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Abstract

Unlike standard training, deep neural networks can suffer from serious overfitting
problems in adversarial settings. Recent research [40, 39] suggests that adver-
sarial training can have nonvanishing generalization error even if the sample size
n goes to infinity. A natural question arises: can we eliminate the generaliza-
tion error floor in adversarial training? This paper gives an affirmative answer.
First, by an adaptation of information-theoretical lower bound on the complexity
of solving Lipschitz-convex problems using randomized algorithms, we establish
a minimax lower bound Ω(s(T )/n) given a training loss of 1/s(T ) for the adver-
sarial generalization gap, where T is the number of iterations, and s(T ) → +∞
as T → +∞. Next, by observing that the nonvanishing generalization error of
existing adversarial training algorithms comes from the non-smoothness of the
adversarial loss function, we employ a smoothing technique to smooth the adver-
sarial loss function. Based on the smoothed loss function, we design a smoothed
SGDmax algorithm achieving a generalization bound O(s(T )/n), which elimi-
nates the generalization error floor and matches the minimax lower bound. Ex-
perimentally, we show that our algorithm improves adversarial generalization on
common datasets.

1 Introduction

Deep neural networks (DNNs) [22, 20] is successful and rarely suffered overfitting issues [45]. This
phenomenon is also called benign overfitting. A well-trained neural network model can generalize
well to the test data. However, in adversarial machine learning, overfitting becomes a serious issue
[30]. Before the training algorithms converge, the robust test error starts to increase. This special
type of overfitting is called robust overfitting and can be observed in the experiments on common
datasets. See Fig. 1, orange curve. Therefore, mitigating the robust overfitting is important to
increase the adversarial robustness of a DNN model. Several recent works tried to figure out the
causes of robust overfitting and designed methods to mitigate it. See the discussion in Sec. B.

A recent line of work [40, 39] studied the robust overfitting issue of adversarial training from a
theoretical perspective, using the notion of uniform algorithmic stability. Uniform algorithmic sta-
bility (UAS) [6] was introduced to bound the generalization gap in machine learning problems. It
provides algorithm-specific generalization bounds instead of algorithm-free generalization bounds
such as classical results on VC-dimension [37] and Rademacher complexity [5]. Such stability-
based generalization bounds provide insight into understanding the generalization ability of neural
network models trained by different algorithms.
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Table 1: Comparison of stability-based generalization bounds of adversarial generalization gap.
c1(T ) and c2(T ) are sample size-independent terms. Details of the form of s(T ), c1(T ), c2(T ) are
discussed in Sec. D and Sec. 2.

Upper Bounds Worst-case Achieves minimax
Lower Bounds lower bound Ω(s(T )/n)

SGDmax (AT) O(c1(T ) +
s(T )
n ) Ω(c2(T ) +

s(T )
n ) %

Smoothed-SGDmax (Ours) O( s(T )
n ) Ω( s(T )

n ) !

Traditional adversarial training is to perform stochastic gradient descent (SGD) on the max func-
tion of the standard counterpart, which is also called SGDmax [14]. We will not distinguish two
algorithms, “SGDmax” and “adversarial training (AT)”, in the paper. The work of [40, 39] both
showed that SGDmax incurs a stability-based generalization bound in O(c(T ) + s(T )/n). Here T
is the number of iterations, n is the number of samples, s(T ) is a function satisfies s(T ) → +∞
as T → +∞, and c(T ) is a sample size-independent term and increase with T . Details of the
form of s(T ), c(T ) are discussed in Sec. D and Sec. 2. They also provided the matching lower
bounds to show that the sample size-independent term is unavoidable for SGDmax-based adver-
sarial training algorithms. It provides a possible explanation of robust overfitting: even though we
have arbitrarily large number of training samples, the adversarial generalization gap still does not
vanish. Therefore, we are motivated to design algorithms to reduce the non-vanishing sample size-
independent term. The first question arises: what is the lower bound of the generalization gap for
algorithms in adversarial machine learning settings? To answer this question, we develop a minimax
lower bound, Ω(s(T )/n), for the adversarial generalization gap when the adversarial training loss
is 1/s(T ). Clearly, the SGDmax-based adversarial training algorithm does not achieve the lower
bound. Therefore, the following main question of our paper arises:

Can we design an algorithm achieving the minimax lower bound of adversarial generalization gap?
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Figure 1: Experiments of adversar-
ial training and Smoothed-SGDmax on
CIFAR-10.

It is observed that the term c(T ) comes from the non-
smoothness of the adversarial loss. Hence, we employ
a smoothing technique to smooth the adversarial loss
and perform gradient descent to this smooth surrogate.
Following the name SGDmax, we propose Smoothed-
SGDmax, which is a smoothed version of SGDmax,
to improve adversarial generalization. We prove that
our algorithm has the same training loss 1/s(T ) on ad-
versarial loss and achieves the minimax lower bound
Ω(s(T )/n) of the generalization gap. The comparison of
the stability-based generalization upper bound and lower
bound of our proposed algorithm with the SGDmax-
based adversarial training algorithm is given in Table 1.

Related work are discussed in Appendix B.

2 Proposed Algorithm: Smoothed-SGDmax
In Appendix C, we provide the prelinimaries of stability and generalization gap. In Appendix D, we
show that the adversarial generalization bound of SGDmax-based adversarial training algorithm is
not optimal. In this section, we will design an algorithm satisfying the following two properties: 1)
It has the same training loss as the SGDmax algorithm; 2) Suppose it achieves 1/s(T ) training loss
after T iterations. Then, the generalization bound is bounded by s(T )/n.

2.1 Smooth Surrogate Adversarial Loss

In Thm. D.2, the non-smoothness of h leads to a poor generalization bound. This motivates us
to construct smooth surrogate loss functions to improve adversarial generalization. Inspired by the
work of [46], we use the Moreau envelope function to smooth the adversarial loss. Let

K(w, u; z) = h(w; z) +
p

2
∥w − u∥2. (2.1)
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If h is l-weakly convex, we can choose p > l to insure that K(w, u; z) is strongly convex with
respect to w. In the case that h is convex, we only need p > 0. We define the Moreau envelope
function:

M(u;S) = min
w∈W

K(w, u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z), (2.2)

w(u;S) = arg min
w∈W

K(w, u;S). (2.3)

Then, M(u;S) is a smooth function. Formally, we state the theoretical results in Lemma D.1.
Depending on whether we solve the subproblems exactly or not, we have the exact approach and
inexact approach.

2.2 Exact approach

We first consider the exact approach, which is the gradient descent to M(u;S).

Theorem 2.1. Assume h is a convex, L-Lipschitz function. Suppose we run GD on the smoothed
surrogate adversarial loss M(u;S) defined in Eq. (2.2) with step size αt ≤ 1/

√
T for T ≥ 4p2

steps. Then, the optimization and generalization gap satisfies

Eopt ≤ O(1/Tα) and Egen ≤
(
2L2

n

) T∑
t=1

αt. (2.4)

Therefore, the exact approach achieves the minimax lower bounds of the generalization gap. How-
ever, the exact approach requires the exact minimization of K(w, u;S), which is sometimes com-
putationally intractable. To address this issue, we consider the inexact approach below.

2.3 The Inexact approach

The inexact approach is to estimate ∇uM(u;S) by inexactly solving minw K(w, u;S). To this aim,
we perform multiple steps of SGD to the subproblem minw K(w, u;S), attaining an estimate w̄(u)
of the true w(u), and then use w̄(u) to estimate ∇uM(u;S).

Algorithm 1 Smoothed-SGDMax
1: Initialize w0, u0;
2: Choose stepsize cts > 0 and αt > 0;
3: for t = 0, 1, 2, . . . , T do
4: Let wt

0 = wt;
5: for s = 0, 1, 2, · · · , N do
6: Draw a sample zts from S uniformly;
7: wt

s+1 = PW (wt
s − cts∇wK(wt

s, u
t; zts));

8: end for
9: wt+1 = wt

N ;
10: ut+1 = ut + αtp(w

t+1 − ut);
11: end for

In Step 7 in Alg. 1, we run SGD on K(w, u, S) w.r.t w to find a solution given u. In step 10, we run
GD on K(w, u, S) w.r.t u. To provide the upper bounds of the optimization gap and generalization
gap of Alg. 1, we need the following Lemma for the inner optimization.

Lemma 2.1. Given t and ut, suppose we run SGD on K(w, ut, S) w.r.t. w with stepsize cts ≤
1/(p− l)s for N steps. wt

N is approximately the minimizer with an error C2
1/N , i.e.,

E∥wt
N − w(ut)∥2 ≤ C2

1

N
,

where C1 = (L+ pDW )/(p− l).
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In convex case, i.e., l = 0, we have C1 = L/p +DW . Lemma 2.1 provides the optimization error
of the inner loop. In words, if we run the inner loop for sufficient steps, we can approximate the
smoothed loss M(u;S). Below we provide the training loss and uniform stability of Smoothed-
SGDmax with sufficient steps for the inner loop.
Theorem 2.2 (Training Loss of Smoothed-SGDmax). Suppose h is convex and L-Lipschitz. In Alg.
1, if we choose inner stepsize cts ≤ 1/ps, number of steps in inner loop N = T , outer stepsize
αt ≤ 1/

√
T , T ≥ 4p2, the optimization gap satisfies

Eopt ≤
∥u0 − u∗∥2 + 2pC1DW + (L+ pDW )2

2Tα
=

C2

Tα
, (2.5)

where C2 = ∥u0 − u∗∥2/2 + pC1DW + (L+ pDW )2/2.

Theorem 2.3 (Generalization bound of Smoothed-SGDmax). Assume that h is convex and L-
Lipschitz. In Alg. 1, if we choose inner stepsize cts ≤ 1/ps, number of steps in inner loop N = n2,
outer stepsize αt ≤ 1/

√
T , T ≥ 4p2, the generalization gap satisfies

Egen ≤ L

(
2C1p

n
+

2L

n

) T∑
t=1

αt =
C3

n

T∑
t=1

αt, (2.6)

where C3 = L(4L+ 2pDW ).
Thm. 2.2 and 2.3 are the main results of our paper. It shows that Alg. 1 has training loss O(1/Tα)
and has optimal generalization bound in O(Tα/n).

Interpretation of Number of Steps. In practice, if we use batch size 1 and go through the whole
dataset in each epoch, T can be viewed as the number of epochs, and N can be viewed as the number
of samples. Let Tα =

√
C2n/C3, we obtain the optimal excess risk with respect to T and α, i.e.,

Eopt + Egen ≤ 2
√

C2C3

n . Further analysis are deferred to Appendix E.

3 Experiments

Table 2: Robust test accuracy of our proposed algorithm. ϵ = 8/255. Model: WideResNet-28× 10
with Swish activation function. Training data to unlabeled data ratio: 3:7.

Dataset Loss Algorithm Clean AutoAttack

CIFAR-10
AT Loss SGDmax 90.93±0.25% 58.41±0.25%

Smooth-SGDmax 91.51±0.20% 59.14±0.18%

TRADES Loss SGDmax 88.36% 59.45%
Smooth-SGDmax 85.33±0.13% 62.41±0.11%

CIFAR-100 TRADES Loss SGDmax 59.38% 26.07%
Smooth-SGDmax 59.25±0.22% 28.54±0.19%

Experiments setting and experiments on sample complexity are provided in Appendix F. In Table
2, we provide the robust test performance of our proposed algorithms. The baseline performance
on CIFAR-10 are reported in [18]. We can see that the performance of our proposed algorithms
is comparable in the same settings used in [18]. Notice that the state-of-the-art performance of
adversarial robustness is obtained using large models (e.g., WideResNet-106 × 16) and DDPM-
generated data [29]. We do not have enough resources to run large models.

4 Conclusion

In this paper, we study a question: can we design an algorithm to achieve the minimax lower bound
of the adversarial generalization gap? We propose Smoothed-SGDmax and prove that it has the
same convergence guarantee as adversarial training and attains the minimax lower bound of the
adversarial generalization gap. We hope our work can lead to a better understanding of adversarial
machine learning theory.
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A Proof of Theorems

A.1 Proof of Theorem D.1

The proof is adopted from the proof of minimax lower bound of optimization error from the work
of [11]. We define the excess risk as RD(w) − minw∈W RD(w). A minimax lower bound of the
excess risk for the function class H is given in [26].

min
w

max
D

ES∼Dn [RD(w)− min
w∈W

RD(w)] ≥
LDW

C4
√
n
. (A.1)

Assume that Eopt(wT ) ≤ O(1/s(T )). Then

min
A∈A

max
D

Egen(wT ) ≥ Ω

(
LDW√

n
− 1

s(T )

)
. (A.2)

where C4 is a universal constant. Since

LDW√
n

− 1

s(T )
= −

(
1√
s(T )

−
LDW

√
s(T )

2n

)2

+
L2D2

W s(T )

4n
, (A.3)

By choosing T such that the first term is closed to zero, we obtain that

min
A∈A

max
h∈H

Egen ≥ Ω

(
s(T )

n

)
. (A.4)

A.2 Proof of Lemma D.1

To simplify the notation, we use M(u) as a short hand notation of M(u;S). Similar to h(u), K(u),
and w(u).

1. Let w∗ ∈ argminRS(w), since we have

RS(w
∗) = K(w∗, u = w∗, S) ≥ K(w(u), u = w∗, S) ≥ RS(w(u = w∗)).

The equality holds. Therefore, w = u = w∗ is the optimal solutions of both RS(w) and M(u;S).

2. Since K(w, u) is a (p− l)-strongly convex function, w(u) is unique. Then

M(u) = h(w(u)) +
p

2
∥w(u)− u∥2.

Then, take the derivative of M(u) with respect to u, we have

∇uM(u) =

[
∂w(u)

∂u

]T
· ∇w(u)h(w(u)) +

[
∂w(u)

∂u
− I

]T
· p(w(u)− u). (A.5)

=

[
∂w(u)

∂u

]T
· (∇w(u)h(w(u)) + p(w(u)− u)) + p(u− w(u)). (A.6)

The first term is equal to zero. It is because w(u) is the optimal solution of K(w, u). It satisfies the
first order condition,

∇w(u)K(w(u), u) = ∇w(u)h(w(u)) + p(w(u)− u) = 0. (A.7)

Therefore, we have ∇uM(u) = p(u− w(u)).

3. In Eq. (A.7), take the derivatives with respect to u on both sides, we have[
∂w(u)

∂u

]T
∇2

wh(w) + p(

[
∂w(u)

∂u

]T
− I) = 0. (A.8)

Organizing the terms, we have [
∂w(u)

∂u

]T
(∇2

wh(w) + pI) = pI. (A.9)
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Since h(w) is l-weakly convex, ∇2
wh(w) + pI is positive definite. Then,[

∂w(u)

∂u

]T
≺ p

p− l
I. (A.10)

Then,

∇2
uM(u) = [

∂

∂u
p(u− w(u))]T = p(I −

[
∂w(u)

∂u

]T
) ≻ p(1− p

p− l
)I. (A.11)

Therefore, M(u) is a pl/(p− l)-weakly convex function.

4. By Eq. (A.10), we have

∥∇M(u1)−∇M(u2)∥ = p∥u1 − w(u1)− u2 − w(u2)∥ ≤ p(1 +
p

p− l
)∥u1 − u2∥. (A.12)

Therefore, M(u;S) is (2p2 − pl)/(p− l)-gradient Lipschitz continuous.

5. By Eq. (A.7),
∥∇uM(u)∥ = ∥p(u− w(u))∥ = ∥∇wh(w)∥ ≤ L. (A.13)

A.3 Proof of Thm. 2.1

The training loss is a standard result of runing GD on smooth objective function. Before we provide
the proof of the generalization bound in Thm. 2.1, we first introduce the following Lemma.
Lemma A.1. In weekly-convex case, for neighbouring S and S′, we have

∥w(u;S)− w(u;S′)∥ ≤ 2L/(n(p− ℓ)).

Proof. By the (p− l)-strongly convexity of K(w, u;S), we have

(p− l)∥w(u;S)− w(u;S′)∥
≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S)∥
≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S′)∥

1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

=
1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

≤ 2L

n
,

where the second inequality is due to the definition of K(w, u;S), the third one is due to the first-
order optimally condition, and the last inequality is because of the bounded gradient of h(w; z).

Next, we move to the proof of Thm. 2.1.

∥ut+1
S − ut+1

S′ ∥
= ∥ut

S − ut
S′ − αt(∇M(ut

S ;S)−∇M(ut
S′ ;S′))∥

≤ ∥ut
S − ut

S′ − αt(∇M(ut
S ;S) +∇M(ut

S′ ;S))∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
≤ ∥ut

S − ut
S′∥+ αt∥∇M(ut

S′ ;S′)−∇M(ut
S′ ;S)∥

= ∥ut
S − ut

S′∥+ αtp∥ut
S′ − ut

S′ − w(ut
S′ , S) + w(ut

S′ , S′)∥

≤ ∥ut
S − ut

S′∥+
2Lαt

n
,

where the second inequality is due to the non-expansive [19] of convex function M(u;S), the last
inequality is due to Lemma A.1. unwind the recursive, we have

∥uT
S − uT

S′∥ ≤
2L

∑T
t=1 αt

n
.
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A.4 Proof of Lemma 2.1

Lemma 2.1 can be obtained from classical strong-convex optimization results. Since

∥∇wK(w, u; z)∥ = ∥∇wh(w; z) + p(w − u)∥ ≤ L+ pDW ,

K(w, u; z) has bounded gradient LK = L + pDW . By [25], running SGD on K(w, u;S) with
stepsize cs ≤ 1/s(p− l) iccurs an optimization error in

E∥wN − w(u)∥2 ≤ C2
1

N
,

where C1 = (L+ pDW )/(p− l).

A.5 Proof of Thm. 2.2

Proof. Let At+1 = 1
2∥u

t+1 − u∗∥2 and at+1 = 1
2E∥u

t+1 − u∗∥2.

At+1 =
1

2
∥ut+1 − u∗∥2

≤ 1

2
∥ut − αt∇uK(wt

N , ut;S)− u∗∥2

≤ At +
1

2
α2
tL

2
K − αt⟨∇uK(wt

N , ut;S), ut − u∗⟩

= At +
1

2
α2
tL

2
K − αt⟨∇uM(ut;S), ut − u∗⟩

+αt⟨∇uM(ut;S)−∇uK(wt
N , ut;S), ut − u∗⟩.

Taking expectation on both side, rearranging the terms, we have

αtE[M(ut)−M(u∗)]

≤ at − at+1 +
1

2
α2
tL

2
K + αtE⟨∇uM(ut;S)−∇uK(wt

N , ut;S), ut − u∗⟩ (A.14)

Since

E⟨∇uM(ut;S)−∇uK(wt
N , ut;S), ut − u∗⟩

≤ ∥∇uM(ut;S)−∇uK(wt
N , ut;S)∥E∥ut − u∗∥

≤ pC1DW√
N

,

Eq. (A.14) becomes

αtE[M(ut)−M(u∗)]

≤ at − at+1 +
1

2
α2
tL

2
K +

αtpC1DW√
N

.

Let N ≥ T , taking the summation over t, we obtain that

T∑
t=1

αtE[M(ut)−M(u∗)]

≤ a0 +
1

2

T∑
t=1

α2
tL

2
K +

∑T
t=1 αtpC1DW√

T
.

There exists t ≤ T , such that

E[M(ut)−M(u∗)] ≤
a0 +

1
2

∑T
t=1 α

2
tL

2
K +

∑T
t=1 αtpC1DW√

T∑T
t=1 αt

.
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Considering constant step α ≤ 1/
√
T , we have α ≤ 1/Tα and α

√
T ≤ 1. Therefore,

E[M(ut)−M(u∗)] ≤ 2a0 + Tα2L2
K + 2α

√
TpC1DW

2Tα

≤ ∥u0 − u∗∥2 + L2
K + 2pC1DW

2Tα

=
C2

Tα
.

Since M(u;S) and RS(w) have the same global solutions, we can use both of them to measure the
optimization error. Above is the optimization error measure defined in M(u;S). Below we provide
the optimization error defined in RS(w).

E[RS(w(u
t))−RS(w

∗)] ≤ E[M(ut)−M(u∗)] ≤ C2

Tα
.

Notice that the choices of algorithm output are slightly different. Therefore, we have

Eopt ≤
C2

Tα
,

where C2 = ∥u0 − u∗∥2/2 + pC1DW + (L+ pDW )2/2.

A.6 Proof of Thm. 2.3

Proof. We decompose ∥ut+1
S − ut+1

S′ ∥ as

E∥ut+1
S − ut+1

S′ ∥
= E∥ut

S − αt∇uK(wt
N,S , u

t
S ;S)− ut

S′ + αt∇uK(wt
N,S′ , ut

S′ ;S′)∥
≤ E∥ut

S − αt∇uM(ut
S ;S)− ut

S′ + αt∇uM(ut
S′ ;S′)∥

+ 2αtE∥∇uK(wt
N,S , u

t
S ;S)−∇uM(ut

S ;S)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtpE∥wt

N − w(ut)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtp

C1√
N

.

Let N ≥ n2, unwind the recursive and let uT be the output of the algorithm, we have

Egen ≤ LE∥uT
S − uT

S′∥

≤
L(2L+ 2C1p)

∑T
t=1 αt

n

=
C3

∑T
t=1 αt

n
.

If we choose w(uT ) as algorithm output, since ∇M(u;S) = p(u− w(u)), we have

Egen ≤ LE∥w(uT
S ;S)− w(uT

S′ ;S′)∥

= LE∥uT
S − 1

p
∇M(uT

S , S)− uT
S′ −

1

p
∇M(uT

S′ ;S′))∥

≤ LE∥uT
S − uT

S′∥+
2L2

np

≤
L(2L+ 2C1p)

∑T
t=1 αt

n
+

2L2

np

= O
(∑T

t=1 αt

n

)
. (A.15)

where the second inequality is due to the non-expansive of M(u;S).
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B Related Work

Adversarial Attacks and Defense. Starting from the work of [34], it has now been well known
that deep neural networks trained via standard gradient descent based algorithms are highly suscep-
tible to imperceptible corruptions to the input data [17, 9, 7, 23]. This has led to a series of work
aimed at training neural networks robust to such perturbations [38, 18] and works aimed at designing
more sophisticated attacks to attack the classifiers [2, 36, 9].

Adversarial Generalization. The work of [32, 28, 44] have shown that in some scenarios achiev-
ing adversarial generalization requires more data. The work of [3, 24] explains generalization in
adversarial settings using VC-dimension. [12] studies PAC-learning guarantees in the adversar-
ial setting via VC-dimension. VC-dimension usually depends on the number of parameters in the
model, while Rademacher complexity usually depends on the weight matrices. Rademacher com-
plexity usually provides tighter generalization bounds [4]. [27] uses a PAC-Bayesian approach to
provide a generalization bound for neural networks. [33] study the generalization of an adversarial
training algorithm in terms of distributional robustness. The work of [41, 42, 21] study the gener-
alization properties in the setting of linear regression. Gaussian mixture models are used to analyze
adversarial generalization [35, 21, 13]. The work of [1] explains adversarial generalization through
the lens of feature purification.

Robust Overfitting. Starting from the work of [30], a series of work studied the causes of robust
overfitting. [43] studied robust overfitting from the perspective of adversarial distribution. [10]
leveraged knowledge distillation and self-training to mitigate robust overfitting.

Uniform Stability. Stability can be traced back to the work of [31]. In statistical learning prob-
lems, it was well developed in analyzing the generalization bounds [6]. These bounds have been
significantly improved in a recent sequence of works [15, 16]. The work of [11] discussed the
optimal trade-off between stability and convergence.

C Preliminaries: Stability analysis for generalization gap

Let D be an unknown distribution over examples from space Z . Let S = {z1, . . . , zn} ∼ Dn be
the sample dataset drawn i.i.d. from D. Our goal is to find a model w with small population risk,
defined as:

RD(w) = Ez∼Dh(w, z),

where h(·, ·) is the loss function. Since we cannot minimize the objective RD(w) directly, we instead
minimize the empirical risk, defined as

RS(w) =
1

n

n∑
i=1

h(w, zi).

Let w̄ be the optimal solution of RS(w). Then, for the algorithm output ŵ = A(S), we define the
expected generalization gap as

Egen(A, h, n,D) = ES∼Dn,A[RD(A(S))−RS(A(S))]. (C.1)

We define the the expected optimization gap as

Eopt(A, h, n,D) = ES∼Dn,A[RS(A(S))−RS(w̄)]. (C.2)

We use Egen and Eopt as short hand notations of the above definition. To bound the generalization
gap of a model ŵ = A(S) trained by a randomized algorithm A, we employ the following notion of
uniform stability.
Definition C.1. A randomized algorithm A is ε-uniformly stable if for all data sets S, S′ ∈ Zn such
that S and S′ differ in at most one example, we have

sup
z

EA [h(A(S); z)− h(A(S′); z)] ≤ ε . (C.3)

The following theorem shows that expected generalization gap can be attained from uniform stabil-
ity.
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Theorem C.1 (Generalization in expectation [19]). Let A be ε-uniformly stable. Then, the expected
generalization gap satisfies

|Egen| = |ES,A[RD[A(S)]−RS [A(S)]]| ≤ ε .

D Minimax Lower Bound

Adversarial Loss. In adversarial training, we consider the following adversarial loss

h(w; z) = max
∥z−z′∥≤ϵ

g(w; z′),

where g(w; z) is the loss function of the standard counterpart. In practice, w is usually the parameter
of neural networks. As discussed in [40, 39], even if g is a smooth function, h is not necessarily
smooth. Therefore, we mainly consider the following function class of convex, non-smooth, Lips-
chitz functions throughout the paper.

H = {h : W ×Z → R | h is convex, L-Lipshitz in w, |W | = DW }. (D.1)

If we assume that g is convex and L-Lipschitz, i.e., |g(w1; z)− g(w2; z)| ≤ L∥w1 −w2∥, it is easy
to prove that h is also convex and L-Lipschitz [39]. L-Lipschitz is a standard assumption in uniform
stability analysis since [19]. The assumption of convexity is to compare with the existing results and
to develop the following the minimax lower bound.
Definition D.1 (Training Loss). We say an algorithm class A has training loss 1/s(T ) on a function
class H, if for all A ∈ A and h ∈ H, running A on h for T iterations, we have

Eopt(A, h, n,D) ≤ O
(

1

s(T )

)
,

where limT→+∞ s(T ) = +∞.
Theorem D.1 (Minimax lower bound of generalization gap). Let H be the function class defined in
Eq. (D.1). Let A be the class of randomized algorithms using n samples with training loss 1/s(T )
on H. For all n, there exists T , s.t. the following lower bound holds.

min
A∈A

max
D

Egen(A, h, n,D) ≥ Ω

(
s(T )

n

)
. (D.2)

The proof of Thm. D.1 is based on a lower bound of the complexity of Lipschitz-convex problems
([26], Ch.4), see Appendix A.1.

Given this lower bound, a natural question is whether the usual adversarial training algorithms can
achieve this lower bound. For example, can we attain a solution with training loss 1/s(T ) = 1/

√
n

and generalization gap s(T )/n = 1/
√
n simultaneously? In the literature, the SGDmax-based

adversarial training algorithms are the most popular ones. However, we will see in the following
subsection that SGDmax can not achieve the minimax lower bound.

D.1 SGDmax does not Achieve the Minimax Lower Bound

The following theorem shows that SGDmax does not achieve the minimax lower bound.
Theorem D.2 (Uniform stability for SGDmax [39]). Suppose g(w, z) is L-Lipschitz w.r.t w, Lw

and Lz-gradient Lipschitz w.r.t w and z, respectively. Suppose in addition that g(w, z) is convex in
w for all given z ∈ Z . If we run SGD on h(w; z) with fixed step sizes αt ≤ 1/

√
T for T ≥ L2

w
steps. Then, SGDmax satisfies

Eopt ≤ O(1/Tα) and Egen ≤ LE[wT
S − wT

S′ ] ≤ 2L(Lzϵ+ L/n)Tα. (D.3)

A worst-case lower bound, E[wT
S − wT

S′ ] ≥ 2Lzϵ
√
Tα+ LTα

n , is also given in the aforementioned
work. In Thm. D.2, SGD on adversarial loss have training loss s(T ) = Tα. However, the general-
ization bound is in the order of O(Tα+ Tα

n ), which has a c(T ) gap compared to the minimax lower
bound. The existence of the n-independent term c(T ) might be a reason for robust overfitting: even
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though we have arbitrarily large number of training samples, the generalization error still increases
with T . From the stability analysis, the additional term LLzϵTα comes from the non-smoothness of
the adversarial loss h(w; z). It motivates us to design new algorithms to overcome the non-smooth
issue. We introduce our proposed algorithm, Smoothed-SGDmax, in the next section.

Lemma D.1. Assume h is l-weakly convex. Let p > l. Then, M(u;S) satisfies

1. minu M(u;S) has the same global solutions as minw RS(w).

2. The gradient of M(u;S) is ∇uM(u;S) = p(u− w(u;S)).

3. M(u;S) is pl/(p− l)-weakly convex.

4. M(u;S) is (2p2 − pl)/(p− l)-gradient Lipschitz continuous.

5. M(u;S) has bounded gradient norm L.

Remark: We focus on the case where h is convex in the main text. Then, Lemma D.1.3 and D.1.4
reduce to M(u;S) is convex and 2p-gradient Lipschitz. Lemma D.1 is stated in general l-weekly
convex cases for further theoretical studies. Since M(u;S) has the same global solutions as RS(w),
we can do adversarial training using this smooth objective M(u;S). A natural way is to perform
gradient descent to M(u;S). By Lemma D.1, the estimate of the gradient requires the estimate of
the solution of the minimization problem minw K(w, u;S).

E Further Comparison with Existing Algorithms

In Alg. 1, Step 7 is just to run SGD on K(w, u; z) = h(w; z)+p∥w−u∥2/2 instead of h(w; z). The
additional term can be viewed as a regularization term similar to weight decay. Step 10 is a model
averaging step similar to stochastic weight averaging (SWA). Therefore, we discuss the similarity of
our Algorithm 1 in detail. The summary of the comparison is provided in Table 3.

Table 3: Comparison of adversarial training, adversarial training with weight decay, adversarial
training with stochastic weight averaging, and our proposed algorithm, Smoothed-SGDmax.

Operation on w Operation on u
SGDmax (AT) Mnimizing w on RS(w) No operation on u

AT with Weight decay Mnimizing w on K(w, u;S) Set u = 0
AT with SWA Mnimizing w on RS(w) Minimizing u on K(w, u;S)

Smoothed-SGDmax (Ours) Mnimizing w on K(w, u;S) Minimizing u on K(w, u;S)

Weight Decay. Weight decay (WD) is to add a ℓ2 regularization to the empirical loss. The loss
function with WD is h(w; z) + p∥w∥2/2. Therefore, if we replace Step 10 by u = 0 in Alg. 1, the
proposed algorithm reduces to a simple weight decay regularization technique. Following the anal-
ysis in Thm. D.2, it is easy to see that adversarial training with weight decay incurs a generalization
bound in

Egen ≤ 2L(Lzϵ+ L/n)Tα, (E.1)

where the step size α ≤ 1/(Lw − p). Therefore, weight decay is not guaranteed to reduce the
additional n-independent term.

Stochastic Weight Averaging. Stochastic weight averaging suggests using the weighted average
of the iterates rather than the final one for inference. The update rules of SWA is ut+1 = τ tut+(1−
τ t)wt+1. In the work of [39], they provide a generalization bound for SWA in the case that u is the
average of the iterates, which is equivalent to using the step size ut = (t− 1)/t. The generalization
bound in this case is

Egen(SWA) ≤ (LLzϵ+ 2L2/n)Tα. (E.2)

The n-independent term is one-half of the one without SWA. However, the additional term is still
unavoidable in the analysis. SWA is still not guaranteed to achieve the minimax lower bound in this
analysis.
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Optimal Generalization Bound of SWA in our Regime. In Alg. 1, if we denote τ t = 1 − αtp,
Step 10 can be view as a weight averaging step. In Thm. 2.3, it is required that αt ≤ 1/2p.
Then, τ t = (1 − αtp) ≥ 1/2. Therefore, by fixing αtp to be constant and letting p → 0, our
proposed algorithm is reduced to SWA. In other words, our proposed algorithm can be viewed as a
general form of SWA. Also, we provide an optimal generalization bound of SWA in the regime that
τ ∈ [1/2, 1] and p → 0.

Comparison of the Algorithms. We list the theoretical results of our proposed algorithm and the
existing algorithms in Table 4. For adversarial training, adversarial training with weight decay, and
with SWA, the generalization upper bound is O(1 + 1/n) in terms of sample complexity. It is not
guaranteed to be optimal. As for our proposed algorithm, Smoothed-SGDmax (including SWA with
particular stepsizes), the generalization bound is O(1/n), achieving the minimax lower bound.

Table 4: Comparison of the stability-based generalization bounds of our proposed algorithm with the
generalization bounds of adversarial training, adversarial training with weight decay, and adversarial
training with stochastic weight averaging.

Stepsize Upper Bounds Optimal Bounds

SGDmax (AT) α ≤ 1
Lw

O(LzϵTα+ Tα
n ) %

AT with weight decay α ≤ 1
(Lw−p) O(LzϵTα+ Tα

n ) %

AT with SWA τ = t−1
t , α ≤ 1

Lw
O(LzϵTα+ Tα

n ) %

Smoothed-SGDmax (Ours) cs ≤ 1
ps , α ≤ 1

2p O(Tα
n ) !

F Experiments

Training Procedure of Smoothed-SGDmax. To have a first glance of how Smoothed-SGDmax
mitigates robust overfitting, we consider the experiments on a lightweight model, PreActResNet-18,
on CIFAR-10, CIFAR-100, and SVHN to plot the training procedure.

Training Settings. For the attack algorithms, we use ℓ∞-PGD-10 [23], ϵ = 8/255. The step
size is set to be ϵ/4. For adversarial training, we use piece-wise learning rates, which are equal
to 0.1, 0.01, 0.001 for epochs 1 to 100, 101 to 150, and 151 to 200, respectively. For Smoothed-
SGDmax, we keep the piece-wise learning rate (for the choice of cts in Alg. 1) for comparison. Be-
cause of the similarity of ℓ2 regularization term of weight decay and the proximal term in K(w, u; z),
we set p = 5× 10−4, which is a common choice of weight decay. The step size αt of updating u is
set to be 50, then τ = 1− αp = 0.995.
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Figure 2: Robust test accuracy of adversarial training and Smoothed-SGDmax on SVHN and CFAR-
100.
The training procedure of the experiments on CIFAR-10 is already provided in Introduction, Fig.
1. The experiments on SVHN and CIFAR-100 are provided in Fig. 2. For adversarial training, the
robust test accuracy starts to decrease at around the 100th epoch, which is called robust overfitting
[30]. Using Smooth-SGDmax, the robust overfitting issue is much milder. These experiments verify
the generalization bounds. The bound of Smoothed-SGDmax (which is O(Tα/n)) is much better
than the bound of adversarial training (O(Tα+ Tα/n)).
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Sample Complexity. Secondly, we study the sample complexity provided in Thm. 2.3. We use
Wide-ResNet-28× 10 with Swish activation function for better test accuracy instead of ResNet-18.
The training setting mainly follows the work of [18]. We consider two losses, adversarial loss [23]
and TRADES loss [47] for the choice of h(w; z). The total number of epochs is 400. Other training
settings are similar to the experiments on ResNet-18.
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Figure 3: Robust test accuracy and generalization gap in the experiments of training CIFAR-10
using Smoothed-SGDmax.

Adversarial Generalization Gap. CIFAR-10 only contains 50K training samples. We adopt the
pseudo-label data introduced in [8] to study the sample complexity. Increasing the percentage of
pseudo-label data is an approximation of increasing the training data. In Fig. 3, we show the robust
test accuracy (a) and adversarial generalization gap (b). The results are consistent with the theorem
that Smoothed-SGDmax reduces a term in the generalization bounds.

16


	Introduction
	Proposed Algorithm: Smoothed-SGDmax
	Smooth Surrogate Adversarial Loss
	Exact approach
	The Inexact approach

	Experiments
	Conclusion
	Proof of Theorems
	Proof of Theorem D.1
	Proof of Lemma D.1
	Proof of Thm. 2.1
	Proof of Lemma 2.1
	Proof of Thm. 2.2
	Proof of Thm. 2.3

	Related Work
	Preliminaries: Stability analysis for generalization gap
	Minimax Lower Bound
	SGDmax does not Achieve the Minimax Lower Bound

	Further Comparison with Existing Algorithms
	Experiments

