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Abstract

Recent research has focused on providing the
right incentives to learning agents in dynamic
settings. Given the high-stakes applications, the
design of reliable and trustworthy algorithms
for these problems is paramount. In this work,
we define the Bilevel Optimization on Contex-
tual Markov Decision Processes (BO-CMDP)
framework, which captures a wide range of
problems such as dynamic mechanism design
or principal-agent reward shaping. BO-CMDP
can be viewed as a Stackelberg Game where
the leader and a random context beyond the
leader’s control together configure an MDP while
(potentially many) followers optimize their strate-
gies given the setting. To solve it, we propose
Hyper Policy Gradient Descent (HPGD) and
prove its non-asymptotic convergence. We make
very weak assumptions about the information
available. HPGD does not make any assumption
about competition or cooperation between the
agents and allows the follower to use any training
procedure of which the leader is agnostic. This
setting aligns with the information asymmetry
present in most economic applications.

The Markov Decision Process (MDP) (Puterman, 2014) is a
versatile framework to model sequential decision-making
problems in health care (Yu et al., 2021), energy systems
(Perera & Kamalaruban, 2021), economics (Charpentier
et al., 2021), and finance (Hambly et al., 2023) among many
others domains. Much work exists on finding optimal poli-
cies for a given MDP (Sutton & Barto, 2018). However,
in many applications, an MDP can be configured on pur-
pose or affected by exogenous events, both of which can
significantly alter the optimal decision-making policies.

Consider for instance a macroeconomic model in which
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households optimize their consumption and resource alloca-
tion to maximize utility. Their optimal behavior depends on
exogenous variables such as macroeconomic trends, prices,
or geopolitical events that are beyond the control of any
participant in the system. Value-added and income tax rates,
however, can be configured and optimized by a central au-
thority optimizing the system’s overall welfare. We formal-
ize several important economic problems, such as dynamic
mechanism design, tax design for macroeconomic model-
ing, a dynamic principal-agent problem, as well as meta RL
in our problem formulation in Appendix A.

In this work, we address how to optimize configurations
for a contextual MDP when some parameters are config-
urable while others are stochastic. We propose the Bilevel
Optimization on Contextual Markov Decision Processes
(BO-CMDP) framework that generalizes many previous
models including Configurable MDPs (Metelli et al., 2018),
contextual bilevel optimization (Hu et al., 2024), adaptive
model design (Zhang et al., 2018; Chen et al., 2022), and
Meta-RL (Beck et al., 2023), and finds many applications
in the dynamic Stakelberg Games (Gerstgrasser & Parkes,
2023; Wang et al., 2023), Security Games (Sinha et al., 2018;
Letchford & Vorobeychik, 2013), dynamic mechanism de-
sign (Curry et al., 2024), and economics (Curry et al., 2023;
Zheng et al., 2022; Hill et al., 2021). We discuss related
works in detail in Appendix B.

To solve BO-CMDP, we propose Hyper Policy Gradient
Descent a stochastic bilevel optimization algorithm that is
agnostic of the learning dynamics of the agent. We establish
the non-asymptotic convergence rate of our algorithm to
a stationary point of the overall objective. Additionally,
we demonstrate the performance of HPGD in a grid-world
design problem and showcase that in most cases it matches
the performance of benchmark algorithms with stronger
assumptions and for certain parameters it outperforms them.

1. Problem Formulation

We consider a bilevel optimization problem, where the fol-
lowers solve Contextual Markov Decision Processes (CM-
PDs) and the leader (partially) controls the configuration
of the CMDPs. In particular, the leader chooses a param-
eter + € X C R? and nature chooses a random con-
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text & according to a distribution P.. Together (z,§) pa-
rameterizes an MDP M, ¢, which the follower aims to
solve. M, ¢ is defined by a tuple (S, A, 74.¢, Py ¢, fla.g,7)s
where S denotes the state space, A denotes the action
space, T3 ¢(+,-) + S x A — R is the reward function,
Poe(-,-) : S xS x A — [0,1] denotes the transition ker-
nel, y, ¢ indicates the initial state distribution, and -y is the
discount factor. The subscript x, £ implies that rewards, tran-
sitions, and initial state distribution depend on the leader’s
decision z and the context £. Connecting to previous works,
for a fixed x, M, ¢ is a contextual MDP (Hallak et al.,
2015) with respect to £. For a fixed £, M, ¢ generalizes
a configurable MDP (Metelli et al., 2018). Given M, ¢,
the follower maximizes an entropy-regularized objective
by choosing a policy 7, ¢, where 7, ¢(a; s) denotes the
probability of choosing action a in state s.

xSy (1) = B [V (5)]

> (H
=E,, lE}r’M lZ’yt Ty e(St,ar) + NH(; st))H
t=0

where sg ~ fig¢, ar ~ T(58¢), Se41 ~ Pre(:;8¢,a:) and
H(m;s) =3, m(a;s)logm(a;s). We call A > 0 the reg-
ularization parameter and V' . the value function. As
standard in RL literature, we define the related Q and advan-
tage functions as:

Qg,x,i (s,a) = Tz (s,a) + FY]ES'NPm,é(ﬁS:a) [VATHC,E(S/)]
= Q% uels,a) = D _m(a'5)Q3 ,e(sa').
(2)

Nag(s:a)

a

The unique optimal policy for (1) is denoted by 7}, (s;a) x
exp(Q3 , ¢(s,a)/A), ie., the softmax of the optlmal Q-
function (Nachum et al., 2017)." Given z 7r$7 and &, the
leader in turn incurs aloss f(x, 74¢, &) € R, which it wants
to minimize in expectation over P¢. BO-CMDP can thus be
formulated as the following stochastic bilevel optimization.

mlin F(z) = Ee[f (v, 75 ¢, )]

where 7% . = argmax Jy g ¢ (7).
s

(leader, upper-level)

(follower, lower-level)

3
Equation (3) is well-defined due to entropy regulariza-
tion, which ensures the uniqueness of 7 Entropy-
regularization also turns 7}, . differentiable, often stabilizes
learning and appears in previous works (Chen et al., 2022).
Moreover, the difference between the entropy-regularized
and unregularized problem generally vanishes as A goes to
0 (Chen et al., 2022; Dai et al., 2018; Geist et al., 2019).

"For brevity, we notationally drop the dependence of 7, ¢ on
A, but keep it for V7, . to emphasize the entropy-regularization.

2. Hyper Policy Gradient Descent Algorithm
for BO-CMDP

In this section, we derive a simple expression for the
hypergradient of BO-CMDP. We present HPGD and prove
non-asymptotic convergence. We show this is the case for
several popular RL algorithms. In Appendix C, we present
further results for two important special cases of our prob-
lem: (1) when the upper-level objective decomposes as a
discounted sum of rewards over the lower-level trajectories,
and (2) when the leader can direct the lower-level algorithm.
The proofs of the results in this Section are deferred to
Appendix E. We make the following standard assumptions
on how x and ¢ influence the setup of the CMDP.

Assumption 2.1. We assume that f is L ¢-Lipschitz and
Sy-smooth in z and m, uniformly for all § and that
Va,€ ¢ |ree(s,a)| < R, [|0plog Pre(s'ss,a)|l < Ki,
10272.6(s,a) ||, < K.

2.1. Hypergradient derivation

The leader’s loss f depends on both x and the optimal pol-
icy m; . Therefore, the derivative of f with respect to x
is commonly referred to as the hypergradient to highlight
this nested dependency. Using the implicit function the-
orem (Ghadimi & Wang, 2018), we obtain a closed-form
expression of the hypergradient. However, it involves com-
puting and inverting the Hessian of the follower’s value
function, which can be computationally expensive and un-
stable (Fiez et al., 2020; Liu et al., 2022). Instead, we
leverage the fact that the formulation of 77, . is a softmax
function and explicitly compute its derlvatlve with respect
to z. Applying the Dominated Convergence Theorem to
switch derivative and expectation, we arrive at Theorem 2.2.

Theorem 2.2. Under Assumption 2.1, F is differentiable
and the hypergradient is given by

dF(@) _p |0S@ et
dx - ox
1 62,](‘(3;’77;,.5’6) e
+ Es~u armt [AV( ) 671';’5 ((l; S) azA)\,x,f(S, a)

“
where v is any sampling distribution with full support on
the state space S.

The first term captures the direct influence of = on f, and the
second is the indirect influence through 7 .. We assume
the leader knows 0 f (-, 7, §) and 0 f (z, -, £). To compute

Oz A:Zf{(s, a), i.e. the partial derivative with respect to x

for a fixed policy, we need to know 6,%Qi\r””§§(s, a) (cf. (2)).
We derive an expression for the latter in Theorem 2.3. The
proof adapts the analysis of the policy gradient theorem to

account for the dependence of P, ¢, 15 ¢ and 75 ¢ on x.
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Algorithm 1 Hyper Policy Gradient Descent (HPGD)

Input: Iterations 7, Learning rate «, Regularization A,

Trajectory oracle o, Initial point ¢
fort =0toT — 1do
§~Pe,s~vanda~my . (8)

_—

8$A:2f§(s,a) + GradEst (&, x4, s,a,0) (Alg. 2)
o f (24,72, ¢.£)) 0x A% (5,0)
o (s,a) Av(s)

aF O f(me,my, ¢,€)
aF 1 z¢,€
dx = ox +

dF
7 dz

Tyl < Tt —
end for

Output: &7 ~ Uniform({zo,...,zr-1})

Theorem 2.3. For given w, x, &, it holds that:

i LAdry e 5 St, at)

dlog Py ¢(S¢41; 8¢, a
N g P (8t+1; 8¢, ar)

8Q>\r§3a

dl’ V)\Ttw,f(st+1) :

Note, Theorems 2.2 and 2.3 generalize existing results
in model design for MDPs to CMDPs (Chen et al., 2022;
Zhang et al., 2018).

2.2. HPGD Algorithm and Convergence Analysis

To minimize F'(x), one would ideally sample unbiased
estimates of the hypergradient in Equation (4) and run
stochastic gradient descent (SGD). However, the leader
does not have access to m, . and generally no control
over the training procedure of the lower level. Instead, we
assume the follower adapts any preferred algorithms to
solve the MDP up to a certain precision J and the leader
can only observe trajectories from the follower’s policy, as
motivated by several practical applications.

Assumption 2.4. For any M, ¢, the leader has access to an
oracle o, which returns trajectories sampled from a policy

2
79 ¢ such that Vz, V¢ : E, “w;g—ngEH ] < 82,
’ ’ > lloo

We will show that Assumption 2.4 is relatively mild and
holds for a variety of RL algorithms. Given access to tra-
Jectories generated by 77 ., the leader can construct an

estimator of 8,@14:275 (s,a) by rolling out 77 . for T steps,
where T ~ Geo(1 — «). We defer the constructlon (Al-
gorithm 2) and proof of unbiasedness (Proposition E.2) to
the Appendix. Using this estimator, we introduce HPGD in
Algorithm 1. As F'is generally nonconvex due to the bilevel
structure (Ghadimi & Wang, 2018), we demonstrate non-
asymptotic convergence to a stationary point of F', which
matches the lower bound for solving stochastic smooth non-
convex optimization (Arjevani et al., 2023).

Theorem 2.5. Under Assumption 2.1 and Assumption 2.4,
we have the following result for HPGD:

dF(@r)||° ./ 1

For a = O(1/V/T) and § = O(1//T), HPGD converges
to a stationary point at rate O(1//T).

Proof sketch.  Using the smoothness of F' and the fact
that 7 is uniformly sampled from all iterates, we upper
bound the left side of (5) by the sum of three terms. The
first is |F'(xo) — min, F(x)|/aT. The second depends on
the bias of our gradient estimate, which we show is linear
in 6. The last term depends on « times the variance of our
estimator, which is bounded. O

A major advantage of HPGD is that the follower can use
a multitude of algorithms to solve the lower-level MDP,
while the leader only needs access to generated trajectories.
While Assumption 2.4 certainly holds if the follower solves
the MDP exactly, for example with an LP-solver, we are
interested in verifying Assumption 2.4 for common RL
algorithms, which can scale to larger state and action spaces.
In Appendix E, we prove non-asymptotic convergence
to 7y . for Value Iteration, which converges at rate

(log 1/0) (Proposition E.4); Q-learning, which converges
at rate of O(log(1/8)/6?) (Proposition E.5) and Natural
Policy Gradient, which converges at rate of O(log1/9d)
(Proposition E.7). Additionally, we show Vanilla Policy
Gradient converges asymptotically in Proposition E.6. All
these Algorithms thus satisfy Assumption 2.4, which makes
HPGD widely applicable and the followers might use a
variety of model-free or model-based algorithms.

3. Numerical Experiments
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Figure 1. Upper-level objective values, F', over the number of outer
iterations. HPGD escapes local optima achieving higher perfor-
mance than comparison algorithms.

We illustrate the performance of HPGD in the Four-Rooms
environment and compare it to Adaptive Model Design
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(AMD) (Chen et al., 2022) and a zeroth-order gradient
approximation algorithm. We describe the algorithms in
Appendix F.1.1 and Appendix F.1.2. Technical details about
the implementation are deferred to Appendix (F.2).

The Four-Rooms environment consists of a grid world di-
vided into 4 rooms as shown at Figure 2. S denotes the
initial position while G' and G? are goal states. We con-
sider the two goal states as separate tasks and define ¢ in
Equation (3) to be the uniform distribution over the set of
tasks, i.e., & ~ Uniform({1, 2}). We denote the goal state
in each task by G¢. The state space S is defined by the
cells of the grid world while the actions are the movements
in the four directions. In each step ¢, with probability 2/3,
the agent moves to s;4; following the chosen direction a;
while it takes a random movement with probability 1/3.
The reward is always zero except when s; = G¢ where
r(s¢, a;) = 1, and the episode resets. To incentivize taking
the shortest path, we set the discount factor as v = 0.99.

For the upper level, we let x parameterize an additive penalty
function 7, : § x A — [—0.2,0.0] 2, such that the follower
receives a reward of 7, as in the principal-agent problem
(Ben-Porat et al., 2024). The goal of the leader is to steer
the followers through the cell marked with +1 in Figure 2,
denoted by s*!, while keeping the penalties allocated to
states to their minimum. We define 7 in Equation (7) as

Fm,g(stv at) = ]I{st:s+1} - ﬂ]l{st:G5} Zs @ fr(sv (1),

where I is the indicator function and the second term
defines the cost associated with implementing the penalties
for the lower level. Note that there is a trade-off between
the terms in 7 depending on the context variable £. If £ = 2,
the desired change in the follower’s policy can be achieved
with small interventions since the shortest path from S to
G? is already going through the bottom-left room. When
¢ = 1, the leader must completely block the shortest path
from S to G' to divert the follower through the desired
state. An efficient algorithm for this BO-CMDP problem
therefore must avoid the local optimum of setting 7 = 0
and find the balance between the follower visiting state s**
and implementing large quantity of penalties in the CMDP.

Figure (1) depicts the upper-level’s objective function over
the learning iterations ¢ with hyperparameters A = 0.001
and 3 = 1.0. HPGD outperforms both AMD and the zero-
order algorithms in this instance in terms of overall perfor-
mance. The major difference in their performances is that
HPGD successfully escapes the local optimum of 7 = 0
after about 5000 steps and assigns all the additive penalty
budget to states in the grid world. On the contrary, AMD
and zero-order converge to the local optimum of minimizing
the implementation penalty term in 7.

>The parametrization of this function is described in Ap-
pendix F.2.1.

HPGD AMD

Figure 2. Reward penalties given to the lower-level agent in each
state of the Four-Rooms problem optimized by the HPGD, AMD,
and zero-order, respectively. HPGD efficiently steers the lower-
level MDP when the task is to reach G* while others are only
successful in the case of G*.

Figure 2 shows the value of additive penalties 7 in the state
space with the highest probability paths for the goal states.
HPGD successfully blocks the follower when £ = 1 and
diverts its shortest path from S to G along the other rooms,
while AMD and zero-order fail to assign sufficient penalty
to the upper corridor to cause the same effect. All algorithms
are successful in ensuring that the shortest path through the
bottom-left room is going through the marked state.

The parameters A and 3 were chosen for demonstration
purposes to highlight the capability of HPGD to escape
local minima, as has been observed for SGD (Xie et al.,
2021). However, we emphasize that in the majority of the
cases, the three algorithms perform equally as shown in
Table 1 in Appendix F.2.3. We provide the figures for the
remaining hyperparameters in Appendix F.2.4. The slightly
higher performance of AMD and low standard error among
initializations is expected since this algorithm calculates
the gradient of f deterministically while HPGD and zero-
order rely on stochastic estimates yielding more variations,
especially for the zero-order approach.

4. Conclusion

We introduce the class of bilevel optimization problems
with lower-level contextual MDPs that capture a wide range
of important applications, in particular in economics. We
propose an oracle-based algorithmic framework HPGD and
analyze its convergence, as well as sample complexities.
Importantly, HPGD works with any existing algorithm that
solves the lower-level MDP to near-optimality, making
it suitable in various regimes when the leader can only
observe trajectories of the follower. Numerical results
further validate the expressiveness of BO-CMDP and the
performance of HPGD. Future directions include algorithm
design and exploring the sample complexity and variance
tradeoff when the leader can fully control the followers’
training, as well as deploying HPGD to larger settings from
the described application areas.
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Bilevel Optimization with Lower-Level Contextual MDPs

A. Applications formalized as Bilevel Optimization on Contextual Markov Decision Processes

Dynamic Mechanism Design considers the problem of a mechanism designer controlling an MDP. Bidders have no control
over the MDP but have a type &, distributed according to some prior distribution, which parameterizes their reward functions.
Based on their rewards, they bid on the trajectories of the MDP. Curry et al. (2024) consider the setting where the mechanism
designer wants to elicit truthful bids but also maximize some other objective —L, such as revenue. They restrict to dynamic
affine maximizers, where the mechanism designer first chooses a set of agent-dependent weights z,, ; and state-action
dependent boosts zj, to affinely transform social welfare and then learns a policy to maximize this affine social welfare. This
problem formulation can be exactly captured as BO-CMDP, as follows:

T n
Hla;lnlEg[ﬁ (6 2wy T To)] ST, = arg max By, o, ~r lz <Z Toi7i(St, at)) + (st at)] (6)

t=0 \i=1

Tax Design for Macroeconomic Modeling consider a public entity setting tax rates and representative households
responding optimally by balancing their short-term utility of consumption and long-term wealth accumulation (Hill et al.,
2021; Chen et al., 2022; Zheng et al., 2022). A potential formulation of this problem as a BO-CMDP is

i’yt (rgv(st) + ng(ﬂ'(st)))] ;

H;%X]Eg [p(x,y, 75y 6,6)] st.mh, ¢(-) = argmax E
’ T t=0

where ¢ defines the social welfare objective of the leader. The state s; defines the wealth of a household while their actions
decide their working hours and consumption in each time step. The reward function rgV and rf_f define the households’
utility functions for wealth and consumption, respectively. The value-added tax rate z affects the consumption utility function
rﬁ ¢ While the income tax y changes the transition kernel modeling wealth accumulation. ¢ represents the preferences of the
households over several consumption goods and their productivity in this problem formulation.

Population Principal-Agent Reward Shaping considers a principal aiming to craft a non-negative bonus reward function
rf , parameterized by x, to motivate an agent (Ben-Porat et al., 2024; Yu & Ho, 2022; Zhang & Parkes, 2008). Commonly, a
principal faces multiple agents that form a distribution. Each agent has its own individual reward function r¢. This scenario,
termed population principal-agent reward shaping is captured by our BO-CMDP framework.

max [E¢ lz 'ytr(stm;)f(st))] s.t. Ty ¢ () = argmax E
‘ t=0 g

iﬁt (Q(St, m(s4)) + 78 (s, w(st))>] .
=0

Here E, denotes the expectation over the distribution of agents and the trajectories. The policy 7 5() is the optimal

response of the ¢-th agent to the composite reward function 7¢ + 7. The principal’s reward is 7(s;, a;) when the agent
visits the state action pair (s¢, az).

Meta reinforcement learning (Meta RL) aims to leverage the similarity of several RL tasks to learn common knowledge
and use it on new unseen tasks (Beck et al., 2023). One way to formulate Meta RL problems is to find a common
regularization policy 7 for multiple tasks.

max E¢

thTE(St,W%g(St))} 5.t 7F ¢ (-) = argmax | > y're(se, w(s0) — %KL(W(St)HfT(St)) ;

t=0 4 t=0

where ¢ represents the distribution of multiple RL tasks and r¢ is the reward for the task indexed by &.

Note, that previous works in these areas have either focused on the setting with a single representative follower (Ben-Porat
et al., 2024; Chen et al., 2022) or presented a problem-specific algorithm that cannot capture our BO-CMDP framework
in its full generality (Beck et al., 2023; Ben-Porat et al., 2024; Curry et al., 2024).

B. Related Works

Related Work

Stochastic bilevel optimization has been extensively explored in the literature (Dempe, 2002; Bard, 2013). In recent years,
there is a pivotal shift to non-asymptotic analysis of stochastic gradient methods (Ghadimi & Wang, 2018; Chen et al., 2021;
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Khanduri et al., 2021; Kwon et al., 2023; 2024). (Hu et al., 2024) propose contextual stochastic bilevel optimization where
the lower level solves a static contextual optimization. Our work generalizes to the lower level solving a contextual MDP.
This poses unique challenges in terms of hypergradient estimation and sample generation. Leveraging the special structure
of BO-CMDP, we avoid Hessian and Jacobian estimation of the lower-level MDP when computing the hyper policy gradient,
which is crucial for scalability.

Configurable MDP (ConfMDP (Metelli et al., 2018)) is an extension of a traditional MDP allowing external parameters or
settings to be adjusted by the decision-maker, often referred to as the configurator. Only recently some works studied the
case where the configurator has a different objective than the agent (Ramponi et al., 2021). However, that work assumes
access to a finite number of parameters that the configurator can control, while our model goes beyond this assumption. In
addition, our model captures the variability and uncertainty that the agent could face in the same configuration environment.

Steering RL agents considers how to design additional rewards or otherwise change the MDP to observe desirable learning
outcomes. There exist several work strands in this area, such as environment design for generalization (Dennis et al., 2020;
Diaz et al., 2022; Yang et al., 2022), reward shaping (Hadfield-Menell et al., 2017; Hu et al., 2020) and model design (Chen
et al., 2022; Zhang et al., 2018). In this work, we capture the problem settings of the latter two works as a special case,
where the context is trivial, the algorithm becomes deterministic and the leader can either only influence the transition
probabilities or has direct access to the learning dynamics of the follower. For general no-regret learners Zhang et al. (2024)
present several theoretical results.

Stackelberg games are a game theoretic framework, where a leader takes actions to which one or multiple followers choose
the best response (Stackelberg, 1934). Several existing lines of work have studied solving variants of Stackelberg games.
Examples include Stackelberg equilibrium solvers (Fiez et al., 2020; Gerstgrasser & Parkes, 2023), opponent shaping
(Foerster et al., 2018; Yang et al., 2020), mathematical programs with equilibrium constraints (Liu et al., 2022; Wang et al.,
2023; 2022; Zhang et al., 2023), inducing cooperation (Baumann et al., 2020; Balaguer et al., 2022) and steering economic
simulations (Curry et al., 2023; Zheng et al., 2022). These works are either kept general with limited implications for our
problem or consider entirely distinct settings.

Moreover, as outlined in Appendix A BO-CMDP exactly captures several existing practical problems, such as optimal
dynamic mechanism design (Curry et al., 2024), Principal-Agent problems (Ben-Porat et al., 2024), and Meta RL (Beck
et al., 2023). This highlights the practical relevance and impact of our proposed algorithms.

C. Additional Theoretical results

Here we present additional results for two special cases:(1) when the upper-level objective decomposes as a discounted sum
of rewards over the lower-level trajectories, and (2) when the leader can direct the lower-level algorithm.

C.1. Upper-Level Discounted Reward Objective

So far we have assumed the leader knows 0; f(-, 7,&) and 02 f(x,-,£). In this section, instead, we assume f can be
written as the negative expected sum of discounted rewards over the lower-level trajectories and show how to compute
the hypergradient. In many practical applications, such as reward shaping, meta RL (cf. ??), or dynamic mechanism
design (Curry et al., 2024), the loss f satisfies:

Fa, 7, €) = —Eais, [Zt Ve (st at)]. )

Here 7, ¢ represents the reward of the leader, which is generally distinct from the follower’s reward. The expectation is
taken over trajectories induced by the lower-level 7; ¢ In this case, the leader does not know the partial derivatives of fbut
can estimate them from trajectory samples.

dF(x)
dz

Proposition C.1. If f decomposes as in Equation (7), then can be expressed as follows:

dF (z)
dx

e
. 1 * _
Ezgiﬂzg [Z ,yt (}\awA:i:g(St, at)Qw)g(st, at)
t=0

il ) (3
T, e\St, Gt
+ d

T

+ 0y log Py ¢ (813 S1—1, at—l)vz7£(5t)> ] ] ,
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where for compactness, we slightly abuse notation to express i, ¢(S0) as Py ¢(s0,a-1,5_1).

Here V¢, @z ¢ are the (unreqgularized) value and Q-functions with respect to 7, ¢. Comparing to Theorem 2.2, note that
here the expectation is over trajectories with starting states distributed according to the actual initial distribution p,, ¢ instead
of some v. We discuss how to construct estimators for (8) in Algorithm 5 (Appendix D) and prove unbiasedness in Propo-
sition E.3 (Appendix E). A special case of Equation (8) appeared in (Chen et al., 2022), where they consider deterministic
model design for MDPs, that does not take into account contextual uncertainty or the possibility of multiple followers.

C.2. Accelerated HPGD with Full Lower-Level Access

Previously, we assumed that the leader does not know the solver used in the lower level and queries trajectories from an oracle.
In certain situations, the leader can additionally influence how the followers solve the CMDP. Such settings appear in previous
works (Chen et al., 2022), and in applications, such as dynamic mechanism design (Curry et al., 2024). In this Section, we
argue how the additional assumption can be used to reduce the number of iterations the follower runs for the lower level.

Assume that the lower level is solved using Q-learning. The follower needs to run 7' = (7)(5_2) iterations to ensure
that E||7 Z £~ 77;,5||§o < 6%, where 77‘;75 denotes the learned policy after ¢ Q-learning iterations. To reduce this number,
we propose a randomized early stopping scheme over the lower-level iterations. Without loss of generality, consider a
subsequence t, := 2% such that g := T'. Let %FT denote the hypergradient estimator, based on the 7-th policy iterate
7T£’ ¢ It holds that:

where py, denotes a truncated geometric distribution, such that p; o 2~%_ The above shows that %Ftl + plgl [%Ft§+1 —

%Ftk} with k ~ Pk 1s an unbiased estimator of %FT. In this way, the follower does not need to run 2% Q-learning

iterations but in expectation only ZkK;ll prtr = O(K). This implies that if the leader can direct how the follower learns,

we can generate a hypergradient estimator with the same bias as d%FT but a much smaller lower-level iteration complexity

of O(K) instead of 2%, We defer the proof of this observation to Proposition E.8 in Appendix E.

This idea has been studied for contextual bilevel optimization under the name randomly truncated multilevel Monte-
Carlo (Hu et al., 2024). Note, the reduction in sample complexity generally comes at the expense of an increased variance
of the hypergradient estimator. In (Hu et al., 2024), this increase is logarithmic as the lower-level problem is a static
optimization problem and the data generated to estimate the hypergradient is independent from the lower-level decision. This
structure is crucial for controlling the increased variance of the hypergradient estimator. In our problem, rollouts generated
from 7'(';, ¢ are used to estimate the hypergradient. These trajectory samples thus depend on the lower-level decision and one
may not be able to achieve the same variance as in (Hu et al., 2024). Nevertheless, the method allows us to significantly
reduce the iterations that the follower runs per upper-level update at the potential expense of an increased variance. We leave
the analysis of the overall variance and stationary convergence for future work.

D. Algorithms

Here we give the pseudocode to certain algorithms/routines/procedures mentioned in the main text.
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Algorithm 2 GradEst

Input: &, x state s, action a, trajectory oracle o
Tq, Ty ~ Geo(1 — ), T, Ty, ~ Geo(1 —~°?)

TQ ¢ SampleTrajectory(o,start = (s,a), length =Tg + T(, + 1)
Ty SampleTrajectory(o start = s,length =Ty + T, + 1)

Ji (5 a) = X% r(s7%,af%)+

To+ThL+1 _
etTq t To—1)/2 (T(SZQ

7 dx IOgP(STQ-Hv STQ’GTQ) PO To+1
&V( ) tho 0.7r(s7Y, a7V )+
ﬁ&x logP/(sg/H; S;V 5 aTV) Dot =Ty +1
Output: 0, A(s,a) 8IQ(5, a) — arV( )

TV+TV+1 (t— val)/Q(T(STv
t

,a;®) + NH (7(+; 8¢

vagt) + AH(m (s

)

1))

Algorithm 3 Soft Value Iteration

1:

_ o e
PR

R A A R

Input: Number of iterations 7'
Result: Approximation V) ~ V', policy 7y ~ 7}
Initialize V), = 0
fort =0toT do
for s € S do
for a € Ado
Qx(s,a) =7(s,a) +YEg|s,q [VA(s')]
end for
ViewA(s) = Alog (ZaeA exp (M))
end for
set Vy := V;lew,)\

: end for

exp(Qx(als)/N)

TR S, exn(Qa(al)/ )
: return V) and 7§

Algorithm 4 Soft Q-learning

1:

—_— =

T2Y P RN AW

Input: Number of iterations 7', Behavioural Policy 7 g, Stepsizes {c }:+>0

Result: Approximation QQ ~ Q3}, policy m\ ~ 7}
Initialize Q) = 0
Initialise sq
fort =0to T do
Sample a ~ 7 (+; St)

Observe next reward 7 (s, a) and state s;41 ~ P(+|s¢,a)

00 o) 0 () 5 241 (e (252))

end for (als)

o/ . exp(Qx(als)/N)
USY (a, S) — Do exp(Qx(a’[s)/N)
return () and 7§
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Algorithm 5 DecomposableGradientEstimator
Input: &, z, initial distribution p, ¢, oracle o
T,~ Geo(1 — ), T" ~ Geo(1 — o)
(80,0, ..., 87477, a74+7/) < SampleTrajectory(o, start = pz ¢, length =T+ T")

A:;‘;fg(sT, ar) < GradientEstimator(&, z, sT,ar,0)

dF T = e T+T' _(t—T)/2~
% - <Zt=0 d%r(st’at)) + )x(ll—'y) 8IA,\,;,5(5T75LT) St YD (s, an)
+ﬁaf log P(st,ar—1,87-1) Zgi; ’y(t/’T)/Q?(st/7 ay)

. dF
Output:

Algorithm 6 Vanilla Policy Gradient Algorithm

Data: Initial parameter 6, initial state s

Result: Approximate policy g,

for! =0to Ldo
Sample T' ~ Geo(1 — 7)
Sample trajectory (sg, ao, $1,- - -, ar—1, ST, T, @) USing policy my,
Sample 7" ~ Geo(1 — ~?)
Set 59 = s+ and ag = ar
Sample trajectory (3¢, do, 81, - ., d17—1, 877, T/, G+ ) Using policy 7y,
Determine step-size a. )
VIu(0) = 155 Viegm, (arlsr) Xy v/
011 =06 —aVJ(0)

end for

E. Proofs

In this section, we provide the proofs for the presented Theorems and Propositions. We provide the proof of Theorem 2.2,
deriving the hypergradient of function F'(z); the proof of Theorem 2.3 which derives the derivative of the action-value

function with respect to x; the proof of our main result, Theorem 2.5, which shows convergence of HPGD to a stationary
point of F'(x).

For the Propositions we show how to estimate the upper-level gradient if f is decomposable in the proof of Proposition C.1;
Proposition E.1 which shows how to compute the gradient of the optimal policy with respect to x; the proof of Proposition E.2,
which shows we can achieve unbiased estimates of the advantage gradient; equivalently the proof of Proposition E.3, which
shows the same for the special case when f decomposes.

We state and proof Propositions E.4 to E.7 which show convergence in L, to the optimal policy of value iteration, Q-learning,
Vanilla Policy Gradient and Natural Policy Gradient respectively.

Last, we state and proof Proposition E.8, which proves the reduced iteration complexity claimed in Appendix C.2.

Theorem 2.2. Note that from Proposition 2.3 it follows that

or* ) «
z,§ T €
15| <3 iz,
2 K, K\RK;
TAL=y (1 —9)?

Therefore we can apply DCT to get
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0, E [f((ll‘, 7T;7§,€)] =K [8a:f(‘r7 7‘;,&5)}

) -alf(x77r;’§7§) 62f(£E Trg; gag) 67Tz§
Ox oy ¢ ox
) -81f(x77r;’§7§) + 82f($,77;;£,§) aﬂ.:@(avs)
Ox — Om} ((a;s) Ox
(01 f(2,75.6,6) o Oaf (2,750, 6) 1 .
_ E x, x azA x, € 9
or + 87r$5(a,5) A Ig(a ) )"I’E(&a) ©)
L s,a ,
_r o f(z,m; ¢ &) By 1 Oaf(x,m 6 €) 8114::’5 (s,a)
I Ox e | Av(s)  Omy c(ass) T8
.. . a2f(m,7";g»f) aﬂ;,g
where we use Proposition E.1 for Equation (9). Further, we note that —— === € Mat; g/« A|(R) and 525 €
x, & ’
Mat|g| | a],4(R), such that we just explicitely write out the matrix multiplication for the second equality. O

Theorem 2.3. We show the equivalent formulation

dQK x 5(5’ a) = t ! ! dr:vf(‘s/; a/) de f(s//; 8/7 CL/) T 1
— = ;S/Zal'y Pae(s,a— s a'st, ) B ea— +VZTVA,J:,5(S )

s/’

where pg ¢(s,a — ', a’;t, ) is the probably that starting from s, a the Markov Chain induced by 7 reaches s, o’ after ¢
steps.

The proof follows the proof of the standard policy gradient theorem. Note that we drop here the dependence on x and & to
simplify the notation. Assuming the derivative exists at each state action pair, we will show by induction that for all n € N it
holds that

dP(s";s',a)

dQ)\SCL ZZ'YPSG_)S a tﬂ.)<dr(;a)+72dwv;r(su)>

t=0 s’,a’ s
dQ3(s,a)

+7n+12p(s7a—>§,&;n+1,ﬂ') d
X

5,a

The claim then follows by considering the limit as n — oo.
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Base case (n = 0) It is easy to check that

dQ%(s,a) d
dzx dxr

r(s,a) + 7 Z P(s'ss, a)V/\(S')>

ry

= —r s,a) —l—'yz P(s';s,a)Vy(s )—i—P(s';s,a)%V)\(s’))
—r(s,a) + ’yz (de(s’; s,a)Va(s') + P(s'; s, a)(ZEV,\(s’))

—r(s,a) + ’yz (dde(S/; s,a)Va(s') + P(s';s,a) Z m(a; s’)%Q)\(s’, a’))

a’

_ZZ'YPS a— s at,m) <W+VZW‘/}\W(SH)>

t=0 s’,a’ s
dQ%(5,a)

1 ~ ~
) _> ) ; ]‘7
+7 Zp(sa S,a;n+1,m) ir

ia

Induction step (n — n+1)

d d dP(s"; s a
Q’\ 5,0) ZZ'ypsa%s a'st, ) (T(; a)Jr’yZ(Sd;js’a)Vf(s”))

t=0 s’,a’ st
dQ3 (s, a)

+7"+1Zp(s,a—>§,&;n+1,7r) i

5,a

dr(s’,a dP(s";s',a') . .
_ZZVPSC‘—W a'st,m) <(d)+72(dx)v’\<s//)

t=0 s’,a’

5,a s’

dr(s’,a dP(s";s',a')
_ZZVPSG—W a'st,m) <(d)+72(dx)v’\(s”)

t=0 s’,a’ s’

+ ,y’ﬂ‘i’l Zp(s’a — §,a;n + 177r)% <T‘(§, a) + "YZP(?; §,C~L)V)\(§’)>

i n+1zp5a—>san+17r)<r Zd a)Vi(s")

5,a

+ P(&55,a) ) w(d; ) QA(’”))

n+1
dr(s’,a’) dP(s";s',a') . .
= Z Z vip(s,a — s a'st, ) (d:z: +’yz TV)‘ (s")

t=0 s’,a’ s’
dQ3(3,a)

n+2 I .
% b b 27
~ Zp(s,a S,a;m+2,m) ir

5a
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Theorem 2.5. By smoothness of f, we can use the following bound from (Hu et al., 2024):

2(F(x1) — ming, F 2T
[ | <t o) 2 5 (1

@
2
oo >

The error term naturally decomposes into an initial error, which decreases with 7', a bias term, and a variance term, which
decreases with the stepsize a.

dF xt) dF(x)
dx

(10)

HdF .’bT

oo

(2

dF(z;)  dF(x)

2 E
+ 255 dr dzr

3)

For (1) we do not need to simplify any further.

Next up, we decompose the bias term (2)

o [dF@)  dF ()
dx dx
dF(xt) alf(xta’”o gag) ary 1 an(xtaﬂ_o 575)) d/ﬂ'\o
< ||E, —Ee, | —— > 2 4 E, ¢ Tt E|—A":
- “l de ¢ Oz + Av(s) on(s,a) dx xag(5:a)
oflze,my, ,8)  Onf(ze,mg, ¢,€)
< ]Ea:t.o 13 : - :
" ox ox o
(A)
*(, 1 an(l',Tl'* 75) T 82f(l',7'r0 76)
Eo~T (z,8) z,€ 9, AT . z¢,§ R A e
+ 24,0,€,v )\I/(S) 871-;,5 (a; S) /\,;c,g(S, a) aﬂ-;t,f(a; 8) Az 5(5 a)
(B)
Where we use that —A /\“;, 2 is an unbiased estimator of - d -A )\T; 2 as shown in Proposition E.2.

(A) is relatively easy to bound. Indeed by the smoothness of f ( Assumption 2.1) it immediately follows that

(A) = Emt*O*E [Sf Hﬂ—;tf - ﬂ—ﬂoﬁt-,fHoo} = Sf(S

To bound (B) we further decompose it

1 . f(x,mye,8) . Do f (w, 79, ¢,€) .m0,
Av(s) ; (Wm,g(‘% s)*iawAA,j,g(S, a) —mg ¢(a; 5)0—59314)\,%72(5, a)

ES”

Zt,0

B) =

or; ¢(a;s) org, ¢(a;s)

]

82f(x7 Wgt7§7 f)
org, ¢(a;s)

82f($7 71-;757 6)

0, AL
o elazs) O e(:)

v 1 * (o}
<ESY, L‘V(S) Za: |75 (a5 8) — 75 ¢ (a; )|

82f($7 71';’5, 5)

0 Aﬂit’g s,a) —
ory, ¢(a;s) Ay ae(,0)

1
+ i;ol (s Z||7Tx£as Oo

amA;Tj;;g (s,a)

)
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is relatively easy to bound. We have

1 a?f(fvﬂ* 75) ¥
< ]EEvV z,§ A z,€
SES e o (ws) xzg(5:9)
1
&v
S Ex )\V(S) )\zg(s G)H ‘|
< RSV L e (s,a)
T )\1/(8) A‘”’f "o
<Esr| L fe(s.a)|
- )\1/(5)
[ 1 = dry ¢(s¢,at) dlog Py ¢(St41; 8¢, ar)
_mév | 3 t E\ot, At t+1 E\St+15 Sty -
Bz, )\V(S)IA\zSsz E LZ_;V I + m Vi pe(seq1)

where we use the assumption on the oracle and that f is Lipschitz. Note that it holds that

x (R + Mog | AJ)
e

And thus

(5 )

s <

Letting m := min, v(s) we thus have

Am

1—x (1—7)?

For (b) we further simplify

1 62f(‘r77r* 35) T 82f(zv7ro 55) 70

<~ RE S AT T2, ©05) wi.€ _ AT T &5 wt,€

} *mE”’”[ o el e T T Gy ()
1 Oof (w75 &) Oaf(w,mo ¢, &)

< —FE¢ i, — z¢,§ AL

" Am e H on (ais) | Om2 (%) i

(i)

LA (5,0) = 0, AT s a)HOO]

Oof (2,72, ¢, ) H

1
+ 7E§t o o
Amo H oy, ¢(a;s)

(ii)
Similar to (1), we can bound (i) using Assumption 2.1.

( Ky Kl(R+)\log|A|)>

(i) < 51 g9

T am \1-vy (1—=9)?

Bounding (ii) is the tricky part of this proof. We first need to show two intermediate results. First, we bound the difference in

entropy between two policies. For the entropy we denote by [ := ming 4 4 ¢ 77;75((1; s) the minimum probability of playing
an action in any state under the optimal policy. Note that

exP(xi-7)
A eXP(m)
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We assume now that ¢ is sufficiently small, i.e. § < 1;/2, such that [1 /2 < min, 4 4 ¢ 72 g(a' s)

Note that log is Lipschitz with parameter 2 on [a, 00). Hence we have

[ H (73 ls) — H(mg el )|

velass)logmy c(a;s) — Zﬂ'xgas)logﬂ'xg(a s)

o0
< (z e ||1ogw:z,g||oo) ¢ ok e — oz
a

2
< [Alllog 16 + -6
1

Then we use this to bound the difference in the value functions.

o

> (7@ )@ (5, 0) = 72 (03 9)Q (5, 0))

a

Z (ﬂ';f(a s

a

™ 2
+ Z H7r;7§(a;s) — ﬂg,g(a;s)Hoo HQ)‘N(S’G)HOO + Ao (|A|| logly| + l1>

[V - v <

o0

2
1

oo

<

HQ;E 5,0) = Q4 (s, )|

2 E ™ 194
<26 (lltogts + 2 ) + LA V() - v

g Y (|A||logl1| + %) . S|AR
- -7y (1—7)?

Now we employ a similar technique again to bound (ii) using the above results

1 82]6(-1:’7(0 76) Lo 70
3 zt,§ , _ x¢,€
)\mEzho H 87_[_;275(0/; S) ‘ >\7‘,£7£(8,a) azA)\7x7£(S;a)Hoo
L.f 3 ﬂ-:té z,€
< o —E;, . [ LAy e (s a) — Oy AML&(S a)H }
Lf 5 Tt @, S
S)\ 2%70[ e(s,a) — 5‘@/\$£saH }
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We bound the difference in derivatives

i) - .01k (s )|

drye(s',a dP, ¢(s";8,a") _ xx
ZZ’prgsa%s a’ thf5)< ECE )+721§(M)V)\7;,,§(8//)>

t=0 s’,a’ s/
drye(s',a dP, ¢(s";s',a") _ =
3 ] = e s e e )
t=0 s’,a’ gl IS
drye(s,a) dP, ¢(s;s,a)
= || ZZTEN Py ek
dx +7§: dr /\w,f( )
dr s’ a dP S”; S/’a/ o
+ZZ’YP;C,5S&—>S a,t,w$r£)< x’ig )+’YZQC7§(CLT)V)\,;,;(SH)>
t=1s’,a’ s
droc(s.0) s dPaelsina) ot
" X B
drye(s’,a dP, ¢(s";s',a") _ =2
3 S - M T )
t=1 s’,a’ sl s

AP, ¢(s';s,a)
dx

< E
=9 ~ oo
P(s: * 1ot = t 1ot "ot
E (8787a)7rwt,§(a’8)§ E ’Yp:p,f(S,CL —s,a ’ﬂ—ﬂit’ﬁ)"'

Ty, Ty,
’ HV)\,zi; (S/) - V)\,zt,; (S/)
00

s’,a’ t=0 s’,a’
d’r'x7£(8”, a//) dPx7£(8”/; S// a/ ) *
(dm O
S///
oo
— ZP s'ss,a)my, ¢(a', s ZZ’ytp%g(s',a' — s a"tmy, ).
t=0 s’,a’

d,r,l" (S/l, a/l) dPI’ (S/H; S”, CL//) ﬂ_g ‘
I

pr
Z Hdeg s'ys,a)

o0

HV,\?; ") — V,\,;f(S/)

Z P(s';s,a)my, ¢(d, s’)@wQ:faf,é(s, a)
_ZPS s, a) xf(a 5)8Q>\2§(5a)
dPx,f(SQSaa 'ctﬁ oi.€
dx HVAL& ) V)‘w’g( ) 0o

+7HQ;;§ (s',a")

ZP(S/;S,CL) Hw;ti(a’,s') —wgt’g(a’,s’)um
s’ a’

oo

+ Z P(s';s,a)my, c(a',s") ’

s’,a’

/\ 2( a’) - 362,\’;§(s a’) -
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Where the dots indicate multiplication over the linebreak. Taking the expectation we thus get
wt)o[ “g(s a) — 0@;;2 s,a H }

2 log | Al S|AIR K, Ki(R+ Mog|A|)
<7<S|K1< =y (-9 i T (1—=7)

nrE(sha) - 0.Q0 )|

A6 (1Al logla| + £ 7 &
o |SK1( ( l)+ S|AIR +6< Ko JrK1(R—|—)\log.A|)>

+ES, , ‘

<

T l-vy 1—vy (1—9)? 1—vy (1—9)?
5 A (Al log | + 2 R Ko  Ki(R+ Al

= (o (A 1), um (e S
1—vy 1—vy (1-7) 1—vy (1-7)

where we use the intermediate result from before to bound the difference between the value functions.

And so we get that

oo 2Lgdy Mol |+ 2) R K, | Ki(R+Alog Al
()_A( )(|S| ( 1—vy +(1—7)2 +<1—7+ (1—7)? )

With that, we can plug everything back together

dF(z,)  dF ()
dx dx

< (A)+(B)

< (A)+ (a) +

< (A) + () + (i) + (i)

oo

<Sf5+|A5Lf2( K +K1(R+/\log|A|)> Sf(5 ( Ky K1(R+/\10g|.z4|))

11—~ (1—79)? Amo\1—vy (1—79)?
L 2Ly s A(\Allloglll+%) N |AR +( K, Kl(R+/\log|A|)>
Am(1 =) ' 1—7 (1—1)? 1—7 (1—9)2
= 0(5)

With that we have tackled terms (1) and (2). It remains to bound the variance, i.e. term (3)

2 _— — _—
dF(z¢)  dF(x:) dF (z) dF (z) dF (z) dF ()
_ < _ _
E dx dx =2 dx dx +2E dzr dzx
dF (z;) arEn |
< 20(62) + 2E i) _ T
<2007 + dx dx
[l d7@n | el
<oy +2 || ||| &1 2 _||g [ &)
<00+ ( dx H dx
dF (z,)

< O(6%) +2E

T

|
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We thus need to bound the second moment.

2 - .
dF (z¢) a1f($t77T;, 575) 1 an($t,7Tgt {75)) LI
Cdr < = 2 . Ct s
du | =F ' Oz " Av(s) on(s,a) 0z A\ (s,0) N
1 - 2
< |1+ siptionaTage |

To proceed we upper bound 0, A:gg (s,a) by
(%A;;_é (s,a)

< 20,Q" (s, )

To d d To+TH+1
T T ’y T T T —_ —_ T T
SZ%T(StQ’atQ)+1— ﬁlogP(STZH%STgﬂTz) > AU (512, af%) + AH (7(5 50)))
t=0 v t=TQ+1
vy R+ Mog|A|
<ToK K
S 1 24-1_7 LT 05
We thus get
ar@n | 1 B+ Mog 4] ||°
Tt v + Alog
—_— <E L —L(To K. K
dx = Te H R v R T )HJ
oo
— 2
1 v R+ Alog|A|
<E L —L¢(TH K. K
< Er, H v 1(Tq 2-1—177 S P )OO
1 1 v _ R+ AoglA| 1\°
<Ep, |L3|1+2—ToKs +2— K — ) (Tok»)?
="To f( + @ 2+ Am 1l — ! 1—~405 m (ToK>)
— 2 —
1 R+ Alog|A 1 ToKsKi(R+ Alog|A
n T g, (%5” Lol QI K ( ong)
aml—r 1—~0 am’ 1—vx 1—~0
crz(1e2l L og o b v g BAlslAl (1 2(K)2 L+7
= Aml—~ 2 Aml—~ ! 1—~05 A (1 —~)2

1 v R+ AloglA\> 1 ., v K:Ki(R+ Mog|A|)
+ N Kl E 2(7)
Am 1 — vy 105 Am’ 1=y (1=7)(1=7°9)

It is sufficient for our proof that this the second moment is bounded, we denote this constant for now by C.

Now we can plug back into (10).

E HdF(ch) ’

dx

] <M+2+O

‘ o

< 0(5) + 0(0) + 28y (0(8% + O))
< 0(5) + 0(0) + 28y (0(6%) + C))

< O() + 0(3) + O(a)
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Proposition C.1. In this proof we will derive an expression for

df (z, 75 4 €)
dzx

Applying DCT then directly gives the expression for the derivative of F'(z). Because we are looking directly at f we can
drop any dependence on £ below to make the proof more readable and concise.

Let

* p(u — s,t,m, x) denote the probability under choice = of reaching state s after ¢ steps starting at 4 and following
policy 7

* p(u — s,a,t, 7, x) denote the probability under choice x of reaching state s after ¢ steps and then taking action a
starting at u and following policy 7

e p(u — s,a,8,t,m, x) denote the probability under choice x of reaching state s’ after ¢ steps having previously been in
state s and having taken action a, starting at ;1 and following policy 7

Note we drop the dependence on ¢ for the proof. Assuming V() is differentiable for all s, we show the following statement
by induction.

n+1

7df(x;r>\z7§ —Z dlogpz +Z;ZZVp,uT%sas 1,7 w)d1og Py (s';8,a)V(s")

N T drz(s,a
+ Z'Vt Z Zp(/” = 8,a,t, 7\ ., ) </\8IA)\;’c Q(s,a) + ng)>
t=0 s a

+ "N Dl = 5,475 4 )02V ()
S

Note that taking n — oo then directly proves our claim.

Basecasen =0 We proof the statement for n = 0.

d

L;w,ﬁ dz Z” ZW QL)
=% d“f )+ ) i) (247 + 0.0
_ Z d“z )+ D nals) Y50 s) <iaz‘4?¢ + W

/. leng(Sl;S,CL)— / /. 7/
JrfyZ( s';s,a) — V(s') 4+ Pp(s';8,0)0,V (s )))

dl A% —
= Z Ogu +ZZZZ'y ppe — 80,8, 75 ., x)dlog Pp(s';5,a)V (s")
. 1 Tk L= dr.(s,a
+ th Zzp(ﬂx — 8,a,1,7) ,, ) ()\&CA/\;' (s,a) + (;CE))
t=0 s a

+Y p(ie = 5,475, 1) 0,V ()

S

where we use Proposition E.1 in the second equality.
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Inductionstepn — n+1

n+1

Zuz(s)dbg/% —l—ZZZZ’yp (e = 8,0,8' 8,73 ,, x)dlog Pp(s'; s,a)V(s')

S

Ty drw(sva)
—|—ny zS:Zp fa = 8, 0,1, T3, T) ()\&UA)\@ <S’a)+dac>

+ 7"“ > plpa = s,t,75 L, 2)0:V(s)
S

n+1

g Hog ey -

_Z ogM —l—ZZZZVp%_”C‘S t, 73,0 )d10g Py (s’ 5,a)V (s')
t : b a) (0,470 dra(s,a)
" * * 1 T & dr (s’a)
+ At Zp(ﬂx = 8,t, X 4> T) za:ﬂ-k’x(a; s) <>\8x14>\; + a:CT

S

+WZ< os,0) TEL O +Px(8’;57a)d‘izf/)>>

dx

n+2

= Sl T +zzzzwuﬁsasm, )dlog Py(s'; .0V ()

n+1

* 1 e A Cﬁw S, Cl)
£ 3 bl > st ) (04T Qs ) + T )
t=0 s a

+ A" F2 Zp(uw — 5,1, 4, 2)0:V (")

S

which proves our claim.

Proposition E.1 (Best response gradient).

drze 1 dAT i (5,0)

dr Xﬂl’f(a; ) dx

Proof. This result was previoysly shown by (Chen et al., 2022). We give a short proof below.

dr(als)  [SP(QUals)/N) - LD T exp(Q(a']s)/A) — exp(Qlals)/A) o, exp(Q(a]s)/A) =L

or (X exp(Q(als)/\)?
(ol 22QUls) _ T (als) Ty exp(QUa'ls) /0 %)
A >0 exp(Q(als)/A)
1, , 1, %/ 1 /
= 17" (al$)2:Q(d'|5) — 17" (als) ;w (@']5)0,Q(d’|s)
= %w*(a|s) [0:Q(d[5) = 03B qrmre(.15)[Q(d']5)]]
_ %w*(a|s) (0:Q(a,5) — 0,V (s))
1 *
=37 (als)0zA(als)
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/\

Proposition E.2 (Unblased advantage derivative estimator). The output A A 5(s a) of Algorithm 2 is an unbiased

estimate of - A /\ i ‘e(s,a), ie

d o d
E ld AA‘;g(s a)] =— AA‘;&(S a)

Proof. Note that we drop any dependence on z,&, 77 . for notational clarity. We further emphasize that the trick of
truncating a rollout after a geomtrically sampled time to obtain unbiased gradients is commonly used in the RL literature for
obtaining unbiased estimates of the standard policy gradient.

—

We will show that the estimator -2 Q, (s, a) given by

o 4 d To+TH+1
Z —r(sg,ar) + S log P(s7,41; 815, a1,) Z A=Ta=D/2 (p(sy, ay) + ANH(m(+; 5¢)))
e 1-vdz t=To+1

— o —

is unbiased. The same argument then holds for - V), (s) and shows that %A A(s,a) is unbiased. We start by noting that

ZW? F(si,a1) + AH(n(:3 51))

e
=B EY | > 7D/ (r(s0, ) + AH (x5 50)))
t=0
[ Q
=E7 |Ery, D A2 (r(se,a0) + AH (7 (550)))
=ET |3 Ery [Leer, |70 (r(s0,00) + AH (w(-;st)))] (11)
=0
=E7 v (r(se, ar) + AH (m(; St)))]
Lt=0
=Va(s) (12)

Where we use Fubini for Equation (11) and DCT and the fact that Té ~ Geo(1 —~"%) in Equation (12). From the argument
above and the fact that T(y and Tb were sampled independently, it immediately follows that

Tq To+TH+1

r d v o d L7y
Ero B8 Z@r(staat)JrG%IOgP(STQH?STQvaTQ) Z AT (p(sy,a0) + AH (7(5 51)))
=0 t=Tg+1
(13)
dlog P(574+1:5T0, 070 ) ¢
= Er ET Zd (st,ar) 77 ( LV (s1,) (14)

kT (@)

We will show that the two summands indicated that they form unbiased estimates. Then by linearity of expectation the result

24



Bilevel Optimization with Lower-Level Contextual MDPs

follows. For (1) using Fubini and DCT it holds that

Tq d e i d
ETQEW Z %T(St7 at) = Eg,a Z(l - W)Wk Z dm’l"(St, at)]
t=0 k=0 =0
=(1-9)E7, ZZ’Y %T(Stvat)
t=0 k=t
o0 ,}/t
= (1 — V)E;a [Z 1 dir(stv a‘t)‘|
t=0
> d
- t
=l o Y T(St7at)]
L—O dx
Similarly for (2)
. ¥ legP(ST +158Tqg, AT, ) T
EroEsq [1 - de . (s72)
~ i dlog P(sty1; 8¢, a¢)
= g T VX
T 5 s.a ; t=Tg d.%' A (St)
> dlog P(s ; Sty A T
g, Sty
t=0

Thus we have

Tq

. d ~v  dlog P(s1y+1; 870, 01,)
Er,ES . Z%r(st,at)+ T de g
t=0

V)ZT (STQ )

> d dlog P(st11; 8t, at)
T t t+1 +15 9% VT
a Lz;)W dIT(Suat) + dr N (st)

— ang\r(& (l)

which proves the Proposition. O

Proposition E.3 (Unbiased gradient estimator for F'). The gradient estimator described in Algorithm 5 is unbiased for the
given policy ’/'I'g,g.

Proof. We need to show that:

T d 1 — T+T’
El(Z (ixr(snat)) + ﬁaxA,\T;g(STﬂT) Z D27 (540, ag)
t=0 v t'=T
(1) (2)
1 T+T1’
+ ﬁ@x 1ogP(sT,aT_1,sT_1) Z ’}/(t _T)/ZF(St/,at/)
t'=T

SONM

1 < — d —
ZV (ABIAA;E,E(SM at)Q(st, ar) + —T(st, a¢) + 0z l0g Po g (st ar-1, Stl)V(St)>H

We can show the claim seperately for (1), (2) and (3). Note for (1) and the claim directly follows from the proof of
Proposition E.2. And the proof for (2) works almost identical to the one for (3) in Proposition E.2, relying on the property
that a truncation via a geometric distributioin is identical to an infinite trajectory with a discount factor. O
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For the next Proposition, consider the following soft Bellmann optimality operator, which has been shown to be a contraction
(Dai et al., 2018; Nachum et al., 2017).

(T3 V2) (5) = Alog (Zexp( Lo UL )])>. (15)

acA

Using Equation (15), one can define a standard soft value iteration algorithm (see Algorithm 3 in Appendix D). We show
soft value iteration satisfies Assumption 2.4.

2
Tpe— ngfHoo < 62 after T iterations, where T = O(log 1/6).

Proposition E.4. Algorithm 3 converges, such that ‘

Proof. From (Mei et al., 2020)[Lemma 24] we have

1
7 =7l < llm” =7y < S 1Y - @Rl

Moreover

1 T ’YT -

XHQ)\ - Qx5 |oo* /\HV)\ vy o § By ||V>\H < m(R'i')‘lOngD
where we use the contraction property shown in (Dai et al., 2018; Nachum et al., 2017) and the fact that we instantiate with
0. The claim follows. O

As value iteration assumes knowledge of the transition function and scales badly when the state and action space are large,
in practice stochastic methods such as Q-learning are used instead. For this consider the soft Bellman state-action optimality
operator (Asadi & Littman, 2017; Haarnoja et al., 2017).

(TX Q) (s,a) :=1(s,a) + VEyop(|s,a) l)\ log (Z exp <Q’\(’j\’a/)>>] (16)

a’eA
Correspondingly, we can use Equation (16) to run soft Q-learning, as described in Algorithm 4 in Appendix D. Equivalently
to soft value iteration, we can show soft Q-learning satisfies Assumption 2.4.

Proposition E.5. Let wp be sufficiently exploratory, such that the induced Markov chain is ergodic. Then soft Q-learning
2
* €~ Tr;’gHoo] < 82 after T iterations, where T = (’)(logg%).

1’7

converges, such that E, “

Proof. We use the following Theorem from (Qu & Wierman, 2020) to prove our claim:

Theorem (Qu & Wierman, 2020) Let x € R%, and F : R* — R? be an operator. We use Fj to denote the i 'th entry of F'. We
consider the following stochastic approximation scheme that keeps updating z(t) € R? starting from x(0) being the all zero
vector,

zi(t+1) =a;(t) + ap (Fi(x(t)) — z:i(t) + w(t)) fori=iy,
zi(t+1) = z;(t) for i # iy,

where iy € {1,...,d} is a stochastic process adapted to a filtration F, and w(t) is some noise. Assume the following:

() = Fy)l <

Assumption 1 (Contraction) (a) Operator F is v contraction in ||-|| _, i.e. for any z,y € RY,
v ||z — yl| . (b) There exists some constant C > 0 s.t. |F(z)|| < v|z|, + C,Vz € R%

w(t)] <w

Assumption 2 (Martingale Difference Sequence) w(t) is Fy1 measurable and satisfies Ew(t) | Fy =
almost surely for some constant w.

Assumption 3 (Sufficient Exploration) There exists a o € (0,1) and positive integer, T, such that, for any 1 € N and
t> T,P(it =1 I ]:t—'r) > 0.

Suppose Assumptions 1,2 and 3 hold. Further, assume there exists consmnt T > ||| 8.t VE, [|2(t)||eo < T almost surely.

Let the step size be oy = # with to > max(4h, 7), and h > —==—. Then, with probability at least 1 — §,

1
T+t

+

B 1 2(t+1)T2%n B
12¢ [(r+1Dh |87 5 — 4 a 16ehT
X
¥ o T+ %o 1—7

(D)~ 2"l < 20 410))
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where € = 2T + C + w.

Note that exactly like in the setting above our algorithm can be seen as a stochastic approximation scheme where we update
@ asynchronously just like = above in the following way

Qst,-,(lt (t + 1) = quat (t) + oy (F"'hat (Q(t)) - Qst7at (t) + wt)
Qs,a(t+1) = Qs,a(t) for s, a # St, A,

where

Foval(@) =7(s,0) + 1Eorvpifsa) [A log <Z exp (Q(SA’ a/))ﬂ

a’€e A

and for the errors:

wy = r(sg, ar) + yAlog (Z exp (QA(&)\M))

a’€A

S¢p1,a
st ol )

a’'eA
We now show that F' satisfies the assumptions of the Theorem from (Qu & Wierman, 2020) and use the result to prove our
own claim.
In the following we let F; be the o—algebra generated by the random variables (s, ag, - - - , S¢, @)

First we state the following identity from (Nachum et al., 2017)

TX(@)(s,a) = r(s,a) + YEgnp(is,a) [A log (Z exp (Q(i al)))l

a’eA

=7(s,a) + YEyop(|s,a) {max(Q(-, s'),7) + NH (m; s’)] .
We can use the above to show that 7'y is a contraction. Indeed we have:

ITX(Q1) = TX(Q2)

r(s,a) + ’)/m?XZP(S/; s,a) ((Q1(-,8"), ) + AH(m; s"))

—r(s,a) — ’ymjriXZP(S/; s,a) ((Q2(-,8"), ) + NH(m; s"))

oo

<7

max Y P(s';5,a) (Qu(s),7) = (Qa( ), 7))

oo

<v[@Q1 — Q2]

Moreover, it holds that
F(Q) < R+7(Ql, + Alog |A]

So we can set C' = R + \log | A
Next we note that w; is F};; —measurable (it depends on s;;) and that
E[U}t|]:t] =0

2y(R+Xlog | A|)

Moreover w(t) is bounded by w = =
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Further have assumed that the behavioural policy 7 is sufficiently exploratory. Let zi be the corresponding stationary
distribution, pimin = infs 4 fi(s, a) and t,,;, the mixing time. Then (Qu & Wierman, 2020) show that for o = % [min and

7 = [logy(3;2=) 1t it holds that
Vs e S,ac ANVt >71:P(st,a = s,alFi—r) >0 17
Moreover, we note that (¢) and Q* are bound by T = mi‘%osw

By plugging into the Theorem from (Qu & Wierman, 2020) we thus have the following result:

Let a; = £ with o > max (4h, [bg? %W tmix) and h > — % Then, with probability at least 1 — p,

Hmin (1—7)
[Q(T) — Q3o <
5 log (21082 2 [tmic 1) T21S11A
_ G0(R + Alog |A)) 2 (PO& H banise 1) h | ?
- (1 — ’7)2 Mmin T + to
_ 160h [bg2 2 ] Fonix
A(R+Nogl A i | i (pogQ 2 } I to) !
(1—7)2 fimin Hmin T+t

Let us denote the bound above by (A)

Let us choose p = O(6?). With probability p ||Q(T') — Q3]| . is not bounded by the term above. However it is always
2(R+Alog(|A])

upper bound by T—

At the same time
(A) = O(\/1og(1/6)\/1/T)

By setting T' = O(bgg#) and using (Mei et al., 2020)[Lemma 24] we get

E, [In* - =*|Z]

< (i)QE [t~ el
<(1-p)A’+p (2<R +1A_107g(|A|))>2

O

A popular class of RL algorithms are policy gradient methods such as REINFORCE (Williams, 1992). For the entropy-
regularised problem, it generally makes sense to choose a softmax parametrization for the policy (Mei et al., 2020). We
defer the details to Algorithm 6 in Appendix D and present the following convergence result, which shows using vanilla
policy gradient method for the lower level also fulfills Assumption 2.4—at least asymptotically.

Proposition E.6. Vanilla policy gradient with softmax parameterization converges, such that V6,37Vt > T

Proof. As in most proofs we drop the subscripts for x, £. The proof is an adaptation of the one presented for Lemma 16 in
(Mei et al., 2020). We denote by m the iterates of the policies of the algorithm and by V™ (1) the corresponding value
function with starting distribution p. It can be shown that V" is s-smooth for some s (Mei et al., 2020). Choosing stepsize
1/s, we have by sufficient increase that the value functions increase monotonically, i.e.

Tye ~ Miae H < 82, where T} ¢ IS the computed policy after t iterations.

Vit VI () > VT ()
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At the same time it holds that .

R+ Alog A
4 < —
() < 1—~

By monotone convergence it thus follows that V" (1) — V¥ (1), where V(1) is the maximum possible value.

Since m; € A(A)ISI and A(A)!IS! is compact it follows that {7 }; has a convergent subsequence {7, }1. Denote by 7* the
limit of this subsequence. It has to hold that V™ (1) = V3*(u).

Now assume that {7, }; does not converge to 7*. In that case
Je,Vt, 3t >t ||mt —myp |, > €
Note that due to entropy regularization Vy* (1) is the unique maximum. This means that
Ik max{Vy| |7y — 7|, > €} +r < VY
It follows then that

> K

o0

v, 3t >t HV;“* -y

which implies V)™ (1) does not converge to V'*, a contradiction and thus it follwos that 7, — 75 O

The asymptotic guarantee of Vanilla Policy Gradient can be improved to non-asymptotic by using Natural Policy Gradient,
as introduced by (Kakade, 2001). We restate the following result from (Cen et al., 2022).

Proposition E.7 (Linear convergence of exact entropy-regularized NPG, (Cen et al., 2022)). For any learning rate
0 <n < (1 —+)/r, the entropy-regularized NPG updates (18) satisfy

J@s - Q|| < o —myy
Hlogﬂﬁ\ - logw(tH)H <2007 H1 —pA)?
forallt > 0, where
A
Cy = HQ; — QE\O)H + 2\ (1 — 177> Hlogﬂﬁ\ — logw(O)H .
o] - 00

Proposition E.8 (Improved iteration complexity for the follower). Using vanilla Q-learning vs our accelerated approach
we get the following rates.

Vanilla Accelerated
Bias O(25/210g(2K/2))  O(25K/?10g(2K/?))
Iter. complexity ~O(2K) O(K)

Proof. Note that the idea and proof strategy of this speed-up have been put forward in the work of (Hu et al., 2024).

Vanilla Q-learning Let us start with showing the rates if we run vanilla Q-learning to estimate %ﬁf). Let K > 0 and we run

Q-learning until we have a convergence such that By Proposition E.5, if we run Q-learning for 7' = 2 iterations, we get

E[[[7le = miell.] = 0510825/

Monte-Carlo (MC) Q-learning Let us now turn to our MC approach. Recall instead of letting Q-learning run for a fixed
number of T iterations, we instead first sample a random variable k from 1, ..., K with probability

2—k‘
)

and then use as estimator

d d
d %FtIEJrl B EFtl%

de” ' dx D;
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where ¢, = 2" achieves a bias of E wap’cg -7k EH < O(2F/210g(2F/?)).
’ 7> lloo

As we have already shown in the main text it is an unbiased estimator of the gradient estimate if we use vanilla Q-learning.
Indeed, we have

K—1
d d d d
2h. =R 2E. %R
de” '™ dg™ ™ + ; dx Tty

d
dz Fy Ftk

d _ 4
- °F k41 dr = 'k
de” " + Xk:pk Dk
d d
o iF +E: EFtIQJrl B EFtl;
o dx t1 k~pj, Di,

Therefore it directly follows that for any given K , %Ft"; and%Ft .. have the same bias of O(25/21og(2%/2)).

However, for the expected number of iterations to run the lower-level Q-learning algorithm, we can show a massive
improvement. Indeed, we have for the expected number of iterations:

2—k
Ztkl 9K
k=1

K
1 27k
SCZﬁl_Q—K
k=1
K
1
<
<> T5x
k=1
= O(K)

F. Implementation Details
F.1. Baseline Algorithms
F.1.1. ADAPTIVE MODEL DESIGN (CHEN ET AL., 2022)

As noted in Section 3, the Adaptive Model Design (AMD) algorithm (Chen et al., 2022) was proposed for the Regularized
Markov Design (RMD) problem which is a special case of Bilevel Optimization on Contextual Markov Decision Processes.
In particular, when = is a Diriclet distribution BO-CMDP reduces to the RMD problem. To account for this difference, we
modify the AMD algorithm (Algorithm 2 in (Chen et al., 2022)) as described in Algorithm 7. We denote the upper-level
reward and value functions with the superscript u in the algorithm.

F.1.2. ZERO-ORDER ALGORITHM

Algorithm 8 defines the zero-order gradient estimation algorithm described in Section 3. We parametrize the perturbation
constant to decrease with the number of iterations such as u; = % where C' is a positive constant.

F.2. Four Rooms
F.2.1. IMPLEMENTATION DETAILS

We parametrize the penalty function 7 as the softmax transformation of 2z € R% 1 where the i-th entry of  corresponds to
the i-th cell in the state space S and the additional dimension d + 1 is used to allocate the penalties not effective and also
excluded from the penalty term received by the leader at the end of each episode. In particular,

7(s,a) = —0.2 x softmax(s; x)
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Algorithm 7 (Modified) Adaptive Model Design

Input: Iterations 7', Inner iterations: K, Learning rate «, Regularization \, gradient of the pre-learned model V, log P,
gradient of the reward function Vr
Initialize 2, Qo, V.Qo, and Qq
fort=0toT — 1do
E~E
for k =0to K —1do
Tare < expAQi(5, )
Calculate Vi, Vi, Vi, ViV, Vi, Ag, AL Vi
Qry1 < ﬁ,v(vk)
Vthk+1 = Tvztrﬁ(vzt Vi + Vkat log P)
~115-5—1 = Truﬁu(vku) ~
Qr+1 < Tv,,ropravvy,, a, (Vi + V'V, log P)
end for
Set % = VK

o~

dF
Tyl < Tt —+ Oéﬂ

Reinitialize Qg + Qx, V2Qo + V2Qx, and Qo + Qx
end for
Output: Optimised parameter z

Algorithm 8 Zero-Order Algorithm
Input: Iterations 7', Learning rate «, Regularization A
Initialize x(
fort =0toT — 1do
E~E
Sample z ~ N(0,1,,)
m° . < OraclePolicy(wy, &)

z¢,§
Mo fuysne < OraclePolicy(w: + zug, §)

Set 4F — f(erUt*ZJT;Jr“t*z,g,E)ff(r,fr;f,gyﬁ)Z
dx /\ Ut
Ti41 & Tt + a%
end for
Output: &7 ~ U({zg,...,27-1})
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Table 1. Performance over hyperparameters /3 and A for the Four Rooms Problem averaged over 10 random seeds with standard errors.
Algorithms perform on-par for most hyperparameters while HPGD outperforms others in few. AMD enjoys low variance due to the

non-stochastic gradient updates while Zero-Order suffers from the most variation.

Parameters Algorithms
A 15} HPGD AMD Zero-Order

0.001 1 091+£0.088 0.58£0.000 0.59 4 0.059
0.001 3 0.51£0.006 0.51+£0.000 0.50=+0.005
0.001 5 0.46£0.006 0.46=+0.003 0.46 =+ 0.007
0.003 1 0.95£0.002 1.00=£0.000 0.9140.048
0.003 3 0.73£0.001 0.39+£0.000 0.4040.028
0.003 5 0.29£0.003 0.32£0.000 0.32=+0.002
0.005 1 1.17£0.011 1.284+0.003 1.15+0.026
0.005 3 1.01+£0.002 1.13£0.004 1.024+0.027
0.005 5 0.87£0.003 0.97£0.009 0.79+0.027

where softmax(s; z) denotes the value of the softmax transformation of x at the entry corresponding to the state s. Note
that this parametrization explicitly restricts the maximum available budget for penalties to —0.2.
F.2.2. HYPERPARAMETERS

For the upper-level optimization problem, we use gradient norm clipping of 1.0. The learning rate for each algorithm has
been chosen as the best performing one from [1.0,0.5,0.1, 0.05, 0.01] individually. Additionally, we tune the parameter C
for the Zero-order algorithm on the values [0.1,0.5,1.0, 2.0, 5.0]. For Hyper Policy Gradient Descent, we sample 10, 000
environment steps for each gradient calculation.

F.2.3. HYPERPARAMETER COMPARISON

F.2.4. ADDITIONAL FIGURES
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Figure 3. Upper-level objective values, F', over the number of outer iterations for hyperparameters A = 0.001 and 8 = 3.0
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Figure 11. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.001 and 5 = 3.0
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Figure 12. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.001 and 8 = 5.0
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Figure 13. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.003 and 8 = 1.0
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Figure 14. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.003 and 5 = 3.0
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Figure 15. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.003 and 8 = 5.0
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ZERO-ORDER

Figure 16. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.005 and 8 = 1.0
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Figure 17. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.005 and 8 = 3.0
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Figure 18. Reward penalties given to the lower-level agent in each state of the Four-Rooms problem optimized by the HPGD, AMD, and
Zero-Order, respectively, for hyperparameters A = 0.005 and 5 = 5.0
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F.3. Computational Costs

We ran our experiments on a shared cluster equipped with various NVIDIA GPUs and AMD EPYC CPUs. Our default
configuration for all experiments was a single GPU with 24 GB of memory, 16 CPU cores, and 4 GB of RAM per CPU
core. For all parameter configurations reported in Table 1, the total runtime of the experiments for HPGD, AMD, and
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Zero-Order were 17, 40, and 2 hours, respectively, totaling 59 hours. Our total computational costs including the intermediate
experiments are estimated to be 2-3 times more.
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