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ABSTRACT

Successful and effective communication between humans and AI relies on a shared
experience of the world. By training solely on written text, current language models
(LMs) miss the grounded experience of humans in the real-world—their failure
to relate language to the physical world causes knowledge to be misrepresented
and obvious mistakes in their reasoning. We present Mind’s Eye, a paradigm
to ground language model reasoning in the physical world. Given a physical
reasoning question, we use a computational physics engine (DeepMind’s MuJoCo)
to simulate the possible outcomes, and then use the simulation results as part of
the input, which enables language models to perform reasoning. Experiments
on 39 tasks in a physics alignment benchmark demonstrate that Mind’s Eye can
improve reasoning ability by a large margin (27.9% zero-shot, and 46.0% few-shot
absolute accuracy improvement on average). Smaller language models armed with
Mind’s Eye can obtain similar performance to models that are 100× larger. Finally,
we confirm the robustness of Mind’s Eye through ablation studies.

1 INTRODUCTION

“In questions of science, the authority of a thousand
is not worth the humble reasoning of a single individual.”

——Galileo Galilei, 1632

“Do objects fall proportionately to their weight?” This famous question was once controversial until
Galileo’s Leaning Tower of Pisa experiment1—Galileo dropped two balls of different masses from
the same height (i.e., experiment) and concluded that their time of descent was independent of their
mass (i.e., inductive reasoning). Such an experiment-reasoning paradigm has been used by humans
for centuries to ground reasoning on complicated problems (Newell, 1980) and transfer learned
knowledge to unfamiliar domains (Novak & Gowin, 1984).

Current language models (LMs) follow a different path—by training on natural language, they
attempt to reverse engineer the physical world, so that they are able to reason about it. Large-
scale pre-trained LMs have achieved revolutionary performance on many tasks, such as solving
math word problems (Roy & Roth, 2015; Ling et al., 2017; Cobbe et al., 2021) and commonsense
reasoning (Talmor et al., 2022; Geva et al., 2021). However, these models do not experience firsthand
the situations that are described by the language (McClelland et al., 2020), and lack the ability to
find the correct answers by performing experiments like humans. As a consequence, when asked
the same free fall question, one of the most widely-used LMs, GPT-32 (Brown et al., 2020)—though
achieving superhuman performance in many reasoning tasks—will generate the wrong answer: “The
heavier object will fall faster.” (as shown in Figure 1). Due to the lack of grounded reasoning, current
LMs also have issues in truthfulness (Lin et al., 2021) and factuality (Petroni et al., 2020).

1In Physics, Aristotle (384–322 BC) claims that the speed at which two identically shaped objects fall is
directly proportional to their weights, which was later challenged by Aristotelian commentator John Philoponus.

2Specifically, we use text-davinci-002, which is the “most capable GPT-3 model” at the time of writing from
OpenAI: https://beta.openai.com/docs/models/overview.
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Question:
Two baseballs X and Y are released from rest
at the same height.

X is heavier than Y.

Which baseball will fall to the ground faster?

Answer fromVanilla LM:
Answer:
The heavier baseball will fall to the
ground faster because it has more
mass and therefore more gravity.

Zero-shot Reasoning

Question:
Two baseballs X and Y are released from rest
at the same height.

X is heavier than Y.

Which baseball will fall to the ground faster?

Text-to-Code LM Physics Engine
Mind's Eye

Augmented LM

Rendering Code

Simulator Augmented Zero/Few-shot Reasoning
Mind's Eye

Few-shot Reasoning

Simulation based Prompts Injection

Simulation Results

MuJoCo Simulation

Question:
Two baseballs X and Y are released from rest
at the same height.

X is heavier than Y.

Which baseball will fall to the ground faster?

+ Chain-of-Thought on Similar Questions Answer fromCoT + LM:
Answer:
Since the acceleration of an object
can be computed as a = F/m, the
heavier one will have more gravity,
so a = mg/m > g. The heavier one
will fall to the ground faster.

Answer fromMind's Eye + LM:
Answer:
Hints:
X and Y have the same acceleration.
So the answer is: they will fall at the
same rate. Both baseballs will fall to
the ground at the same time.

Chain-of-Thought

Vanilla

Figure 1: Current language models are still challenged by simple questions that require a good
understanding of the physical world. The answer elicited by Chain-of-Thought can still be wrong if
the required knowledge is missing or misrepresented in LMs. Mind’s Eye, instead, enables grounded
LM reasoning by directly simulating the scene in the given question. Then the LM can reason over
the injected ground-truth rationale to generate the correct answers.

To tackle these problems, existing remedies include using improved prompting techniques, such as
inserting hand-written decomposed reasoning steps in few-shot demonstrations (Wei et al., 2022;
Zhou et al., 2022). These methods are inherently limited as their reasoning ability completely relies
on the knowledge perpetuated in the LM—their performance could suffer if the knowledge learnt by
the LM is incorrect (Petroni et al., 2019) or outdated (Dhingra et al., 2022). To incorporate external
knowledge, retrieval-augmented LMs such as REALM (Guu et al., 2020), RAG (Lewis et al., 2020)
and RETRO (Borgeaud et al., 2022), retrieve relevant documents as additional evidence for given
questions, and may also fine-tune the LM on the question-document-answer triplets. However, the
knowledge presented in written language is known to have reporting bias (Bisk et al., 2020), whereby
some everyday unspoken facts or rarely seen (but practically possible) compositions are commonly
missing in text (Paik et al., 2021).

Correct and complete understanding of properties and interactions in the physical world is not only
essential to achieve human-level reasoning (Lake et al., 2017), but also fundamental to build a
general-purpose embodied intelligence (Huang et al., 2022). In this work, we investigate to what
extent current LMs understand the basic rules and principles of the physical world, and describe how
to ground their reasoning with the aid of simulation. Our contributions are three-fold:

• We propose a new multi-task physics alignment dataset, UTOPIA, whose aim is to benchmark
how well current LMs can understand and reason over some basic laws of physics (§2).
The dataset contains 39 sub-tasks covering six common scenes that involve understanding
basic principles of physics (e.g., conservation of momentum in elastic collisions), and all
the ground-truth answers are automatically generated by a physics engine. We find that
current large-scale LMs are still quite limited on many basic physics-related questions (24%
accuracy of GPT-3 175B in zero-shot, and 38.2% in few-shot).

• We explore a paradigm that adds physics simulation to the LM reasoning pipeline (§3) to
make the reasoning grounded within the physical world. Specifically, we first use a model to
transform the given text-form question into rendering code, and then run the corresponding
simulation on a physics engine (i.e., MuJoCo (Todorov et al., 2012)). Finally we append the
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simulation results to the input prompts of LMs during inference. Our method can serve as a
plug-and-play framework that works with any LM and requires neither handcrafted prompts
nor costly fine-tuning.

• We systematically evaluate the performance of popular LMs in different sizes on UTOPIA
before and after augmentation by Mind’s Eye, and compare the augmented performance
with many existing approaches (§4.2). We find Mind’s Eye outperforms other methods by
a large margin in both zero-shot and few-shot settings. More importantly, Mind’s Eye is
also effective for small LMs, and the performance with small LMs can be on par or even
outperform that of 100× larger vanilla LMs.

2 UTOPIA BENCHMARKING

Humans are able to understand their physical environment and intuit rules about the world from
embodied experience. The rules and principles behind the real world have been discovered as
scientific laws—we humans have ingrained them as knowledge or intuition (Kaiser et al., 1986) to
make reliable predictions on how observed events will unfold in day-to-day life (Kubricht et al.,
2017). For example, when driving, we can anticipate when to brake when approaching a stop sign,
using intuition or knowledge from Newton’s second law of motion. We also know it would be a
disaster to collide with a heavy truck, not only in terms of our knowledge on the conservation of
momentum (i.e., the lighter object will have a greater velocity after collision), but also from our
embodied experience of collision in everyday life.

We are thus inspired to design a physics alignment dataset that covers this knowledge, aiming to
benchmark to what extent current LMs understand basic physical concepts and rules. As shown in
Table 1, we choose six representative scenes, mainly from textbooks (e.g., high-school Physics). The
sub-tasks are defined based on the composition of observed and queried concepts. For example, one
task in a motion scene could be: given the observed acceleration of the two objects with the same
mass, please answer what is the relationship of forces applied on them. In total we have 39 sub-tasks
across different scenes, and each sub-task contains various hand-designed questions whose language
style is similar to that of textbooks as well.

Table 1: We propose UTOPIA, a multi-task physics alignment dataset, investigating the grounded
reasoning ability of LMs on 39 sub-tasks. Unlike many other datasets, UTOPIA deliberately describes
the questions in relative relations (e.g., greater than) instead of absolute numbers (e.g., 3.5 m/s), to
approximate human’s perceptional sensing ability in real world. The ground-truth answers to the
questions are generated by the physics engine, which makes it easy to scale UTOPIA to larger sizes.
Scenes (Simplified) Sample Questions Concepts # Tasks

Motion
Amy pulls two sleds X and Y with the same force.
X has a greater mass than Y. Friction can be ignored.
Which one has a greater acceleration after the same period of time?

mass
force
velocity

6

Friction
Two boxes X and Y move at the same velocity.
We only consider kinetic frictions, and X undergoes a smaller friction than Y.
Which one has a greater velocity after the same period of time (before stop)?

mass
velocity
friction

6

Free fall
Two balls are dropped from the same height.
Y has a greater mass than X. We ignore the air resistance.
Which one will hit the ground earlier?

mass
height
energy

6

Projection
Jason throws two baseballs X and Y at the same height horizontally.
They have the same mass, but X has a greater initial horizontal velocity.
Which one will hit the ground earlier?

velocity
mass
energy

6

Collision
Two marbles X and Y of the same mass move towards each other.
X and Y have the same magnitude of velocity, and the collision is elastic.
Which one will have a greater velocity after collision?

velocity
mass
momentum

6

Incline
Two blocks of metal X and Y are released from a certain height on a slick slope.
Y has a greater mass than X, and the friction can be ignored.
Which one will have a greater velocity after the same period of time?

mass
height
friction

9

Table 1 exemplifies some samples in UTOPIA. We deliberately choose to use relative comparison
(e.g., “greater than”, “smaller than”, “the same as”; text in purple) rather than actual numbers to
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describe the physical properties, since we are thus able to disentangle the effects from numeracy
(i.e., the gain on reasoning is not attributed to better memorization on numbers, which has been
reported as “shortcuts” used by LMs (Patel et al., 2021)). This setting is also different from those in
mathematical reasoning tasks (e.g., GSM8k (Cobbe et al., 2021)), where the decomposed reasoning
path is typically the procedure of plugging different values into equations—the LM might be able to
solve these problems by symbolic manipulation (Razeghi et al., 2022) rather than actual reasoning.

Most existing physics alignment datasets use vision as the primary modality, such as images (Zellers
et al., 2019), animations (Wu et al., 2017), or videos (Piloto et al., 2022), which loses the flexibility
to run on LMs which only takes text input. PIQA (Bisk et al., 2020) and MMLU-Physics (Hendrycks
et al., 2021) are popular physics reasoning datasets used for LM benchmarking; however, their
sizes are naturally limited because of required human annotations (e.g., only 206 samples are on
physics in MMLU, with college and high school level questions combined). UTOPIA differs from all
these datasets as it leverages a physics engine to generate data—in theory we can obtain unlimited
samples—and each sample has reliable ground-truth supported by actual simulation. Although in the
present work we only take the text-form data for LM benchmarking, the corresponding simulation
videos during data generation have been recorded as data for future multi-modality research.

3 MIND’S EYE

As shown in Figure 1, Mind’s Eye comprises three main components, a text-to-code LM as the front-
end, a physics simulation engine (i.e., MuJoCo) as the back-end, and a foundation model (Bommasani
et al., 2021) for general reasoning. We detail the implementation of Mind’s Eye as below:

Text-to-Code Converter. The objects and dynamics of the simulation is manifested by the rendering
code fed into MuJoCo. The rendering code is written in a type of XML file named MCJF3, where
the physics properties can be easily controlled by changing some key-value pairs. For example,
to change the mass of an object to 10, the line of rendering code needed is geom.set(’mass’,
’10’). We use actual values to express the relative relationships in UTOPIA (e.g., “greater” will be
translated to 10 and 1 for the values of the properties to be set). We create rendering templates for
each sub-task of UTOPIA, and use programs to generate a dataset with 200,000 text-code pairs. In
each pair, the question in text is appended to the top of the XML code as comments. We then train
decoder-only LMs from scratch to learn how to generate the rendering code given the question in
comments auto-regressively. We leverage the BPE vocabulary set from GPT-2 (Radford et al., 2019)
and extend it by several special tokens to represent repeating tabs or spaces. Besides fine-tuning on
the dataset with text-code pairs, we also pre-train the model on the C4 dataset (Raffel et al., 2019a) to
enhance the model’s understanding on natural language. All the training is on TPU-v3 Pods and the
resulting models have 0.3B and 1.5B parameters (used as default). See §4.1 for training details.

Simulation Augmented Prompting. Once receiving the rendering code, the physics engine will
run the corresponding simulation to get the ground-truth outcome. The program that triggers the
simulation will also parse the outcome into text-form prompt injections (e.g., “Hints: Two baseballs
take the same time to hit the ground.”, as shown in Figure 1). The injection combined with the
question will be fed to the foundation model, with which LMs can ground their reasoning with the
physical world rendered by the physics engine. We present more details of this procedure in §A.1.

The intuition behind Mind’s Eye is to imitate the experiment-reasoning paradigm; however, we
leverage quick and cheap physics simulation as an alternative to actual experiments in physical world.
The cognitive analog for Mind’s Eye might be the mental visualization process, also known as “the
mind’s eye” (Battaglia et al., 2013; Hegarty, 2004), which often relates to motor processes (Wexler
et al., 1998) during embodied reasoning (Nathan et al., 2021).

Discussion: Why does Mind’s Eye work? Table 2 shows the comparison between Mind’s Eye and
two other methods in the formulation of the grounding process during LM inference. Assuming
knowledge of the physical world aligns with the distribution pWorld, the Zero-shot Reasoner (Kojima
et al., 2022) which uses “Let’s think step by step.” in prompts can be extended to any number of new
tasks. However, its reasoning ability will be compromised if the knowledge in LMs is incorrect or
outdated. Similarly, incorporating handcrafted reasoning steps rather than a generic phrase, Chain-

3Docs for MJCF: https://mujoco.readthedocs.io/en/latest/XMLreference.html
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Table 2: Comparison in formulation of how the LM inference process is grounded (given question x
generating answer y). With the aid of a simulator (i.e., MuJoCo), Mind’s Eye is not only scalable
(not requiring human annotation) but also well-grounded with the physical world.
Method Name Formulation Scalable? Grounded?

Zero-shot Reasoner y ← argmaxŷ LM(ŷ∣x,“Let’s think step by step”) ✓ ✗

Chain-of-Thought y ← argmaxŷ LM(ŷ∣x,Chain-of-Thought ∼ pHuman) ✗ ?

Ours: Mind’s Eye y ← argmaxŷ LM(ŷ∣x,Simulator(x, ŷ) ∼ pWorld) ✓ ✓

of-Thought (Wei et al., 2022) is able to elicit LM reasoning in a more explicit way; however, its
performance is reported to be sensitive to the quality of human annotated reasoning steps (Lampinen
et al., 2022; Dasgupta et al., 2022) (i.e., pHuman is not similar to pWorld). The dependence on human
annotation also limits its scalability.

Mind’s Eye overcomes these issues by including a simulator into the reasoning pipeline. Given the
question, the simulator (i.e., the physics engine) returns the most likely outcome based on its encoded
world knowledge. Since the simulator is accurate enough to approximate the physical world, the
prompt injection of Mind’s Eye basically serves as a scoring machine, which puts probability mass
on the answer that is best aligned with the rules of physics—the LM reasoning over the injected
rationales is thus grounded. Mind’s Eye is also scalable since the whole pipeline is automated.

Besides scalability and grounded reasoning, Mind’s Eye is also efficient, since it delegates domain-
specific knowledge to external expert models (i.e., the MuJoCo engine for expert physics knowl-
edge) (Du et al., 2022; Shazeer et al., 2017), which decouples general reasoning from domain specific
knowledge. The size of the LM can thus be significantly shrunk since it removes the burden of
memorizing all the domain-specific knowledge. Experiments find that 100× smaller LMs augmented
with Mind’s Eye can achieve similar reasoning capabilities as vanilla large models, and its prompting-
based nature avoids the instability issues of training mixture-of-expert models (Zoph et al., 2022).
The compatibility with small LMs not only enables faster LM inference, but also saves time during
model saving, storing, and sharing.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

Data and Model. For the convenience of benchmarking on huge LMs, we prepare 100 samples for
each sub-task, resulting in a dataset with about 3,900 samples. We use this version of UTOPIA for
evaluation across the paper. The MuJoCo simulations can achieve 171 fps on one A6000 GPU, and
generating 100 simulations of a 2 seconds collision scene takes 0.67s. For LMs, besides GPT-3, we
have also tested Pathway Language Model (PaLM) (Chowdhery et al., 2022) on 8B, 62B, and 540B
checkpoints. All experiments for PaLM are run on TPU-v4 Pods.

Training Details. Training of the JAX-based text-to-code LMs runs on TPU-v3 Pods. The learning
rates we use for training 0.3B and 1.5B LMs on C4 are {3.0e-4, 1.8e-4}, which are switched to
{1.8e-4, 0.5e-4} when fine-tuning on the text-code pairs. We use cosine annealing to control learning
rate over time with fixed warm-up steps (3k). As mentioned in §A.2, we have also fine-tuned 62B
PaLM to study task generalization, which takes about 25 minutes on 64 TPU-v4 chips for each task.

4.2 BENCHMARK RESULTS ON UTOPIA

As shown in Figure 4.2, we run experiments on UTOPIA with GPT-3 and PaLM of different sizes,
ranging from 340M (GPT-3 Ada) to 540B (PaLM). Although larger LMs perform consistently better
than smaller LMs in both zero-shot and few-shot settings (n = 5), reasoning ability seems to plateau
after a certain size, especially in the few-shot setting. In other words, the scaling curve of vanilla
few-shot is nearly flat. One interpretation could be that few-shot demonstrations have managed to
trigger effective in-context learning (e.g., for learning the answer format), but the lack of grounded
reasoning becomes the bottleneck for further improvement.
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GPT-3 Ada 350M
log(350) = 2.5M

GPT-3 Babbage 1.3B
log(1300) = 3.1M

PaLM 8B
log(8000) = 3.9M

PaLM 62B
log(62000) = 4.8M

GPT-3 175B
log(175000) = 5.2M

PaLM 540B
log(540000) = 5.7M
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Figure 2: Scaling law of reasoning on UTOPIA when benchmarking LMs in different sizes (log scale).
Smaller LMs augmented with Mind’s Eye can achieve on par or even outperform larger vanilla LMs
in both zero-shot and few-shot settings (e.g., 29.8% for GPT3 1.3B + Mind’s Eye vs. 29% for vanilla
GPT-3 175B in zero-shot). In few-shot settings (n = 5), the scaling potential is unlocked when
LMs are augmented with Mind’s Eye (red line), as the scaling curve is nearly flat in vanilla few-shot
mode (orange line), which demonstrates the power of incorporating knowledge from simulations. On
average across all sizes, the gain from Mind’s Eye is greater in large LMs than in small ones, and
greater in few-shot (34.2%, absolute) than in zero-shot settings (18.4%, absolute).

Mind’s Eye, however, unlocks the ability to scale (red line in Figure 4.2) by adding knowledge from
physics engine simulations. Since the correctness of the simulation results is guaranteed by the
physics engine, the reasoning of the large foundation model is thus well grounded. Compared with
solely using knowledge perpetuated in LMs (results with vanilla LMs), Mind’s Eye is able to boost
the reasoning ability of LMs by 18.4% in zero-shot and 34.2% in few-shot settings. Interestingly,
smaller LMs augmented with Mind’s Eye can achieve similar or even better performance than vanilla
larger LMs. For example, the accuracy of GPT-3 Babbage 1.3B with Mind’s Eye in zero-shot is
29.8%, while that of vanilla GPT-3 Davinci 175B in zero-shot is 29%. This finding demonstrates
the effectiveness of the Mind’s Eye paradigm decoupling experimenting from reasoning—where the
domain specific tool is responsible for providing ground-truth results, and the LM can mainly focus
on general reasoning, whose size can thus be largely decreased.

Comparison with other reasoning enhanced techniques. In Table 3, we compare Mind’s Eye
with other methods that improve the reasoning abilities of LMs (i.e., GPT-3 175B). In addition to a)
Chain-of-Thought (Wei et al., 2022), we consider other prompt-based methods such as b) Zero-shot
Reasoner (Kojima et al., 2022), which uses “Let’s think step by step.” in prompts to induce the
decomposed reasoning steps of LMs; c) Self-Consistency Decoding (Wang et al., 2022), which is an
ensemble technique that decodes multiple reasoning paths concurrently to improve the performance
of Chain-of-Thought; the recent study d) DiVerSe (Li et al., 2022b) achieves new SotAs on many
reasoning tasks, by using pre-trained verifiers to weight good answers more than bad ones in each
step decoding. Besides RAG (Lewis et al., 2020) that retrieves knowledge from the memory of 75GB
documents, we also consider other fine-tuned LMs which attempt to optimize reasoning ability from
different perspectives, such as e) task-scaling T0 (version pp) (Sanh et al., 2021), which fine-tunes
T5 (Raffel et al., 2020) on thousands of prompts to make LMs better understand input prompts,
especially in zero-shot settings, and f) model-scaling Minerva (Lewkowycz et al., 2022), which
fine-tunes PaLM (Chowdhery et al., 2022) 540B on a newly collected dataset that contains scientific
and mathematical documents (e.g., arXiv papers) to improve quantitative reasoning. Though most
experiments are running on GPT-3 175B, we also explore the scaling effect by using the 1.3B Babbage
model. The ‘grounding gain’ is the absolute accuracy difference for the 175B model augmented with
and without Mind’s Eye. Unless otherwise stated, we use the default parameter settings recommended
by competitor methods.

Results shows that Mind’s Eye outperforms other methods in both zero-shot and few-shot settings
significantly, even if using a relatively smaller LM (i.e., GPT-3 Babbage 1.3B). Comparing results on
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Table 3: Comparison of Mind’s Eye and other methods on UTOPIA benchmarking. Zero-shot
Reasoner (Kojima et al., 2022), Chain-of-Thought (Wei et al., 2022) are two prompt-based methods
that can elicit reasoning in large-scale LMs. Self-consistency (Wang et al., 2022) and DiVerSe (Li
et al., 2022b) are decoding-time optimization techniques for LMs reasoning. RAG (Lewis et al., 2020)
is a retrieval augmented LM, while T0 (Sanh et al., 2021) and Minerva (Lewkowycz et al., 2022) are
fine-tuned LMs to improve reasoning ability by task-scaling and model-scaling. We present results of
Mind’s Eye on GPT-3 175B/1.3B, and find that a 100× smaller LM can outperform a vanilla 175B
model (ref.) when armed with Mind’s Eye. Interestingly, fine-tuning on prompts to better follow
human instructions, Instruct-GPT (Ouyang et al., 2022) can achieve nearly perfect physics alignment
in few-shot. We also annotate the grounding gain of Mind’s Eye against vanilla GPT-3 175B.

Motion Friction Free Fall Projection Collision Incline Average
Existing Methods Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few

GPT-3 175B (ref.) 21.5 34.3 24.3 40.0 22.2 44.5 27.0 31.8 26.5 44.8 22.6 33.9 24.0 38.2
GPT-3 1.3B 15.8 34.3 16.7 33.2 6.7 51.8 18.5 33.0 13.5 33.5 19.6 32.4 15.1 36.4
Instruct-GPT 175B 76.0 85.3 60.2 83.2 39.6 47.6 39.8 50.0 49.0 76.8 37.1 68.6 50.3 68.6

Better Prompting
Zero-shot Reasoner 25.0 - 35.0 - 31.6 - 21.6 - 32.0 - 28.5 - 29.0 -
Chain-of-Thought - 41.5 - 42.2 - 53.0 - 40.3 - 38.0 - 41.6 - 42.8

Optimized Decoding
Self-Consistency - 38.9 - 44.5 - 57.2 - 48.2 - 48.8 - 43.9 - 46.9
DiVerSe 20.2 33.1 17.3 29.6 24.3 37.6 23.1 35.6 25.4 39.3 24.5 37.8 22.4 35.5

Augmented LMs
RAG (0.4B + 75GB) 7.4 - 8.3 - 10.2 - 5.2 - 11.4 - 8.5 - 8.5 -
T0-pp (11B) 12.3 29.4 14.3 34.1 11.4 25.5 13.7 27.1 9.5 16.8 17.2 30.9 13.1 27.3
Minerva (540B) 24.5 45.3 29.8 41.0 6.2 15.5 36.3 51.0 23.3 46.3 24.3 43.4 24.1 40.4

Ours: Mind’s Eye
w/. GPT-3 175B (⋆) 52.0 82.5 57.0 82.1 30.3 89.8 65.7 83.8 54.0 79.0 52.3 87.8 51.9 84.2
w/. GPT-3 1.3B 33.7 41.7 35.0 42.3 12.8 70.0 34.8 40.0 30.5 45.0 31.8 41.3 29.8 46.7
w/. Instruct-GPT 175B 100.0 100.0 97.8 100.0 54.9 94.8 91.8 99.8 61.8 99.8 99.4 100.0 84.3 99.1

Grounding Gain (%) 30.5 48.2 32.7 42.1 8.1 45.3 38.7 52.0 27.5 34.2 29.7 53.9 27.9 46.0

GPT-3 175B and 1.3B, we can conclude that 1) larger LMs can better leverage Mind’s Eye, especially
in few-shot settings (46.0% vs. 10.3% average grounding gain), probably because larger LMs are
more capable of general reasoning, and 2) solely scaling-up models is not adequate for reliable
grounded reasoning performance. For example, when using a 100× larger LM (1.3B → 175B), the
few-shot accuracy is merely boosted by 1.8% (absolute; 36.4% → 38.2%) if using vanilla LMs, but
that can be boosted by 37.5% (absolute; 46.7% → 84.2%) if the LMs are augmented by Mind’s Eye.

Note that Instruct-GPT(Ouyang et al., 2022) augmented with Mind’s Eye is able to achieve nearly
perfect performance in few-shot settings (68.6% → 99.1%). This result is promising because it
demonstrates the ideal alignment is achievable if the LM is given proper reasoning rationale and has
good understanding of the questions (as Instruct-GPT is optimized for instruction following). The
improvement from simply better prompting or decoding methods is limited, since their reasoning
completely relies on the internal knowledge perpetuated in the LMs, while the knowledge induced
from the LMs could be factually wrong. Among augmented LMs, 540B Minerva is the best per-
forming one but still falls behind Mind’s Eye + 175B GPT-3, mainly due to the lack of grounded
experience for reasoning. We also find the retrieved evidence of RAG sometimes cannot answer the
question, even though it includes entities mentioned in the question, and RAG cannot function well in
few-shot settings since the retriever module (i.e., DPR (Karpukhin et al., 2020)) was not pre-trained
to handle context that contains multiple question-answer pairs. We have also discussed the domain
generalization ability of Mind’s Eye in §A.2, and error analysis in §A.3.

4.3 ABLATION STUDY

Do we really need simulation? In Table 4, we show the performance if 1) we randomly alter the
simulation results in the prompts to mismatch the physics property asked (e.g., asking velocity but
including acceleration results in prompts), and 2) we delete the trigger words at the beginning of the
prompts (i.e., “Hints:”). We also test what would happen if we ground the reasoning on incorrect
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Figure 3: The dynamics of reasoning ability on UTOPIA when we increase the number of shots from
zero to five, to examine whether we achieve similar performance with more in-context demonstrations
instead of using external simulators (as Mind’s Eye).

simulation results (e.g., Simulation indicates greater but we use smaller in prompts). We find
reasoning on mismatched simulation results causes substantial performance drops, while including
wrong simulation results will further deteriorate the performance, probably because in this case the
reasoning is misguided even if the vanilla LM can answer the question correctly. We take these results
as evidence that the correct simulation results are crucial for grounded LM reasoning. Missing trigger
words have marginal influence on the performance, which confirms again that reasoning performance
mainly depends on the existence and correctness of the simulation results.

Table 4: Ablation study on the simulation results and
the trigger words of Mind’s Eye to understand their
effects. We also study whether the correctness of simu-
lation will affect the reasoning performance.
Ablation Settings Zero-shot Few-shot

Mind’s Eye (default) 51.9 1.73 84.2 0.79

Mismatched simulation results 30.4 1.65 54.3 1.28

Missing trigger words 51.0 1.12 83.0 0.73

Incorrect simulation 24.6 1.73 39.6 2.89

Table 5: The effect of using different sizes
of text-to-code models (T2C) with GPT-3
175B/1.3B as the foundation model (FM) in
the zero-shot and few-shot settings.
LM Size (T2C + FM) Zero-shot Few-shot

0.3B + 1.3B 25.1 1.77 43.3 1.12

0.3B + 175B 48.3 1.61 82.1 0.89

1.5B + 1.3B 29.8 1.65 46.7 0.82

1.5B + 175B (default) 51.9 1.53 84.2 0.79

Can few-shot replace simulation? Given enough in-context demonstrations, can the LM learn how
to make its reasoning grounded internally without relying on external simulations? In Figure 3, we
present the dynamics of reasoning performance by gradually including more and more in-context
demonstrations in few-shot settings on both vanilla LMs and Mind’s Eye augmented LMs. We also
design a semi-augmented baseline, Semi-Mind’s Eye, which has the Mind’s Eye style in-context
demonstration, but the final shot omits the simulation result—in other words, the LM has to perform
reasoning on the generated grounding rationale by itself in the final step. This baseline differs from
vanilla few-shot as it incorporates some simulation results from the physics engine, and it differs
from Chain-of-Thought (CoT) since the reasoning steps of CoT are written by humans.

The result demonstrates neither vanilla few-shot (red line) nor semi-augmented few-shot (yellow line)
can provide as good an improvement as Mind’s Eye (blue line). We also find the few-shot reasoning
performance of CoT (green line) and Semi-Mind’s Eye (yellow line) has some instabilities which
depends on whether the few-shot demonstrations happen to have similar reasoning steps as the given
question (final step). The effectiveness of Mind’s Eye seems to echo the findings in Zhao et al. (2021),
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which confirms that the LM tends to ground its reasoning on “recent context”, which is coincidentally
the simulation results of the given question.

Using a smaller text-to-code LM? Text-to-code LMs convert text-form questions into rendering
code. To study its scaling effect, we explore several combinations of using text-to-code LMs and
pretrained LMs in different sizes. As shown in Table 5, we find using a smaller text-to-code LM
(0.3B) has slightly smaller impact for larger pretrained LMs, as the accuracy decreases by 4.7% for
1.3B pretrained LM but 3.6% for 175B in zero-shot. We also find the conversion error is somehow
mitigated by few-shot demonstrations (e.g., the accuracy decreases by 3.6% in zero-shot but by 2.1%
in few-shot when the 175B model uses a smaller T2C LM), indicating the benefits on robustness
when using a larger pretrained LM.

5 RELATED WORK

Grounded Reasoning. Early attempts to relate language understanding (Winograd, 1972) or learn-
ing (Roy & Pentland, 2002) to the physical world mostly rely on manually created linguistic and
physical rules (Hermann et al., 2017; Berant et al., 2013). Recent studies have claimed that pre-trained
large-scale LMs have already memorized enough world knowledge (Roberts et al., 2020; Brown et al.,
2020), and enhanced reasoning ability can be achieved by proper prompting (Nye et al., 2021; Wei
et al., 2021; Sanh et al., 2021). Besides adding decomposed reasoning steps (Wei et al., 2022; Zhou
et al., 2022), previous work has tried to add hand-written task descriptions (Raffel et al., 2019b) and
targeting formats (Marasović et al., 2021) to the prompts, but such human annotation is often costly
and expensive at scale (Li & Liang, 2021; Shin et al., 2020). Mind’s Eye, instead, presents a new
paradigm to ground LM reasoning, via automated simulation rather than human crafted rationales.

Augmented Language Models. Inspired by the evidence that humans require sensory perception
for grounded reasoning (Sachs et al., 1981), previous work has tried to augment text inputs to LMs
with audio signals (Tsai et al., 2019) or visual perception (Bakhtin et al., 2019; Yi et al., 2018),
for improved game playing (Lee et al., 2022), faster language learning (Hill et al., 2020), or better
decision making in general (Reed et al., 2022). Our approaches seemingly echoes these findings as
we leverage the simulation results as the extra sensory input. To endow LMs with updated knowledge,
TALM (Parisi et al., 2022) fine-tunes LMs interactively with augmented inputs from API calls,
which is rather costly compared to prompt-based Mind’s Eye. PaLM-SayCan (Ahn et al., 2022)
uses the pre-trained PaLM 540B to help robots better understand complex instructions that require
reasoning—Mind’s Eye can be viewed as the reverse: it infuses knowledge from external tools (i.e.,
the MuJoCo physics engine) into LMs, to further unlock the the reasoning capabilities of LMs.

Modeling the World. Learning by trial and error, humans seem able to learn enormous amounts
of common sense about how the physical world works (Lerer et al., 2016)—such observation has
inspired the idea of developing a neural model to model the world (LeCun, 2022; Craik, 1967).
World models should be capable of planning (Li et al., 2022a), predicting (Amos et al., 2018), and
reasoning (Ullman et al., 2017) through interactions with the world. Similarly, Mind’s Eye proposes a
paradigm that reasons over the experimental results predicted by simulation, and the experiments are
planned beforehand by the text-to-code LM. Using simulated environments to help learning has been
widely adopted by research in robotics (MineRL; Guss et al. (2019)) or computer vision (Kubric;
Greff et al. (2022)), while our focus is grounded reasoning in the form of natural language.

6 CONCLUSION AND FUTURE WORK

We have proposed Mind’s Eye, a novel paradigm that enables LMs to ground their reasoning with
simulations of the world. We conclude that Mind’s Eye is not only effective and scalable but also
efficient, as it is able to boost the reasoning performance of small-scale LMs significantly, requiring
neither handcrafted prompts nor costly fine-tuning.

We believe the idea of including simulation into the reasoning pipeline can be easily extended to other
domains or applications, especially where simulation engines already exist. For example, instead of
the physical world, one can use a simulation of economic changes or thermodynamics, aiding policy
making or engineering. The dynamic nature of Mind’s Eye where we generate grounding evidence
unlocks the scaling potential of these models.
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ETHICS AND REPRODUCIBILITY STATEMENT

The goal of Mind’s Eye is to present a general-purpose paradigm that incorporates knowledge from
simulation by professional tools into the LM reasoning pipeline. Though we have already seen
significant improvement in reasoning with Mind’s Eye grounding, the performance can be affected
by how accurate the simulation is. Unqualified simulators may result in wrong simulation results,
grounding with which will lead to even worse results than reasoning without grounding. The
artifacts of the LM itself can also affect the final performance since it is responsible for the general
reasoning (Bai et al., 2022; Liu et al., 2021; 2022). Furthermore, our experiments and analysis are
done in English, and therefore we do not claim that our reasoning paradigm will generalize across
all languages, although our framework has the potential to be extended to other languages by using
multilingual LMs. For reproducibility, we run experiments mainly with publicly available LMs (e.g.,
GPT-3) and choose baseline methods that have open-sourced implementation.
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A APPENDIX

A.1 DETAILS ABOUT MIND’S EYE

In Figure A.1 we have presented the whole procedure on how a text question is converted into
rendering code for simulation, and how the simulation results are parsed by the manager program to
produce simulation based prompt injection.

Question:
Two baseballs X and Y are released from rest
at the same height.

One is heavier than the other.

Which baseball will fall faster ?

Text-to-Code LM

MJCF file used by MuJoCo (Simplified)
Simulation Manager Program

Acceleration: X and Y will have the
same acceleration.

Energy: X will have a greater kinetic energy
than Y after the same period of time.

Rendering Code

Triggering Simulation

Recording Sensory Data

Simulation based Prompts Injection

Figure A1: We demonstrate the whole pipeline of how Mind’s Eye generates the simulation based
prompts injection for a given physics question. We highlight those attributes in the rendering code that
reflect the relative relationship in a UTOPIA question. A simulation manager program is responsible
for triggering simulation and parse the results. Here we only show two of physics properties that the
manager records for demo purpose.

Trained on many text-code pairs, the text-to-code LM is able to generate the corresponding rendering
code for the given physics related question. Note that in the generated rendering code, besides the
MJCF file itself, in the last line there are special signs #%#% to record the scene name and the physics
attributes of interest—these meta-information are added during fine-tuning data (text-code pairs)
synthesis stage prepared for the text-to-code LM. After fine-tuning, the text-to-code LM should be
able to generate such information.

Once the simulation manager program receives the rendering code, it will execute the simulation
based on it. Sensory data such as velocity, acceleration, energy, etc. will be recorded (via MuJoCo
APIs). Finally, the manager program will parse the data in terms of the physical properties of interests
(coming with the rendering code, marked by #%#%). For example, in Figure A.1, the sensory data
is recorded along with the free fall simulation, and since the asked property is “acceleration”, the
manager program will extract the sensory ground-truth data only on acceleration, and draws the
conclusion “X and Y will have the same acceleration.” by filling in pre-defined “conclusion templates”
(e.g., “The {physics property} of X will be {greater/smaller} than that of Y.”) with observations. Some
trigger words will be concatenated before (e.g., “Hints:”) the generated conclusion. The connection
words (e.g., “So the answer is:”) are also added to elicit the final answer. The whole concatenation
will be appended after “Answer:” as grounded rationale for LM reasoning (as shown in Figure 1 in
the main body of the paper).

A.2 SCENE GENERALIZATION WITH MIND’S EYE

By injecting simulation based prompts during LM inference, Mind’s Eye does not need fine-tune
the LM every time it encounters new contexts. This feature is appealing as we expect Mind’s Eye
can serve as a powerful tool for building autonomous intelligence that can ground its reasoning or
decision making even in unfamiliar contexts. To clearly show the advantages of Mind’s Eye on scene
generalization, we compare the performance of fine-tuned PaLM 62B with that of vanilla PaLM 62B
armed with Mind’s Eye.
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As shown in Figure A.2, we find the fine-tuned model can achieve good performance on in-domain
data, but its performance is quite limited in scenes it has not been fine-tuned on. For example, in
Figure A.2 (a), fine-tuned on the Motion scene of UTOPIA can obtain 70% in domain alignment
accuracy, but the accuracy decreases to 24% if we test this model on the Projection scene (> 50%
performance drop). However, as shown in Figure A.2 (b), Mind’s Eye enables the LM to perform
consistently well, even if the LM has never seen the scene before.
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Figure A2: We compare the performance of (a) fine-tuned 62B PaLM on six scenes of UTOPIA data
respectively with (b) vanilla 62B PaLM armed with Mind’s Eye in zero-shot. Though fine-tuning
can achieve good performance on in-domain data, it can hardly generalize to OOD cases (i.e., scenes
on which the LM has not been fine-tuned). Prompting based Mind’s Eye can enable large LMs
generalize to unseen new scene with consistent alignment performance even in zero-shot settings.
In (a), the performance of fine-tuned PaLM 62B on in-domain test sets is in diagonal, while that of
out-of-domain is the rest. The zero-shot performance of PaLM 62B + Mind’s Eye in six scenes is
listed in (b).

A.3 MIND’S EYE ERROR ANALYSIS

In Figure A.3 we show three error cases when using Mind’s Eye. Ignorance error refers to the
reasoning apparently ignores the given grounded rationale. Recency bias means the LM tends to
extract the final answer from nearby words (e.g., the object Y). “I dont́ know” error are the cases
where the LM simply generates non-sense when unable to reason about the question. All these cases
are much less common when we run experiments on larger LMs.

Question:

There are two pieces of wood X and Y
moving towards each other horizontally at
certain velocities. The horizontal velocity of X
has a smaller magnitude than that of Y.

Which one will move faster after their elastic
collision?

Answer:

Hints: X has a greater magnitude of velocity
after the collision.

So the answer is: Y.

Question:

There are two boxes X and Y sliding
horizontally at certain velocities. They have
the same mass. We only consider kinetic
frictions in this problem. X and Y have the
same velocity initially. The friction of X is
smaller than that of Y.

Which one will stop earlier?

Answer:

Hints: Y has a smaller velocity than X after
the same period of time.

So the answer is: X will stop earlier.

Question:

Assuming there is no air resistance, two
objectives X and Y drop at certain heights. X
and Y have the same mass. The height of X is
greater than that of Y. Before either of them
stops, which one will fall to the ground
earlier?

Answer:

Hints: X and Y have the same acceleration.

So the answer is: X. The reason is unclear.

Ignorance Recency Bias I don't know

Figure A3: We exemplify several error cases when using Mind’s Eye. In general, we find these errors
mostly happen in small LMs, because their reasoning ability over given evidence is limited.
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