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ABSTRACT

Recent rapid advances in AI enabled by large language models (LLMs) have
raised widespread concerns regarding their potential for malicious use. While
traditional open-source software has long established mechanisms for combating
such adversarial behavior, systems involving large neural networks are nontriv-
ial to interpret—let alone intervene on—for safe use. Various alignment methods
have been proposed to steer model responses towards a desired output distribution.
However, these techniques are superficial and can be undone entirely with super-
vised fine-tuning. These vulnerabilities necessitate new approaches such as ma-
chine unlearning, in which the underlying representations of these target concepts
are corrupted or forgotten. We introduce state-of-the-art methods for robustly un-
learning desired concepts from LLMs, such that performance cannot be recovered
by white-box fine-tuning. We demonstrate our results on the MMLU benchmark,
showing that we can decrease accuracy on a forget set of concepts to chance levels
while maintaining accuracy on the retain set.

1 INTRODUCTION

The ecosystem of capable, open-source large language models (LLMs) has diversified rapidly, with
models like Llama-2 (Touvron et al., 2023) and Mistral (Jiang et al., 2023) gaining widespread
adoption. However, due to their impressive cross-domain generalization and powerful capabilities,
LLMs contain knowledge that can be repurposed by malicious actors, making them examples of
“dual-use” technology. Consequently, AI system providers face increasing pressure from regulatory
bodies to adhere to newly proposed frameworks, such as the recent White House Executive Order
(Executive Office of the President, 2023). This motivates the creation of more robust tools for
adjusting the capabilities of AI systems and sanitizing them for downstream use. The development
of such tools will afford flexibility for open-source model providers to continue developing state-of-
the-art models while enabling them to remain compliant. In turn, the continued release of highly-
capable AI systems can accelerate safety research (Touvron et al., 2023; Zou et al., 2023).

Existing methods for building safeguards into LLMs, such as reinforcement learning from human
feedback (RLHF) and direct preference optimization (DPO), have achieved substantial success in
benign settings (Christiano et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023). However, recent
work has shown that these safeguards can be easily removed with fine-tuning (Qi et al., 2023). Fur-
thermore, adversarial attacks can bypass safeguards and induce harmful responses from the model
(Wei et al., 2023), demonstrating the fragility of current methods for LLM safety engineering.

A more robust solution to alignment could come from unlearning methods. While typically used for
addressing privacy concerns (Bourtoule et al., 2021), these methods can also remove harmful knowl-
edge from LLMs (Li et al., 2024). Prior methods have been proposed that scrub information from
hidden states of LLMs (Belrose et al., 2024) or fine-tune a model on factually incorrect completions
to certain input prompts (Eldan & Russinovich, 2023). However, existing unlearning methods for
LLMs lack robustness to white-box recovery methods (Lynch et al., 2024).

In this work, we study the problem of robust unlearning in LLMs. This problem is depicted in
Figure 1. Given an initial open-source LLM, we seek to remove entire domains of knowledge from
the LLM such that adversaries with white-box access cannot easily recover the knowledge. This
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Figure 1: An illustration of existing brittle LLM alignment strategies compared to robust unlearning.
Our proposed robust unlearning method can scrub harmful knowledge such that it is difficult for that
harmful knowledge to be recovered by an adversary with white-box access.

problem has typically been considered very challenging, with positive results only obtained so far
in small-scale image classification settings. We develop the first LLM unlearning method to obtain
strong robustness to white-box recovery by an adversary, while preserving accuracy on the retain
set. Our method combines an adaptation of the meta-learning method of Henderson et al. (2023)
to LLMs with a novel approach that we call representation corruption. Our results indicate that
progress on this challenging problem is in fact possible.

2 RELATED WORK

LLM alignment. Due to the extensive pre-training distribution of modern LLMs, they are prone
to generating harmful content (Sheng et al., 2019; McGuffie & Newhouse, 2020). To mitigate this,
many LLMs undergo fine-tuning to implement safeguards (Touvron et al., 2023; Bai et al., 2022;
OpenAI, 2023), using methods such as RLHF (Christiano et al., 2017; Ouyang et al., 2022). While
effective for normal use, these safeguards have been shown to be brittle, breaking down under jail-
break attacks (Wei et al., 2023; Zou et al., 2023; Jin et al., 2024) or a handful of fine-tuning steps
on “uncensored” data (Qi et al., 2023; Zhan et al., 2023). This suggests current techniques for LLM
alignment are inadequate, raising security concerns as they become deployed.

Machine unlearning. The goal of machine unlearning, or simply unlearning, is to remove specific
data or concepts from a model without complete retraining (Cao & Yang, 2015; Bourtoule et al.,
2021; Zhan et al., 2023). While traditionally motivated by privacy concerns, recent work has noted
the potential for unlearning to address risks of malicious use (Li et al., 2024). Many methods have
been introduced for unlearning, including influence functions (Koh & Liang, 2017; Bae et al., 2022),
maximizing loss on forget sets (Yu et al., 2023; Eldan & Russinovich, 2023; Yao et al., 2023), or
model editing (Meng et al., 2022; Wu et al., 2023; Belrose et al., 2024).

Robust unlearning. Several works in machine unlearning have explored robustness to relearning
for image classification (Golatkar et al., 2020a;b; Tarun et al., 2023a). For bidirectional BERT-style
models, (Henderson et al., 2023) proposed a meta-learning approach for robustly preventing models
from learning harmful tasks. Recently, Liu et al. (2024) discussed the potential for robust unlearning
in LLMs to improve the safety of open-source models, and Lynch et al. (2024) proposed evaluation
metrics for robust unlearning in LLMs. To the best of our knowledge, no unlearning methods have
been proposed for autoregressive LLMs that are robust to white-box recovery.

3 ROBUST UNLEARNING

3.1 THREAT MODEL

We assume that the defender open sources an LLM f parametrized by θ and cannot control how
the model is used. Thus, all adversarial mitigation strategies must be incorporated into the released
parameters θ. The defender’s goal is to ensure that fθ has poor performance on a forget set while
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Unlearning Recovery

Unlearning Method Forget Retain ScoreU Forget Retain ScoreR Composite

Base Llama-2-7b-Chat 52.5 48.0 0.0 48.0 45.7 4.5 2.2
Max Entropy 40.0 46.1 10.6 48.4 45.1 4.1 7.3
Min Posterior 49.5 47.2 2.2 49.4 45.9 3.1 2.7
High/Low LR 49.3 45.4 0.5 47.2 43.9 5.3 2.9
MLAC-AR 28.9 40.4 16.0 43.8 44.4 8.7 12.4
Adversarial Probes (ours) 23.9 42.8 23.4 47.9 47.0 4.6 14.0
Random Mapping (ours) 23.3 43.7 25.0 50.5 47.1 2.0 13.5
RMAT (ours) 25.4 41.2 20.3 38.9 40.4 13.6 17.0

Table 1: Our unlearning results on biology knowledge in Llama-2-7b-Chat, measured via MMLU.
Compared to the baselines of Maximum Entropy training (Max Entropy) and No Unlearning (Base
Llama-2-7b-Chat), our RMAT method considerably improves both standard unlearning and robust
unlearning scores. Importantly, our RMAT method demonstrates for the first time that robust un-
learning is possible in LLMs.

maintaining performance on a retain set, even subject to adversaries trying to recover performance
on the forget set. We assume the adversary has white-box access to fθ, in which attacks can be con-
ducted with fine-tuning or other recovery methods. The adversary’s goal is to recover performance
on the forget set at reasonable cost.

3.2 PROBLEM DEFINITION AND METRICS

Let the target distribution of knowledge to be unlearned be denoted as the forget set F , and the
distribution of benign knowledge to be retained as the retain set R. For a model fθ, we denote the
accuracy on these datasets as the Forget Accuracy Acc(θ,F) and Retain Accuracy Acc(θ,R).
The defender outputs an LLM fθ with low Forget Accuracy and high Retain Accuracy. The adver-
sary performs Recovery on fθ to obtain f ′

θ with high Forget Accuracy and high Retain Accuracy. We
operationalize Recovery as a fixed fine-tuning procedure on a training set FRecovery from a similar
distribution to F . We define the robust unlearning task as producing an fθ such that both fθ and f ′

θ
obtain low Forget Accuracy while maintaining high Retain Accuracy. Additionally, we assume that
the defender fine-tunes fθ from an initial model fθinit that has high forget and retain accuracy.

Metrics. In addition to tracking Forget Accuracy and Retain Accuracy, we introduce a score metric
tailored to the Unlearning and Recovery tasks, defined as follows:

ScoreU (θ) = (Acc(θinit,F)− Acc(θ,F)) + (Acc(θ,R)− Acc(θinit,R))
ScoreR(θ) = (Acc(θinit,F)− Acc(θ,F))

The ScoreU metric indicates successful unlearning if Forget Accuracy decreases relative to the ini-
tial value, or if Retain Accuracy increases compared to the initial Retain Accuracy. This metric
assesses the effectiveness of unlearning the forget set while preserving performance on the retain
set. Similarly, ScoreR reflects robustness to recovery by considering cases where Forget Accuracy
remains low relative to the initial value, with the difference in Retain accuracies excluded from the
computation. To evaluate the robustness of unlearning methods, we compute the ScoreU and ScoreR
metrics on both fθ and f ′

θ, representing the Unlearning and Recovery settings, respectively. These
metrics are averaged to obtain a final composite score for each method.

3.3 BASELINES

We compare our approach against three baselines. In the first, given an input sequence in F , this
method, termed Min Posterior, minimizes the posterior probabilities of next-token predictions. The
objective also includes a term to maximize the standard next-token log-likelihood for inputs in R.
Second, the Max Entropy method maximizes the entropy over the posterior probabilities of next-
token predictions for sequences in F , with the same objective for R inputs. Lastly, we adapt “Un-
learning with Single Pass Impair and Repair” described in (Tarun et al., 2023b), termed High/Low
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Algorithm 1 MLAC for Autoregressive LLMs (MLAC-AR)
Input: Initial LLM parameters θ0, forget set F , retain set R, adaptation steps K, outer steps N ,
learning rate η, meta loss scale α
for i = 1 to N do
ωi ← θi−1 # Params to be used for inner loop
ϕi ← 0⃗ # For storing accumulated meta-gradient
Sample xheldout ∼ F
for k = 1 to K do

Sample xf ∼ F
ωi ← ωi − η∇ωLLM(ωi;xf ) # Adversary gradient descent on forget batch
ϕi ← ϕi +∇ωLLM(ωi;xheldout) # Accumulate ascent meta-gradient on heldout batch

end for
Sample xr ∼ R
θi ← θi−1 − η∇θLLM(θi−1, xr) +

α
K · ϕi # Update pre-inner loop params

end for

LR. During the impair step, we use the Random Mapping method described in Section 3.4 for 100
optimization steps, with a learning rate of 1·10−4, one order of magnitude higher than typically used
for finetuning. In the repair step, we conduct standard finetuning on both F andR for an additional
400 optimization steps.

3.4 REPRESENTATION CORRUPTION

Let H(D) denote the distribution of post-decoder layer residual stream activations for input se-
quences in some data distribution D. LEACE (Belrose et al., 2024) was proposed to scrub H(F)
by leveraging a closed-form linear edit based on the covariance between the inputs and downstream
task labels, which we view as a form of representation corruption. However, this approach does
not modify model weights directly, which is an important characteristic of our proposed unlearning
framework. As a proxy for scrubbing target representations according to downstream task labels, we
review existing approaches involving distributional losses on H(F) and mapping H(F) to random
noise.

Adversarial Probe Training. We explore learning model weights that produce a residual stream
for inputs in F that is indistinguishable from the residual stream for inputs in some dataset M,
which we choose to be distinct from bothR and F .

We use an approach from adversarial domain adaptation (Shen et al., 2018). In particular, we impose
a distribution matching objective based on Wasserstein distance that pushes H(F) toward H(M).
We accomplish this by inserting probes that read the residual stream after every LLM decoder layer
and enforce the discriminator objective from Wasserstein GANs at each probe (Arjovsky et al.,
2017). The model is then trained to minimize this distance, computed between batches of activations
from inputs in both F andM. To bias degradation in favor of maintaining performance on R, we
add to the final objective the standard language modeling loss for inputs inR.

Mapping Representations to Noise. We develop two methods that corrupt H(F) to look like
noise. The first method uses a distributional loss via sliced Wasserstein distance from (Deshpande
et al., 2018), where the target distribution is set to vectors sampled from a Gaussian. The second
method simply maps elements in H(F) to random noise vectors. This is accomplished by maxi-
mizing cosine similarity between row vectors in the residual stream from H(F) and fixed Gaussian-
sampled vectors that are chosen via hashing the corresponding input token. As in the adversarial
probe training method, we include a term in the final loss for next-token prediction onR to maintain
retain-set performance.

3.5 ADVERSARIAL TRAINING FOR ROBUSTNESS TO RELEARNING

Prior work has explored the use of meta-learning in the white-box adversarial threat model, called
Meta-Learned Adversarial Censoring (MLAC) (Henderson et al., 2023). This approach effectively
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performs adversarial training for unlearning, where the adversary takes several steps of fine-tuning in
the inner loop. MLAC was designed for BERT-style models (Devlin et al., 2019) and demonstrated
on classification tasks (e.g., gender identification). However, no works have yet demonstrated that
this approach can work for autoregressive LLMs. We extend the meta-learning procedure outlined
in MLAC to autoregressive (AR) LLMs, which we call MLAC-AR and depict in Algorithm 1.

Notably, we find in Table 1 that MLAC-AR is only slightly robust to relearning. However, we
discover that the Random Mapping method from Section 3.4, followed by MLAC-AR, significantly
increases relearning robustness. We combine the two procedures in a novel method called Random
Mapping Adversarial Training (RMAT). We use LLM(θ;x) in Algorithm 1 to refer to computing a
language modeling loss on an LLM with parameters θ on a minibatch of token sequences x. We
also note the memory storage cost incurred by running meta-learning methods on LLMs; important
implementation details are discussed in Appendix A.4.

4 EXPERIMENTS
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Figure 2: Comparison between our RMAT method and
baselines on forget set accuracy. For each method, the left
bar (blue) corresponds to accuracy before recovery by the
adversary, and the right bar (red) corresponds to accuracy
after recovery. RMAT greatly outperforms prior methods,
reducing accuracy after recovery by 13.6%.

We perform all experiments on
Llama-2-7b-chat (Touvron et al.,
2023). We include extended details
on our experimental setting in Ap-
pendix A.1. First, we observe that
the Min Posterior and High/Low LR
baselines discussed in Section 3.3
do not achieve significant Unlearning
on MMLU. Similarly, the remaining
baselines experience no substantial
changes in post-Recovery Forget and
Retain accuracies. These results indi-
cate that no existing baseline method
achieves both the desired unlearning
performance coupled with robustness
to Recovery. However, we find that
RMAT mitigates the robustness gaps
observed during Recovery common
to all other methods, achieving the
best balance of significant and pre-
cise Unlearning followed by limited
improvement in post-Recovery For-
get accuracy.

Although the Unlearning and Recovery Retain accuracies are lower than their counterparts, these
results align with our goal of impeding gains in Retain accuracy when fine-tuning an unlearned
model on the Forget set. These findings highlight the promise of RMAT, while showcasing the
challenge of impeding gains in Retain Accuracy during Recovery. Emphasis on the latter forms the
basis for future improvements on these methods.

5 CONCLUSION

We studied the task of robust unlearning for LLMs and explored various unlearning methods, in-
cluding baseline fine-tuning approaches, as well as novel methods involving representation corrup-
tion. We extend prior work that leverages meta-learning for defending against white-box adversarial
fine-tuning, by finding that representation corruption in combination with meta-learning achieves
significantly more robust unlearning. By developing further on these methods, we aim to enable
the ongoing deployment of robust, open-source LLMs, ensuring their alignment with regulatory
frameworks and preemptively addressing the risk of malicious use.
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Figure 3: Selection of fine-tuning loss curves comparing RMAT, Random Mapping, and the Max
Entropy Baseline during a Recovery of 1000 optimization steps on the forget set. The model quickly
overfits to the recovery set, but accuracy on the MMLU test-time forget set remain low for RMAT.

A APPENDIX

A.1 EXPERIMENTAL SETUP

Datasets. For the retain dataset, we use the first 30GB subset of the Pile (Gao et al., 2020). To
obtain labeled forget-set data, we use openchat-3.5 (Wang et al., 2023) to generate synthetic labels
for chunks of token sequences from the Pile. We perform this dataset partitioning process on the
pile by prompting openchat-3.5 to label the chunks as belonging to the “biology” concept or not.

Evaluation. To enable evaluating unlearning on high-level domains of knowledge, we use clusters
of subjects in MMLU (Hendrycks et al., 2021) for F and R. Specifically, we use the High School
Biology and College Biology subjects as the forget set and all other subjects as the retain set. For
Frecovery, we use an open-source, question answer paired dataset hosted from CAMEL-AI (Li et al.,
2023).

A.2 DISTRIBUTION MATCHING VARIATIONS.

We implement three variations of the Wasserstein distribution matching objective discussed in sec-
tion 3.4. First, we vary the number of steps used to train the probes between each model update
step within {3, 5}. Second, we freeze the initial embedding layer of the LLM as well as the final
vocabulary projection head, denoted as “Frz.” in table 1. Finally, we vary the choice of match distri-
butionM between two datasets: IDK and RAND. IDK refers to synthetically generated dataset of
variations of the phrase “I don’t know.” RAND refers to a dataset of randomly generated strings.

A.3 ADDITIONAL RESULTS

Relearning Loss Curves. The step-wise pattern present in RMAT and Random Mapping curves
in Figure 3 suggests overfitting on the Recovery forget set. Thus, even though loss continues to de-
crease each epoch, the next-token prediction accuracy on the Recovery set is very high. Despite this,
our RMAT method is robust to fine-tuning. Notably, even though the Random Mapping method’s
recovery loss is similar to RMAT, only RMAT is robust.

Adversarial Probe Ablations. In Table 2, we show different variants of the Adversarial Probes
method. We find that the methods from Section 3.4 involving representational losses achieve a
better spread of unlearning performance. Specifically, these methods exhibit a consistently lower
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Forget Accuracy floor, although the Retain Accuracy is slightly more variable. This variability can
be attributed to AdvProbes-SWD, which decreases Forget Accuracy by a factor of 1.8 and collapses
Retain Accuracy to an equally low value, suggesting that this method may not be suitable for un-
learning.

Notably, the variations of adversarial probe training decrease Forget Accuracy the most while main-
taining Retain Accuracy within a 6 point delta. Of these, the choice of IDK dataset, over the choice of
RAND dataset, achieves consistently lower Forget Accuracy, while maintaining generally higher Re-
tain Accuracy. When compared with the base model accuracies, the choice of IDK dataset, achieves
the highest overall scores.

Unlearning Recovery

Unlearning Method Forget Retain ScoreU Forget Retain ScoreR Composite

AdvProbes-3 (IDK) 27.0 42.4 20.0 50.4 47.2 2.1 11.0
AdvProbes-3 (IDK, Frz.) 26.4 44.8 22.9 51.5 46.8 1.1 12.0
AdvProbes-5 (IDK, Frz.) 23.9 42.8 23.4 47.9 47.0 4.6 14.0
AdvProbes-3 (RAND) 27.5 42.5 19.5 49.0 46.5 3.6 11.5
AdvProbes-3 (RAND, Frz.) 33.5 43.8 14.8 50.9 46.0 1.7 8.2
AdvProbes-SWD 29.6 29.8 4.7 45.9 43.6 6.6 5.6

Table 2: Different variants of the Adversarial Probes method. IDK refers to a match distribution
of variants of “I don’t know” and RAND is a match distribution of random strings. We report the
performance of AdvProbes-5 (IDK, Frz.) as Adversarial Probes in the main table.

A.4 IMPLEMENTATION DETAILS

Meta-learning in LLMs. Typical meta-learning implementations in non-LLM models involve
computing multiple meta-losses during each of the K inner loop steps, averaging the losses, then
performing backpropagation. However, because each inner-step meta-loss is computed in a sepa-
rate forward pass of the model, this requires storing K computation graphs. This is infeasible on
reasonable hardware for state-of-the-art LLMs with 7B or more parameters. We circumvent this
inefficiency by accumulating the meta-gradients in a separate data structure, ϕ, which enables com-
puting every quantity in Algorithm 1 in-place in the model.
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