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Abstract

Reinforcement Learning (RL) algorithms have shown tremendous success in simulation
environments, but their application to real-world problems faces significant challenges, with
safety being a major concern. In particular, enforcing state-wise constraints is essential
for many challenging tasks such as autonomous driving and robot manipulation. However,
existing safe RL algorithms under the framework of Constrained Markov Decision Process
(CMDP) do not consider state-wise constraints. To address this gap, we propose State-wise
Constrained Policy Optimization (SCPO), the first general-purpose policy search algorithm
for state-wise constrained reinforcement learning. SCPO provides guarantees for state-wise
constraint satisfaction in expectation. In particular, we introduce the framework of Maximum
Markov Decision Process, and prove that the worst-case safety violation is bounded under
SCPO. We demonstrate the effectiveness of our approach on training neural network policies
for extensive robot locomotion tasks, where the agent must satisfy a variety of state-wise
safety constraints. Our results show that SCPO significantly outperforms existing methods
and can handle state-wise constraints in high-dimensional robotics tasks.

1 Introduction

Reinforcement learning (RL) has achieved remarkable progress in games and control tasks (Mnih et al.| [2015;
Vinyals et al., [2019; Brown & Sandholml 2018). However, one major barrier that limits the application of RL
algorithms to real-world problems is the lack of safety assurance. RL agents learn to make reward-maximizing
decisions, which may violate safety constraints. For example, an RL agent controlling a self-driving car may
receive high rewards by driving at high speeds but will be exposed to high chances of collision. Although the
reward signals can be designed to penalize risky behaviors, there is no guarantee for safety. In other words,
RL agents may sometimes prioritize maximizing the reward over ensuring safety, which can lead to unsafe or
even catastrophic outcomes (Gu et al., [2022).

Emerging in the literature, safe RL aims to provide safety guarantees during or after training. Early attempts
have been made under the framework of constrained Markov Decision Process, where the majority of works
enforce cumulative constraints or chance constraints (Ray et al. [2019; |Achiam et al., 2017} [Liu et al., 2021)). In
real-world applications, however, many critical constraints are instantaneous. For instance, collision avoidance
must be enforced at all times for autonomous cars (Zhao et al., [2023]). Another example is that when a robot
holds a glass, the robot can only release the glass when the glass is on a stable surface. The violation of those
constraints will lead to irreversible failures of the task. In this work, we focus on state-wise (instantaneous)
constraints.

The State-wise Constrained Markov Decision Process (SCMDP) is a novel formulation in reinforcement
learning that requires policies to satisfy hard state-wise constraints. Unlike cumulative or probabilistic
constraints, state-wise constraints demand full compliance at each time step as formalized by |Zhao et al.
(2023)). Existing state-wise safe RL methods can be categorized based on whether safety is ensured during
training. There is a fundamental limitation that it is impossible to guarantee hard state-wise safety during
training without prior knowledge of the dynamic model. The best we can achieve in a model free setting is to
learn to satisfy the constraints using as few samples as possible, which is the focus of this paper. We aim
to provide theoretical guarantees on state-wise safety violation and worst case reward degredation during
training.
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Our approach is underpinned by a key insight that constraining the maximum violation is equivalent to
enforcing state-wise safety. This insight leads to a novel formulation of MDP called the Mazimum Markov
Decision Process (MMDP). With MMDP, we establish a new theoretical result that provides a bound on
the difference between the maximum cost of two policies for episodic tasks. This result expands upon the
cumulative discounted reward and cost bounds for policy search using trust regions, as previously documented
in literature (Achiam et al., 2017)). We leverage this result to design a policy improvement step that not only
guarantees worst-case performance degradation but also ensures state-wise cost constraints. Our proposed
algorithm, State-wise Constrained Policy Optimization (SCPQO), approximates the theoretically-justified
update, which achieves a state-of-the-art trade-off between safety and performance. Through experiments,
we demonstrate that SCPO effectively trains neural network policies with thousands of parameters on
high-dimensional simulated robot locomotion tasks; and is able to optimize rewards while enforcing state-wise
safety constraints. This work represents a significant step towards developing practical safe RL algorithms
that can be applied to many real-world problems.

2 Related Work

2.1 Cumulative Safety

Cumulative safety requires that the expected discounted return with respect to some cost function is upper-
bounded over the entire trajectory. One representative approach is constrained policy optimization (CPO)
(Achiam et al., [2017), which builds on a theoretical bound on the difference between the costs of different
policies and derives a policy improvement procedure to ensure constraints satisfaction. Another approach is
interior-point policy optimization (IPO) (Liu et al., [2019), which augments the reward-maximizing objective
with logarithmic barrier functions as penalty functions to accommodate the constraints. Other methods
include Lagrangian methods (Ray et al.l |2019) which use adaptive penalty coefficients to enforce constraints
and projection-based constrained policy optimization (PCPO) (Yang et al. [2020a)) which projects trust-region
policy updates onto the constraint set. Although our focus is on a different setting of constraints, existing
methods are still valuable references for illustrating the advantages of our SCPO. By utilizing MMDP, SCPO
breaks the conventional safety-reward trade-off, which results in stronger convergence of state-wise safety
constraints and guaranteed performance degradation bounds.

2.2 State-wise Safety

Hierarchical Policy One way to enforce state-wise safety constraints is to use hierarchical policies, with
an RL policy generating reward-maximizing actions, and a safety monitor modifying the actions to satisfy
state-wise safety constraints (Zhao et all 2023). Such an approach often requires a perfect safety critic to
function well. For example, conservative safety critics (CSC) (Bharadhwaj et al. 2020) propose a safe critic
Qc(s,a), providing a conservative estimate of the likelihood of being unsafe given a state-action pair. If the
safety violation exceeds a predefined threshold, a new action is re-sampled from the policy until it passes the
safety critic. However, this approach is time-consuming. On the other hand, optimization-based methods such
as gradient descent or quadratic programming can be used to find a safe action that satisfies the constraint
while staying close to the reference action. Unrolling safety layer (USL) (Zhang et al., 2022b) follows a
similar hierarchical structure as CSC but performs gradient descent on the reference action iteratively until
the constraint is satisfied based on learned safety critic Q¢ (s,a). Finally, instead of using gradient descent,
Lyapunov-based policy gradient (LPG) (Chow et al.| [2019) and SafeLayer (Dalal et all |[2018) directly solve
quadratic programming (QP) to project actions to the safe action set induced by the linearized versions
of some learned critic Q¢ (s,a). All these approaches suffer from safety violations due to imperfect critic
Qc(s,a), while those solving QPs further suffer from errors due to the linear approximation of the critic. To
avoid those issues, we propose SCPO as an end-to-end policy which does not explicitly maintain a safety
monitor.

End-to-End Policy End-to-end policies maximize task rewards while ensuring safety at the same time.
Related work regarding state-wise safety after convergence has been explored recently. Some approaches (Liang
et al., [2018; [Tessler et al., |2018|) solve a primal-dual optimization problem to satisfy the safety constraint
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in expectation. However, the associated optimization is hard in practice because the optimization problem
changes at every learning step. [Bohez et al.|(2019) approaches the same setting by augmenting the reward
with the sum of the constraint penalty weighted by the Lagrangian multiplier. Although claimed state-wise
safety performance, the aforementioned methods do not provide theoretical guarantee and fail to achieve
near-zero safety violation in practice. He et al.| (2023) proposes AutoCost to automatically find an appropriate
cost function using evolutionary search over the space of cost functions as parameterized by a simple neural
network. It is empirically shown that the evolved cost functions achieve near-zero safety violation, however,
no theoretical guarantee is provided, and extensive computation is required. FAC (Ma et al., [2021]) does
provide theoretically guaranteed state-wise safety via parameterized Lagrange functions. However, FAC
replies on strong assumptions and performs poorly in practice. To resolve the above issues, we propose SCPO
as an easy-to-implement and theoretically sound approach with no prior assumptions on the underlying safety
functions.

3 Problem Formulation

3.1 Preliminaries

In this paper, we are especially interested in guaranteeing safety for episodic tasks, which falls within in the
scope of finite-horizon Markov Decision Process (MDP). An MDP is specified by a tuple (S, A,~, R, P, ),
where S is the state space, and A is the control space, R : S x A — R is the reward function, 0 < v < 1
is the discount factor, u : S — R is the initial state distribution, and P : S x A x § — R is the transition
probability function. P(s’|s,a) is the probability of transitioning to state s’ given that the previous state
was s and the agent took action a at state s. A stationary policy 7 : S — P(A) is a map from states to a
probability distribution over actions, with m(a|s) denoting the probability of selecting action a in state s. We
denote the set of all stationary policies by II. Subsequently, we denote 7y as the policy that is parameterized
by the parameter 6.

The standard goal for MDP is to learn a policy 7 that maximizes a performance measure Jo(7) which is
computed via the discounted sum of reward:

H
Jo(m) = Error Z“YtR(StvanStH)] ; (1)

t=0
where H € N is the horizon, 7 = [sg,ao, $1,- -], and 7 ~ 7 is shorthand for that the distribution over

trajectories depends on 7 : sg ~ p, ar ~ 7(:|S¢), St41 ~ P(|s¢t, at).

3.2 State-wise Constrained Markov Decision Process

A constrained Markov Decision Process (CMDP) is an MDP augmented with constraints that restrict the
set of allowable policies. Specifically, CMDP introduces a set of cost functions, C1,Cs, - ,C,,, where
C;: S x A xS+ R maps the state action transition tuple into a cost value. Analogous to equation [I} we
denote

«7073 (7‘(’) - ETNTF
t=0

H
> ' Cilsi,ar, 5t+1)] (2)

Jc,; (1) = Eror [max C until now] (3)

as the cost measure for policy m with respect to cost function C;. Hence, the set of feasible stationary policies
for CMDP is then defined as follows, where d; € R:

e = {r € 1| Vi, Jo, () < d;}. (4)

In CMDP, the objective is to select a feasible stationary policy mp that maximizes the performance measure:

max Jo(7), s.t. 7 € Ile. (5)
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In this paper, we are interested in a special type of CMDP where the safety specification is to persistently
satisfy a hard cost constraint at every step (as opposed to cumulative costs over trajectories), which we
refer to as State-wise Constrained Markov Decision Process (SCMDP). Like CMDP, SCMDP uses the set of
cost functions C1,Cs, -+, C,, to evaluate the instantaneous cost of state action transition tuples. Unlike
CMDP, SCMDP requires the cost for every state action transition to satisfy a hard constraint. Hence, the set
of feasible stationary policies for SCMDP is defined as

1:[0 = {7T € H’vzv E(st,at,st_'_l)w'r,'rww [Ci(sty A, StJrl)} < wz} (6)

where w; € R. Then the objective for SCMDP is to find a feasible stationary policy from IIo that maximizes
the performance measure. Formally,

max Jy(7), s.t. 7 € Tl (7)

3.3 Maximum Markov Decision Process

Note that for equation [7] each state-action transition pair introduces a constraint, leading to a complexity
that increases nearly cubically as the MDP horizon (H) grows, even when tackled by the fastest algorithms
(Cohen et al., [2021)) (The detailed SCMDP complexity analysis is summarized in Appendix . Thus it’s
intractable to solve using conventional reinforcement learning algorithms. Our intuition is that, instead of
directly constraining the cost of each possible state-action transition, we can constrain the expected maximum
state-wise cost along the trajectory, which is much easier to solve. Following that intuition, we define a
novel Mazimum Markov-Decision Process (MMDP), which further extends CMDP via (i) a set of up-to-now
maximum state-wise costs M = [My, Ma, -+ , M,;,] where M; € M C R, and (ii) a set of cost increment
functions, D1, Da, -+, Dy, where D; : (S, M™)x Ax S + [0, R*] maps the augmented state action transition
tuple into a non-negative cost increment. We define the augmented state § = (s, M) € (S, M™) = S, where
S is the augmented state space. Formally,

D; (§t,at, §t+1) = maX{Ci(Sm Qt, St+1) — My, 0}- (8)

By setting Di(§0, ag, §1) = C;i(s0, ap, 51), we have M;; = Z_:B D; (§k, ay, §k+1) for t > 1. Hence, we define
expected maximum state-wise cost (or D;-return) for m:

JDi (W) =E;n

H
ZDi(§t7Gt7§t+1)]- (9)
t=0

Importantly, equation [Jis the key component of MMDP and differs our work from existing safe RL approaches
that are based on CMDP cost measure equation 2} With equation [0} equation [7] can be rewritten as:

maxJ (), s.t. Vi, Ip,(7) < w;, (10)

where J (1) = Ern [Zf]:o Y R(3y, ay, §t+1)} and R(8,a,8) = R(s,a,s’). With R(7) being the discounted

return of a trajectory, we define the on-policy value function as V™(8) = E,.[R(7)[3% = 8], the on-
policy action-value function as Q™(3,a) = E,-[R(7)|80 = 8,ap = a], and the advantage function as
A™(8,a) = Q™(8,a) — V™(8). Lastly, we define on-policy value functions, action-value functions, and
advantage functions for the cost increments in analogy to V™, Q™, and A™, with D; replacing R, respectively.
We denote those by V7, QF, and AT, .

4 State-wise Constrained Policy Optimization

To solve large and continuous MDPs, policy search algorithms search for the optimal policy within a set
IIy C II of parametrized policies. In local policy search (Peters & Schaal, 2008), the policy is iteratively
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updated by maximizing J(7) over a local neighborhood of the most recent policy 7. In local policy search
for SCMDPs, policy iterates must be feasible, so optimization is over Iy () II. The optimization problem is:

Tr+1 = argmax J (), (11)
wellg
s.t. Dist(m, 7)) < 6,
le(ﬂ—) < U}i7i = ]-7 , M.

where Dist is some distance measure, and § > 0 is a step size. For actual implementation, we need to
evaluate the constraints first in order to determine the feasible set. However, it is challenging to evaluate the
constraints using samples during the learning process. In this work, we propose SCPO inspired by recent
trust region optimization methods [Schulman et al|(2015). SCPO approximates equation [11| using (i) KL
divergence distance metric Dist and (ii) surrogate functions for the objective and constraints, which can be
easily estimated from samples on 7. Mathematically, SCPO requires the policy update at each iteration is
bounded within a trust region, and updates policy via solving following optimization:

Tr+1 = argmax E [A™*(8,a)] (12)
w€elly §;Nd;—k

sit. B, gr [Prr(m||me)[8]] <0,

1
Ip;(me) + E |AT(8,a)| +2(H + 1)ep 4/ 55 <wg,i=1,---,m.
sd™k ! ’
an~/T

where Dk (n'||7)[8] is KL divergence between two policy (#',7) at state §, the set {w €
Iy : E, g DPkr(r|m)[8]] < 0} is called trust region, d™ = (1 —7) ZiofytP@t = §|my), d™ =
Zfio P(3; = 8|m;.) and €}, = max;|Eqr[AT (5,a)]|. We then show that SCPO guarantees (i) worst case
maximum state-wise cost violation, and (ii) worst case performance degradation for policy update, by
establishing new bounds on the difference in returns between two stochastic policies © and 7’ for MMDPs.

Theoretical Guarantees for SCPO We start with the theoretical foundation for our approach, i.e. a new
bound on the difference in state-wise maximum cost between two arbitrary policies. The following theorem
connects the difference in maximum state-wise cost between two arbitrary policies to the total variation
divergence between them. Here total variation divergence between discrete probability distributions p, q is
defined as Drv (pllq) = 1 >, |pi — ¢;|- This measure can be easily extended to continuous states and actions
by replacing the sums with integrals. Thus, the total variation divergence between two policy (7', 7) at state
5 is defined as: Dpy (7'||7)[8] = Drv (7' (:]8)||7(:]8)).

Theorem 1 (Trust Region Update State-wise Maximum Cost Bound). For any policies ©', 7, with 6’[)/ =
max; By [AT(3,a)]|, and define d™ = Zio P(3; = §|m) as the non-discounted augmented state distribution
using m, then the following bound holds:

Ip(a') = Ip(r) < E_[AB(5,a) +2(H +1)ef Dry («'||m)[3] (13)

~

o w
5

The proof for Theorem [I] is summarized in Appendix [C] Next, we note the following relationship be-
tween the total variation divergence and the KL divergence (Boyd et al., |2003; |Achiam et al., 2017):

E. - [Drv(pllg)[8]] < \/%ngﬁ [Dkr(pllq)[8]]- The following bound then follows directly from Theorem

Tol) < To(m) + B, | 45(5,0) +2(H + )/ 1y [Dmr'nfr)[én] . (14)

By Equation , we have a guarantee for satisfaction of maximum state-wise constraints:
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Proposition 1 (SCPO Update Constraint Satisfaction). Suppose g, w11 are related by equation then
D;-return for w41 satisfies

Vi, Ip, (Tk+1) < w;.

Remark 1. Proposition[d] is the first finite-horizon variant of the policy improvement theorem, and it also
presents the first constraint satisfaction guarantee under MMDP. Unlike trust region methods such as CPO
and TRPO, which assume a discounted infinite horizon sum characteristic, MMDP’s non-discounted finite
horizon sum characteristic invalidates these theories and separate treatment is required. As the mazimum
state-wise cost is calculated through a summation of non-discounted increments, analysis must be performed
on a finite horizon to upper bound the worst-case summation.

Next, we provide the performance guarantee of SCPO. Previous analyses of performance guarantees have
focused on infinite-horizon MDP. We generalize the analysis to finite-horizon MDP, inspired by previous
work (Kakade & Langford| 2002; [Schulman et al.| 2015; |Achiam et al., |2017)), and prove it in Appendix @
The infinite-horizon case can be viewed as a special case of the finite-horizon setting.

Proposition 2 (SCPO Update Worst Performance Degradation). Suppose 7, mgy1 are related by equation
with €™+ = max;|Eqr,,,[A™ (8, a)]|, then performance return for w1 satisfies

V207 yeTR+1

Fm) = I (me) > =37

Remark 2. Proposition[] establishes a fundamental result that bounds the performance degradation when
policy updates are carried out via solving equation which ensures satisfaction of the trust region step size
constraint and the state-wise mazimum cost constraints. Intuitively, this proposition assures that when our
policy is updated within these specified constraints, the degradation in reward performance will be limited.
This means that our approach strikes a balance between improving the policy’s performance and satisfying the
state-wise safety constraints.

5 Practical Implementation

In this section, we show how to (a) implement an efficient approximation to the update equation (b)
encourage learning even when equation becomes infeasible, and (c¢) handle the difficulty of fitting augmented
value V5 which is unique to our novel MMDP formulation. The full SCPO pseudocode is given as algorithm |I|

in appendix [E]

Practical implementation with sample-based estimation We first estimate the objective and con-
straints in equation |12] using samples. Note that we can replace the expected advantage on rewards using an
importance sampling estimator with a sampling distribution 7, (Achiam et al., [2017) as

7(al3)

mx(al8)

Esarr, amn[A™(8,a)] = Esuami, aromy A™(3,a)] . (15)
equation [15] allows us to replace A™ with empirical estimates at each state-action pair (8, a) from rollouts by
the previous policy ;. The empirical estimate of reward advantage is given by R(8,a, §") +~V 7™ (§') — V™ (3§).
V™ (8) can be computed at each augmented state by taking the discounted future return. The same can
be applied to the expected advantage with respect to cost increments, with the sample estimates given
by Di(3,a,5") + VE*(8") — Vi*(8). VpF(3) is computed by taking the non-discounted future D;-return.
To proceed, we convexify equation by approximating the objective and cost constraint via first-order
expansions, and the trust region constraint via second-order expansions. Then, equation [12| can be efficiently
solved using duality (Achiam et al.| [2017)).



Under review as submission to TMLR

Infeasible constraints An update to 6 is computed every time equation [12]is solved. However, due to
approximation errors, sometimes equation [12| can become infeasible. In that case, we follow
to propose an recovery update that only decreases the constraint value within the trust region. In
addition, approximation errors can also cause the proposed policy update (either feasible or recovery) to
violate the original constraints in equation [I2] Hence, each policy update is followed by a backtracking line
search to ensure constraint satisfaction. If all these fails, we relax the search condition by also accepting
decreasing expected advantage with respect to the costs, when the cost constraints are already violated.
Denoting ¢; = Jp, (7r) + 2(H + 1)675\/% — w;, the above criteria can be summarized as

B g [Prr(mllme)[3] < 0 (16)

E, [Ag“i(é,a)]—E [A”’“(s a)] < max(—c;,0). (17)

3~od™k ar~T S~d™k ar~T

Note that the previous expected advantage E;_jry oor, [Agi (8, a)] is also estimated from rollouts by 7 and
converges to zero asymptotically, which recovers the original cost constraints in equation

Imbalanced cost value targets A critical step in solving equation [12|is to fit the cost increment value
functions V5*(3;). By definition, V5*(3;) is equal to the maximum cost increment in any future state over
the maxunal state-wise cost so far. In other words, the true V’rk will always be zero for all §;.y when the
maximal state-wise cost has already occurred before time ¢t. In practlce this causes the distribution of cost
increment value function to be highly zero-skewed and makes the fitting very hard. To mitigate the problem,
we sub-sample the zero-valued targets to match the population of non-zero values. We provide more analysis
on this trick in Q3 in section [6.2]

6 Experiments

In our experiments, we aim to answer these questions:

~

Q1 How does SCPO compare with other state-of-the-art
methods for safe RL?

o
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New Safety Gym To showcase the effectiveness of our 03 10 s 20 25 30 05 1o 18 20 25 30
state-wise constrained policy optimization approach, we - L2
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enhance the widely recognized safe reinforcement learning T EREE T ET iy THROTAC — SCPO

benchmark environment, Safety Gym [Ray et al.| (2019)),
by incorporating additional robots and constraints. Sub-
sequently, we perform a series of experiments on this
augmented environment.

05 15 20 25 30 05 10 15 20 25 30
TotalEnv!nteracts 1le7 TotalEnvinteracts le7

Our experiments are based on five different robots: (i)

Point: Figure [2a] A point-mass robot (A C R?) that (a) Ant-Hazard-8 (b) Walker-Hazard-8
can m(-we on the groundz. (11) Swimmer: Figure A Figure 1: Comparison of results from two representative
three-link robot ('A CR ) that can move on the ground. test suites in high dimensional systems (Ant and Walker).
(iii) Walker: Figure 2d| A bipedal robot (A C R'?) that

can move on the ground. (iv) Ant: Figure . 2c A quadrupedal robot (A C R®) that can move on the ground.
(v) Drone: Figure . 2¢| A quadrotor robot (A C R*) that can move in the air.

All of the experiments are based on the goal task where the robot must navigate to a goal. Additionally,
since we are interested in episodic tasks (finite-horizon MDP), the environment will be reset once the goal is
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reached. For the robots that can move in 3D spaces (e.g, the Drone robot), we also design a new 3D goal
task with a sphere goal floating in the 3D space. Three different types of constraints are considered: (i)
Hazard: Dangerous areas as shown in Figure Hazards are trespassable circles on the ground. The agent
is penalized for entering them. (ii) 3D Hazard: 3D Dangerous areas as shown in Figure 3D Hazards are
trespassable spheres in the air. The agent is penalized for entering them. (iii) Pillar: Fixed obstacles as
shown in Figure The agent is penalized for hitting them.

e 'L X 'n

(a) Point (b) Swimmer (c) Ant (d) Walker (e) Drone

Figure 2: Robots for benchmark problems in upgraded Safety Gym.

) Hazard (b) 3D Hazard (c) Pillar

Figure 3: Constraints for benchmark problems in upgraded Safety Gym.

Considering different robots, constraint types, and constraint difficulty levels, we design 14 test suites with 5
types of robots and 9 types of constraints, which are summarized in Table [I]in Appendix. We name these
test suites as {Robot}-{Constraint Type}-{Constraint Number}.

Comparison Group The methods in the comparison group include: (i) unconstrained RL algorithm
TRPO (Schulman et all 2015) (ii) end-to-end constrained safe RL algorithms CPO (Achiam et al., 2017)),
TRPO-Lagrangian (Bohez et al., 2019), TRPO-FAC (Ma et al., |2021), TRPO-IPO (Liu et al., 2020,
PCPO (Yang et al. [2020b)), and (iii) hierarchical safe RL algorithms TRPO-SL (TRPO-Safety Layer) (Dalal
et al. 2018)), TRPO-USL (TRPO-Unrolling Safety Layer) (Zhang et all 2022a). We select TRPO as our
baseline method since it is state-of-the-art and already has safety-constrained derivatives that can be tested
off-the-shelf. For hierarchical safe RL algorithms, we employ a warm-up phase (1/3 of the whole epochs)
which does unconstrained TRPO training, and the generated data will be used to pre-train the safety critic
for future epochs. For all experiments, the policy m, the value (V™, V) are all encoded in feedforward
neural networks using two hidden layers of size (64,64) with tanh activations. More details are provided in

Appendix [F]

Evaluation Metrics For comparison, we evaluate algorithm performance based on (i) reward performance,
(ii) average episode cost and (iii) cost rate. Comparison metric details are provided in Append1x We set
the limit of cost to 0 for all the safe RL algorithms since we aim to avoid any violation of the constraints. For
our comparison, we implement the baseline safe RL algorithms exactly following the policy update / action
correction procedure from the original papers. We emphasize that in order for the comparison to be fair, we
give baseline safe RL algorithms every advantage that is given to SCPO, including equivalent trust region
policy updates.

6.2 Evaluating SCPO and Comparison Analysis

Low Dimension System We select four representative test suites on low dimensional system (Point,
Swimmer, Drone) and summarize the comparison results on Figure 4} which demonstrate that SCPO is
successful at approximately enforcing zero constraints violation safety performance in all environments after
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Figure 4: Comparison of results from four representative test suites in low dimensional systems (Point, Swimmer, and Drone).

the policy converges. Specifically, compared with the baseline safe RL methods, SCPO is able to achieve (i)
near zero average episode cost and (ii) significantly lower cost rate without sacrificing reward performance.
The baseline end-to-end safe RL methods (TRPO-Lagrangian, TRPO-FAC, TRPO-IPO, CPO, PCPO) fail
to achieve the near zero cost performance even when the cost limit is set to be 0. The baseline hierarchical
safe RL methods (TRPO-SL, TRPO-USL) also fail to achieve near zero cost performance even with an
explicit safety layer to correct the unsafe action at every time step. End-to-end safe RL algorithms fail
since all methods rely on CMDP to minimize the discounted cumulative cost while SCPO directly work
with MMDP to restrict the state-wise maximum cost by Proposition [I We also observe that TRPO-SL
fails to lower the violation during training, due to the fact that the linear approximation of cost function
C(8¢,a,58:11) (Dalal et al., 2018) becomes inaccurate when the dynamics are highly nonlinear like the ones
we used in MuJoCo (Todorov et al [2012). More detailed metrics for comparison and experimental results on
test suites with low dimension systems are summarized in Appendix

High Dimension System To demonstrate the scalability and perfor- oot
mance of SCPO in high-dimensional systems, we conducted additional
tests on the Ant-Hazard-8 and Walker-Hazard-8 suites, with 8-dimensional
and 10-dimensional control spaces, respectively. The comparison results
for high-dimensional systems are summarized in Figure [I, which show that
SCPO outperforms all other baselines in enforcing zero safety violation
without compromising performance in terms of return. SCPO rapidly
stabilizes the cost return around zero and significantly reduces the cost
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rate, while the other baselines fail to converge to a policy with near-zero TotalEnvinterasts 167
cost. The comparison results of both low dimension and high dimension
systems answer Q1. Figure &:

Maximum state-wise cost

Maximum State-wise Cost As pointed in Section [3.3] the underlying
magic for enabling near-zero safety violation is to restrict the maximum state-wise cost to stay around zero.
To have a better understanding of this process, we visualize the evolution of maximum state-wise cost for
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SCPO on the challenging high-dimensional Ant-Hazard-8 and Walker-Hazard-8 test suites in Figure [p], which
answers Q2.

Ablation on Sub-sampling Imbalanced Cost Incre-
ment Value Targets As pointed in Section [p] fitting
Vp¥(3¢) is a critical step towards solving SCPO, which
is challenging due to zero-skewed distribution of cost in-
crement value function. To demonstrate the necessity
of sub-sampling for solving this challenge, we compare

the performance of SCPO with and without sub-sampling U aEnnteracs © 1eb U frandmeracts | tes
trick on the aerial robot test suite, summarized in Fig-
ure [6] It is evident that with sub-sampling, the agent
achieves higher rewards and more importantly, converges
to near-zero costs. That is because sub-sampling effectively balances the cost increment value targets and
improves the fitting of ng (8:). We also attempted to solve the imbalance issue via over-sampling non-zero
targets, but did not observe promising results. This ablation study provides insights into Q3.
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o

Figure 6: SCPO sub-sampling ablation study with Drone-
3DHazard-8

7 Conclusion and Future Work

This paper proposed SCPO, the first general-purpose policy search algorithm for state-wise constrained RL.
Our approach provides guarantees for state-wise constraint satisfaction at each iteration, allows training of
high-dimensional neural network policies while ensuring policy behavior, and is based on a new theoretical
result on Maximum Markov Decision Process. We demonstrate SCPQO’s effectiveness on robot locomotion
tasks, showing its significant performance improvement compared to existing methods and ability to handle
state-wise constraints.

Limitation and future work One limitation of our work is that, although SCPO satisfies state-wise
constraints, the theoretical results are valid only in expectation, meaning that constraint violations are still
possible during deployment. To address that, we will study absolute state-wise constraint satisfaction, i.e.
bounding the maxzimal possible state-wise cost, which is even stronger than the current result (satisfaction in
expectation).
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A Complexity analysis for SCMDP

The complete form of equation [7] is:

max Jo(7), s.t. V((st,at,stH) ~ T, T ~ 77), Vi, E[Ci(St,at,StJrl)] < wj, (18)

where each state-action transition pair corresponds to a constraint. Consider there’s only one constraint
function C7, equation [18]is transformed as:

max Jo(m),

s.t. gl(w) = E [Cl(So,ao,Sl)] — w1 S 0

(SO;aO;Sl)NT
T

Ga() i( E ) [C1(s1,a1,52)] —w1 <0
G (m) = E [Ci(sp—1,am—1,58)] —w1 <0 . (19)

(sH—1,aH—1,5H)~T
T~T

Suppose 7 is parameterized by 0 € R™, With KKT conditions, equation [19| can be optimized via solving the
following program:

81:8(71',)\) =0,i=1,2,--- ,ng
Ajgj(ﬂ-)zoﬁjzlaQa"'aH (20)

A1207]:17237H )

where L(m,\) = To(m) + Efil AiGi(T).

To understand the time complexity of equation 20} we can treat Jy and G, as linear functions with respect to
7. So that equation [20| represents a linear program, which can be solved by the fastest algorithm (Cohen
et al., 2021)) in time

O (((nr + H)* + (nr + H)**=*/2 4 (nz + H)* /%) log((n + H)/9)) (21)

where w is the exponent of matrix multiplicatoin, « is the dual exponent of matrix multiplication, and ¢ is
the relative accuracy. For the current value of w ~ 2.37 and « ~ 0.31, the state-of-the-art algorithm takes
O*((ny + H)*log((nx + H)/0)) time (Cohen et al., 2021)).

Consider (i) there are multiple cost functions C;, and (ii) Jy and G; are nonlinear functions with respect
to m, the complexity of solving equation [I§ with good accuracy, i.e. solving SCMDP, will be larger than
O*((nx + H)?).

B Preliminaries

To facilitate the proof of Theorem [I] we begin by establishing key preliminaries that underpin the foundations

of finite-horizon variations of the performance improvement bound, considering the discounted sum nature.

The subsequent section, Appendix [C] will elucidate the policy improvement of finite-horizon undiscounted
sum Markov Decision Processes (MMDP). Our preliminary groundwork draws inspiration from [Appendix
10.1, |Achiam et al| (2017)], extending the theoretical framework for finite-horizon scenarios.

13
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d™ we used is defined as
H

d™(8) = _4'P(5 = 3|m). (22)

t=0

which has a little difference with d™ and is used to ensure the continuity of function we used for proof later.
Then it allows us to express the expected discounted total reward or cost compactly as:

Jg(ﬂ') = §f\]§i” [Q(§7 a, §/)] ’ (23)

§'~P

where by a ~ 7, we mean a ~ 7(-|§), and by § ~ P,we mean & ~ P(-|3,a). g(8,a, §) represents the cost or
reward function. We drop the explicit notation for the sake of reducing clutter, but it should be clear from
context that a and & depend on &.

Define P(§'|8,a) is the probability of transitioning to state § given that the previous state was § and the
agent took action a at state §, and [ : S [0,1] is the initial augmented state distribution. Let p. € RIS|
denote the vector with components p% (8) = P(3; = 8|r), and let Py € RISIXISI denote the transition matrix
with components P, (§'|8) = [ P(§'|3,a)n(a|8)da; then pl, = Prp!~! = PLji and

H

" = (v (24)

t=0
= (I - (7PW)H+1)(I - ’YP‘n')_lﬂ
=~ '7P7r)_1ﬂ

Noticing that the finite MDP ends up at step H, thus (P, )1 should be set to zero matrix.

This formulation helps us easily obtain the following lemma.

Lemma 1. For any function f : S—R and any policy ,

EfG)+ E 1f&)] - E 7G]0 (25)

Proof. Multiply both sides of equationby (I —~Py) and take the inner product with the vector f € RIS, O

Combining Lemma [I] with equation 23] we obtain the following, for any function f and any policy 7:

Ty(m) = E[F6)+ E lo(sa.8)+71(E) - )] (26)

an~T

§'~P
Lemma 2. For any function f — R and any policies ©’ and w, define

'(al3)

Legw) = B | = 1) (6.0.8) + 176 - 1) (27)
§a/~7173

and €' = max; [Eqr s p[R(3,a,8") +7f(8) — f(8)]]. Then the following bounds hold:

Ty(w') = Ty(m) = Lag(x') = €f || d" —d"

g (28)

g (29)

To(w") = Ty(x) < Ly g (x') + €F ||[d™ —d"

where Dpvy is the total variational divergence. Furthermore, the bounds are tight(when ©' = 7, the LHS and
RHS are identically zero).

14
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Proof. First, for notational convenience, let 6¢(8,a,38") = g(8,a,8")+~f(8') — f(5). By equation we obtain
the identity

Jo(') = Ty(m) = E [6(5,0,8)] = E [67(3,0,5) (30)
3~d™ §~d™
g/f:ﬂl-—_/, g:?

Now, we restrict our attention to the first term in equation Let T(S}r/ € RIS denote the vector of

components, where Té}r'(§) =Equr 5~pr[07(5,a,8)|5]. Observe that

= (d. 107 ) + (d" —d", 107 )
. .. . . 1 1
With the Holder’s inequality; for any p, ¢ € [1, 0] such that 2; + 6 =1, we have

d —d" d~ —d~| |[toF (31)

toF

() 2 B2 (67

’
anyT

§'~P

p p q

We choose p =1 and ¢ = co; With HT(S}T' H = e’}/, and by the importance sampling identity, we have
o0

(d.167 ) = B [5(3.0.9) (32)

§'~P

- 5 (g ) e )

an~T

§'~P

into equation 31} then substract E [47(8, a,§")], the bounds are obtained.

After bringing equation |32 H Té}'/

S S~d™
a~T
§'~P
The lower bound leads o equation 28] and the upper bound leads to equation 29] O

Lemma 3. The divergence between discounted future state visitation distributions, ||d™ — d™||1, is bounded
by an average divergence of the policies ' and :

H
|47 —d™l <23 4" E_[Drv(«||mis]], (33)

t=0
/! a 1 / N A
where Dry (7'||7)[8] = 3 > u T (a|8) — m(al8)].
Proof. Firstly, we introduce an identity for the vector difference of the discounted future state visitation

distributions on two different policies, 7/ and 7. Define the matrices G = (I — yP,)"!,G = (I — vP)7},
and A = P.» — P,. Then:

Giliéil:(li'yp'rr)f(ji"yPﬂ") (34)
=74,

15
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left-multiplying by G and right-multiplying by G, we obtain

G — G =~vGAG.

Thus, the following equality holds:

d” —d"=(1-7)(G-G)p
=7(1-7)GAGh
= yGAd".

Using equation [36], we obtain

™ = d" |y = | GAd |
<Gl Ad™ |1,

where ||G]|; is bounded by:

o H
1Gl = (T =Py < S AP =3 A
t=0 t=0

Next, we bound ||AdT|| as following:

[adl = 30| AEREE)
< P IAERIEE)
= 2|3 P16 (7 (al3) ~ (als))
< Y PEIa) ) - w(@l9)ld"(3)

= Y ) el

= 2 E [Dpv(«'||m)[8]].

S~d™

By taking equation [39] and equation [38]into equation [37] this lemma is proved.

The new policy improvement bound follows immediately.

16
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Lemma 4. For any function f : S — R and any policies ' and 7, define 0f(5,a,8) = g(8,a,8)+vf(8")—f(3),

¢f = max[Eqnm,sp[d7(3,0,8)]),

N m'(al3) _ N~
Lﬂ’f(ﬂ-)_ggjw [(w(a|§) 1) @(s,a,s)} ,and

§'~P

H
D p(') = Loy (1) £203_7)ef B [Drv('||m)[s])
=0 srvar

where Dpy (7'||m)[8] = 33, |7/ (al8) — m(a|3)| is the total variational divergence between action distributions

at §. The following bounds hold:
D} (n") = Ty(n") = Ty(m) = D ;(n).

Furthermore, the bounds are tight (when ' = 7, all three expressions are identically zero)

Proof. Begin with the bounds from lemma [2{and bound the divergence Dy (d™ ||d™) by lemma O

C Proof for Theorem {1l

Proof. The choice of f = f/g ,g = D in lemma 4| leads to following inequality:

H
Io(r') = Ip(m) < E_ A}B(m)+2<th“>e§5’Dw(w’|w)[é}]- (40)
Szﬂ—/ t=0

where Jp (m) = Ernn Zf:o 'ytD(éhah §t+1) , need to distinguish from Jp (7). And Vg, fl% are also the

discounted version of V5 and A7,. Note that according to Lemma @ one can only get this the inequality holds
when v € (0,1).

Then we can define F(vy) = E [A%(&a) +2(27, 'yt“)egDTv(ﬂ’Hw)[é]} — Ip(n') + Jp(m) with the
sd”

following condition holds:

F(7) > 0, when 7 € (0,1) (41)
F(7y)’s domain of definition is R
F(7) is a polynomial function

Because F () is a polynomial function and coefficients are all limited, thus lim F(v) exists and F(v) is
y—1-

continuous at point (1, F(1)). So F(1) = liHll F () > 0, which equals to:
y=1-

Ip(a') = Ip(r) < E_[Ap(5.a) +2(H + l)e’[’;DTV(W’Hﬁ)[é}] .

where d™ = S22 P(3, = 3|r).

17



Under review as submission to TMLR

D Proof for Proposition 2|

Proof. Here we first present a new bound on the difference in returns between two arbitrary policies in the
context of finite-horizon MDP:

Theorem 2 (Trust Region Update Performance). For any policies ©', 7, with €™ = maxs|Eqmr [A™(3,a)]],

H
and define d™ = (1 —v) >_ v'P(3; = 3|7r) as the discounted augmented state distribution using m, then the
=0

following bound holds:

T(r') — T(x) > 1—17(&7 A™(3,a) — 27_6’;DTV(7T/||W)[§] (42)

We provide the proof for Theorem [2] in Appendix The following bound then follows directly from
Theorem [2] using the relationship between the total variation divergence and the KL divergence:

1 2ve™ 1
J(@) = T(x) > mﬁET A™(3,a) — 17_67\/2]E§~dw [Dx (7' ||7)[3]]] - (43)

In equation [I2] the reward performance between two policies is associated with trust region, i.e.

Tr+1 = argmax E [A™%(8,a)] (44)
melly SO

s.t. E; g [Drr(m]me)[8]] < 6.

Due to Lemma [5| (proved in Appendix [D.1)), if two policies are related with Equation , they are related
with the following optimization:

Tr+1 = argmax E [A™%(8,a)] (45)
w€elly ‘§g‘g;k

s.t. Ezogm [’DKL(WHWIC)[gH <.

By equation 3] and equation if my, mry1 are related by equation then performance return for 1
satisfies

V 267y€eTk 1

T (Tht1) — T (i) > 1—~

D.1 KL Divergence Relationship Between d™* and d™*

Lemma 5. ggi,,[DKL(”'””)[é” < §~Ed’ [Dr (7 ||7)[8]]

18
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Proof.
H
E Drr( w06l = 3(1 %) Y2 (s, = dlm)Dicr () 3
i s t=0
H
<3S4 P(s: = 8lm)Dicr ()Im)13
5 t=0
H
<33 P(a = 8lm)Dien (v )8
s t=0

= ]% [Dic.(n'||m)[3]].

S~Ax

D.2 Proof for Theorem

The choice of f =V,,g = R in lemma [4] leads to following inequality:

For any policies 7/, 7, with €™ = mazs|Eqmr[Ax(8,a)]|, the following bound holds:

I~ I > E

Ar(3,0) =203 7t+1)6”'DTv(7T’|I7T)[§]]

t=0

1 2ve™
> 775, [Aﬂ(§,a) - 1”_‘57DTV(7T’||7T)[§]]

a~T

At this point, the theorem [2]is proved.
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E SCPO Pseudocode

Algorithm 1 State-wise Constrained Policy Optimization

Input: Initial policy 7 € Ilp.
for k=0,1,2,... do
Sample trajectory T ~ m = Ty,

Estimate gradient g <= VoE; anr [A7(8,a)]]y_y, > section
Estimate gradient b; <— VpE; o~r [A’bi(é,a)] |9:9k , Vi=1,2,...,m > section
Estimate Hessian H «+ V3E§NT[DKL(W|\Wk)[§]]‘ezek

Solve convex programming > Achiam et al.| (2017)

0y, = argmax g' (60— 6)
0

sit. —(0—0) H(@O—0,) <6

1
2
ci+b (0—0;)<0,i=1,2,...,m

Get search direction A" < 0 | — Ok

for 7=0,1,2,... do > Line search
0 < O + & AO* > ¢ € (0,1) is the backtracking coefficient
if Esor[Drr(mo||me)[8]] < 0 and > Trust region
Esqnr [Agei' (8,a)] — Esqnr [Agi(é,a)] < max(—c¢;,0), Vi and > Costs
(Es.ar [A™ (8,a)] > Eg gor [A™ (8, a)] or infeasible equation [I2) then > Rewards
Opy1 < 0 > Update policy
break
end if
end for

end for
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Table 1: The test suites environments of our experiments

Ground robot ‘ Aerial robot
Task Setting Low dimension \ High dimension \
Point  Swimmer ‘ Walker Ant ‘ Drone

Hazard-1 v v

Hazard-4 v v

Hazard-8 v v v v

Pillar-1 v

Pillar-4 v

Pillar-8 v
3DHazard-1 v
3DHazard-4 N
3DHazard-8 v

F Expeiment Details

F.1 Environment Settings
Goal Task In the Goal task environments, the reward function is:
r(xy) =df_, —d} +1[d{ < RY],

where df is the distance from the robot to its closest goal and RY is the size (radius) of the goal. When a
goal is achieved, the goal location is randomly reset to someplace new while keeping the rest of the layout the
same. The test suites of our experiments are summarized in Table

Hazard Constraint In the Hazard constraint environments, the cost function is:
¢(xy) = max(0, R" —dl") ,
where d? is the distance to the closest hazard and R" is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ¢; = 1 if the robot contacts with the
pillar otherwise ¢; = 0.

State Space The state space is composed of two parts. The internal state spaces describe the state of
the robots, which can be obtained from standard robot sensors (accelerometer, gyroscope, magnetometer,
velocimeter, joint position sensor, joint velocity sensor and touch sensor). The details of the internal state
spaces of the robots in our test suites are summarized in Table [2l The external state spaces are describe the
state of the environment observed by the robots, which can be obtained from 2D lidar or 3D lidar (where
each lidar sensor perceives objects of a single kind). The state spaces of all the test suites are summarized in
Table|3] Note that Vase and Gremlin are two other constraints in Safety Gym Ray et al.| (2019) and all the
returns of vase lidar and gremlin lidar are zero vectors (i.e., [0,0, -+ ,0] € R1%) in our experiments since none
of our test suites environments has vases.

Control Space For all the experiments, the control space of all robots are continuous, and linearly scaled
to [-1, +1].

F.2 Policy Settings

The hyper-parameters used in our experiments are listed in Table [4] as default.
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Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker Ant  Drone
Accelerometer (R?) v v v v v
Gyroscope (R?) v v v v v
Magnetometer (R?) v v v v v
Velocimeter (R?) v v v v v
Joint position sensor (R™) | n =0 n=2 n=10 n=8 n=0
Joint velocity sensor (R™) | n =10 n=2 n=10 n=8 n=0
Touch sensor (R™) n=20 n=4 n=2 n=8 n=0

Table 3: The external state space components of different test suites environments.

External State Space | Goal-Hazard 3D-Goal-Hazard Goal-Pillar
Goal Compass (R?) v v v
Goal Lidar (R'°) v X v
3D Goal Lidar (R) X v X
Hazard Lidar (R6) v X X
3D Hazard Lidar (R%) X v X
Pillar Lidar (R') X X v
Vase Lidar (R'6) v X v
Gremlin Lidar (R16) v X v

Our experiments use separate multi-layer perception with tanh activations for the policy network, value
network and cost network. Each network consists of two hidden layers of size (64,64). All of the networks are
trained using Adam optimizer with learning rate of 0.01.

We apply an on-policy framework in our experiments. During each epoch the agent interact B times with the
environment and then perform a policy update based on the experience collected from the current epoch.
The maximum length of the trajectory is set to 1000 and the total epoch number N is set to 200 as default.
In our experiments the Walker and the Ant were trained for 1000 epochs due to the high dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of backtracking
with a coefficient of 0.8 for line searching.

For all experiments, we use a discount factor of v = 0.99, an advantage discount factor A = 0.95, and a
KL-divergence step size of dx = 0.02.

For experiments which consider cost constraints we adopt a target cost . = 0.0 to pursue a zero-violation
policy.

Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz, Nvidia RTX
A4000 GPU with 16GB memory, and Ubuntu 20.04.

For low-dimensional tasks, we train each model for 6e6 steps which takes around seven hours. For high-
dimensional tasks, we train each model for 3e7 steps which takes around 60 hours.

F.3 Metrics Comparison

In Tables 5] to [0} we report all the 14 results of our test suites by three metrics:
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o The average episode return J,.
o The average episodic sum of costs M..

o The average cost over the entirety of training p..

All of the three metrics were obtained from the final epoch after convergence. Each metric was averaged over
two random seed.

The learning curves of all experiments are shown in Figures [7] to

A few general trends can be observed:

o All methods can converge to good reward performance under different task settings after about 1e6
time steps. However, it often takes more time for the cost performance to get converge.

e The reward learning speed and the cost learning rate trade off against each other because the
algorithms without state-wise constraints are more likely to explore unsafe state to gather more
rewards.

G Broader Impact

Our SCPO algorithm has been theoretically proven to effectively enforce state-wise instantaneous constraints,
including safety-critical ones such as collision avoidance. However, achieving zero constraint violation in
practical applications requires careful fine-tuning of the implementation and training process. Factors such
as neural network structure, learning rate, and cost limits need to be properly adjusted to the specific task
at hand. It is important to note that improper implementation and training of SCPO can still result in
constraint violations, posing potential safety risks. Therefore, when deploying SCPO policies in safety-critical
applications, it is strongly recommended to incorporate an explicit safety monitor, such as control saturation,
to completely eliminate any potential safety issues.
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Table 5: Metrics of three Point-Hazard environments obtained from the final epoch.

(a) Point-Hazard-1

(b) Point-Hazard-4

(c) Point-Hazard-8

Algorithm Jr M. pe Algorithm Jr M. pe Algorithm Jr M. pe
TRPO 25779 0.7340  0.0086 TRPO 25025 0.2412  0.0037 TRPO 25761 0.5413  0.0071
TRPO-Lagrangian | 2.6313  0.5977  0.0058 TRPO-Lagrangian | 2.5494  0.2108  0.0034 TRPO-Lagrangian | 2.5851  0.5119  0.0064
TRPO-SL 24721 117396 0.0116 TRPO-SL 25174 0.2915  0.0037 TRPO-SL 25683 0.8681  0.0071
TRPO-USL 25410 0.5381  0.0083 TRPO-USL 2.6140  0.2695  0.0035 TRPO-USL 25808 0.5921  0.0070
TRPO-IPO 25779 0.7340  0.0086 TRPO-IPO 25946 0.2207  0.0038 TRPO-IPO 25625 0.5047  0.0071
TRPO-FAC 25731 0.3263  0.0040 TRPO-FAC 25566 0.1848  0.0028 TRPO-FAC 2.6599  0.4819  0.0059
CPO 01713 0.0045 CPO 25924 0.1654  0.0024 CPO ; 0.2044  0.0041
PCPO 0.3765  0.0054 PCPO 25575 0.1824  0.0025 PCPO 0.3843  0.0052
SCPO 0.0807 0.0013 SCPO 25607 0.0687 0.0009 SCPO 0.1427  0.0020
Table 6: Metrics of three Point-Pillar experiments obtained from the final epoch.
(a) Point-Pillar-1 (b) Point-Pillar-4 (c) Point-Pillar-8
Algorithm J, M, Pe Algorithm J, M, Pe Algorithm J, M, Pe
TRPO 2.6059  0.2899  0.0026 TRPO 25958 0.4281  0.0061 TRPO 2.6095  3.4805  0.0212
TRPO-Lagrangian | 2.5772  0.1218  0.0020 TRPO-Lagrangian | 2.6040  0.2786  0.0050 TRPO-Lagrangian | 2.6164  0.6632  0.0129
TRPO-SL 25049 0.1191  0.0014 TRPO-SL 25417 0.2548  0.0031 TRPO-SL 25585 1.5260  0.0074
TRPO-USL 5024 0.1483  0.0021 TRPO-USL 25623 0.2977  0.0063 TRPO-USL 25836 0.6743  0.0172
TRPO-IPO 2.6059  0.2809  0.0026 TRPO-IPO 25058 0.4281  0.0061 TRPO-IPO 2.6095  3.4805  0.0212
TRPO-FAC 2.6362  0.0698  0.0013 TRPO-FAC 2.6105 0.3223  0.0040 TRPO-FAC 25701 0.4257  0.0068
CPO 25464 0.2342  0.0028 CPO 25720 0.5523  0.0062 CcPO 2.6440 05655  0.0166
PCPO 25857 0.2088  0.0025 PCPO 25709 0.3240  0.0052 PCPO 25704 6.6251  0.0219
SCPO 25928 0.0040 0.0003 SCPO 25367 0.0064 0.0005 SCPO 24162 0.2589 0.0024
Table 7: Metrics of three Swimmer-Hazard experiments obtained from the final epoch.
(a) Swimmer-Hazard-1 (b) Swimmer-Hazard-4 (¢) Swimmer-Hazard-8
Algorithm I M, Pe Algorithm I M, Pe Algorithm I M, Pe
TRPO 2.6062 05326 0.0070 TRPO 25897 0.2046  0.0033 TRPO 26322 0.4843  0.0067
TRPO-Lagrangian | 2.6044  0.4060  0.0056 TRPO-Lagrangian | 2.6128  0.3953  0.0038 TRPO-Lagrangian | 2.5979  0.4205  0.0058
TRPO-SL 25269  10.0374  0.0382 TRPO-SL 25056 4.6391  0.0206 TRPO-SL 24930  9.6048  0.0316
TRPO-USL 2.6296 03754  0.0050 TRPO-USL 2.6103  0.2260  0.0027 TRPO-USL 26133 0.4259  0.0059
TRPO-IPO 2.6062 05326 0.0070 TRPO-IPO 25844 0.2739  0.0033 TRPO-IPO 26322 0.4843  0.0067
TRPO-FAC 25765 0.2439  0.0041 TRPO-FAC 25984 0.1997  0.0028 TRPO-FAC 2.6037  0.5606  0.0056
CPO 26126 0.4115  0.0049 CPO 2.6023  0.1368  0.0021 CPO 2.6335 04201  0.0045
PCPO 25741 04670  0.0051 PCPO 25922 0.4265  0.0033 PCPO 25805 0.7420  0.0063
SCPO 2.6006 0.0743 0.0009 SCPO 2.6317 0.1082 0.0012 SCPO 25604 0.1527 0.0030
Table 8: Metrics of three Drone-3DHazard experiments obtained from the final epoch.
(a) Drone-3DHazard-1 (b) Drone-3DHazard-4 (c¢) Drone-3DHazard-8
Algorithm | J, M, Pe Algorithm | J, M, Pe Algorithm | J, M, Pe
TRPO 23777 0.3086  0.0014 TRPO 24163 0.3008  0.0025 TRPO 24206 0.4561  0.0057
TRPO-Lagrangian | 2.4149  0.0766  0.0007 TRPO-Lagrangian | 24175  0.1990  0.0022 TRPO-Lagrangian | 2.4237  0.1962  0.0034
TRPO-SL 24300 0.0044  0.0004 TRPO-SL 23748 0.0529  0.0011 TRPO-SL 24255 0.1635  0.0022
TRPO-USL 2.3760  0.0690  0.0008 TRPO-USL 2.4658 01264  0.0017 TRPO-USL 24488 0.2052  0.0037
TRPO-IPO 23724 0.2032  0.0011 TRPO-IPO 24163 0.3008  0.0025 TRPO-IPO 24206 0.4561  0.0057
TRPO-FAC 23856 0.0537  0.0007 TRPO-FAC 23839  0.0867  0.0015 TRPO-FAC 2.4600 0.1069  0.0022
CPO 2.4464  0.0706  0.0007 CPO 2.3995  0.3610  0.0026 CPO 24221 0.6941  0.0041
PCPO 21118 3.2450  0.0015 PCPO 24180 1.0088  0.0034 PCPO 21837 0.5179  0.0027
SCPO 2380  0.0423  0.0002 SCPO 24034 0.0545  0.0008 SCPO 23846 0.0478 0.0012
Table 9: Metrics of Ant-Hazard and Walker-Hazard experiments obtained from the final epoch.

(a) Ant-Hazard-8

(b) Walker-Hazard-8

Algorithm Jr M, Pe Algorithm J, M. Pe
TRPO 2.6203  0.1869  0.0084 TRPO 2.6471  0.3274  0.0096
TRPO-Lagrangian | 2.6336  0.1667  0.0058 TRPO-Lagrangian | 2.6167  0.2194  0.0071
TRPO-SL 25522 4.1269  0.0510 TRPO-SL 2.6476  0.9863  0.0204
TRPO-USL 2.6153  0.2108  0.0083 TRPO-USL 2.6239  0.3148  0.0095
TRPO-IPO 2.6197  0.1990  0.0083 TRPO-IPO 2.6397  0.3115  0.0096
TRPO-FAC 2.6218  0.0955  0.0051 TRPO-FAC 2.5917  0.1283  0.0049
CPO 2.6103  0.1330  0.0066 CPO 2.6211  0.1779  0.0069
PCPO 2.6281  0.1046  0.0059 PCPO 2.6410  0.2013  0.0074
SCPO 2.5873  0.0327 0.0021 SCPO 2.5751  0.0546 0.0029
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Figure 7: Point-Hazard
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Figure 8: Point-Pillar
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(b) Swimmer-Hazard-4

Figure 9: Swimmer-Hazard
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Figure 10: Drone-3DHazard
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Figure 11: High dimensional hazard tasks
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