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Abstract

Recent studies have demonstrated the effectiveness of position encoding in trans-
former architectures. By incorporating positional information, this approach pro-
vides essential guidance for modeling dependencies between elements across
different sequence positions. We introduce CoPE (Complex Positional Encod-
ing), a novel architecture that leverages complex-valued encoding to encode both
content and positional information. Our approach replaces traditional positional
encodings with complex embeddings where the real part captures semantic con-
tent and the imaginary part encodes positional information. We introduce phase-
aware attention in the first layer of the transformer model to capture position-
dependent patterns, followed by standard attention layers for higher-levels. We
show that CoPE doesn’t exhibit long term decay and is compatible with linear
attention. Experimental evaluation on the GLUE benchmark suggest that our
approach achieves competitive performance with less computational complexity,
compared to RoPE, Sinusoidal and Learned positional encodings. Code available
athttps://github.com/AmballaAvinash/cope

1 Introduction

The sequential order of words plays a crucial role in natural language understanding. Traditional
approaches, such as recurrent neural networks (RNNs), model word order by recursively updating
hidden states over time. The Transformer architecture [Vaswani et al.|[2023]] has fundamentally trans-
formed the landscape of natural language processing and sequence modeling since its introduction.
While the self-attention mechanism enables the model to capture long-range dependencies without
the sequential constraints of recurrent architectures, it inherently lacks positional awareness. This
limitation necessitates explicit positional encoding mechanisms to inform the model about token
positions within sequences.

To address this, researchers have proposed multiple strategies for integrating positional information
into the learning process. Traditional approaches employ additive positional encodings, where
sinusoidalVaswani et al.|[2023]] or learned positional vectors|Gehring et al.| [2017],[Devlin et al.|[2019]],
Lan et al.[[2020], Radford and Narasimhan| [2018]] are element-wise added to token embeddings
before being fed into attention layers. On the other hand |Su et al.| [2023]], Dai et al.| [2019]], Raffel
et al.| [2019], [Shaw et al.|[2018]] proposed relative Position Encoding which encodes the relative
position information into the attention mechanism.

The conventional additive approach to positional encoding, while effective, presents several theoretical
and practical limitations. When positional information is directly added to semantic embeddings, it
leads to information interference, where the model struggles to disentangle positional and semantic
information. This interference becomes particularly problematic in tasks requiring precise positional
reasoning. In addition, its effectiveness diminishes when applied to longer sequences |Shaw et al.
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[2018], |[Liutkus et al.| [2021]]. On the other hand, most of the relative postional encodings are
unsuitable for linear self-attention architecture as shown in RoPE |Su et al.| [2023]] Moreover, these
encodings inherently enforce long-term decay, a suboptimal inductive bias, given that modern LLMs
frequently require access to information from arbitrary context positions|Chen et al.| [2024].

Building upon these insights, we propose CoPE, a novel light weight complex positional encoding
that leverages complex-valued encoding to encode positional information through phase components
while preserving semantic content in the magnitude. Our approach fundamentally reimagines
positional encoding by utilizing the natural separation between real and imaginary components
of complex numbers, thereby avoiding the interference inherent in additive methods. To this
end, we introduce phase-aware attention in the first layer to capture the complex positional
encoding and retain the standard attention in the rest layers, making it a lightweight adapter than
can be integrated to any existing models. We also show that our method is compatible with
linear attention and doesn’t exhibit long term decay. We evaluate our method on several GLUE
benchmarks and results suggest that CoPE is competitive to RoPE, Sinusoidal and Learned encodings.

To summarize, our key contributions are:

1. A novel lightweight complex encoding that separates semantic content (real part) and
positional information (imaginary part)

2. A phase-aware attention mechanism in the first layer that leverages both magnitude and
phase information. We introduce several types of phase-aware attention.

3. We show that CoPE doesn’t exhibit long term decay and is compatible with Linear attention.

4. We evaluate our method on various GLUE benchmarks, and results suggest that CoPE
achieves competitive performance compared to its alternatives.

2 Related work

2.1 Positional Encoding

Absolute positional encodings focus on individual position information and is typically applied in the
first layer of the model. These are embeddings that are directly added to the input token embeddings.
Sinusoidal positional encodings Vaswani et al.|[2023]] are non-learned vectors that are added directly
to input embeddings to at the bottoms of the encoder and decoder stacks. On the other hand, Learned
encodings Wang et al|[2020a]] use a learned additive vector.

Relative positional encoding focus on relative position rather than absolute. While absolute positional
encoding (APE) offers a straightforward and intuitive approach, its effectiveness diminishes when
applied to longer sequences. This limitation has led researchers to increasingly focus on refining
relative positional encoding. Shaw et al.|[2018]], |[Liutkus et al.|[2021] use relative position encodings
that attempts to exploit pairwise, relative positional information. Relative positional information
is supplied to the model on two levels: values and keys. RoPE |Su et al.[[2023] integrates position
awareness throughout all transformer layers. Notably, this method uniquely preserves the position-
agnostic nature of the value vectors in the self-attention mechanism.

Additive relative positional encoding introduce bias matrix to the attention matrix. Its popular
variants include TS5 Bias [Raffel et al.|[2019], ALiBi [Press et al.|[2022]. ALiBi penalizes the attention
value so that a query can assign to the key depending on how far away the key and query are. So
when a key and query are close by, the penalty is very low, and when they are far away, the penalty is
very high. It outperforms those methods and Rotary embeddings when evaluating sequences that are
longer than the ones the model was trained on (extrapolation).

Other positional embeddings include conditional positonal encoding|Chu et al.| [2023]] which generate
and conditions on the local neighborhood of the input tokens. [Hua et al.|[2025]] introduces Fourier
positional embedding which enhances attention’s frequency-domain properties to improve both
its periodic extension and length generalization. HoPE |Chen et al.| [2024] replaces the specific
components in RoPE with position-independent ones, retaining only high frequency signals, leading
to greater robustness to the out-of-distribution.



2.2 Complex-Valued Neural Networks

Complex-valued neural networks|Lee et al.| [2022]], Bassey et al.|[2021] provide a natural framework
for processing multi-dimensional data by leveraging both magnitude and phase information. Recent
work by [Eilers and Jiang| [2023]] has developed core components for complex-valued transformers,
including novel attention and normalization layers. Further advancing this paradigm, |Leng et al.
[2025]] demonstrate the efficacy of complex-valued transformers in wireless communication systems.

3 Method

3.1 Complex Encoding Layer

Our work is closely related to|Wang et al.[[2020b] which extends word vectors as continuous functions
over changing variables like word position. They also introduce a general complex-valued word
embedding approach where each word-position combination is represented as a waveform with
trainable amplitude (r;), frequency (w;), and phase (6;) parameters. Unlike traditional additive
position embeddings, this method uses element-wise multiplication between word embeddings and
positional components, allowing adaptive control over position sensitivity per dimension.

In this work, we isolate position into the complex domain, keeping token embeddings real. Our
approach begins with complex-valued encoding that encodes content and position separately i.e.,

Ecomplex<xa POS) = Evocab<37) + x Epos (POS)
where FEyocan () represents the token embedding (real part) ﬂ Epos(pos) represents the positional
embedding (imaginary part). Here ¢ represents the imaginary unit

This representation naturally separates semantic content from positional information while main-
taining their relationship through the complex structure. In this paper, we use sinusoidal encoding
Vaswani et al.| [2023] in imaginary part to encode position information to extrapolate beyond the
trained sequence length.

Ecomplex (@, p0s) = Eyocan () + 4 - 7 - sin (w - pos)
Complex representations offer theoretical advantages for positional modeling.

1. Orthogonal Information Encoding: Real and imaginary components are orthogonal, prevent-
ing direct interference between content and position.

2. Rotation: Complex multiplications Eilers and Jiang| [2023]] enables position-dependent
transformations through rotation.

3.2 Phase-Aware Attention

To model the complex input from positional information, we introduce phase-aware attention mecha-
nism in the first layer. This attention mechanism captures both semantic and positional relationships.

To handle the complex valued embedding, we introduce complex valued projection in the first layer.
Let the complex-valued projections be defined as:

Qproj = Qreal +i- Qimagv Kproj = Kreal + x Kimag

For complex input, 2 = Zea + % * Zimag» the complex-valued query and key vectors are:

Qcomplex = Qproj t R Kcomplex = Kproj "z
= (Qrea] * Zreal — Qimag : Zimag) = (Kreal * Zreal — Kimag : Z«'imag)
+ Z'(Qreal * Zimag + Qimag : Zreal) + i(Kreal * Zimag + Kimag . Zreal)

We keep the value vector V' in real space (projection on z,.4;), to propogate the real valued output to
next layers.

!we add the sentence embedding to the token embedding if applicable



We define the attention scores in a similar fashion to [Eilers and Jiang| [2023]] to incorporate both
magnitude and phase information in the attention computation:

*
Acomplex = Qcomplex ! Kcomplex

Here * denotes the complex conjugate. Let Amagnitude> Aphase> and R Acomplex ) represent the magnitude,
phase, and real part of the complex attention scores Acomplex, respectively.

We propose several variants to map the complex-valued attention scores to real-valued scores:

1. Magnitude:
Areal _ Amagnitude

Vdy,

2. Phase:
Ay = 05 phase)
real \/@
3. Real:
A%COI‘EQ
Areal - M
Vi
4. Hybrid:
A= (Amagnitude + - COS(Aphase))
real —
Vi
5. Hybrid-norm:
ﬁm ta- COS(Aphase)
Areal ==

Vdy

Here « is a phase coefficient controlling phase influence. We choose cosine function in phase to
model similarity i.e. lesser the phase difference, the more the similar [Eilers and Jiang| [2023]]

Since attention score A,y & value vectors V' are still in real valued space, we use So ftmax(Agea) *V

3.3 Properties of CoPE

1. CoPE doesn’t exhibit Long term decay: Recent work on HoPE |Chen et al.|[2024] challenges
the conventional assumption that positional encodings must enforce long-term decay, arguing that
modern LLMs often need to retrieve information from arbitrary context positions. In this section, we
prove that CoPE doesn’t exhibit long term decay.

Reformulating our definition of the complex positional embedding for token x at position p as
z(z,p) = ey + i sin(wp), ¢))

where e, € R? is the token embedding, v € R is a scaling factor, and w is the base angular frequency.

We consider the complex inner product:

Acomplex(xv Y,D, q) = Qcomplex(mvp) : Kcomplex(y; q)* (2)

Substituting the definitions: Acompiex (%, Y, P, q)

= (Qproj ez + iy sin(wp)]) - (Kproj [€y + 17 sin(wg)])” 3)
= (Qprojez + Z.'VQproj Siﬂ(wp)) : (Kprojey - i'prroj Sin(WQ)) 4
= (mejew) : (Kprojey) +iy [(Qprojew) : (_Kproj sin(wq))] %)
content term
+iy [(Qproj Sin(wp)) - (Kprojey)] + 72 [Qproj sin(wp) - Kproj sin(wg)] . (©6)

position term



The last term encodes the positional interaction:

Qproj Sin(wp) - Kproj sin(wq) o< sin(wp) sin(wgq) @)
= % [cos(w(p — q)) — cos(w(p + q))] - )

Thus, the positional contribution to Acomplex (2, ¥, D, ) is

Acomplex(za Y, D, q) X Cos (W(p - L])) — COS (w(p + q)) (9)

The relative position term cos(w(p — q)) is purely oscillatory with respect to p — ¢ and has no
multiplicative decay factor such as e~*/P=4|. Therefore, this complex encoding does not impose
long-term decay on the attention score magnitude.

2. CoPE encodes both relative and absolute positions: We note that CoPE embeddings are
absolute. However, phase-aware attention encodes both relative and absolute positions. The relative
position information emerges naturally from the phase difference encoded via complex multiplication
i.e., Acomplex = Qcomplex K, complex- G1ven positions p, g, Acomplex X €0s (w(p —q)) —cos (w(p+q)) .
as shown in eq[J]

3. CoPE is compatible with Linear Attention: We show that CoPE with phase-aware attention is
compatible with linear attention mechanisms. Linear attention |[Katharopoulos et al.|[2020]] rewrites

the attention as: N
> onet ¢(gm) " d(kn)vn
Sy &(qm) T D (k)

where ¢(z) is a non-negative activation function such as elu(x) + 1

Attention(Q, K, V), =

3

To incorporate complex queries and keys, we lift the complex vectors to doubled real features by
splitting real, imaginary parts and applying ¢ separately:

o [fg] e an - 1] e

We compute the Hermitian inner product for the lifted features:

3(q) o(k) = (é(ar) — id(a:)) " ($(kr) + i) (10)
= (¢(ar) "d(ky) + B(a:) " B(ki)) (11)
+ i(¢(a) " d(kr) — D(ar) T (ki) (12)

Thus the complex kernel decomposes into four real inner products:

AT’I‘ = (ﬁ(QT)T(é(kr)a Au = ¢(Q’L)T¢(kz)

Air = ¢(QZ)T¢(]€’I‘)7 Ari = ¢<QT)T¢(]C2)

Plugging ¢ into the linear-attention numerator gives

N
Numy, = > ¢ () ¢ (kn) vn (13)
n=1
N
= 3 (Al + A (AT = AT) Yo (14)
n=1

Each real inner product Al = A(Qu.m) T #(K, ) is separable in m and n. Therefore we can
precompute key—value aggregates:

N N
Gr = Z ¢(kr7n) U;lra Gi = Z (b(kz,n) UI (15)
n=1

n=1

(16)
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Figure 1: Training loss vs. epochs on SST2 with CoPE vs RoPE.
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Thus the numerator is computed by a small number of matrix—vector products:
Numm = <¢(QT,m)TGr + ¢<qi,m)TGi) + Z((b(ql,m)TGr - ¢(qr,m)TGi)- (17)

For numerical stability and to avoid division by complex scalars, a common choice is to keep the
denominator real. For instance one may set

N

Den,, = Z (¢(QT,m,)T¢(kr,7l) + ¢(Q1m)T¢(kzn))7

n=1

Given the complex numerator Num,,, € CV and real denominator Den,,, = 0, one can form different
real-valued attention outputs as shown in sec[3.2}

» Magnitude: Attention,, = |Num,,|/Den,,.
¢ Phase: Attention,, = cos(arg(Num,,))/Den,,.
* Real: Attention,, = Re(Num,,)/Den,,.

* Hybrid: Attention,, = (|Num,,| + o cos(arg(Num,,)))/Deny,.

All these options use the precomputed aggregates and therefore retain O(N') complexity.

3.4 Computation cost

Our method applies phase-aware attention only to the first layer, followed by standard attention
layers. This design captures position-dependent patterns early while allowing higher layers to focus
on semantic relationships. In addition, limiting complex operations to one layer makes this encoding
easy to adapt and maintains reasonable computational cost.

In this section, we show the compute cost for CoPE vs RoPE. Define number of layer in model to be
L, number of test data samples be N, input sequence length T, number of heads H, dj, = dpoder/H.
RoPE [Su et al.|[2023]] rotates query and key vectors in every layer for every head i.e, matrix rotations
complexity is O(L * ¢,.o¢ * N x H x T x dy, ), assuming the rotation operations are worth c,..;. However,
CoPE use phase-aware attention in single layer and standard attention in rest of the layers making the
complex-valued operations complexity to be O(ceompies * N * H % T * dy,). Ignoring the rotation
factor ¢, in ROPE and complex operation factor ccompie, in CoPE, CoPE is L times faster than
RoPE.
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Figure 3: Training loss vs. epochs on QNLI with CoPE vs RoPE.
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4 Experiments

4.1 Experimental Setup

Dataset: We experiment with several datasets from GLUE, i.e. MRPC Dolan and Brockett|[2005],
SST-2Socher et al.|[2013]], QNLI for training tasks.

1. MRPC: The Microsoft Research Paraphrase Corpus consists of sentence pairs and evaluates
whether two sentences are semantically equivalent.

2. SST2: The Stanford Sentiment Treebank (binary classification version) uses single movie
review sentences to assess sentiment.

3. QNLI: The QNLI dataset is a question paired with a sentence from a passage. The task is to
determine if the sentence contains the answer to the question.

Metrics: We use the same evaluation metrics as in RoPE |Su et al.| [2023]] i.e., F1-score for MRPC,
and accuracy for the remaining as the evaluation metrics.

Model Configuration: We use transfomer model with 6 layers, 8 heads, 256-dimensional embeddings,
256-dimensional attention with max positions 512.

Training details: We use AdamW optimizer with learning rate le-4, 0.01 weight decay, and dropout
0.2. All the model are trained from scratch for 30 epochs. We set & = 0.2, v = 1.



Encoding SST2 (Accuracy) MRPC (F1) QNLI (Accuracy)

Learned [Wang et al.|[2020a] 81.54 81.55 60.21
Sinusoidal [Vaswani et al.|[2023]] 82.57 79.74 63.87
ROPE |Su et al.| [2023]] 81.31 80.98 60.74
CoPE magnitude (Ours) 80.28 80.19 61.63
CoPE phase (Ours) 82.57 81.71 59.86
CoPE real (Ours) 80.50 80.88 60.97
CoPE hybrid (Ours) 81.31 79.75 60.74
CoPE hybrid-norm (Ours) 79.13 81.00 60.74

Table 1: Test Performance comparison of different positional encodings across multiple datasets.
Bold and underline indicate the best and second-best result in each column.

4.2 Results

To visualize the training performance of CoPE, we plot the training loss vs. number of epochs for
different variant of CoPE i.e., CoPE magnitude, CoPE phase, CoPE hybrid-norm and compare with
RoPE. Figure[I] [2] [3| depicts the training loss vs number of epochs for different variants of CoPE
and RoPE on SST2, MRPC, QNLI datasets respectively. On SST2, Figure 1| depicts that the training
loss of CoPE isclosely mirrors that of RoPE which implies that CoPE is comparable with RoPE. On
MRPC and QNLI, Figures show that CoPE achieves lower training loss compared to RoPE, in
particular CoPE magnitude, CoPE phase outperforms all its competitors, indicating a more effective
learning process.

These training trends are reflected in the final test performance, detailed in Table E} These results
shows the test performance (accuracy, F1 score) of different encoding methods on SST2, MRPC,
QNLI datasets. On SST2 & MRPC datasets, CoPE phase outperforms all the existing positional
encodings including RoPE. On QNLI, CoPE magnitude achieves the second best performance
after sinusoidal encodings, outperforming RoPE and learned positional encoding. These results
demonstrate that our complex positional encoding with phase-aware attention achieves competitive
performance on different GLUE benchmarks with less computational complexity compared to RoPE.

5 Limitations

1. Extrapolation:

Our method also allows to extrapolate beyond the sequence length due to the sinusoidal embeddings in
complex domain. However, AliBi Press et al.|[2022]] show that sinusoidal embeddings underperform
when extrapolated beyond sequence length. We plan to include the extrapolation experiments with
CoPE and compare with AliBi |[Press et al.|[2022].

2. Pretraining & Finetuning tasks:

Due to resource constraints, our current method is only evaluated on relatively smaller model that is
trained from scratch. In particular, CoPE requires a separate evaluation on pretraining and fine tuning
tasks on larger models.

6 Conclusion

We introduce CoPE, a novel positional encoding that encodes context and position information
through real and imaginary components respectively. Our approach demonstrates that the application
of phase-aware attention on the first layer can effectively capture positional dependencies while
maintaining computational efficiency. We show that CoPE doesn’t exhibit long term decay and is
compatible with linear attention, make it a light weight adapter to existing models. Experimental
results on the GLUE benchmarks demonstrate our approach, achieving competitive performance in
small models compared to its alternatives. This work opens several research directions, including
emphasis of complex space in transformers and its applications to diverse sequence modeling tasks.
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