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ABSTRACT
Unmanned aerial vehicles (UAV) are widely used for their
small size and flexibility. However, the large number of small
objects and the significant difference in object size in UAV
images bring great challenges to the detection task. There-
fore, we propose an object detection method for UAV im-
ages with four improvements on the strong baseline model
YOLOX-S, which is robust to detect small objects and multi-
scale objects. Firstly, we introduce a high-resolution fea-
ture map to retain rich detailed information about small ob-
jects. Secondly, we propose new up-sampling and down-
sampling modules to reduce the feature information loss dur-
ing the sampling process. Thirdly, we present the triple-scale
feature fusion module (TSFFM) to fuse more abundant multi-
scale features in the neck’s bottom-up feature fusion process.
Finally, the parrell dilated convolution attention module (PD-
CAM) is proposed to learn the multi-receptive field features.
Experiment results on the VisDrone-VID2019 dataset vali-
date the effectiveness and superiority of the proposed method.

Index Terms— UAV images, object detection, small ob-
ject detection, multi-receptive field, context information

1. INTRODUCTION

In recent years, the research of object detection methods in
general scenes has made fantastic progress[1, 2, 3]. However,
these methods cannot get satisfactory results when directly
applied to the UAV scenes.

Compared to object detection in general scenes, object de-
tection in UAV scenes faces greater challenges. Firstly, many
objects in UAV images are quite small. Very little feature
information is available for object detection. Secondly, the
altitude UAVs fly is variable, which makes the size of ob-
jects change significantly. To solve the detection difficulties
mentioned above, Xi et al. [4] propose a global-local con-
text information collector to extract global and local context
information, which can effectively enhance the feature repre-
sentation of small objects. Li et al. [5] introduce Bi-PAN-
FPN to improve the neck part of YOLOV8-S. By fully con-
sidering and reusing multi-scale features, a better feature fu-
sion process is realized without increasing much parameter
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cost. Chalavadi et al. [6] use parallel dilated convolution to
learn context information at multiple fields of view. In order
to alleviate the sensitivity of IOU to small objects, Yang et
al. [7] propose to replace the original IOU-NMS with NWD-
NMS in post-processing. A spatial pyramid network, Dp-
SPPF, is introduced in [8] to utilize concatenated small-sized
max-pooling layers and depth-wise separable convolutions to
extract feature information across different scales more effec-
tively.

The above methods fully consider the importance of con-
text information and multi-scale features for object detection
in UAV scenes. However, significant feature information at-
tenuation during the sampling process hinders the further im-
provement of the above methods. Therefore, we propose a
new object detection method that comprehensively considers
the abovementioned aspects. We choose the YOLOX-S as
the robust baseline model. Firstly, a high-resolution feature
map is introduced to retain more spatial information of small
objects. Secondly, a new up-sampling module called par-
allel upsample feature fusion (PUSFF) and down-sampling
module called parallel downsample feature fusion (PDSFF)
are proposed. The improved sampling modules use paral-
lel sample branches to obtain higher quality sampling feature
map, effectively reducing feature information attenuation dur-
ing the sampling process. Thirdly, the TSFFM is proposed
to strengthen the multi-scale feature fusion capability of the
neck’s bottom-up feature fusion network. Finally, referring to
Bi-FPN [9], we introduce an extra skip branch between the
input node and the output node of PAFPN. The difference is
that we add the proposed PDCAM module in the branch to
learn multi-receptive field feature information, which helps
the network better detect multi-scale objects in UAV images.

2. METHOD

The overview of our method is shown in Fig. 1, which in-
cludes a CSPDarknet backbone, an improved Path Aggrega-
tion Network with Feature Pyramid Network(PAFPN), and
four decoupling detection head. Considering that the shal-
low feature map contains rich spatial information of small
objects, we introduce a high-resolution feature map as the de-
tection layer tailored for small objects. Additionally, we pro-
pose some modules to fuse more abundant multi-scale feature
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Fig. 1. An overview of our YOLOX-DRONE.

and reduce the attenuation of feature information during the
sampling process. Below are the details of each module.

2.1. PUSFF and PDSFF

Most existing feature fusion networks use a single linear in-
terpolation upsampling branch or convolution downsampling
branch to adjust the scale of the feature map. There is se-
vere attenuation of feature information during the sampling
process [10]. Therefore, we propose the PUSFF and PDSFF,
the structures are shown in Fig. 2. Specifically, the PUSFF
module consists of two parallel branches. Bilinear interpo-
lation upsampling and deconvolution upsampling operations
are performed in these two branches to learn richer upsam-
pling features, and then the upsampling results of the two
branches are added for feature fusion. Finally, the spatial at-
tention module is used to make the model focus on the feature
information of important areas. Similarly, the PDSFF consists
of two downsampling branches. The convolution downsam-
pling branch learns the comprehensive features of the local
receptive field, while the max-pooling downsampling branch
focuses on the salient features of the original feature map.
Lastly, the spatial attention module makes the model focus on
the feature information of important areas.

2.2. TSFFM

The shallow layer feature maps contain abundant spatial in-
formation, while the deep layer feature maps contain ample
semantic information [7]. In the general neck’s bottom-up
feature fusion process, the feature map of each layer only
fuses the feature information of the deeper layer and the cur-
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Fig. 2. The struction of the PUSFF and the PDSFF.
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Fig. 3. The struction of the TSFFM.

rent layer, which is rich in semantic information but lacking in
detailed information. The lack of detaild imformation is detri-
mental to the detection of small objects. Therefore, we pro-
pose the TSFFM module. The structure is shown in Fig. 3. It
can be found that the TSFFM concatenates the shallower layer
feature map, the current layer feature map, and the deeper fea-
ture map as its output, which contains both rich spatial infor-
mation and abundant semantic information.

2.3. PDCAM

Small objects are difficult to detect for limited feature infor-
mation. However, objects usually exist in a specific envi-
ronment or coexist with other objects, so our method learns
more context information to improve the detection accuracy
of small objects. Referring to the idea of BIFPN, we intro-
duce a skip branch between the input node and output node
of PAFPN to fuse richer feature information. The difference is
that we add the proposed PDCAM in the branch, which help
the network learn abundant multi-receptive field information.
The structure of PDCAM, as shown in Fig. 4, consists of five
parallel branches. The rightmost branch is a convolutional
block attention module(CBAM), which enhances the feature
information of important regions. The other branches use the
1×1 convolution to reduce the number of channels and then
obtain the multi-receptive field features through parallel di-
lated convolution with different dilate rates. Finally, all fea-
tures are stacked and fused by a 1×1 convolution operation.

2.4. Loss Function

The loss of our method consists of classification loss, regress
loss, and confidence loss. Some difficult samples, such as
occluded or small objects, are challenging to detect in UAV
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Fig. 4. The struction of the PDCAM.

scenes. Therefore, we choose the focal loss [11] as the confi-
dence loss. The confidence loss function is donated as,

Lobj = −(αy(1−p)γ log(p)+(1−α)(1−y)pγ log(1−p)),
(1)

where y indicates the confidence label, p indicates the predic-
tion confidence. α is the loss weight of the positive samples,
γ is the focusing parameter, set to 0.75 and 2, respectively.

In the previous methods, the classification score and in-
tersection over union (IOU) score are trained separately. In
the inference process, there may be some positions with
high classification scores but low IOU scores. Therefore, we
choose the quality focal loss (QFL) [12] as the classifica-
tion loss function, which use continuous labels that combine
classification and localization quality. The QFL function is s
defined as follows:

Lcls = −|y − δ|β((1− y) log (1− δ) + y log δ), (2)

where y denotes the continuous label obtained from the IoU
of the bounding box and the ground truth. δ indicates the
predicted result processed by the sigmoid function. β denotes
the hyperparameter of the dynamic scale factor, set to two by
default. The expression for Lreg is s defined as follows:

Lreg = 1− (
|Gt ∩ P |
|Gt ∪ P |

)2, (3)

where Gt, P denote the ground truth box, the prediction box,
respectively. The total loss function Ltotal is denoted as,

Ltotal = λ1Lreg + λ2Lcls + λ3Lobj , (4)

where λ1,λ2 and λ3 are weights of regression loss, classifi-
cation loss and confidence loss, set to five,one and one by
default, respectively.

3. EXPERIMENTS

3.1. Experimental Settingss

To evaluate the effectiveness of our method, we conduct ex-
tensive experiments on the Visdrone 2019-VID dataset[13].
The dataset consists of 10 categories and includes 24,198 im-
ages for training and 6635 images for testing. The images

Table 1. Results of the comparison methods on Visdrone-
VID2019 dataset.The highest performance is bolded

Model mAP mAP50

YOLOX S 10.1% 23.2%
YOLOV5 S 11.8% 25.2%
YOLOX M 12.0% 26.0%
YOLOV6 T 13.20% 27.7%
YOLOV6 S 13.30 % 30.6%
YOLOV7 T 11.20% 25.1%
YOLOX-DRONE(Ours) 14.30% 30.7%

Table 2. The effectiveness analysis of the proposed mod-
ules.The highest performance is bolded.

PDCAM PUSFF+PDSFF TSFFM mAP50

- - - 27.9%
! - - 28.2%
! ! - 29.4%
! ! ! 30.7%

are resized to 640×640. For a fair comparison, All methods
are run on a single NVIDIA GeForce 3080 GPU and trained
for 150 epochs. The optimizer is SGD. Momentum, weight
decay, and batch size are set to 0.937, 0.0005, and 4, respec-
tively. The initial learning rate is 0.01, and the cosine anneal-
ing learning rate scheduler is used after five epochs of warm-
ing up. The data augmentation methods used in the train-
ing process include image horizontal flipping, mosaic, and
mixup.

3.2. Comparison to the State-of-the-art Methods

The detection results of the proposed method and all compar-
ison methods on VisDrone-VID2019 are shown in Table 1. It
can be found that the mAP50 of proposed method has a growth
rate of 7.5% compared with the base model YOLOX S. Com-
pared to other state-of-the-art methods, the proposed method
still obtains the most accurate detection results. The visual
results are shown in Fig. 5. Other methods fail to detect small
targets in the areas marked by the red boxes, but our method
can effectively detect these objects, which demonstrates the
advantages of the proposed method. It is worth mentioning
that compared with YOLOV6, it seems that our method has
only a slight improvement in accuracy, but it seems to have a
significant effect on the recall rate of small targets. Perhaps
focusing on the improvement of classification accuracy is the
future improvement direction.

3.3. Ablation Study

To verify the effectiveness of our method, we add the pro-
posed modules to the baseline in turn. The experimental re-
sults are shown in Table 2. From the results, we can find that
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Fig. 5. Visual results of our method and the comparison methods.

the most significant improvement was the addition of TSFFM,
with an increase of 1.3% based on the mAP50 indicator. After
adding the PDCAM, there is a slight improvement of 0.3%
based on the mAP50 indicator; After adding the improved
upsample module PUSFF and downsample module PDSFF,
there is an improvement of 1.2% based on the mAP50 indica-
tor. It can be found that the detection accuracy increased suc-
cessively, validating the effectiveness of the proposed mod-
ules.

4. CONCLUSION

In this paper, we propose a new object dectection method for
UAV images. The framework introduces a high-resolution
feature map to retain rich detailed information. The proposed
new sampling modules effectively reduce the feature informa-
tion loss. In addition, by fully learns the context information
and multi-scale features of the objects, out method effectively
improving the object detection performance in UAV scenes.
Experimental results on the VisDrone-VID2019 validate the
effectiveness and superiority of the proposed method on UAV
image dataset.
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