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Abstract

Data assimilation is a vital component in modern global medium-range weather
forecasting systems to obtain the best estimation of the atmospheric state by
combining the short-term forecast and observations. Recently, Al-based data
assimilation approaches have attracted increasing attention for their significant
advantages over traditional techniques in terms of computational consumption.
However, existing Al-based data assimilation methods can only handle obser-
vations with a specific resolution, lacking the compatibility and generalization
ability to assimilate observations with other resolutions. Considering that complex
real-world observations often have different resolutions, we propose the Fourier
Neural Processes (FNP) for arbitrary-resolution data assimilation in this paper.
Leveraging the efficiency of the designed modules and flexible structure of neu-
ral processes, FNP achieves state-of-the-art results in assimilating observations
with varying resolutions, and also exhibits increasing advantages over the coun-
terparts as the resolution and the amount of observations increase. Moreover,
our FNP trained on a fixed resolution can directly handle the assimilation of ob-
servations with out-of-distribution resolutions and the observational information
reconstruction task without additional fine-tuning, demonstrating its excellent gen-
eralization ability across data resolutions as well as across tasks. Code is available
athttps://github.com/OpenEarthLab/FNP.

1 Introduction

Accurately estimating the true state of complex and chaotic Earth systems is an important and
challenging task, which can contribute to a better understanding of nature and improve forecasting
by reducing the error of initial conditions. The most accurate human knowledge of the Earth’s state
comes from observations, which are inherently limited in their scopes due to practical constraints.
Data assimilation, based on limited observational information and short-term forecasts (referred to as
the background), serves as the primary approach for state estimation [38}, 21} |32]]. Traditional data
assimilation methods employed in operational systems include Kalman filters based on minimum
variance estimation and variational methods based on maximum likelihood estimation [4), 8| [49].
Taking 3D variational (3D-Var) data assimilation as an example, data assimilation is regarded as
an optimization problem under given conditions, aiming to find the analysis x, that minimizes the
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objective function J(z). It can be formulated as

ZTq = ¥ = argmin J(z) (1
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where B and R correspond to the error covariance matrix of the background z; and observation y,
respectively, and H is observation operator that maps state variables to observational space, aligning
the background and observations with different modalities (for example, satellites do not directly
observe state variables such as wind speed) and resolutions.

With the significant achievements of machine learning in medium-range weather prediction [44} 16,131}
9,11} 1511354 161], data assimilation has gained increasing attention as one of the core components in
building end-to-end global weather forecasting systems. Compared to traditional methods, machine
learning-based data assimilation models offer the potential for competitive results with significantly
reduced resource consumption and execution time [[10, 28| 62], making it a promising research
direction with practical applications. Chen et al. [[10] proposed a data assimilation model for weather
variables based on the idea of gated masks, and combined it with FengWu [9]], an advanced Al-
based weather prediction model, to build the first end-to-end Al-based global weather forecasting
system. Subsequently, data assimilation models integrated with other Al-based weather prediction
models were propsed [28, [62]]. These methods have demonstrated performance and efficiency
improvements through various experiments, but all of them can only assimilate observations with
the same resolution as the forecasting model. Therefore, they need to interpolate the observations
onto grids of corresponding resolution through pre-processing in advance, and the pre-trained models
do not have the flexibility and out-of-domain generalization to assimilate observations with other
resolutions. The pre-processing step implements part of the function of the observation operator H to
perform resolution alignment, and it will introduce additional errors inevitably, thereby affecting the
performance and generality of data assimilation methods.

Neural processes [[17, 181130} 120} 46, [42]] offer a promising and universal data assimilation framework
for addressing the aforementioned challenges. Neural processes are a series of conditional generative
models that continuously model the distribution of functions and fields based on paired coordinate-
value conditions, and generate values at arbitrary target locations based on coordinate indices. Their
flexible features that allow for grid or off-grid data are well-suited for assimilating observational
data with diverse forms, without requiring any prior interpolation or mapping [55} 2| 153} [16}154]. In
this context, data assimilation is defined as the process of generating the analysis given both back-
ground conditions and observational information conditions. The network models the comprehensive
functional representation based on the two conditional inputs and decodes it to obtain the posterior
distribution of the target. Compared to deterministic data assimilation, the modeling of distribution
by neural processes can provide uncertainty estimates and further be used for ensemble data assimi-
lation [23]]. Moreover, data assimilation task degrades to observational information reconstruction
when the background condition is missing. These two tasks can be broadly categorized as conditional
generation, enabling their straightforward integration into a unified framework for direct application
through simple fine-tuning.

In this paper, we propose the Fourier Neural Processes (FNP) for data assimilation with arbitrary-
resolution observations. FNP is flexible to adapt to varying resolutions and can be extended to
any conditional generation task. Leveraging the efficiency of the designed modules and flexible
structure of neural processes, FNP achieves state-of-the-art (SOTA) results in data assimilation
experiments with different resolutions, and demonstrates increasing advantages over other models as
the resolution and amount of observational information increase. The visualization of the analysis
showcases the promising performance of FNP in capturing high-frequency information. Importantly,
the FNP trained at a fixed resolution can be directly applied to data assimilation with other resolutions
and observational information reconstruction task without fine-tuning, highlighting its excellent
out-of-domain generalization. Additionally, ablation study for different modules and experimental
settings validate the effectiveness and robustness of our approach.

2 Related Work

Machine learning for data assimilation. There exist strong mathematical similarities between
machine learning and data assimilation, enabling their integration within a unified Bayesian frame-



work [19, 3]. With their powerful nonlinear fitting capabilities and low computational cost, machine
learning techniques can both enhance traditional data assimilation methods and provide alternative
algorithms [13}[7, 22} |56]. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are often employed as surrogate models to replace computationally expensive components
in data assimilation, such as tangent-linear and adjoint models in 4D variational (4D-Var) data
assimilation [25]], localization functions in ensemble Kalman filters (EnKF) [58]], and error co-
variance matrices [12, 45]]. Implicit neural representations (INRs) [33] and various autoencoders
(AEs) [47, 141, 1] can offer efficient order reduction frameworks for latent assimilation to address
the challenges of high-dimensional data. More recently, algorithms based on diffusion models
have also provided new solutions for data assimilation driven by the advancements and maturity of
AIGC [28]152,148]]. However, all these studies are aimed at assimilating fixed-resolution observations,
and we are the first to focus on arbitrary-resolution data assimilation.

Machine learning for observational information reconstruction. Observational information
reconstruction is the process of recovering missing values and obtaining complete field information
from limited sparse observations. Traditional reconstruction methods primarily rely on kriging
interpolation and principal component analysis-based infilling [29]. As Kadow et al. [29] successfully
applied the image inpainting techniques in computer vision to reconstruct the global temperature data,
deep learning has been widely used in various reconstruction tasks [40l 159, [15]57]. We associate
the reconstruction with the data assimilation task here, and the flexibility of our method allows the
FNP pre-trained on data assimilation task to be directly applied to the observational information
reconstruction without fine-tuning and achieve promising performance.

Neural processes family and its application in geoscience. Neural processes combine the advan-
tages of neural networks and Gaussian processes, and have demonstrated excellent performance in
function regression, image completion and classification tasks [17, [18]]. Attentive neural processes
(ANP) [30] enable the network to learn location-relevant representations by introducing the atten-
tion mechanism, which improves the accuracy of predictions and broadens the scope of modeling.
Convolutional conditional neural processes (ConvCNP) [20] model translation equivariance in the
data, adding an important inductive bias to the model and enabling zero-shot generalization to out-of-
domain tasks. Evidential conditional neural processes (ECNP) [43]] replace the standard Gaussian
distribution with a hierarchical Bayesian structure through evidence learning to achieve the decompo-
sition of epistemic-aleatoric uncertainty. Neural processes and their variants, leveraging their unique
advantages, have been successfully applied in geoscience tasks such as climate downscaling [55]],
sensor placement [2] and observational information reconstruction [S3]], and have shown promising
performance. Here we apply the neural processes to arbitrary-resolution data assimilation for the
first time and achieve SOTA performance, further demonstrating its huge application potential.

3 Methods

3.1 Model Overview

The overall framework and model details of FNP are depicted in Figure[I] Initially, the background
and observations undergo a unified coordinate transformation to obtain the coordinates x and values
y¢ of the conditional points when they are input into the network. This ensures spatial alignment of
them, even in the presence of disparate resolutions, modalities, and data formats. Subsequently, FNP
models the two components of the conditional information globally to get their respective spatial-
variable functional representation. The dynamic alignment and merge (DAM) module integrates
and aligns these functional representation into the target domain, resulting in a comprehensive
functional representation over the target space. Finally, multi-layer perceptrons (MLPs) are employed
to decode the functional representation and output the mean and variance of the analysis based on the
coordinates x? of the target points. In the following subsections, we provide a detailed description of
the process for modeling the functional representation and the internal structure of the DAM module.

3.2 Spatial-Variable Functional Representation

Modeling the functional representation involves two main steps: embedding the data sets into an
infinite-dimensional function space and performing deep feature extraction. The former is accom-
plished through the SetConv layer [20]], which is a generalized form of the standard convolutional
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Figure 1: Overview of the network architecture of FNP. Unified coordinate transformation ensures
spatial alignment of the background and observations, and extracts the coordinates and values of
the conditional points. FNP models the two components of the conditional information globally to
get their respective spatial-variable functional representation through SerConv for data embedding
and stacking of neural Fourier layers for deep feature extraction. The dynamic alignment and merge
module integrates these functional representation based on similarity to shared features and aligns
them into the target domain, resulting in a comprehensive functional representation over the target
space. MLPs are finally employed to decode the functional representation and output the mean and
variance of the analysis based on the coordinates of the target points.

layer extended to operate on sets. It takes a set of continuous coordinate-value pairs as input and
outputs a function that can be queried at continuous positions. The SezConv operation is permutation-
invariant and includes an additional channel to estimate the density of the conditional points. When
the input coordinates are discrete, SetConyv essentially degenerates into a standard convolutional
layer, simplifying the model into the on-the-grid version [[14]. We strongly recommend readers to
refer to the theoretical proofs and derivations of ConvCNP [20], and the project homepage of neural
processes family [[14] for a more detailed explanation.

The original deep feature extraction module is implemented using a standard CNN with residual
structures. We choose to replace the basic convolutional layer with a more efficient neural Fourier
layer (NFL) in FNP. Additionally, to address the multi-variable optimization problem in weather
modeling tasks, we decouple the representations in spatial and variable dimensions to reduce the
difficulty of network training. Below we provide further explanations on the motivations and
implementation details of these design choices.

Spatial-variable decoupled representation. Data for different weather variables are usually
stacked in the channel dimension, and direct data embedding will mix the spatial auto-correlation
within variables with the inter-correlation among variables. An intuitive understanding is that
explicitly separating the information in the spatial and variable dimensions allows for a clearer
learning objective for each block, thereby reducing the difficulty of network training and fully
unleashing the network’s potential. In terms of implementation, we model a spatial functional
representation separately for each meteorological variable, such as geopotential and temperature
(surface variables are treated together as one variable), and model a variable functional representation
that encompasses all variables, which are then concatenated together. The benefits of this approach
have been confirmed in our experiments. We found that the spatial-variable decoupled (SVD)
representation achieves better performance with fewer parameters and faster convergence speed. The
detailed comparison of performance can be seen in Table[3]

Neural Fourier layer. The smoothness of neural network outputs poses a challenging drawback in
weather modeling tasks, and the background generated by Al-based forecasting models also tends to
be smoother. In our experiments, we find that neural processes also struggle to overcome the issue
of smoothness. To address the desire for high-frequency information, we choose to introduce the



Fourier neural operator [34]. Besides, operations in the frequency domain can also bring additional
advantages in terms of global receptive fields for models based on CNN. Therefore, in addition to
the convolutional operation, each neural Fourier layer consists of a branch for linear operation in the
frequency domain and a branch for identity mapping to preserve high-frequency details as much as
possible [26]].

3.3 Dynamic Alignment and Merge

The DAM module aligns functional representations from two conditional domains to the target
domain for obtaining outputs at the target locations. In data assimilation tasks, the analysis typically
shares the same resolution and modalities as the background, and the previous data embedding has
already mapped inputs that may have different modalities into the same feature space. Therefore, it
is only necessary to align the functional representation of the observation in the spatial resolution.
We choose to use interpolation to adjust the spatial dimensions’ size as it can accommodate inputs
of arbitrary resolutions, thereby enhancing the dynamics and generality of the model. Interpolation
in the feature space differs fundamentally from that in the original observational space because the
former has already extracted helpful information and contains redundancy to support dimensionality
reduction, while the latter compresses valid information and missing values to the same extent. The
performance of data assimilation with different resolutions in Table [I] provides proof for this. As
the amount of observational information increases, our model achieves significant improvements,
while other models do not. A linear layer extracts shared features ¢ from both parts after alignment,
which are then used to calculate similarities with their respective feature components. The similarity
calculation is performed in the channel dimension as the spatial distribution of information differs
significantly between them, with the background having a more uniform spatial distribution while
the observation exhibits greater spatial variability. In our implementation, the feature similarity is
represented by the Euclidean distance between the two features, i.e.,
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where h and w denote the indices for each grid point along the longitudinal and latitudinal directions,
respectively, and £ is the dimension of data embedding. The relative values of the similarity map then
determines the selection of features. Specifically, features that are more similar to shared features
will be retained, while features that are less similar will be discarded, that is,
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The dynamically filtered features will be spliced together with the shared features and sent to a
convolutional layer for spatial smoothing, and the result will be used as the functional representation
in the target domain for decoding and output.

4 Experiments

4.1 Experimental Settings and Implementation

Data preparation. We demonstrate the effectiveness of our methodology on the ERAS dataset [27]],
a global atmospheric reanalysis archive containing hourly weather variables such as geopotential,
temperature, wind speed, humidity, etc. We choose to conduct experiments on a total of 69 variables,
including five upper-air variables with 13 pressure levels (i.e., 50hPa, 100hPa, 150hPa, 200hPa,
250hPa, 300hPa, 400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, and 1000hPa), and four surface
variables. Specifically, the upper-air variables are geopotential (z), temperature (t), specific humidity
(q), zonal component of wind (u) and meridional component of wind (v), whose 13 sub-variables at
different vertical level are presented by abbreviating their short name and pressure levels (e.g., zS00
denotes the geopotential at a pressure level of 500 hPa), and the surface variables are 10-meter zonal
component of wind (ul10), 10-meter meridional component of wind (v10), 2-meter temperature (t2m)
and mean sea level pressure (msl). A subset of ERAS dataset for 40 years, from 1979 to 2018, is
chosen to train and evaluate the model.



Experimental settings. The advanced Al-based weather forecasting model, FengWu [9], is used
as the surrogate model to generate the background. The observations are simulated by adding a
proportional mask to ERAS, and the default setting corresponds to 24-hour forecast lead time and
10% observations. In other words, the background used for data assimilation is produced by FengWu
(with 6-hour interval) through four auto-regressive iterative predictions based on ERAS data from
one day ago. The observational space usually has higher spatial resolution than the state space in
actual operation systems. Therefore, the resolution of the forecasting model and background is set
to 1.40625° (128 x 256 grid points) so that we can conduct experiments using observations with
different resolutions such as 0.25° (721 x 1440 grid points) to verify the assimilation performance
with arbitrary resolution.

Model training and evaluation. The FNP model is implemented based on the open-source code of
the neural processes family project [14], and trained for 20 epochs using the AdamW optimizer [39]
with a learning rate of le-4. We divide the ERAS data from 1979-2015 as the training set, 2016-2017
as validation set, and 2018 as test set. The training is run on 4 NVIDIA Tesla A100 GPUs with a
global batch size of 16, and takes approximately 2.5 days. The inference only needs a few minutes to
perform data assimilation for a whole year on single A100 GPU. The dimension of data embedding
for default setting is 128 and the number /N of NFLs is 4, and a Gaussian likelihood is used with a
negative log-likelihood (NLL) loss. We evaluate the performance of models by calculating the overall
mean square error (MSE), mean absolute error (MAE), and the latitude-weighted root mean square
error (WRMSE) which is a statistical metric widely used in geospatial analysis and atmospheric
science [I50} I51]]. Given the estimate £, . and its ground truth xj, ., . for the c-th channel, the
WRMSE is defined as

WRMSE(c) = \/ T S Hr et (0 = ) )

ht =1 €os(An/ 1

where H and W represent the number of grid points in the longitudinal and latitudinal directions,
respectively, and «, 4, is the latitude of point (h, w).

4.2 Arbitrary-Resolution Data Assimilation

We validate the performance of models by assimilating 10% observations with resolutions of 1.40625°,
0.703125°, and 0.25°, respectively, onto a 24-hour forecast background with 1.40625° resolution.
Table [I] provides a quantitative comparison of the analysis errors between FNP and other models.
The first row corresponds to the error level of the background. When assimilating observations with
the same resolution as the forecasting model, FNP achieves SOTA results (indicated in bold) in
terms of overall MSE, MAE, and WRMSE metrics for the majority of variables. Since Adas [10]
is not flexible enough to support inputs with different resolutions, we follow its common practice
to interpolate the observations and average the observations falling within the corresponding grid
range when assimilating higher-resolution observations. Despite this, Adas still produces results with
significantly high errors, so we only present the performance after fine-tuning to the interpolated
observations. This indicates that Adas lacks the ability of out-of-domain generalization. In contrast,
FNP and ConvCNP [20], with their flexible structures, can assimilate observations with different
resolutions directly without interpolation. Therefore, the table presents the results for both cases with
and without fine-tuning for FNP and ConvCNP.

In order to better understand and explain the performance of different models, we add different
colors to represent the variations in results compared to that with 1.40625° resolution (blue indicating
worse results, i.e., increased errors, and red indicating improved results). For the q700 variable,
we additionally annotate the percentage of error increase or decrease. It is worth noting that with
increasing resolution, the same ratio of observations implies a greater number of absolute observations
and a larger amount of information. However, during the interpolation process, averaging the
observation values within a region does not guarantee a reflection of the overall conditions unless
there are observations at all points within the region. Therefore, interpolation inevitably leads to
information loss, and the amount of lost information is negatively correlated with the number of
observations within the region. Based on the balance between these two factors, the fine-tuned
Adas exhibits different trends with two different resolutions: the results generally improve when
assimilating observations with 0.703125° resolution, while all the results worsen when assimilating
observations with 0.25° resolution. This indicates that as the resolution increases gradually, the impact
of information loss due to interpolation becomes more significant and surpasses the positive effect of



Table 1: Quantitative performance comparison for arbitrary-resolution data assimilation. The best
performance are shown in bold while the second best is underscored. Red color indicates the improved
assimilation results compared to that with 1.40625° resolution, and blue color indicates worse results.

Model Resolution | MSE ~ MAE WRMSE
2500 850  ©m  uld  vI0  uS00  v500  q700 (10~

Background 140625° | 0.0288 0.0861 | 45455 07200 07790 09336 09645 17278 17535 67220
Adas [10 140625° | 0.0221 0.0705 | 22,930 0.6323 07198 08198 0.8369 14673 14489 64955
ConvCNP [20] 140625° | 00252 0.0795 | 31.253 06831 07662 08334 08553 15770 15876 65717
ENP (ours) 140625° | 0.0202 0.0664 | 26910 06600 07049 0.7558 07665 1.4263 14450  6.4691
Adas [I0 0.703125° | 0.0144 00614 | 26423 0.5981 0.6696 0.6631 06552 12935 11975 53798 117.2%
ConvCNP [20] w/o fine-tuning | 0.703125° | 0.0378 0.1134 | 142.38 09106 08471 12264 L1115 29765 2.6264 5.7900 111.9%
ConvCNP [20] 0703125° | 0.0202 0.0712 | 25452 05923 07861 05812 0.6339 13795 14331 5.7562 |12.4%
FNP (ours) wo fine-tuning | 0.703125° | 0.0150 0.0618 | 52.075 06021 07385 07052 0.6833 13723 13036 54333 116.0%
FNP (ours) 0.703125° | 0.0085 0.0419 | 20.710 0.5805 05310 0.4457 0.4406 09032 09180 4.5296 130.0%
Adas [T0] 025° | 0.0231 0.0766 | 34.694 0.6979 07728 0.8455 0.8537 15864 1.5265 6.5019 10.10%
ConvCNP [20] w/o fine-tuning | 0.25° | 0.0651 0.1514 | 23450 13208 0.8705 17134 15122 41316 3.6655 6.66191137%
ConvCNP [20 025° | 0.0280 0.0831 | 26437 0.6326 07429 09283 09640 17265 17533 6.3612 13.20%
FNP (ours) w/o fine-tuning 025° | 0.0196 00729 | 84.516 0.6992 0.6912 09264 08687 18315 1.6723 6.1761 14.53%
ENP (ours) 025° | 0.0058 0.0339 | 19996 04549 04999 03839 03753 0.6308 0.5320 2.9614 |54.2%

increased observation quantity. In practice, the observational data used in operational systems usually
have resolutions of 0.1° or even higher, while the resolution of the most commonly used forecasting
models is 0.25°. Therefore, the information loss caused by interpolation in existing methods is a very
common and urgently addressed issue.

In contrast, the fine-tuned FNP not only achieves SOTA performance in all metrics (including the z500
and t850 variables, in which FNP does not reach the optimum results with 1.40625° resolution), but
also improves all assimilation results with the largest magnitude of error reduction. The performance
differences between FNP and other models increases significantly with increasing resolution, and
the WRMSE decreases on some variables such as v10, u500, v500 and q700 are even more than
50% when assimilating observations with 0.25° resolution. Furthermore, as the absolute number of
observations increases, providing more information, FNP is the only model that consistently improves
the performance of data assimilation. This plays a crucial role in practical applications, as it means
that all deployed observation instruments can be fully utilized, reducing the waste of human, material
and financial resources as much as possible.

The results without fine-tuning reflect the out-of-domain generalization capability of models, as they
have not encountered observational data with other resolutions during training. As the resolution
increases, the discrepancy between the samples used for testing and the visible samples during
training becomes larger, leading to a gradual decline in performance. This regular pattern can be
observed in the assimilation results of both FNP and ConvCNP. However, the increased quantity of
observations and information will bring the benefits, resulting in improved performance for some
variables in out-of-domain settings, although the number of such variables decreases as the resolution
increases. FNP consistently outperforms ConvCNP in terms of the number of variables showing
improvement and even exhibits superior performance to fine-tuned versions of other models in some
variables. This demonstrates the excellent out-of-domain generalization capability of our method in
adapting to changes in resolution, and this capability is also applicable to changes in background
resolution theoretically.

Figure [2] presents the visualization of assimilation results by different models for 700, with the
visualization date-time randomly selected at 2018-04-02 06:00 UTC. The first row displays the ERAS
(ground truth), background, background error (background minus ERAS), and raw observations with
a resolution of 0.25°. Other rows show the analysis, analysis increment (analysis minus background),
and analysis error (analysis minus ERAS) obtained through data assimilation by different models,
as well as the interpolated observations for Adas and analysis variances for ConvCNP and FNP.
The background is smoother compared with ERAS, and the background error shows high spatial
variability. It can be observed that FNP accurately captures the distribution pattern of the background
error, leading to analysis with rich high-frequency information and significantly reduced analysis
error. The comparison with ConvCNP, which also assimilates raw observations directly, confirms that
FNP’s excellent ability to capture high-frequency features does not sorely rely on higher-resolution
observations. Furthermore, the smaller analysis variance also indicates a lower uncertainty in state



estimation achieved by FNP. More visualizations with different variables and resolutions are shown
in Appendix
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Figure 2: Visualization of assimilation results by different models for q700. The visualization
date-time is randomly selected at 2018-04-02 06:00 UTC. The first row shows the ERAS (ground
truth), background, background error and observations with 0.25° resolution. Other rows show the
assimilation results of different models.

Data assimilation aims to improve weather forecasting results by reducing initial errors. Therefore, it
is crucial to explore the impact of different methods on forecast error reduction. Figure 3| provides
results on the forecast WRMSE improvement of z500 variable over the next ten days through data
assimilation, where lead time O corresponds to the reduction of initial errors. Darker colors indicate
stronger improvements, meaning a greater reduction in forecast errors compared to not using data
assimilation. Similar to the results of data assimilation, FNP consistently achieves state-of-the-art
results in most cases, with its advantage becoming more pronounced as the resolution increases.
Moreover, FNP is the only model that strictly enhances forecast improvement with increasing
resolution and observational information. Additionally, apart from the accuracy of initial values
affecting forecast errors, the physical characteristics of the initial states (e.g., physical balance) also
influence the rate of forecast error growth. FNP demonstrates greater improvements in forecast errors
at all lead times compared to improvements in initial errors, indicating that FNP not only reduces
forecast errors but also slows down the growth rate of forecast errors. Other models do not exhibit
the same trend, further highlighting the superior characteristics of the initial states produced by FNP.

4.3 Generalization to Observational Information Reconstruction

Theoretically, the functional representation learned based on observational conditions can be directly
decoded through MLPs and output reconstruction results for the observational information without
fine-tuning. Therefore, we evaluated the reconstruction performance of different models in the
absence of the background conditions, as shown in Table 2] Similarly, Adas pre-trained on data
assimilation task, cannot be directly used for information reconstruction. Hence, the table only



2500 WRMSE improvement of forecasts (m?/s?)

Adas (1.40625°)1 22.52 25.11 29.46 3472 39.62 3949 3550 31.03 2741 2479 2196 18.18

ConvCNP (1.40625°) { 14.20  17.55 36.45 2324 1941

FNP (1.40625°) 1 18.55 24.32 3285 27.37

Adas (0.703125°) 1 19.03  24.69 2273 17.35

ConvCNP (0.703125°) { 20.00  24.06 23.17 18.56
FNP (0.703125°) { 24.75 29.88 63.04 . 3599 29.54
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Figure 3: Quantitative comparison of different data assimilation methods on the improvement of
forecast errors for the next ten days.

presents the performance of retrained Adas, while both FNP and ConvCNP show results with and
without fine-tuning. The fine-tuned FNP achieves SOTA performance across all metrics, while FNP
without fine-tuning also demonstrates good generalization.

Table 2: Performance comparison in observational information reconstruction with 10% observations.

Model Ratio‘ MSE  MAE WRMSE

2500 850  ©2m  wl0  vi0 w500 v500  q700 (10~4)
Adas [T0] 10% | 0.0370 0.1006 | 46592 1.0482 13715 11539 L1711 2.0015 19932  9.5399
ConvCNP [20] wio fine-tuning | 10% | 0.0376 0.1042 | 67.098 10630 14864 12482 12756 19896 20312  9.3894
ConvCNP [20] 10% | 0.0350 0.0933 | 59.864 0.8789 0.8219 12165 12145 19715 20069  6.8643
ENP (ours) w/o fine-tuning 10% | 00355 0.1014 | 45.835 1.0378 13382 L1723 12024 19559 1.9075  9.1517
FNP (ours) 10% | 0.0291 00876 | 35.491 07298 0.8027 09411 09716 17464 17564  6.7258

4.4 Ablation Study

We conduct ablation experiments on both the designed modules employed in FNP and experimental
settings. Table[3]presents the quantitative performance comparison of FNP when different components
are replaced. The overall MSE, MAE, and WRMSE metrics of all variables exhibit varying degrees
of performance degradation when a specific module in FNP is replaced. FNP achieves the best
performance when these designed components work in synergy and mutually reinforce each other.

Table 3: Ablation study of different components in FNP for data assimilation with 1.40625° resolution.

Model Resolution | MSE ~ MAE WRMSE
2500 850 ©m  ul0  vl0  uS00  v500  q700 (10~4)
Background 1.40625° | 0.0288 0.0861 | 45455 07200 07790 09336 09645 17278 17535 67220

FNP w/o NFL 1.40625° | 0.0230 0.0749 | 30.040 0.6733 0.7504 0.8212 0.8254 1.5459 1.5566 6.4941
FNP w/o DAM | 1.40625° | 0.0214 0.0702 | 30.189 0.6816 0.7138 0.8248 0.8090 1.4674 1.4831 6.5631
FNP w/o SVD 1.40625° | 0.0239 0.0757 | 27.588 0.6683 0.7555 0.7805 0.8430 1.5743 1.5789 6.5538
FNP 1.40625° | 0.0202 0.0664 | 26.910 0.6600 0.7049 0.7558 0.7665 1.4263 1.4450 6.4691

Ablation study on the experimental settings is conducted by changing the forecast lead time of the
background and the ratio of observations while keeping a fixed resolution of 1.40625°. Table 4]
provides a quantitative performance comparison of different models when the observation proportion
is reduced to 1% and when the forecast lead time of the background is extended to 48 hours. In
these scenarios, all the models exhibit robustness and consistently improve the background. When
the number of observations decreases or the background error increases, the amount of conditional



information they can provide becomes less, so it is reasonable to observe an increase in analysis error
compared to Table (1| Similarly, FNP achieves SOTA performance in terms of overall MSE, MAE,
and WRMSE for the majority of variables.

Table 4: Ablation study on the forecast lead time of the background and the ratio of observations.

Model Ratio | MSE  MAE WRMSE
2500 850  ©@m  ul0  vI0  uS00  v500  g700 (10~%)

24h Background | - | 0.0288 0.0861 | 45455 07200 07790 09336 09645 17278 17535 67220
Adas 0] 1% | 00272 00835 | 30.595 07178 07771 09115 09406 16881 17141  6.7074
CovCNP 200 | 1% | 0.0283 0.0856 | 43272 07186 07785 09286 09574 17203 17428 67173
FNP (ours) 1% | 00269 0.0812 | 30678 0.6971 0.7708 09069 09351 1.6586 1.6778  6.7084
48hBackground | - | 0.0467 0.1148 | 85017 09103 09283 12525 12882 23583 23856 82664
Adas [10] 10% | 0.0305 00840 | 30473 0.7355 08134 10047 10176 17747 17217  7.8209
ConvCNP [20] | 10% | 0.0334 0.0918 | 40378 07774 08619 09251 09422 18112 18160  7.7774
FNP (ours) 10% | 00252 0.0743 | 28.883 07459 0.7810 0.8307 08517 1.6285 1.6348  7.6078

5 Conclusions

In summary, we present FNP that can assimilate observations with arbitry resolution. The outstanding
performance and out-of-domain generalization of FNP in data assimilation and observational infor-
mation reconstruction demonstrate its significant potential and broad application prospects. It not
only contributes to the field of data assimilation but also makes meaningful explorations for Al-based
end-to-end weather forecasting systems. Technically and theoretically, this methodology can also
be applied to more tasks and scenarios, such as downscaling [37], station-scale state estimation and
weather prediction [36] (60, 24]].

Our work has certain limitations. Firstly, the observational data used in our experiments are generated
through simulations rather than real-world observations. This may lead to differences in model
performance when applied in actual scenarios, thus discounting its value for practical application. In
fact, due to the complex and diverse nature of real observational data, the data assimilation community
lacks relevant benchmarks and large-scale datasets. The establishment of such benchmarks and
datasets would be a highly meaningful endeavor, enabling fair comparisons among different models
and fostering rapid advancements in the field. Secondly, FNP inherently performs 3D data assimilation
without the temporal dimension. Considering the flexibility of the FNP architecture, incorporating
the temporal dimension is not challenging and is expected to produce additional benefits. In the
future, we will further explore the broader possibilities of data assimilation and end-to-end weather
forecasting.
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A Data Availability

The ERAS dataset can be downloaded from the official website of Climate Data Store (CDS) at
https://cds.climate.copernicus.eul

B More Visualizations for Data Assimilation
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Figure 4: Visualization of assimilation results with 0.25° resolution for ul0.
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Figure 5: Visualization of assimilation results with 0.25° resolution for t2m.
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Figure 6: Visualization of assimilation results with 0.25° resolution for z500.
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Figure 7: Visualization of assimilation results with 0.703125° resolution for q700.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors in
Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in Section [d]and released code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the code in Appendix ??, and the data used
in the paper is an open-source dataset.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results in Section 4] and released code.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not report error bars, like other related work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments in Section 4]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Section 5}

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or websites that produced the code or dataset, and
the data used in the paper is an open-source dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code in the paper is well documented and the documentation is provided
alongside the code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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