setting.

We address this by running a variant of selective aggregation where we construct aggregate labels
from users who express a strict preference between items — ¢ > j or 7 > 4. In addition, we assume
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Figure 11: ROC model curves on the training set for all four methods. We highlight the label for
each method closest to tpr> 90% on labels with a large dot. 5P is the only method whose chosen
operating point keeps the true-positive rate above 80 % on the model output while controlling FPR.

that users who have not asserted an opinion (because of dataset scope) are “deferring judgment" to
those who have.

For each pair of items 4, j € [n], we define:

* i = 2pep I [7F; = 1] denote number of users who strictly prefer item i to item j

* 8= ke L[mF; = —1] denote the number of users who strictly prefer item j to item
i

* The aggregate preference weight w; ; as the proportion of users who strictly prefer i to j
among those who expressed a strict preference, scaled to n items. Note that all item pairs
had at least 1 preference:

Si,j
Wy =N

Sij + Sj

In this setup, the dissent parameter 7 no longer maintains its standard interpretation because users

may not assign a preference to each item, and items may be assigned different weights. As a result,

we produce selective rankings for all possible dissent parameters that lead to a connected graph in

Algorithm 2. In this case, the maximum dissent value is set to a threshold value where Line 4 returns

a disconnected graph.

D.6 Model Training

All experiments used 5-fold cross-validation on the training split. We fine-tuned a BERT-Mini model;
all fine-tuning experiments used 5-fold cross-validation on the training split. We optimized with a
learning rate of 2 x 105 for up to 25 epochs, employing early stopping. We trained in mini-batches
of size 16 and enabled oversampling of minority classes in each batch.
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