
Under review as submission to TMLR

CluMo: Cluster-based Modality Fusion Prompt for Contin-
ual Learning in Visual Question Answering

Anonymous authors
Paper under double-blind review

Abstract

Large vision-language models (VLMs) have shown significant performance boost in various
application domains. However, adopting them to deal with several sequentially encoun-
tered tasks has been challenging because finetuning a VLM on a task normally leads to
reducing its generalization power and the capacity of learning new tasks as well as causing
catastrophic forgetting on previously learned tasks. Enabling using VLMs in multimodal
continual learning (CL) settings can help to address such scenarios. To improve general-
ization capacity and prevent catastrophic forgetting, we propose a novel prompt-based CL
method for VLMs, namely Cluster-based Modality Fusion Prompt (CluMo). We design a
novel Key-Key-Prompt pair, where each prompt is associated with a visual prompt key
and a textual prompt key. We adopt a two-stage training strategy. During the first stage,
the single-modal keys are trained via K-means clustering algorithm to help select the best
semantically matched prompt. During the second stage, the prompt keys are frozen, the se-
lected prompt is attached to the input for training the VLM in the CL scenario. Experiments
on two benchmarks demonstrate that our method achieves SOTA performance.

1 Introduction

Visual Question Answering (VQA) is a complicated task, where the goal is to answer questions described in
natural language (text) about a given input image. Addressing VQA requires understanding and fusion of
information from both the visual and textual domains to generate accurate responses. Recently, significant
advancements in addressing VQA tasks have emerged due to the development of pre-trained large vision-
language models (VLMs) Radford et al. (2021); Kim et al. (2021). Despite these advances, one of the
persistent challenges in VQA tasks is the ability to adapt a VLM in CL setting to avoid finetuning a copy of
an underlying VLM per task. In a CL setting, we learn new tasks and aim for continuously improving the
model performance without forgetting previously learned knowledge, also known as catastrophic forgetting
French (1999). To address catastrophic forgetting, a group of CL algorithms are deployed. Regularization-
based methods Kirkpatrick et al. (2017); Li & Hoiem (2017) constrain the drastic parameter shift when
learning new tasks. Expansion-based methods Douillard et al. (2022); Cai et al. (2023) expand the model
with small portion of additional weights and use the expanded weights to learn the new incoming tasks.
Rehearsal-based methods Rebuffi et al. (2017); Rolnick et al. (2019) store a representative subset of the
training dataset for each task into a small memory buffer and replay them back during the learning of the
current task to maintain the encoded knowledge of the previously learned tasks. More recently, prompt-
based methods Wang et al. (2022b;a) aim to use prompts that contains task-specific or semantic-specific
information to prevent catastrophic forgetting. A prompt is attached to the embedded features of the input
to adapt the model to focus on the specific characteristics of the input task that has been learned before.

Most existing CL methods consider unimodal, i.e., vision-only or language-only, settings and hence are
inapplicable to address VQA tasks. To tackle this shortcoming, we propose a novel two-stage prompt
learning-based CL method, namely cluster-based modality fusion prompt (CluMo). Figure 1 visualizes the
high-level idea of our approach. Our method adopts a pre-trained VLM as its backbone and benefits from
a clustering-based modal-specific key strategy to boost generalization capacity and minimize catastrophic

1

Under review as submission to TMLR

Figure 1: Comparison between existing prompt-based CL methods and our proposed method: (a) Uni-modal
based methods use image feature to select prompts from a prompt pool. (b) Multi-modal based methods
use the image features to select image prompts and use the text features to select the text prompts. (c) We
first train the prompt key using a clustering algorithm to form a cluster key and use the combination of the
cluster key from both modalities to select the fusion prompt.

forgetting. More specifically, we use a clustering-based algorithm to train visual-prompt keys and textual-
prompt keys during the first stage. During the second stage, we assign each input image-question pair with
well-trained prompt keys to its corresponding visual keys and textual keys. We then use the combination
of two modal-specific keys to find the best-matched prompt to adapt the model for the input task. We
also benefit from knowledge distillation during training to further improve the performance. Our proposed
method outperforms existing alternative methods. Our specific contribution includes:

• We propose a novel clustering-based prompt learning method for training VLMs in CL settings to
address VQA tasks with vision-and-language inputs.

• We use a two-stage training strategy to train the prompt keys before training the whole model to
guarantee optimal prompt selection that is necessary for generalization on the input.

• We offer extensive experiments to demonstrate that the proposed approach achieves SOTA perfor-
mance against CL existing methods and offer insight about the reason of this improved performance.

2 Related Works

Visual Question Answering Visual Question Answering (VQA) has been a pivotal task at the inter-
section of computer vision and natural language processing which led to advances on more complex tasks.
Initially, VQA was formulated as a classification task in which answers are selected from a predefined set of
answers Agrawal et al. (2016) and was solved by using CNNs for image feature extraction and RNNs for text
processing. These models were too simple to be used in most practical cases. With the development of trans-
former and BERT-like models Lu et al. (2019); Li et al. (2019), performance in VQA tasks has significantly
been improved due to the better capacity of capturing the intricate relationship between two modalities and
generating the response in the form of meaningful and descriptive texts. Despite these advances, VQA tasks
are mostly studied in static settings Goyal et al. (2017); Johnson et al. (2016); Marino et al. (2019), where it
is assumed that there is a single input task. As a result, most existing methods are inapplicable in dynamic
environments and settings such as continual learning (CL) when we encounter several tasks over time.

2

Under review as submission to TMLR

Figure 2: Block diagram of the proposed approach: Left: the backbone contains a pre-trained frozen visual
encoder, a textual encoder, and a multimodal encoder. The answer decoder shares the same architecture
as multimodal encoder. During the training phase, the fixed number of visual prompt keys, textual prompt
keys, and a prompt pool will be added for each new task. Right: the procedure of visual prompt key training
consists of training the modal-specific prompt key by a sequence of randomly selected batches of training
data from current task until convergence is reached. Same procedure for textual prompt key.

Prompt-Based Learning Prompt learning is a powerful technique for leveraging pre-trained language
models to frame downstream tasks in NLP. It is more memory-efficient than using Adapters Pfeiffer et al.
(2021) or LoRA Hu et al. (2021) and has been used successfully to guide responses of VLMs for a particular
task. The reason is that additional prompt parameters are in the form of small embeddings which are directly
added to the input to make the model task. As a result, the prompts are often much smaller in size compared
to the layers of the model, leading to a minimal increase in the total number of parameters compared to using
adapters or LoRA. Moreover, prompts can be stored in a memory-efficient way and retrieved dynamically
based on the observed task in the input. This means that even when the model handles many tasks, the
memory overhead remains low. Browon et al. 2020 introduced the concept of prompt for the natural language
instruction task to guide the model towards desired outputs. Prompt learning is based on providing a fixed
function to condition a model so that it gets extra information token which specializes it to perform the
down-stream task. Prompts are mostly considered as trainable parameters, either task-specific or domain-
specific, to guide the model by obtaining task-specific knowledge Lester et al. (2021); Li & Liang (2021).
Prompt learning has also been found helpful in handling a single VQA task Hu et al. (2023).

Prompt Learning for Continual Learning Prompt learning has been used in CL to prevent catas-
trophic forgetting when a large pre-trained models is trained on a stream of sequentially encountered tasks.
It allows a single model to quickly adapt to new tasks in the stream without needing extensive retraining.
By using task-specific prompts, the model can retain and recall knowledge from earlier tasks, mitigating
the issue of catastrophic forgetting. It also allows scalability to learning a large number of tasks since each
task primarily requires learning or generating new prompts rather than retraining the entire model. L2P
Wang et al. (2022b) pioneered to connect prompt-based learning and CL. Instead of having a single shared
prompt to learn all tasks, L2P introduced the concept of “prompt pool” to maintain prompts for different
tasks independently from each other. DualPrompt Wang et al. (2022a) extended the idea of prompt pool
in l2p by introducing E-prompt and G-prompt. While E-prompt is task-specific, G-prompt encodes the
knowledge used for all tasks to further allow knowledge sharing and transferring while mitigating negative
transfer. S-Prompt Wang et al. (2023) applied clustering to build the prompt pool with domain-specific
prompts. These prompt learning methods for CL only consider single-modality, i.e., vision-only or text-only,
and hence are sub-optimal for tasks with multi-modal inputs such VQA when the modalities are related.
Our method benefits from the specific properties of multi-modal data to address VQA in CL settings using
prompt learning and leads to performance improvements against these methods.

3

Under review as submission to TMLR

3 Problem Description

Consider a set of VQA tasks, {Ti}T
i=1, which are encountered sequentially and each of them is from different

domain. For each of the tasks, a labeled training dataset Di = {⟨(Ij
i , Lj

i)i, yj
i ⟩Ni

j=1} is accessible, Ni denotes
the size of dataset, Ij

i ∈ RH×W ×C denotes the input image, Lj
i ∈ RL×|V | denotes the input text, and yj

i

denotes the text-typed discrete label. The order in which the VQA tasks are observed is not known in
advance and the training data points are assumed to be drawn iid from a task-specific joint distribution
pt

i(·, ·, ·). Upon learning each task, the model moves forward to learn the next task. Since all the previously
learned tasks can be encountered at any time during testing in the future, the model should learn new tasks
such that its knowledge of previously learned tasks is maintained, i.e., by preventing catastrophic forgetting.

We formulate our problem in a domain-incremental learning setting Van de Ven & Tolias (2019) which
assumes all the tasks are from different domains and the boundaries between them are known during learning
time. We consider that each task can be learnt individually by adapting a pre-trained large multimodal
transformer f i

θM (·, ·) via minimizing a suitable discrimination loss L, e.g., cross entropy. In our approach,
all the model parameters, except the final classifier layer θcls, are frozen during training to preserve the
generalizability of the model. We benefit from prompt learning to enable using a single model to learn
all tasks. To prevent catastrophic forgetting, a trainable task-specific prompt pool, which contains several
task-specific prompts, is attached to the model f i

θM (·, ·) such that the best-semantically-matched prompt is
selected based on image and text inputs for task specialization. The prompt is then pre-pended to the input
vectors so that the output is generated based on specialization. Our method is rehearsal-free and does not
need any memory buffer similar to prior approaches Lopez-Paz & Ranzato (2022); Rebuffi et al. (2017).

4 Proposed Architecture

Our architecture, named cluster-based modality fusion prompt (CluMo), contains two unimodal task-specific
cluster-based keys for vision and text embeddings and one prompt pool. The combination of the selections
from both keys is then used to select the best matched prompt from the prompt pool. A high-level diagram
of our approach is presented in Figure 2. In this section, we first introduce the preliminaries such as backbone
model and prompt pool-based method in 4.1, and modality fusion prompt in Sec. 4.2, then the cluster-based
prompt key is described in Sec. 4.3, and the training and the inference strategy is discussed in Sec. 4.4.

4.1 Preliminary

Backbone The base multimodal transformer contains three encoders: the visual encoder VE, the textual
encoder TE, and the multimodal fusion encoder FE. Given a visual input V, i.e., a single image, and a
textual input T, i.e., a question, the data processing pipeline for the model is:

ŷ(V, T) = F(FE([VE(V); TE(T)])), (1)

where F(·) is the classifier to predict the answer.

Prompt Pool As an adoption of prompt learning in continual learning, a prompt pool is a set of trainable
key-value (K-P) pair, in which K ∈ R1×D denotes the “prompt key”, and P ∈ RLp×D is the prompt. Lp

and D denote the length and dimension of the prompt. Given an input image V, we compute vI = VE(V) ∈
RLv×D, where Lv is the dimension of the features, after passing the image through the visual encoder.
vI0 = vI [0] is matched with all the keys K within the prompt pool via similarity score, such as cosine
similarity, to find the most similar Ki. The corresponding Pi is selected and prepend to V as V′ = [Pi; V].
Parameters of K and P are updated through back-propagation during the training. However, in our setting,
we adopt a two stage training strategy that prompt keys are trained before model and prompts.

4.2 Modality Fusion Prompt

Previous prompt-based CL methods such as L2P Wang et al. (2022b) associate each prompt in the prompt
pool with a single prompt key to form Key-Value pair. In practice, the prompt keys in prompt-based CL

4

Under review as submission to TMLR

can be considered as cluster centers. These cluster encode a notion of similarity between the prompts. The
input feature vectors that form a cluster in the feature space can be assigned to these cluster centers, which
are prompt keys. The intuition behind this idea is that feature vectors with small geometric distance
in the feature space are semantically similar Wang et al. (2023).

However, such a key-value pair design considers only single modality without tasks with multimodal inputs.
The reason is that different input modalities contain different or complementary semantic information.
Hence, having prompt keys that associate with each modality can help guiding prompt selection, which is
more comprehensive and representative in term of semantic properties of each modality. Thus, we propose
a task-specific prompt pool architecture, namely Modality Fusion Prompt, which is composed of the
visual prompt keys Kv, the textual prompt keys Kt, and the prompt pool P as following:

Kt = [Kt1 , Kt2 , ..., KtSt
],

Kv = [Kv1 , Kv2 , ..., KvSv
],

P = [P1, P2..., PSp],
Ktm

∈ RD, Kvn
∈ RD, Pl ∈ RLp×D,

(2)

where St , Sv, and Sp are the sizes of textual prompt key, the visual prompt key, and the prompt pool,
respectively. Lp is the length of each prompt and D is the hidden dimension of the transformer backbone.
The prompt pool size Sp is then determined as Sp = Sv × St. Each prompt is associated with the unique
combination of one visual prompt key and one textual prompt key. Given a specific visual prompt key Kvm

and a specific textual prompt key Ktn
, the Key-Key-Value pair is defined as the following:

(Kvm
, Ktn

) → Pm∗Sv+n. (3)

As modality fusion prompt is task-specific, new visual prompt keys, textual prompt keys and a prompt
pool will be initialized for each of the new coming task. The previous ones are frozen during training.

4.3 Cluster-based Prompt Key

Algorithm 1 PromptKeyTraining
Require: Dataset D, Image Prompt Key Pool Kv, Text Prompt Key Pool Kt, Image Prompt Size SI , Text

Prompt Size ST

while Not Converge do
Random Select batch of image I, text T from D
v̂I = mean(VE(I), dim = 1)
v̂T = mean(VT(T), dim = 1)
ClusterI = dictionary()
ClusterT = dictionary()
for i, t in vImean

, vTmean
do

Keyimg = image key with top similarity(i, Kv)
Keytxt = text key with top similarity(t, Kt)
ClusterI [Keyimg].append(i)
ClusterT [Keytxt].append(t)

end for
for i in SI do

Kv[i] = mean(ClusterI [i])
end for
for i in ST do

Kt[i] = mean(ClusterT [i])
end for

end while

K-means clustering has been widely adopted in machine learning algorithms for semantic separation and
understanding, where data from different domains can be explicitly separated via clustering in an unsuper-

5

Under review as submission to TMLR

Figure 3: Naive Example of Prompt Selection. Consider a naive animal VQA dataset which only contains
dog and cat images and questions only about "what" and "where". During the first stage training, the visual
prompt keys and textual prompt keys are learnt to represent "dog"/"cat" and "where"/"what" respectively
(in realistic settings the keys will learn the implicit cluster instead of explicit category). Given a test
image-question pair, the image and question are projected to their modality-specific feature space through
the encoders. The nearest prompt keys, which are keys represent "dog" and "what" are selected. The
combination of the two prompt keys lead to "prompt3" which is finally selected.

vised way Wang et al. (2023) Cohn & Holm (2021). However, even though the data from single task belong
to the same domain, they can still be further divided into sub-domains based on the semantic property. To
make each prompt key be the semantically cluster center of the sub-domains for both vision and text inputs,
we adopt mini-batch K-means clustering algorithm on prompt keys of Kv and Kt to make each prompt key
diverse and representative. Let B = (I, T) be the random batch from the training dataset. We extract the
image feature vector vI and the text feature vector vT as follows:

vI = V E(I), vT = TE(T), (4)

where vI ∈ RB×LI ×D and vT ∈ RB×LT ×D, B is the batch size, LI and LT are the length of vectors for
image and text features, represent the embedded image and text input respectively. For visual prompt
key clustering, each image feature vector, vIn , is set by taking mean along second the dimension such that
v̂In ∈ RB×D, and v̂In is used to compare with every prompt key in Kv:

similarity(n, m) = ||v̂In
− Kvm

||2, (5)

and the prompt key with highest similarity is assigned to match vIn
. After calculation of the whole batch B,

the prompt keys are then updated by calculating the mean of all v̂In
assigned to that specific visual prompt

key. We repeat the above step until the convergence. The procedure of updating the text prompt key Kt is
similar to updating the image prompt keys. Algorithm 1 summarizes our approach for prompt key training.

4.4 Training and Inference

During training, we adopt a two-stage training strategy to ensure that the prompt keys are correctly
settled before learning the current task. In the first stage of learning each task Ti, we random select batches
from the current task’s dataloader to train minibatch k-means Cluster on the visual and the textual prompt
key Kv and Kt until reaching the convergence of the clustering algorithm. During the second stage, the
trained Kv and Kt are frozen. Within the iteration of training dataloader, each training instance is assigned
to its nearest prompt key using k-nearest neighbor (KNN) algorithm to find the best match prompt Pk from
the prompt pool P . Pk is then attached to the model pipeline:

ŷ(V, T) = F(FE([Pk; VE(V); TE(T)])) (6)

6

Under review as submission to TMLR

Algorithm 2 Continual Learning Procedure
Require: Datasets D, Pretrained Model M

Freeze M except M.classifier
M.CluMoList = dict()
for dataset Di in D do

Initialize new CluMo Ci

M.CluMoList[Di] = Ci

PromptKeyTraining(Di,Ci)
Freeze visual key and textual key of Ci

for Batch B in Di do
for img i,txt t in B do

Select Keyimg based on i from Ci

Select Keytxt based on t from Ci

Find prompt P by Keyimg and Keytxt from Ci

end for
loss = Train(M,B,P)
loss.backword()

end for
end for

During the second stage, we also use knowledge distillation to further boost the performance. Before the
training of task T , we keep a frozen copy of model after finishing T − 1, denoted as MT −1. To prevent
significant parameter shift, we pass the same input image and question to both MT and MT −1 and add the
difference between the two model’s output to the loss:

LKD(V, T) = MSE(ŷMT
(V, T), ŷMT −1(V, T)). (7)

The final objective loss function would be:

L = Lce(ŷ(V, T), y) + LKD (8)

Where Lce is the same cross entropy loss. The overall training procedure for all tasks come in sequence is
presented in Algorithm 2.

During inference, the model is frozen and we follow a procedure similar to the second stage of training. For
every training image-text pair, the image input is aligned with the best-matched image prompt key while the
text input is aligned with the best-matched text prompt key. The combination of prompt keys is deployed
to find the corresponding prompt, which is pre-pend to the output of multimodal encoder. To help better
understand the procedure of prompt selection, an visualization example is provided in Figure 3.

5 Experiments

Our implementation code is available as a supplement. Please refer to the code for reporducing the results.

5.1 Experiment Setup

Backbone We used the public pre-trained large multimodal transformer, ALBEF Li et al. (2021), as our
backbone for VQA task. It consists of an image encoder, a text encoder, a multimodal encoder, which uses
cross-attention between the two modalities. Specifically for VQA tasks, an pre-trained answer decoder is
append after the multimodal encoder, which has same architecture as multimodal encoder.

Baselines for comparison We use seven methods for comparison. We include algorithms from major CL
approaches. We include two regularization-based methods: EWC Kirkpatrick et al. (2017) and LwF Li &
Hoiem (2017), two rehearsal-based methods: ER Rolnick et al. (2019) and GEM Su et al. (2021). We also
include three SOTA prompt-based continual learning methods, L2P Wang et al. (2022b), DualPrompt
Wang et al. (2022a), and S-Prompt Wang et al. (2023). We also include finetuning to demonstrate the

7

Under review as submission to TMLR

CLOVE-scene
Method abcdef dbafec bdcafe acbefd caefdb bafedc

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 34.03 34.28 34.89 34.99 38.83 21.65 34.45 35.14 34.42 34.47 33.95 35.67

EWC 37.49 28.04 37.00 29.10 37.95 27.46 37.99 29.68 37.13 28.63 37.83 27.97
LwF 38.18 26.82 35.03 32.84 37.31 29.11 37.85 29.87 37.94 28.15 38.21 27.48

ER 41.05 19.92 42.09 17.12 42.37 18.09 41.91 20.28 41.11 19.65 42.08 20.52
GEM 41.52 18.33 43.14 14.73 42.89 17.43 42.54 20.13 41.90 20.88 43.11 19.86

L2P 43.01 18.22 45.84 15.03 44.64 17.41 45.63 14.96 44.78 17.99 46.58 14.85
DualPrompt 45.51 15.86 46.58 13.49 45.83 16.48 46.27 15.45 46.21 15.89 47.01 13.16

S-Prompt 45.73 14.11 45.93 14.17 46.99 14.38 46.68 14.77 47.53 12.19 44.09 22.32

CluMo 48.73 10.76 48.8 10.25 48.83 9.73 48.94 10.29 48.26 11.04 48.98 10.23

CLOVE-function
Method soarkl rsaolk osrlak oarlks skaolr ksoarl

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 31.55 53.76 37.34 39.64 23.34 57.32 24.09 62.79 16.34 74.82 17.50 84.46

EWC 35.70 47.92 37.82 41.55 38.92 40.48 40.74 33.89 37.53 37.22 40.85 32.32
LwF 37.18 46.86 36.81 44.12 39.21 39.81 36.81 41.29 30.49 53.11 29.17 55.84

ER 42.22 32.97 39.78 38.62 41.22 35.79 37.14 33.38 33.41 48.99 38.23 38.01
GEM 44.58 30.87 41.43 29.46 40.87 32.98 39.81 28.77 36.88 39.14 40.26 31.87

L2P 44.80 16.38 43.39 21.26 43.27 21.97 42.54 19.18 40.4 31.92 43.37 24.19
DualPrompt 45.01 15.90 44.26 17.43 44.66 18.50 43.69 15.31 39.32 34.78 45.65 20.54

S-Prompt 45.45 13.47 45.01 14.76 45.27 14.29 42.98 20.20 42.85 25.82 44.09 22.32

CluMo 46.18 10.62 45.36 11.69 46.34 10.22 45.95 9.15 45.66 19.89 46.89 17.41

Table 1: Comparative experimental results: the accuracy and forgetting rate for different task order. For
each task sequence, A ↑ indicates the accuracy of the method, while F ↓ is the forgetting rate of each.

positive effect of CL. Following the original setting of each method, we leave the whole backbone model
unfrozen for non-prompt-based methods and freeze the whole backbone model for prompt-based methods
except for the classifier. To make the fair comparison, we fit all the continual learning methods into our
backbone, ALBEF, instead of using the original model proposed in each method.

CL Tasks We evaluate our method on tasks built using the CLOVE Lei et al. (2022) dataset which is
a VQA-based continual learning dataset. The benchmark contains two sepecate benchmarks for different
scenario, including scene-incremental setting benchmark, CLOVE-scene, and function-incremental setting
benchmark, CLOVE-function. Each of the task sets contains six tasks which are domain-specific and
diverse from each other. For more details about CLOVE and the tasks we use, please refer to the Appendix.

Metrics for comparison We use the average accuracy and the average forgetting rate on all tasks to
evaluate the performance of our method and its ability to tackle catastrophic forgetting. Different from
dataset such as VQAv2 Goyal et al. (2017), where each question is paired with different ground truth
answers, questions in GLOVE dataset only contains exactly one correct answer for each question. Thus,
the accuracy is simply calculated by y == ŷ for every training and testing data instance. On the other hand,
the forgetting rate is calculated as:

F = Ai − Aij

Ai
(9)

where Ai is the accuracy of task i, and Aij is the accuracy of task i after the model is trained on task j. For
details about the optimization and implementation processes, please refer to the Appendix.

5.2 Comparative Results

We conduct the comparison experiments on both the CLOVE-scene and CLOVE-function task sets
with a randomly selected task order. In table 1, the task order abcdef represents the CL tasks:

8

Under review as submission to TMLR

Table 2: Ablative Experiments
Methods Accuracy Forgetting

Full Method 48.73 10.76
Ablative KD 47.36 11.25

Ablative Clustering 46.08 12.86
Ablative Textual Key 46.16 12.49
Ablative Visual Key 46.53 12.22

ShopAndDining, WorkPlace, HomeOrHotel, Transportation, SportAndLeisure Outdoors in sequence. The
oarlks in CLOVE-function represents tasks: ObjectRecognition, AttributeRecognition, RelationReasoning,
LogicReasoning, KnowledgeReasoning and SceneTextRecognition.

We observe in Table 1 that our method outperforms all the baselines across all task order sets in terms of both
average accuracy and average forgetting rates. We also observe that the performance of different method
within the same group tend to be similar. The regularization-based methods, EWC and LwF, obtain the
sub-optimal accuracy and forgetting rate besides. The reason is that the domain for each task in the dataset
is significantly different from the rest of tasks and hence regularization methods fail to capture the common
space of the parameter distribution. This challenge makes it difficult to maintain the accuracy of the current
task and previous tasks at the same time using regularization. The replay methods, ER and GEM, achieve
better performance than regularization-based methods. This can be explained by the fact that replaying the
data from previous task is an efficient way to remind the model and adjust its parameter distribution not too
diverse from previous ones. However, because we need to rely on a memory buffer to store samples for replay,
these methods are memory-consuming and thus not space-efficient. Moreover, replay-based methods are still
limited by the upper-bound of joint training, as they generally can only reduce catastrophic forgetting without
boosting the accuracy of individual tasks. On the other hand, the prompt-based methods, namely L2P,
DualPrompt, and SPrompt, achieve superior performances compared to more traditional CL methods.
Rather than tuning the whole model with regularization, prompt-based methods store the prior knowledge
in trainable prompts, which are smaller and more efficient than memory buffer, and keep the main body of
backbone model frozen. With the combination of generalization capacity of pre-trained model and specific
previous knowledge stored in prompt, prompt-based method can outperform the replay and regularization
methods. Among all the methods, our method achieve the best performnce.

Compared with the baseline prompt-based methods which only consider visual modality for prompt selecting
and updating, CluMo takes care of both the visual and textual modalities, as well as the fusion of the two
for selecting the prompt which deploys the given information more comprehensively to process the prompt.
Our design thus fits better in multimodal learning scenario than other existing continual learning methods.

5.3 Ablation Experiments

To offer a better insight about our method, we perform an ablation study for each component of CluMo to
study the positive contribution of each component. We study the effect of the following:

• Visual Prompt Key, key to separate the inner-task image features by their semantic property.

• Textual Prompt Key, key to separate the inner-task text features by their semantic property.

• Minibatch k-means Clustering which train the prompt keys as centers of clustering algorithm
to better fit the semantic meaning.

• Knowledge Distillation, to prevent the drastic parameter shift of unfrozen classifier.

We conduct ablation experiment on CLOVE-scene dataset with the task order abcdef. We set the size for
both the visual prompt key and the textual prompt key to be three. For ablative text experiments, we change

9

Under review as submission to TMLR

Figure 4: Cluster distribution on all training image data of CLOVE-Scene’s six sub-tasks before and after
applying mini-batch k-means clustering algorithm with visual key size of 3 using PCA. Color of more
diversity indicates more even distribution of key selection.

Figure 5: Cluster distribution on all training text data of CLOVE-Scene’s six sub-tasks before and after
applying mini-batch k-means clustering algorithm with textual key size of 3 using PCA.

the size of textual prompt key to 9 to achieve the same prompt size. We also removed the visual prompt
key which is the same for ablative image experiments. Results for this experiment is presented in Table 2.
We observe that despite having the same number of prompts, the performance values of Ablative Textual
Key and Ablative Visual Key are lower than our full pipeline. This result verifies our hypothesis that both
modalities should be used to guide the prompt selection and the missing of any will cause information lost
and lead to sub-optimal performance. In other words, current approaches for unimodal settings do not use
all the information we have in multimodal scenarios. We also observe that without the clustering algorithm,
the performance of ablative clustering is the lowest among all the settings which indicate the significance of
doing cluster training for learning the prompt keys.

10

Under review as submission to TMLR

Figure 6: Accuracy on the first task after running task sequence.

5.4 Analytic Experiments

Effect of clustering To show the effect of clustering algorithm, we empirically show the correlation
between the clustering error and the downstream accuracy. As we apply Euclidean distance as metric to
learn the clusters, we record the average distance between each point to its assigned cluster center for every
task, and take the average for all the tasks:

E = Avg(
N∑

i=1
Avg(

M∑
j=1

||xj − ck||2)) (10)

where i represent the number of tasks, j represent the training data from task i and k is the kth cluster center.
We consider both the visual prompt key training and the textual prompt key training in this experiment.
Table 3 presents the results. Same as our expectation, we observe a negative correlation between the
clustering error and the performance accuracy, in another word, lower E for image and text prompt keys
leads to a higher accuracy. Without the clustering component, we observe E to be as high as 42.38 and 42.8
for image prompt key and text prompt key, respectively. After applying clustering algorithm, E drops below
20, which can be considered significant, for both modalities and the accuracy improves 2.97%.

Cluster Visualization To show the effect of clustering on prompt key more intuitively, we visualize the
visual prompt key selection distribution and textual prompt key selection distribution on the visual and
textual portion of the training data for CLOVE-Scene in Figure 4 and Figure 5. Since we use three
visual prompt keys for each task, the vector features of visual data are split into three groups, which are
the green, blue and red points in Figure 4. We observe that without using clustering, visual data are more
likely to overlap on the same cluster center which means they would lead to select the same visual prompt
key. After performing clustering, we observe that the distribution becomes more evenly, and every cluster of
data is diverse and separated from the others which means that the visual data can be separated explicitly.
The diversity of prompt key selection indicates each input image can find the "correct" prompt which is
semantically closer to it, which contains more specific knowledge about the sub-domain the given image
belongs to. The visualization of textual prompt keys indicates similar observation.

Tracking the Accuracy for the First Task To take a closer look into the effect on preventing catas-
trophic forgetting and increasing the accuracy in CL, we track the accuracy of the first task while learning the
task sequence. The result is shown in Figure 6. We see that the accuracy drops until task 4, and then slightly
increases until task 6. Although it is not our main focus, this behavior shows a trend of forward transfer

11

Under review as submission to TMLR

Table 3: Acc. with different clustering error
E . Image E . Text Accuracy

15.40 10.72 48.73
15.74 12.22 48.03
17.21 12.53 47.94
42.38 42.8 47.32

Table 4: Acc. with different prompt key size
Simg × Stxt Accuracy

2 × 2 48.51
3 × 3 48.73
4 × 4 48.32
5 × 5 48.32

10 × 10 48.51

Table 5: Acc. with length/number trade-off
Sv × St × Lp Accuracy

2 × 2 × 22 47.84
3 × 3 × 10 48.73
4 × 4 × 6 46.59

between the tasks. Among all the baseline methods, we notice that prompt-based methods, SPrompt,
DualPrompt and L2P, significantly outperform other methods which verifies the SOTA status of prompt
learning in CL and its success in preventing catastrophic forgetting. Our method CluMo, on the other
hand, still outperform all prompt-based baseline methods. We observe that using the cluster-based prompts,
the accuracy on the first task is superior compared to the other methods at the very beginning. Similar to
other prompt-based method, our method’s accuracy slightly drops until task 4 and improves subsequently.
As the accuracy of our proposed method is higher than others at all time steps, our method has the leading
performance in terms of both accuracy and backward transfer.

Effect of Prompt Key Size We also conduct an experiment to study the effect of prompt pool size to
show the stability of our method with respect to this hyper-parameter. In Table 4, we choose different visual
prompt key and textual prompt key sizes, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 10 × 10, corresponding to 4, 9, 16,
25, and 100 prompt pool sizes. Although having variant sizes, we only observe minor changes in accuracy
in Table 4 when prompt pool size changes, i.e., between 48.32 and 48.73. This observation means that our
method is not sensitive to the change of the prompt pool size and hence we don’t need to focus on tuning it.

Prompt Length and Prompt Size In the experiment setting, we utilize 3 visual keys and 3 textual
keys, and each prompt has length of 10. In sum, we have 3 × 3 × 10 = 90 total prompt length for each task.
We conduct experiments to show the trade-off of prompt length and prompt numbers given the fixed total
prompt length. To make a fair comparison, we keep the visual key and textual key the same size, and choose
the closest integer prompt length to let the multiplication of the three be around 90 . Within table 6, among
the three different combination, we find that the current setting, which is the most balanced one, obtains
the best result. Regarding the rest of the two, the higher prompt length has the better performance.

6 Conclusion

We introduced a novel prompt-based continual learning method for learning multimodal tasks. While most
of existing methods apply simple prompts on a single modality, our method proposes modal-specific visual
prompt keys and textual prompt keys and train them to capture the semantic properties of the training
dataset using K-means clustering algorithm. We use the combination of both the visual prompt key and
the textual prompt key to select prompts, which enable the prompt to better boost the performance. Our
experiments show that our method achieves the state-of-the-art performance in continual VQA tasks in
different domains compared to other regularization-based, rehearsal-based and prompt-based CL methods.

12

Under review as submission to TMLR

References
Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, and

Devi Parikh. Vqa: Visual question answering, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020.

Yuliang Cai, Jesse Thomason, and Mohammad Rostami. Task-attentive transformer architecture for contin-
ual learning of vision-and-language tasks using knowledge distillation, 2023.

Ryan Cohn and Elizabeth Holm. Unsupervised machine learning via transfer learning and k-means clustering
to classify materials image data. Integrating Materials and Manufacturing Innovation, 10(2):231–244, 2021.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers for
continual learning with dynamic token expansion, 2022.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4):
128–135, 1999.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering, 2017.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap: Prompt-
guided image captioning for vqa with gpt-3. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2963–2975, 2023.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning, 2016.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or
region supervision, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences, 114(13):3521–3526, March 2017. ISSN 1091-6490. doi:
10.1073/pnas.1611835114. URL http://dx.doi.org/10.1073/pnas.1611835114.

Stan Weixian Lei, Difei Gao, Jay Zhangjie Wu, Yuxuan Wang, Wei Liu, Mengmi Zhang, and Mike Zheng
Shou. Symbolic replay: Scene graph as prompt for continual learning on vqa task, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning,
2021.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Hoi. Align before fuse: Vision and language representation learning with momentum distillation, 2021.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple and
performant baseline for vision and language, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting, 2017.

13

http://dx.doi.org/10.1073/pnas.1611835114

Under review as submission to TMLR

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning, 2022.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks, 2019.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
answering benchmark requiring external knowledge, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience replay
for continual learning, 2019.

Lin Su, Nan Duan, Edward Cui, Lei Ji, Chenfei Wu, Huaishao Luo, Yongfei Liu, Ming Zhong, Taroon Bharti,
and Arun Sacheti. Gem: A general evaluation benchmark for multimodal tasks, 2021.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers: An
occam’s razor for domain incremental learning, 2023.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Dualprompt: Complementary prompting for rehearsal-free
continual learning, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning, 2022b.

14

Under review as submission to TMLR

Table 6: size of each task in CLOVE
task training size testing size image source

ShopAndDining 20K 3K MS-COCO
WorkPlace 20K 3K MS-COCO

HomeOrHotel 20K 3K MS-COCO
Transportation 20K 3K MS-COCO

SportAndLeisure 20K 3K MS-COCO
Outdoors 20K 3K MS-COCO

ObjectRecognition 20K 3K MS-COCO
AttributeRecognition 20K 3K MS-COCO

RelationReasoning 20K 3K MS-COCO
LogicReasoning 20K 3K MS-COCO

KnowledgeReasoning 20K 3K MS-COCO
SceneTextRecognition 16.8K 2.4K VG

A Appendix

A.1 Hardware Setup and Hyper-parameter

All experiments were conducted using a single Nvidia A40 GPU. We employed the AdamW optimizer across
all experiments, utilizing a cosine learning rate scheduler, and set the initial learning rate to lr = 3 × 10−4.
The models were trained for 5 epochs with a batch size of 16.

For EWC, we set the fisher sample percentage to be 0.1 and ewc loss weight equals to 0.1 as well.

For Experiment Replay, we store 1% of data from each tasks into the memory buffer. During the training
of the current task, we randomly select a batch of data from the memory buffer to train the model for every
100 batches of current data training.

For GEM, we also store 1% of data to memory buffer, which is randomly picked from each tasks.

For CluMo framework, we configured the visual prompt key size (Sv) and the text prompt key size (St)
both to 3, with the prompt length (Lp) set to 10.

For L2P, we set the prompt pool size equals to 20 and prompt length to be 5.

For DuamPrompt, the G-Prompt was inserted into layers 0 and 1 of the visual encoder, while the E-Prompt
was integrated into layers 2, 3, and 4.

For S-Prompt, we set the prompt length to be 10 and prompt pool size to be 30.

Furthermore, for prompt-based techniques such as L2P, DualPrompt, and SPrompt, we opted to freeze the
entire backbone model, allowing only the final classifier layer to remain trainable. Conversely, for all other
baseline methods, no parameters were frozen, ensuring the entire network was fine-tuned during training.

A.2 CLOVE dataset detail description

In the CLOVE-Scene and CLOVE-Function datasets, all tasks have a uniform distribution of training
and testing data, with the exception of the SceneTextRecognition task, which comprises 16.8K training
samples and 2.4K testing samples. The remaining tasks within these datasets contain 20K training samples
and 3K testing samples each. It is reflected in the Table 5.

To provide a deeper understanding of the CLOVE dataset, we offer additional details here. We have
included visualizations in Figure 7 and Figure 8 to showcase two sample images from each task within the
datasets, emphasizing the distinctiveness of each domain. From these samples, it is evident that the images
in the CLOVE-Scene dataset vary significantly across tasks, even though the questions associated with
them are similar in structure, differing primarily based on the content depicted in the images.

15

Under review as submission to TMLR

On the other hand, the CLOVE-Function dataset presents a different scenario. While the images across
various tasks may appear to belong to similar or overlapping domains, making it challenging to distinguish
one task from another based solely on visual content, the diversity becomes apparent when considering the
questions. Each task within the CLOVE-Function dataset involves distinct types of reasoning, as reflected
in the varied nature of the questions posed, which are tailored to serve different reasoning purposes.

Figure 7: CLOVE-scene dataset samples

16

Under review as submission to TMLR

Figure 8: CLOVE-function dataset samples

17

	Introduction
	Related Works
	Problem Description
	Proposed Architecture
	Preliminary
	Modality Fusion Prompt
	Cluster-based Prompt Key
	Training and Inference

	Experiments
	Experiment Setup
	Comparative Results
	Ablation Experiments
	Analytic Experiments

	Conclusion
	Appendix
	Hardware Setup and Hyper-parameter
	CLOVE dataset detail description

