
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAMBAEXTEND: A TRAINING-FREE APPROACH TO
IMPROVE LONG-CONTEXT EXTENSION OF MAMBA

Anonymous authors
Paper under double-blind review

ABSTRACT

The inherent quadratic complexity of the attention mechanism in transformer
models has driven the research community to explore alternative architectures
with sub-quadratic complexity, such as state-space models. Mamba has estab-
lished itself as a leading model within this emerging paradigm, achieving state-
of-the-art results in various language modeling benchmarks. However, despite its
impressive performance, Mamba’s effectiveness is significantly limited by its pre-
training context length, resulting in a pronounced degradation when the model
is tasked with handling longer contexts. Our investigation reveals that Mamba’s
inability to generalize effectively to long contexts is primarily due to the out-of-
distribution (OOD) discretization steps. To address this critical limitation, we in-
troduce MambaExtend, a novel framework designed to enhance the context exten-
sion capabilities of Mamba. Specifically, MambaExtend leverages a training-free
approach to calibrate only the scaling factors of discretization modules for dif-
ferent layers. We demonstrate both gradient-based and gradient-free zeroth-order
optimization to learn the optimal scaling factors for each Mamba layer, requiring
orders of magnitude fewer updates as opposed to the parameter fine-tuning-based
alternatives. With this, for the first time, we can enable a training-free context
extension of up to 32× from 2k to 64k, that too without any significant increase
in perplexity. Compared to the existing alternative approach of fine-tuning, due
to only selective calibration of the scaling factors, MambaExtend requires up to
∼5.42 ∗ 106× fewer parameter updates costing up to 3.87× lower peak-memory
while maintaining similar or better long-context performance evaluated across
multiple tasks. Code will be released soon.

1 INTRODUCTION

Figure 1: Long-context understanding on Pile.
Compared to the pre-trained alternatives, Mam-
baExtend provides up to∼8145× improvement in
perplexity score, via a training-free calibration.

Despite the widespread applications of trans-
former (Vaswani, 2017) based large language
models (LLMs) (Touvron et al., 2023), their
quadratic compute and memory demand with
sequence length has enforced research for
emerging alternative architectures. For exam-
ple, works including Linformer (Wang et al.,
2020) and Longformer (Beltagy et al., 2020)
presented different approaches to approximate
attention to reduce the quadratic memory cost.
Other works (Kitaev et al., 2020) leveraged
locality-based hashing to avoid attention com-
putation. Recently, state-space models (SSMs)
(Gu et al., 2022; 2020) have emerged as an
alternative to attention-based models, offer-
ing a different approach to handling long se-
quences at sub-quadratic complexity. Unlike
transformers, SSMs are grounded in continuous-time dynamics and offer the potential to handle
much longer sequences without blowing out the memory and compute demand. Mamba (Gu &
Dao, 2023; Dao & Gu, 2024), a popular SSM variant built leveraging the selective state-space layers
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(S6), has shown impressive performance on various NLP, image, and medical genomics bench-
marks (Schiff et al., 2024). The key advantage of Mamba stems from the sub-quadratic compute
complexity of theoretically grounded linear RNN layers.

LLMs for long-context understanding have recently found many useful applications, including sum-
marizing long documents and answering long questions (Chen et al., 2023c). However, transformer-
based LLMs that are pre-trained on fixed-length contexts yield lower generative performance when
used on longer sequences during inference time (Chen et al., 2024; 2023b). This shortcoming of
the transformers is tied to the inability of the positional embedding to generalize well on longer
sequences, causing such sequences to appear as out-of-distribution (OOD) sequences (Chen et al.,
2023c; Jin et al., 2024). Interestingly, Mamba models, despite their theoretical ability to capture
global interactions, also fail to generalize to long sequence or context lengths (Ben-Kish et al.,
2024). This phenomenon has been tied to the Mamab model’s implicit bias to a limited effective
receptive field (ERF) governed by the training data sequence length (Ben-Kish et al., 2024).

For transformer-based LLMs, the OOD sequence length generalization has been explored exten-
sively, including fine-tuning to longer sequences (Chen et al., 2023c) and allowing sophisticated
modification to the transformer’s positional embedding (Jin et al., 2024; Ding et al., 2024; Golovneva
et al., 2024). Unfortunately, such solutions are not directly applicable to Mamba models. This is
primarily due to the absence of an explicit positional embedding for Mamba models to generalize.
Moreover, unlike transformers, the potential root cause of Mamba’s performance deterioration for
long sequence processing is yet to be discovered.

A contemporary work, namely DeciMamba (Ben-Kish et al., 2024), has presented a selective token
decimation strategy to reduce the number of tokens to be processed per layer. This approach poten-
tially increases the model’s ERF, enabling better long-context information flow and understanding.
However, DeciMamba requires a memory- and compute-intensive fine-tuning of the model, result-
ing in significant time and effort to perform parameter updates of the pre-trained model. Thus, such
an approach does not scale to larger models, especially for limited memory or computing resources.

Our Contributions. To mitigate the aforesaid issues, we first investigate the impact of OOD long-
context extension on the discretization step of Mamba (∆t values). Note that this ∆t is the step
size that is used to transform continuous-time parameters to corresponding discrete state space vari-
ables. Interestingly, we have empirically found that a scaled-down ∆t can improve generalization
on increased context length at inference time. Based on this insight, we then present MambaEx-
tend, a framework designed to extend Mamba’s context length without any re-training of the
model weights. Specifically, MambaExtend employs a calibration function (CF) to optimize the
discretization step sizes (∆t) across various Mamba layers by introducing a learnable scaling fac-
tor associated with each layer’s ∆t. The CF allows the proposed ∆t scaling parameters to learn
while freezing the model weights to their pre-trained values, reducing the required memory and up-
dateable parameters by orders of magnitude. We further present a zeroth-order (ZO) optimization
based CF to perform the calibration via only forward passes, potentially allowing more memory and
compute saving. Specifically, we leverage the ZO based on simultaneous perturbation stochastic
approximation (SPSA) (Spall, 1992) to update the scaling values. Fig. 1 demonstrates the ability of
MambaExtend to improve the PPL by up to ∼8145×, as evaluated on context length of up to 64k.

To show the ability of MambaExtend, we performed extensive experiments on perplexity evalua-
tion, LongBench, and long-context retrieval tasks with different Mamba and Mamba2 variants. For
example, on PG19, only via ZO-based scaling factor update, MambaExtend can improve the context
length extension ability of a pre-trained model from 2k to 64k, while not incurring any significant
perplexity (PPL) increase. Compared to DeciMamba, we provide up to 40.6% reduced PPL while
requiring up to ∼5.42 ∗ 106× fewer update time with up to 3.87× lower peak-memory demand.

2 PRELIMINARIES

2.1 THE S6 LAYER AND MAMBA

At its core, each Mamba block utilizes the selective SSM (S6) layer (Gu & Dao, 2023), which is
specifically designed to handle sequential data by preserving structured state dynamics across the
input sequence.
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The S6 layer: Using a linear recurrent system with the hidden state ht, input zt, and output ot at
discrete time instant t, the S6 layer’s sequence generation and state update can be simplified as:

ht = Āht−1 + B̄zt, ot = Cht (1)

The P-length sequence of a representative channel is given as Z = {z1, z2, · · · , zP }, Ā ∈ RN×N ,
B̄ ∈ RN×1, and C ∈ R1×N are discrete time-variant system, input, and output matrices, respec-
tively, governing the discrete state transitions and output sequence generation. The S6 layer pro-
duces the ‘per-time’ (t) discrete time-variant matrices from input and “continuous parameters” as:

Āt = exp(∆tA), B̄t = ∆tBt where ∆t = SFT(∆tproj (zt)), Bt = WB(zt), Ct = (WC(zt))
T

(2)
Here, zt ∈ RD with D being channel dimension and ∆t be the discretization step used at time t.
∆tproj , WB , and WC are linear projection layers. SFT and exp represent the softplus and point-
wise exponential operation, respectively. After the discretization step, the S6 layer’s input-output
behavior via time-unrolling can be described as:

O = αZ with αi,j = Ci

 i∏
k=j+1

Āk

 B̄j (3)

Thus, for a context length of P , the entire output O = {o1, o2, .., oP } is computed as follows:
o1
o2
...
oP

 =


C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . .

...
CP

∏P
k=2 ĀkB̄1 CP

∏P
k=3 ĀkB̄2 · · · CP B̄P



z1
z2
...
zP

 (4)

This matrix formulation shows that each output oi is a weighted sum of the inputs z1, z2, . . . , zP ,
with the weights determined by the state-space matrices Ā, B̄, and C. The model can thus integrate
information across different time steps while maintaining computational efficiency. This matrix
resembles the attention score map in transformer-based models (Ali et al., 2024). In other words, S6
layers may be interpreted as data-controlled linear operators.

Notably, as these matrices are dynamically adjusted based on the input sequence, they enable the
model to efficiently capture temporal dependencies across various time steps. This approach allows
Mamba to maintain computational complexity that scales linearly with the context length.

Mamba block. One of the critical aspects of Mamba’s architecture is how a Mamba block relates
its input sequence X = (x1, x2, . . . , xP ) to its output sequence Y = (y1, y2, . . . , yP ) with P
corresponding to the sequence or context length. The relationship between the input and output of
the Mamba block is expressed through a time-varying SSM described below:

G = σ(Wgate projX), Z = Conv1D(Win projX) (5)

O = S6(Z), Y = O ⊙G (6)
Here, G is a gating function derived from a linear transformation of the input sequence X followed
by a SILU function, σ. The element-wise multiplication ⊙ between G and O allows the model to
selectively emphasize or attenuate parts of the input to focus on relevant input information. The input
Z to the S6 is a linearly transformed version of the original input X followed by a 1D convolution.

As demonstrated in these equations, the relationship between the last token oP and the first token
is governed by the term αP,1 = CP

∏P
k=2 ĀkB̄1 = CPexp(A

∑P
k=2 ∆k)B̄1. This means that the

exponent of summed ∆t determines the impact of the first token in the generation of the P th token.

3 MOTIVATIONAL CASE STUDIES

The behavioral change of ∆t. We first investigate the behavior of the accumulated discretization
matrix ∆t in the pre-trained Mamba-1.4B model when exposed to inputs of different context lengths.
Using 100 samples from Pile, for each Mamba layer, we compute the ∥(

∑P ′

t=1 ∆t)∥2 for different
evaluation context lengths P ′, where ||.||2 represents the l2-norm of a tensor. We plot this analysis in
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Figure 2: Layer-wise behavior of
∑

(∆t) for different context length during test-time. We used the
Pile dataset on Mamba 1.4B for the evaluation.

Fig. 2, which reveals how the accumulation of ∆t scales with increasing context length. Specifically,
Fig. 2 discloses that for each layer of the model, the magnitude of

∑
∆t increases with the increase

in context lengths P ′. According to Equations 3 and 4, and given that all entries of A are always
negative (Gu & Dao, 2023), we observe that the negative sum of ∆t appears as the exponent in
the exp function. Consequently, the term exp(−

∑
∆t) effectively governs the decay of influence

from any previous token. A larger value of ∆t results in greater forgetfulness, decreasing the model’s
reliance on earlier tokens. In contrast, smaller ∆t values enable the model to retain information from
more distant tokens. Therefore, exp(−

∑P ′

t=n ∆t) can be interpreted as a parameter that potentially
regulates the retention level for the n-th input to compute the token at P ′.

Figure 3: Impact of different values of uni-
form ∆t scaling on the perplexity (PPL)
evaluation metric.

Influence of scaled ∆t. For transformer-based
LLMs, a popular method for addressing the out-of-
distribution (OOD) context length P ′ > P (where
P represents the training context length) is posi-
tional interpolation (PI) (Chen et al., 2023a). The
PI method accomplishes this by multiplying the to-
ken index value in RoPE by P

P ′ . This rescaling en-
sures that the positional indices remain within a valid
range, effectively mitigating the OOD problem asso-
ciated with longer contexts without retraining.

Inspired by this, we propose a straightforward ap-
proach for Mamba to address the accumulated out-
of-distribution (OOD) discretization steps by scaling
the discretization matrix ∆t by a fixed scalar value
s ≤ 1 across all model layers. This method aims
to mitigate the OOD effects associated with longer
context sizes. We utilized a pre-trained Mamba 1.4B to validate this approach, conducting a grid
search over various values of s. We then evaluated the model’s performance on the test set of the
Pile dataset (Gao et al., 2020) for an evaluation context length of 32k tokens, reporting the average
perplexity. The results, presented in Fig. 3, demonstrate that scaling ∆t can significantly reduce
the model’s PPL from approximately 268 to around 23.5. However, the findings also indicate that
the relationship between the choice of scaling value and performance improvement is not straight-
forward. As shown in Fig. 3, while increased scaling helps reduce the perplexity at lower values
of (s), the PPL rises after reaching a certain threshold. This complex interplay encourages us to
investigate the model’s capacity to learn the optimal scaling. Additionally, this uniform scaling
factor cannot restore the model’s performance for longer contexts to the level observed at its
pre-trained context length. For instance, the model achieves a PPL of 3.7 for a 2k context length,
which remains significantly lower than the best PPL obtainable through uniform scaling.

Variable impact of ∆t on different layers. Another important observation in Fig. 2 is that for a
given test-time context length P ′, different layers of the model produce significantly different

∑
∆t

values (even when viewed on a logarithmic scale). This underscores the point that each layer should
not employ the same scaling factor to reduce the impact of ∆t. This observation motivates us

4
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to implement a heterogeneous (layer-specific) scaling mechanism across the various layers of the
model to effectively address the OOD

∑
∆t.

4 MAMBAEXTEND METHODOLOGY

Motivated by the need to mitigate the OOD effects, we introduce MambaExtend, a training-free
method for scaling the discretization steps of each layer. For an L-layer Mamba model, our primary
objective is to determine the optimal scaling factors for each layer, denoted as s1, s2, . . . , sL, which
will be used to adjust the discretization matrix ∆t. Note that for a layer i, si ∈ Rm, where m = 1
indicates that si is a scalar, and m > 1 indicates that si is a vector. Without loss of generality, for
m = 1, the discretization adjustment can be expressed as ∆′

t
i
= si∆t

i
, with ∆′

t
i

applied during
inference. The goal is to calibrate the newly introduced learnable parameters si for all i ∈ 1, . . . , L
in a way that is both memory- and compute-efficient, and does not involve any additional training
or fine-tuning of the model parameters. These constraints will enable such calibration to be feasible
on resource-limited edge devices.

Algorithm 1 MambaExtend Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, calibration
function CF

2: Output: Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

3: for i ≤ L do
4: si ← init(U(0, 1))
5: end for
6: freeze(M)
7: S← CF(S, C,M)
8: return S

Algorithm 1 outlines the MambaExtend framework, which takes a pre-trained Mamba model as
input, along with a small set of calibration samples from the target task and a specialized function
known as the calibration function (CF). As its name implies, CF calibrates the learnable scaling fac-
tors. Importantly, unlike DeciMamba, which allows fine-tuning of the weights, MambaExtend keeps
the model weights fixed to their pre-trained values (as indicated in Line 6 of Algorithm 1) through-
out the calibration process. This approach makes MambaExtend significantly more compute- and
memory-efficient compared to DeciMamba.

Calibration via back-propagation (CFBP ). Gradient-based backpropagation is a widely used op-
timization method for updating the free (unfrozen) parameters on a calibration set. However, to
minimize computational and memory overhead, we ensure parameter efficiency by restricting up-
dates to the scaling factors S only. Algorithm 2 summarizes the CFBP algorithm for finding the
optimal scaling factors. We utilize Adam as the optimizer for backpropagation (as noted in Line
4 of Algorithm 2). The Evaluate() function in Line 6 computes the loss of the model, which is
parameterized by frozen weights and the learnable scaling factors S.

Algorithm 2 CFBP Algorithm

1: Input: An L-layer Mamba model parameterized by frozen weightsM, set of calibration sam-
ples C, the initialized scaling factors S

2: Input: Learning rate η, number of iterations K
3: Output: Learned Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

+
4: optimizer = Adam(S, η)
5: for k ≤ K do
6: L = Evaluate(M∆t×S, C)
7: L.backward()
8: optimizer.step()
9: S← S.clamp(min = 0.001) # make sure scaling factors remain positive

10: end for
11: return S

5
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Algorithm 3 CFZO Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, the initial-
ized scaling factors S

2: Output: Learned scaling factors S = [s1, s2, ..., sL],where si ∈ Rm
+

3: Specify learning rate η, perturbation magnitude c, number of iterations K
4: for k ≤ K do
5: δ ∈ RL×m ∼ Rademacher()
6: S+ = S+ c× δ, S− = S− c× δ
7: L+ = Evaluate(M∆t×S+ , C), L− = Evaluate(M∆t×S− , C)
8: ∇̂S =(L+ - L−)/(2cδ)
9: S← S− η∇̂S

10: S← S.clamp(min = 0.001) # make sure scaling factors remain positive
11: end for
12: return S

Calibration via zeroth-order optimization (CFZO). Zeroth-order optimization (Spall, 1992; Mal-
ladi et al., 2023b) offers an efficient yet noisier method for calibration, as it relies solely on forward
passes to approximate gradients. Algorithm 3 outlines the process for optimizing the scaling factors
S in CFZO. Specifically, this is a multi-iteration process in which, at each iteration, the scaling
factors are randomly perturbed using a random variable δ sampled from a Rademacher distribution.
The magnitude of the perturbation and the learning rate for the updates are controlled by the hyper-
parameters c and η, respectively. We employ the two-sided variant of the simultaneous perturbation
stochastic approximation method (SPSA) (Spall, 1992), which obtains gradient approximations by
applying both positive and negative perturbations to the parameters simultaneously. The two-sided
SPSA approach yields gradient estimates with lower variance than the one-sided version, thus en-
hancing accuracy, especially in noisy environments (Spall, 2005).

The convergence of the zeroth-order calibration method, CFZO, is affected by the number of pa-
rameters being optimized, specifically the size of S. Classical lower bounds indicate that conver-
gence slows linearly as the number of parameters increases (Nemirovskij & Yudin, 1983; Duchi
et al., 2015). Consequently, a natural strategy in our context is to employ the backpropagation-based
method, CFBP , when optimizing a larger set of parameters in (S), while reserving CFZO for smaller
parameter sets.

Our experiments show that long-context evaluation tasks, based on the perplexity measure, and the
LongBench tasks require relatively fewer scaling factors. Specifically, for each layer si ∈ R+m,
a setting of m = 1 is sufficient to improve PPL on long-context inputs. Here, R+ represents the
set of positive real numbers, as scaling factors cannot take negative values in our case. Any si that
updates to a negative value is clamped to a very small positive number to ensure this condition in
our algorithm. We set m = D for the passkey retrieval task, thereby increasing the number of
parameters to be calibrated or updated. We empirically find that for the long-context tasks, CFZO

performs nearly as well as CFBP . However, for the passkey retrieval task, we prefer CFBP due to
its faster convergence trend compared to the zeroth-order method. We plan to address the tuning of
the zeroth-order approach to achieve a better convergence rate for relatively high parameter counts
in future work.

5 EXPERIMENTS

This section evaluates the performance and efficiency of our proposed MambaExtend. In specific,
we first detail on the models and datasets used for our experiments. We then present extensive
empirical results to outline our findings in terms of long-context performance of the Mamba model
variants. We finally discuss on the compute, time, and memory requirements for MambaExtend.

5.1 EXPERIMENTAL SETUP

Models and datasets. To evaluate the performance of MambaExtend, we use both long-context
understanding and long-context retrieval ability tasks. For long-context understanding, we use the

6
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Table 1: Perplexity for Mamba models over different evaluation context lengths on Pile dataset.

Mamba-130M Mamba-1.4B Mamba2-780M
Context Length 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k

Pre-trained Model 7.06 6.18 6.22 7.38 444 46592 4.34 3.78 4.19 14.4 260 6304 4.78 4.62 22.4 79 185 378
MambaExtend 7.06 6.18 5.03 4.84 5.16 5.72 4.31 3.78 3.48 3.62 4.81 6.93 4.59 3.95 3.89 4.25 5.56 5.00

Pile (Gao et al., 2020) and PG-19 (Rae et al., 2019) datasets and assess the performance of the Mam-
baExtend in terms of perplexity scores at various context lengths. We use Mamba-130M, Mamba-
1.4B (Gu & Dao, 2023), and Mamba2-780M (Dao & Gu, 2024) for these evaluations. Additionally,
we use the LongBench benchmark (Bai et al., 2023) to evaluate the performance accuracy of the
Mamba-1.4B and Mamba2-780M models. In specific, we use seven tasks, namely Qasper (single-
document QA), HotpotQA, 2WikiMultihopQA (multi-document QA), TREC, TriviaQA (few-shot
learning), LCC, and RepoBench-P (code completion). For the passkey retrieval task, we follow the
setup described in (Ben-Kish et al., 2024) and evaluate the performance of the Mamba-130M and
Mamba-1.4B models in retrieving a 5-digit code embedded at a random sequence depth within sam-
ples from the WikiText-103 dataset (Merity et al., 2016). In our retrieval setup, the input sequence
lengths range from 1K to 64K tokens.

Baseline and SoTA comparison. We use the pre-trained Mamba (Gu & Dao, 2023) and Mamba2
(Dao & Gu, 2024) models to evaluate the baseline performance as we increase the evaluation context
length P ′. We use DeciMamba (Ben-Kish et al., 2024), a contemporary work that uses memory-
intensive fine-tuning to update all the parameters while improving the effective receptive field.

5.2 EXPERIMENTAL RESULTS

Perplexity evaluations on PG-19 and Pile. To evaluate perplexity (PPL) on the Pile and PG-19, we
use twenty calibration samples from the corresponding training set for a given context length. We

Figure 4: Perplexity comparison on PG-19.
The ✓ and ✗ identify the fine-tuning re-
quirements to be false and true, respectively.

use these samples to learn the scaling factors in Mam-
baExtend, then evaluate perplexity on the test set for
a given context length. As stated earlier for the per-
plexity evaluation, for each layer i, we use a single
scaling factor si ∈ R+ per layer1, that scales the ∆t

tensor uniformly for that layer. Therefore, in an L-
layer Mamba model, we optimize L scaling factors
for these datasets. Given the small number of pa-
rameters to optimize, we use CFZO as the calibration
function.

Fig. 4 depicts the performance of MambaExtend
compared to the pre-trained Mamba variants and
DeciMamba. Specifically, at 70k context length,
MambaExtend-130M yields a PPL of 30.62, a
∼32506× improvement over the baseline counter-
part that fails to provide a very high PPL of 995328. Compared to the DeciMamba, it shows consis-
tent improvement with reduced PPL of up to ∼40.6%.

Table 1 reports the PPL values of MambaExtend models and compares them to those of the pre-
trained models on Pile. As shown in the table, MambaExtend through only minimal calibration,
allows the models to maintain their performance even with increasing context lengths. Specifically,
MambaExtend can improve the PPL by up to ∼8145×, showing higher improvement trends at
longer contexts.

LongBench. LongBench Bai et al. (2023) is a benchmark for bilingual, multitask, and compre-
hensive assessment of long-context understanding. For MambaExtend, we use seven popular tasks
from LongBench. Due to the lack of training data, we used 10 samples from the 4K-8K split of each
dataset as calibration data and the remaining samples from the same split to evaluate. We apply the
CFZO calibration function to learn the scaling factors. Similar to the calibration setup for perplexity
evaluation, we calibrate one scaling factor per layer shared over the whole ∆t tensor for that layer.

1This may be attributed to the relatively simpler nature of long-context understanding as opposed to long-
context retrieval, as for the later we need more fine-grain scaling increasing the number of calibration params.
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Table 2: Mamba vs MambaExtend performance on representative LongBench tasks.

Model Qasper HotpotQA 2WikiMultihopQA TREC TriviaQA LCC RepoBench-P Average
Mamba-1.4B 7.0 11.00 9.75 29.00 1.67 20.12 11.67 12.88
MambaExtend-1.4B 16.67 14.29 13.82 35.0 7.67 26.12 18.84 18.91
Mamba2-780M 7.50 6.06 9.48 17.0 0.1 22.1 14.01 10.89
MambaExtend2-780M 7.96 10.95 18.33 28.00 6.83 28.27 17.71 16.86
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Figure 5: Passkey retrieval performance after fine-tuning (FT) (for Mamba and DeciMamba) or
calibrating (for MambaExtend) on samples of 4k context length.

As demonstrated in the Table 2, MambaExtend can improve the average LongBench accuracy
by up to 6.03%.

Passkey Retrieval. Previous works have demonstrated that tasks requiring exact retrieval are more
challenging than achieving low perplexity in longer context (Liu et al., 2024), so we use more fine-
grained sharing of scaling factors to optimize. For ∆t tensor of a layer i, we use one scaling factor
per channel yielding total D scaling factors per layer (si ∈ RD

+ ). Unless otherwise stated, we use
CFBP for one epoch to calibrate on a dataset with 4k context length. For the baseline, we performed
standard fine-tuning with the same context length for one epoch as we get significant failure in the
retrieval. For DeciMamba to have a fair comparison, we fine-tune for the same epochs as ours2.

The evaluation is conducted across context lengths of 1K, 2K, 4K, 8K, 16K, 32K, and 64K, with
the target digit hidden at depths of 0%, 25%, 50%, 75%, and 100% of each of these sequence.
Assuming that each correct retrieval receives a score of 1 and each incorrect retrieval receives a score
of 0, we compute the retrieval score in percentage (%) as Total correct retrievals

Total (correct + incorrect) retrievals ∗ 100, across all
the depths overall context lengths. The result is demonstrated in Fig. 5. Although MambaExtend
calibrates approximately 3500× and 7100× fewer parameters for Mamba-130M and Mamba-
1.4B, receptively, it performs better or very similarly to the other two alternatives.

5.3 COMPUTE, TIME, AND MEMORY COST ANALYSIS

Fig. 6 demonstrates a comparison of full finetuning of baseline Mamba, DeciMamba, and calibra-
tion tuning with MambaExtend for the passkey retrieval task. Note here that to have a fair compar-
ison and to demonstrate efficacy at extreme lost cost tuning, we set the epoch to one for all. For
MambaExtend, we show results for fine-tuning with both 4k and 8k contexts, while for others, we
only perform experiments with tuning with 4k contexts. Notably, MambaExtend requires up to
2.12× fewer memory for tuning with similar context; in other words, it can support calibra-
tion with higher context of up to 2×. Regarding per epoch calibration time, MambaExtend can
be faster by up to 1.69× while requiring up to 3532.6× fewer parameters to update. To measure

2In the original paper (Ben-Kish et al., 2024) the model was fine-tuned for longer duration, however we
focus on limited resource calibration and thus keep our experiments limited to fine-tuning for one epoch. Please
see Appendix for fine-tuning results with longer epochs.
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Figure 6: Comparison of normalized {peak memory, calibration time, and number of parameter up-
dates} between Mamba, DeciMamba, and MambaExtend for passkey retrieval task. We use Mamba-
130M model and for each method, we train for one epoch either with 4k or with 8k context length.
For each of these three measurements types, we normalize each value by the corresponding value of
MambaExtend-130M-4k.

the retrieval success, we compute the Interestingly, despite having significant calibration efficiency,
4k tuned MambaExtend provides up to 20% improved accuracy. We yield even better efficiency
for CFZO based calibration. In specific, compared to DeciMamba, MambaExtend requires up to
∼5.42 ∗ 106× fewer parameter updates and costs up to 3.87× lower peak-memory (details pro-
vided in Appendix A.3).

5.4 DISCUSSION AND ABLATION STUDY

Understanding the impact of learned scaling on ∆t. To understand the impact of the learned
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Figure 7: Impact of the calibrated scaling factors on ∆t.
(Top) layer-wise Normalized sum of ∆t layer-wise for
a pre-trained Mamba. (Bottom) layer-wise Normalized
sum of ∆t layer-wise for a MambaExtend calibrated
model. We used Mamba-1.4B on Pile with 32K context.

scaling on the ∆t discretization ten-
sor, we compute the normalized sum of
∆t ∥(

∑P ′

t=n ∆t)∥2. Here, n refers to
the token index whose impact we want
to study on the output context length
P ′. P ′ is set to 32k for this analysis.
The Fig. 7 demonstrates the heatmap
of the ∥(

∑P ′

t=n ∆t)∥2 for different to-
ken index (n) at different layers of the
model. Notably, as discussed earlier, high
∥(
∑P ′

t=n ∆t)∥2 value may be associated
with a stronger decaying effect on the
output token P ′. As we can see, the orig-
inal Mamba, particularly for later layers,
induces a significant decaying effect for
the earlier tokens (see the value for to-
ken index 2000 for layer index > 40).
This finding aligns with that of Ben-Kish
et al. (2024). MambaExtend, on the
contrary, reduces this effect significantly,
both overall and for later layers. This study highlights the benefit of the learned scaling in effectively
controlling the ∆t.

Ablation on the granularity of scaling factor sharing. In Table 3, we present the results with

Table 3: Passkey retrieval performance of Mamba-
130M with a different granularity of the scaling factor
sharing, namely, per-channel, per-token, and per-tensor.

Sharing granularity # Params. ↓ Retrieval Score (%) ↑
Per-channel 36.8K 91.4
Per-token 98.3K 62.8
Per-tensor 24 22.8

various levels of sharing of the scaling
factor a layer’s ∆t. Specifically, we
allow per-channel, per-token, and per-
tensor sharing where a scaling factor is
shared over a channel, a token, and the
whole tensor for a layer’s ∆t, respec-
tively. We calibrate for one epoch for
three scenarios and measure the score on
context. As we can see from the table,
per-channel sharing can improve the retrieval score significantly. While per-tensor sharing requires
considerably fewer calibration parameters, it fails to yield a good score, making per-channel sharing
an optimal choice.
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Table 4: Perplexity result with CFZO

v.s. CFBP on Pile dataset.

CF\Context Length 4K 8K 16K
CFBP 6.10 5.11 4.79
CFZO 6.18 5.03 4.84

Ablation on CFBP vs. CFZO. For simpler long-context
understanding tasks we demonstrated CFZO to yield signif-
icantly improved PPL. In Table 4, we now demonstrate a
direct comparison of the two calibration functions, namely,
CFZO and CFBP for Pile dataset. We used Mamba-130M
for this experiment. As we can see, the perplexities for the
three evaluation context lengths are similar for both of these methods. This experiment demonstrates
the efficacy of CFZO despite its efficient forward-pass-based gradient approximation approach, as
opposed to the back-propagation-based alternative.

6 RELATED WORK

Long-context understanding for LLMs. Numerous works have tried to address the long-context
understanding challenge in transformer-based LLMs. For instance, (Chen et al., 2023a) intro-
duced positional interpolation to mitigate the issue of OOD positions for contexts exceeding the
pre-training length in RoPE-based transformers. In parallel, works such as (Han et al., 2024; Jin
et al., 2024) proposed zero-shot techniques that constrain positional indices to discrete integer val-
ues when handling extended contexts in transformers. Additionally, (Chen et al., 2024) employs
evolutionary search to design a non-uniform position interpolation and initialization strategy for
fine-tuning on longer contexts. The YaRN method (Peng et al., 2024) further advances this line of
work by combining positional interpolation with dynamic NTK-aware scaling, which dynamically
adjusts the scaling of high- and low-frequency components of positional embeddings based on se-
quence length. Despite significant progress in transformer based LLMs, long-context understanding
for SSMs it yet to be fully unveiled. Only recently, inspired by the success of LongLoRA Chen et al.
(2023c), DeciMamba (Ben-Kish et al., 2024) has proposed a fine-tuning based context-extension for
pre-trained Mamba models.

Zeroth-order optimization. Zeroth-order (ZO) optimization refers to a class of optimization algo-
rithms that does not backpropagation based gradient computation. Instead, the ZO methods estimate
gradients indirectly by querying function values through only forward passes. Over the past years,
several techniques have been developed for ZO gradient estimation. Randomized Gradient Estima-
tion (RGE) (Nesterov & Spokoiny, 2017) approximates gradient by randomly perturbing the input
in multiple directions and examining the function value change.The perturbation is typically drawn
from a random distribution, such as Gaussian or Rademacher. It potentially requires fewer number
of function evaluations compared to other alternatives like finite differences (FD) (Shi et al., 2021).
Simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992) is a highly efficient ZO
method for minimizing multivariate loss functions. Unlike the RGE and FD method, which requires
multiple evaluations per iteration, SPSA perturbs all input dimensions simultaneously, requiring
only two function evaluations per iteration, regardless of the problem’s dimensionality. This makes
SPSA especially attractive for large-scale optimization tasks. Recently, various algorithms including
MeZO (Malladi et al., 2023a) further improved the memory efficient of SPSA. MeZO demonstrated
LLM fine-tuning through only forward passes. In the MambaExtend framework, we gain efficiency
benefits by optimizing small number of parameters.

7 CONCLUSIONS

In this work, we addressed the limitations of Mamba in handling long-context tasks by introducing
MambaExtend, a novel framework that extends the context length of Mamba models without model
training. Through non-uniform calibration of the discretization matrix (∆t) scaling factors across
different layers of the model, we enabled context extension by up to 32× while maintaining similar
perplexity levels. Our approach significantly reduces both the number of parameter updates and
peak memory demand compared to traditional fine-tuning methods. We believe this work to open
up new possibilities in efficient, training-free adaptation of state-space models to longer context
applications, potentially allowing the true potential of sub-quadratic models to unveil. We hope our
findings and key results will inspire the community to delve further into the theoretical underpinning
of the relation between discretization steps and OOD generalization of SSMs. Further exploration
of global and local receptive field (Xiao et al., 2024) aware tuning of discretization steps remains as
another interesting direction to explore.
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A APPENDIX

A.1 DETAILED HYPERPARAMETERS

CFZO hyperparameters. For Pile, PG-19, and LongBench dataset calibration, we set the ZO opti-
mization hyperparameters to η = 0.001, c = 0.1, and K = 50.

CFBP hyperparameters. For the passkey retrieval task, we train the models for one epoch using
Adam optimizer with learning-rate of 1e-1 for MambaExtend. For DeciMamba, and full fine-tuning
we use the learning-rate to be 1e-4, as suggested by the authors Ben-Kish et al. (2024). For all three
cases, we use a batch size of 32, a gradient clipping of 1.0, a weight decay of 0.1, and train on
sequences of length 6144.

A.2 PRE-TRAINED MODEL CHECKPOINTS USED

The pretrained model checkpoints of Mamba are taken from the Hugging Face model Hub3:

• state-spaces/mamba-130m

• state-spaces/mamba-1.4b

• state-spaces/mamba2-780m

A.3 MORE RESULTS

Fig. 8 demonstrates the performance comparison of DeciMamba and MambaExtend in terms of
compute, memory, and time. For DeciMamba, we use the total training time of 5 epochs, to evaluate
the normalized FT time. For MambaExtend, as we use ZO for the calibration, we report the time
associated to the 50 iterations of calibrations. Notably, for MambaExtend we calibrate separately for
each eval context length, while DeciMamba does one fine-tuning for 5 epochs with 2k context length.

3https://github.com/state-spaces/mamba
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Figure 8: Comparison of normalized {peak memory, number of parameter updates, and
calibration/fine-tuning (FT) time (total)} between DeciMamba, and MambaExtend for PG-19. We
use Mamba-130M model for this evaluation.

Table 5: PPL comparison with transformer based LLM for long-context understanding on Pile.

Model 2K 4K 8K 16K 32K 64K
TinyLLaMA1.1B (2K) 4.6 62.6 426.6 1243.7 2684.6 3372.04
TinyLLaMA1.1B-PI 4.6 9.56 50.34 116.47 168.84 229.46
MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

This causes the peak memory and fine-tuning time to increase for MambaExtend while keeping
them constant for DeciMamba. For each evaluation metric, we performed the normalization by the
corresponding value for MambaExtend at the context length under consideration. As Fig. 8 shows,
MambaExtend requires∼5.42 ∗ 106× fewer parameter updates and costs up to 3.87× lower peak-
memory. Additionally, MambaExtend provides up to 20.9× faster calibration as opposed to the
fine-tuning duration of DeciMamba.

A.4 COMPARISON WITH TRANSFORMER-BASED LLMS

Table 6: PPL comparison with transformer based
LLM for long-context understanding on PG19.

Model 16K 32K 64K
TinyLLaMA1.1B (2K) 2236.98 4205.64 8664.11
TinyLLaMA1.1B-PI 226.69 300.46 375.49
MambaExtend-130M 19.25 20.3 25
MambaExtend-1.4B 14 14.34 16.12

Supporting longer context during inference is
an equally important problem in transformer
based LLMs, as compared to Mamba based
LLMs. To have a broader picture on the long
context extension results with Mamba models,
in this section we compare our performance
with that of the transformer based LLMs. In
specific, we choose TinyLLaMA-1.1B model,
trained on 2K context length as the baseline
transformer model. hoose a positionally interpolated version of the same model. Note, positional
interpolation (PI) is a popular training-free method for the context extension of transformer models.
As shown in the Table 5, the MambaExtend model despite being smaller, at longer context length
consistently outperform the TinyLLaMA-1.1B both with and without PI. We additionally compare
the results of TinyLLaMA1.1B (with and without PI) and MambaExtend on PG19, another popular
benchmark for PPL evaluation on long context. As shown in Table 6, the results clearly shows the
significant performance benefit of MambaExtend as opposed to the transformer based alternatives.
Notably, with both smaller and similar sized models, MambaExtend significantly outperforms the
TinyLLaMA model variants showcasing their benefits.

A.5 MORE COMPARISON WITH DECIMAMBA

While in the main manuscript we demonstrate the benefits of MambaExtend over the baseline
Mamba on Pile dataset, we now show comparison with DeciMamba (Ben-Kish et al., 2024) on
the same. In specific, Table 7 demonstrates the efficacy of MambaExtend in maintaining the PPL
better than DeciMamba, particularly at longer contexts with context length ≥ 8K. Additionally, we

Table 7: PPL comparison between DeciMamba and MambaExtend on Pile.

Model 2K 4K 8K 16K 32K 64K
DeciMamba-130M 4.93 5.36 5.21 6.99 8.19 10.62

MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

show results on LongBench to compare with that generated by DeciMamba in a zero-shot fashion. In
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Table 8: F1 scores on HotpotQA and Qasper from LongBench on DeciMamba and MambaExtend,
respectively. Italicized numbers identify the results taken from (Authors LongMamba, 2024) paper.

Model HotpotQA Qasper
DeciMamba-1.4B 13.88 14.24

MambaExtend-1.4B 14.29 16.67

Figure 9: Impact of the calibrated scaling factors on ∆t (a) Mamba vs. MambaExtend, and (b)
Mamba vs. DeciMamba as evaluated on Pile 32K context length. (Top) of both (a) and (b) shows
layer-wise Normalized sum of ∆t for a pre-trained Mamba-1.4B. (Bottom) layer-wise Normalized
sum of ∆t for (a) MambaExtend-1.4B calibrated model, and (b) DeciMamba-1.4B fine-tuned model.
Notably, to fine-tune DeciMamba 1.4B model we adhered to the setup described in (Ben-Kish et al.,
2024).

specific, Table 8 shows that MambaExtend can yield reasonably improved performance as evaluated
on HotpotQA and Qasper, respectively.

Comparing the impact of learned scaling and full fine-tuning on ∆t. MambaExtend applies a
learned scaling policy to scale the discretization steps ∆t. On the contrary, DeciMamba (Ben-Kish
et al., 2024) fine-tunes the full model for it to perform well on longer context. We now, visualize the
impact of these two approaches on the Normalized sum of ∆t per layer. In specific, in Fig. 9 we
show a direct comparison of the impact on the same for MambaExtend (9(a)) and DeciMamba (9(b)).
Interestingly, both the approaches has similar impact on the Normalized sum of ∆t, significantly
reducing their values at the later layers. This experiment shows that both the approaches intend to
recalibrate the ∆ts, while our approach yields similar benefit in more compute, memory, and latency
efficient way.

0.0 0.2 0.4 0.6 0.8 1.0
Scaling Factor of t
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Figure 10: : Impact of different values of uniform ∆t scaling on the loss landscaope of the model.
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Table 9: PPL comparison with TBTT (Wang, 2024) fine-tuned model on Pile.

Model TBTT fine-tuned 4K 8K 16K 32K 64K
Mamba2-780M (baseline) No 4.62 22.4 79 185 378

Mamba2-780M Yes 4.62 4.34 3.89 4.92 5.16
Mamba2Extend-780M No 3.95 3.89 4.25 5.56 5

Table 10: Comparison with TBTT (Wang, 2024) fine-tuned model on Passkey retrieval task.

Model TBTT fine-tuned Avg. Accuracy (%)
Mamba2-780M (baseline) No 0

Mamba2-780M Yes 5.7
Mamba2Extend-780M No 91.34

Table 11: Comparison between fine-tuning and calibration for longer epochs on Passkey retrieval
task.

Model Passkey retrieval acc. (%)
DeciMamba-130M 93.1

MambaExtend-130M 94.3

A.6 THE LOSS LANDSCAPE FOR GRID-SEARCHED SCALING FACTORS

Fig. 3 in the main manuscript demonstrates the impact of uniform ∆t scaling per layer in terms of
PPL value. We now plot the loss landscape of the model with uniform scaling factor values in the
same range as that of Fig. 3. In specific, 10 shows the loss landscape to have a convex nature as we
sweep over the scale factors (s) in 0 < s ≤ 1.

A.7 COMPARISON WITH MODELS FINE-TUNED VIA TRUNCATED BACKPROPAGATION
THROUGH TIME

Contemporary works on Mamba2 models trained via truncated backpropagation through time
(TBTT) has shown promise to generalize well on longer contexts (Wang, 2024). TO compare Mam-
baExtend with TBTT fine-tuned model, we perform a fine-tuning for three epochs based on TBTT
approach on a pretrained Mamba2-780M with 0.8B tokens from the PG19 train split. We then mea-
sure performance on Pile and Passkey retrieval tasks, respectively and present the comparisons with
MambaExtend in Table 9 and 10, respectively. Interestingly, for Pile, indeed we see a good perfor-
mance boost on longer contexts, getting close to the performance of MambaExtend. However, on
the critical benchmark of long context retrieval ( Table 10) TBTT fine-tuned model fails to provide
any mentionable retrieval accuracy, while MambaExtend could provide significant accuracy boost
by calibration of the scaling factors only.

Important notes to highlight on TBTT training. the approach of TBTT based fine-tuning has sim-
ilarity with the approach of DeciMamba (Ben-Kish et al., 2024), which also suggests full fine-tuning
to improve long context understanding (however, without TBTT). We thus would like to highlight
that the key benefit of scaling based calibration of MambaExtend can still be considered as an or-
thogonal method to such full fine-tuning based approaches, not only yielding better accuracy but also
providing high compute and memory advantage, potentially opening the door for limited resource
calibration. Additionally, as illustrated in Figure 7 of the original LongSSM paper (Wang, 2024),
particularly with relatively large models, training the 140M S5 model with previously-initialized
state (TBTT policy), the model may severely suffer from stability issues. This raises a general
concern on the scalability of such an approach as identified by the author(s).

A.8 FINE-TUNING VS. CALIBRATION FOR LONGER EPOCHS

Table 11 shows results of fine-tuning with DeciMamba for five epochs on passkey retrieval. For
a fair comparison we show results of MambaExtend with scaling factors calibrated for the same
epochs. As we can see, MambaExtend can still retain improved performance over the other. How-
ever, please note, in this work we aim to achieve long context generalization with minimal compute
and calibration overhead, thus we aim to focus on fine-tuning for only one epoch.
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A.9 HARDWARE AND API RESOURCES USED

For all the experiments we used an Nvidia A6000 GPU with 48 GB memory. To perform calibration
and fine-tuning we used Pytorch API to write the corresponding code.
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