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Abstract

Inter-frame modeling is pivotal in generating intermediate frames for video frame
interpolation (VFI). Current approaches predominantly rely on convolution or
attention-based models, which often either lack sufficient receptive fields or entail
significant computational overheads. Recently, Selective State Space Models (S6)
have emerged, tailored specifically for long sequence modeling, offering both
linear complexity and data-dependent modeling capabilities. In this paper, we
propose VFIMamba, a novel frame interpolation method for efficient and dynamic
inter-frame modeling by harnessing the S6 model. Our approach introduces the
Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames
in an interleaved fashion and subsequently applies multi-directional S6 model-
ing. This design facilitates the efficient transmission of information across frames
while upholding linear complexity. Furthermore, we introduce a novel curriculum
learning strategy that progressively cultivates proficiency in modeling inter-frame
dynamics across varying motion magnitudes, fully unleashing the potential of the
S6 model. Experimental findings showcase that our method attains state-of-the-art
performance across diverse benchmarks, particularly excelling in high-resolution
scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a note-
worthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.

1 Introduction

Video Frame Interpolation (VFI), a fundamental task in video data processing, is gaining substantial
attention for its ability to generate intermediate frames between consecutive frames (Liu et al., 2017).
Its utility spans many practical applications, including creating slow-motion videos through temporal
upsampling (Jiang et al., 2018), enhancing video refresh rates (Reda et al., 2022), and generating
novel views (Flynn et al., 2016; Szeliski, 1999). VFI typically encompass two primary stages (Zhang
et al., 2023): firstly, conducting the inter-frame modeling of input consecutive frames; and secondly,
leveraging the acquired information to estimate inter-frame motion and generate intermediate frame
appearance. In practice, VFI often deals with high-resolution inputs (e.g., 4K) (Sim et al., 2021),
which results in significant object displacement and imposes high demands on the large receptive
field of the modules that model information between frames. Additionally, since VFI is commonly
applied to long-duration videos such as movies, model speed is also of paramount importance. Thus,
striking a delicate balance between a sufficient receptive field and fast processing speed in modeling
inter-frame information is the key in crafting effective VFI models.

∗Work is done during internship at Tencent PCG. †Corresponding author (lmwang@nju.edu.cn).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/MCG-NJU/VFIMamba


Xiph
(2K)

XTest-8x
(2K)

XTest-8x
(4K)

XTest-L
(2K)

XTest-L
(4K)

Vimeo-90K

SNUFILM
(easy)

SNUFILM
(medium)

SNUFILM
(hard)

SNUFILM
(extreme) FILM

EMA-VFI
AMT-G
SGM-VFI
VFIMamba (Ours)

X-TEST
(2K)

X-TEST
(4K)

X-TEST-L
(2K)

X-TEST-L
(4K)

Vimeo90K

SNU-FILM
(easy)

SNU-FILM
(medium)

SNU-FILM
(hard)

SNU-FILM
(extreme)

Xiph
(2K)

36.4

35.6

36.2 30.6

25.4

36.5

32.9

31.931.9

30.8

40.2
29.8

24.7

35.5

31.7

30.730.7

29.9

35.7

39.6

Figure 1: Equipped with the S6 model, our VFIMamba achieves the state-of-the-art performance on
benchmarks across different input resolutions.

Current methods for modeling inter-frame information predominantly rely on convolutional neural
networks (CNNs) (Liu et al., 2017; Kong et al., 2022; Huang et al., 2022) and attention-based
models (Lu et al., 2022a; Zhang et al., 2023; Park et al., 2023; Liu et al., 2024a). However, as
illustrated in the first three rows of Table 1, these methods either (1) lack flexibility and cannot
adaptively model based on the input, (2) do not have sufficient receptive fields to capture inter-frame
correlations at high resolutions, or (3) suffer from prohibitive computational complexity.

On the other hand, Natural Language Processing (NLP) has recently witnessed the emergence of
structured state space models (SSMs) (Gu et al., 2021). Theoretically, SSMs combine the benefits of
Recurrent Neural Networks (RNNs) and CNNs, leveraging the global receptive field characteristic
of RNNs and the computational efficiency inherent in CNNs. One particularly notable SSM is the
Selective State Space Model (S6), also known as Mamba (Gu & Dao, 2023), which has garnered
significant attention within the vision community. Mamba’s novel feature of making SSM parameters
time-variant (i.e., data-dependent) enables it to effectively select relevant context within sequences, a
crucial factor for enhancing model performance. However, to the best of our knowledge, S6 has not
yet been applied to low-level video tasks.

To address the challenges faced by current VFI models and to explore the potential of the S6
model (Gu & Dao, 2023) in low-level video tasks, we propose VFIMamba, a novel frame interpolation
method that adapts the S6 model for efficient and dynamic inter-frame modeling. As shown in
Table 1, VFIMamba provides the advantages of a global receptive field with linear complexity while
maintaining data-dependent adaptability.

Specifically, we introduce the Mixed-SSM Block (MSB) to replace existing modules for inter-frame
information transfer. The original S6 model can only process a single sequence, so it is necessary to
merge tokens from two frames into one sequence for effective inter-frame modeling. After thorough
analysis and exploration, we figured out that interleaving tokens from both frames into a “super
image” is more suitable for VFI. We then conduct multi-directional SSMs on this image to model
inter-frame information. This interleaved approach facilitates interactions between adjacent tokens
from different frames during sequence modeling and ensures that the intermediate tokens of any pair
of tokens in the sequence are from their spatiotemporal neighborhood. By stacking MSB modules, our
model effectively handles complex inter-frame information exchange. Finally, we use the extracted
inter-frame features to estimate motion and generate the appearance of intermediate frames.

While the S6 model boasts the advantages listed in Table 1, it is crucial to employ appropriate
training strategies to fully exploit its potential. Inspired by Bengio et al. (2009), we propose a novel
curriculum learning strategy that progressively teaches the model to handle inter-frame modeling
across varying motion amplitudes. Specifically, while maintaining training on Vimeo90K (Xue et al.,
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Table 1: Comparison of the model design for inter-frame modeling of VFIMamba and existing
methods. VFIMamba enjoys both the advantages of a large receptive field and linear complexity.

Model Data-dependent Linear complexity Global receptive field Representative method
CNN ✗ ✓ ✗ RIFE (Huang et al., 2022)
Attention ✓ ✗ ✓ SGM-VFI (Liu et al., 2024a)
Local Attention ✓ ✓ ✗ EMA-VFI (Zhang et al., 2023)
Mamba ✓ ✓ ✓ VFIMamba (our work)

2019), we incrementally introduce large motion data from X-TRAIN (Sim et al., 2021), increasing
the motion amplitude over time. This learning strategy enables VFIMamba to perform well across a
wide range of motion amplitudes, thereby fully unleashing the potential of the S6 model.

To validate the effectiveness of VFIMamba across various types of video data, we conduct extensive
testing on different benchmarks. As shown in Figure 1, VFIMamba achieves the state-of-the-art
(SOTA) performance across diverse datasets. This is particularly evident in high-resolution and
large-motion datasets such as X-TEST (Sim et al., 2021) and SNU-FILM (Choi et al., 2020).

Contribution. In summary, the contributions of this paper are as follows: (1) We are the first to adapt
the S6 model to the video frame interpolation task. To better adapt the model for this task, we introduce
the Mixed-SSM Block (MSB), providing a solid foundation for future architectural exploration in
frame interpolation. (2) We propose a novel curriculum learning strategy that incrementally introduces
data with varying motion amplitudes, thereby fully harnessing the potential of the S6 model. (3) Our
model achieves the state-of-the-art performance across a wide range of datasets, potentially sparking
interest in the exploration of the S6 model within the video low-level community.

2 Related work

2.1 Video frame interpolation

The performance of VFI methods has seen significant advancements with the emergence of deep
learning models. (1) CNNs-based approaches (Bao et al., 2019; Liu et al., 2017; Huang et al., 2022;
Niklaus & Liu, 2018; Choi et al., 2020; Zhu et al., 2024b; Jia et al., 2022; Niklaus et al., 2017;
Kalluri et al., 2023): Initially, DVF (Liu et al., 2017) utilized a U-Net-like (Ronneberger et al., 2015)
network to model two input frames and predicted the voxel flow for warping the two frames into
the intermediate frame. Following this, CtxSyn (Niklaus & Liu, 2018) introduced ContextNet and
RefineNet, where ContextNet extracts context information from each frame, and RefineNet further
refines the coarse intermediate frame produced by warping. RIFE (Huang et al., 2022) proposed a
novel, efficient framework that employs self-distillation to significantly reduce computational load
and parameters while maintaining high performance. Due to its simplicity, many convolutional
modeling works (Kong et al., 2022; Jia et al., 2022) have improved upon RIFE. (2) Attention-based
approaches (Lu et al., 2022a; Zhang et al., 2023; Park et al., 2023; Liu et al., 2024a): VFIFormer (Lu
et al., 2022a) was the first to use attention to model inter-frame information, replacing the encoder part
of U-Net with Transformer blocks. After that, EMA-VFI (Zhang et al., 2023) uses Swin-based (Liu
et al., 2021) local attention to simultaneously capture local appearance and motion information.
AMT (Li et al., 2023) used a multi-scale cost-volume construction similar to RAFT (Teed & Deng,
2020) to further enhance motion modeling capabilities. BiFormer (Park et al., 2023) introduced
quasi-global bilateral attention to further increase the receptive field for large motions. SGM-VFI (Liu
et al., 2024a) introduced sparse global matching to model motion between frames. However, current
models struggle to balance sufficient receptive fields with computational overhead. In contrast, our
method introduces the first interpolation model based on State Space Models (SSMs) (Gu & Dao,
2023) and further pushes the performance boundaries of VFI tasks.

2.2 State space models

In the field of NLP, SSMs (Gu et al., 2021; Smith et al., 2022; Mehta et al., 2022; Fu et al., 2022)
have recently emerged as one of the most promising contenders to challenge the dominance of
Transformers. The Structured State Space Sequence Model (S4) (Gu et al., 2021) was initially
introduced for linear complexity modeling of long sequences. Subsequent works have improved
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Figure 2: Overall pipeline of VFIMamba. Firstly, a lightweight feature extractor is employed to
encode the input frames into shallow features. Subsequently, we utilize the Mixed-SSM Block (MSB)
to conduct inter-frame modeling using S6, iterating N times at each scale. Finally, these inter-frame
features are leveraged to generate the intermediate frame.

its computational efficiency and model capacity. S5 (Smith et al., 2022) proposed a parallel scan
and MIMO SSM, and GSS (Mehta et al., 2022) enhanced the model’s capability by introducing
gated mechanisms. Mamba (S6) (Gu & Dao, 2023) has recently stood out due to its data-dependent
parameter generation and efficient hardware implementation, outperforming Transformers in long-
sequence NLP tasks. In the visual domain, Vim (Zhu et al., 2024a) was the first to permute 2D images
into sequences for global modeling using bidirectional SSMs. Vmamba (Liu et al., 2024b) extended
to four directions and introduced a hierarchical structural design. VideoMamba (Li et al., 2024) was
the first to apply S6 in the video domain by permuting all frames into a spatiotemporal sequence.
MambaIR (Guo et al., 2024) was the first to use the S6 model for image restoration tasks, achieving
superior performance over Transformers. In this work, we explore the potential of the S6 model in
VFI tasks, validating its effectiveness through detailed analysis and experimentation.

3 Method

3.1 Preliminaries

SSMs are mainly inspired by the continuous linear time-invariant (LTI) systems, which apply an
implicit latent state h(t) ∈ RN to map a 1-dimensional sequence or function x(t) ∈ R → y(t) ∈ R.
Specifically, SSMs can be formulated as an ordinary differential equation (ODE):

h′(t) = Ah(t) + Bx(t), (1)
y(t) = Ch(t), (2)

where contains evolution matrix A ∈ RN×N , projection parameters B ∈ RN×1 and C ∈ R1×N . However,
it is hard to solve the above differential equation in deep learning settings and needs to be approximated
through discretization. Recent SSMs (Gu et al., 2021) propose to introduce a timescale parameter ∆
to transform the A, B to their discrete counterparts Ā, B̄, i.e.,

ht = Āht−1 + B̄xt, (3)
yt = Cht, (4)

Ā = exp (∆A) , (5)

B̄ = (∆A)−1 (exp (∆A − I)
)
· ∆B. (6)

The above SSMs are performed for each channel separately and their parameters are data-independent,
meaning that Ā, B̄ and C are the same for any input in the same channel, limiting their flexibility in
sequence modeling. Mamba (Gu & Dao, 2023) proposes the selective SSMs (S6), which dynamically
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generate the parameters for each input data xi ∈ R
L using the entire xi:

Bi = S Bxi, Ci = S C xi, ∆i = Softplus (S ∆xi) , (7)

where S B ∈ R
N×L, S C ∈ R

N×L, S ∆ ∈ RL×L are linear projection layers. The Bi and Ci are shared
for all channels of xi, ∆i contains ∆ of L channels, and A are the same as previous SSMs. By the
discretization in equations 5 and 6, Ā and B̄ become different based on input data.

3.2 Overall pipeline

Given two consecutive frames I0, I1 ∈ R
H×W×3 along with a timestep t, the objective of the frame

interpolation task is to generate the intermediate frame It ∈ R
H×W×3. As illustrated in Figure 2, the

overall pipeline of VFIMamba consists of three main components: frame feature extraction, inter-
frame modeling, and frame generation. Firstly, we employ a set of lightweight convolutional layers
to independently extract shallow features from each frame, progressively reducing the resolution to
facilitate more efficient inter-frame modeling. This process can be formulated as:

F i
l = L(Ii), (8)

where L represents the set of convolutional layers, and F i
l denotes the extracted low-level feature

for Ii. Next, we perform multi-resolution inter-frame modeling using the proposed Mixed-SSM
Block (MSB). Each scale comprises N MSBs, and downsampling between scales is achieved through
overlapping patch embedding (Wang et al., 2022). We define the resulting inter-frame features as
F i

ssm. Finally, we utilize these high-quality inter-frame features for frame generation, which involves
motion estimation between two frames and appearance refinement:

It = G(F0
ssm, F

1
ssm), (9)

where G denotes the frame generation network. Since this work primarily focuses on exploring the
use of SSMs for inter-frame modeling, we largely follow the design from Zhang et al. (2023) and
Huang et al. (2022) for the frame generation components, with detailed specifications provided in the
appendix.

3.3 State space models for inter-frame modeling

Effective inter-frame modeling is crucial for frame interpolation tasks (Zhang et al., 2023). Methods
such as RIFE (Huang et al., 2022) and EMA-VFI (Zhang et al., 2023) employ simple convolution
layers or local attention for inter-frame modeling, achieving high inference speeds but limiting
receptive field. Conversely, SGM-VFI (Liu et al., 2024a) uses global inter-frame attention for motion
estimation, which improves performance but sacrifices efficiency. In this work, we propose to use state
space models (SSMs), specifically S6 (Gu & Dao, 2023), to achieve both efficiency and effectiveness
in inter-frame modeling.

3.3.1 Mixed-SSM block

To facilitate more efficient inter-frame information exchange globally, we utilize SSMs for inter-frame
modeling. As illustrated in Figure 2, we introduce the Mixed-SSM Block (MSB) for integrate the S6
model into VFI frameworks. The overall design of the MSB is analogous to Transformer (Vaswani
et al., 2017) blocks, but with two pivotal distinctions: (1) We substitute the attention mechanism
with an enhanced S6 Block (Gu & Dao, 2023), which could conduct global inter-frame modeling
with linear complexity. (2) Drawing inspiration from Guo et al. (2024) and Behrouz et al. (2024),
which identified the lack of locality and inter-channel interaction in SSMs, we replace the multilayer
perceptron (MLP) with a Channel-Attention Block (CAB) (Hu et al., 2018).

The original S6 model is limited to processing one-dimensional sequences, necessitating a strategy
for scanning the feature maps of two input frames for inter-frame modeling. As depicted in Figure 3,
there are two primary methods to rearrange the two frames: sequential rearrangement, where
the frames are concatenated into a single super image, and interleaved rearrangement, where the
tokens of the two frames are interleaved to form a super image. Regardless of the rearrangement
method, following Liu et al. (2024b), the super image can be scanned in four directions: horizontally,
vertically, and in their respective reverse directions. The S6 Block is then employed to model each
direction independently, and the resulting sequences are rearranged and merged back.
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Figure 3: Visualizations of different rearrangement methods and scan directions. The choice of
rearrangement strategy impacts the information flow during inter-frame modeling with S6. For
example, consider the 6-th token from I0 and the 11-th token from I1. In sequential rearrangement,
the intermediate tokens introduce too many irrelevant tokens, whereas interleaved rearrangement
more effectively preserves the spatiotemporal locality.

3.3.2 Analysis on rearrangement strategies

Here, we discuss which rearrangement method is better for inter-frame modeling in the context of
frame interpolation. First, let us introduce a conclusion from (Ali et al., 2024): the S6 layers can be
approximated as hidden attention layers, with the attention weights given by:

αi, j ≈ QiK jHi, j, (10)

where
Qi = S C xi, K j = ReLU

(
S ∆x j

)
S Bx j, Hi, j = exp(

∑
k∈(i, j)

S ∆xk>0

(S ∆xk))A, (11)

In this formulation, αi, j represents the hidden attention weight of the j-th token x j to the i-th token xi
in the sequence. Unlike attention, which calculates weights based solely on the information from
tokens xi (Qi) and x j (K j), the S6 model includes Hi, j, which encompasses the contextual information
between the i-th and j-th tokens in the sequence. Based on this conclusion, we observe that in the
interleaved rearrangement, the intermediate tokens of any pair of tokens in the sequence are from
their spatiotemporal neighborhood. This means that Hi, j incorporates more local modeling, which
is beneficial for low-level tasks like frame interpolation. Additionally, the number of intermediate
tokens between spatiotemporally adjacent tokens is generally smaller in the interleaved rearrangement.
In contrast, in the sequential rearrangement, even spatiotemporally adjacent tokens are separated by
many unrelated tokens in the sequence. This can introduce noise and interfere with the modeling of
the relationship between these tokens. A specific example can be seen in Figure 3, where the tokens
between the 6-th token of the first frame and the 11-th token of the second frame differs significantly
between the two rearrangement methods. In summary, we believe that for video frame interpolation,
the interleaved rearrangement method is more suitable for better local spatially-aware processing.
Our experiments, detailed in Section 4.2, further validate this conclusion.

3.4 Curriculum learning for VFIMamba

Despite the advantageous characteristics of the S6 model, such as data dependence and global
receptive field, it is crucial to fully exploit its potential through appropriate training strategies.
Currently, two main training strategies are employed for frame interpolation: (1) Vimeo90K Only:
Most methods training models exclusively on the Vimeo90K (Xue et al., 2019). Although Vimeo90K
offers a rich variety of video content, as analyzed by Liu et al. (2024a) and Kiefhaber et al. (2024),
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Table 2: Quantitative comparison with SOTA methods on the low-resolution datasets, in terms of
PSNR/SSIM (Wang et al., 2004). The best results and the second best results are boldfaced and
underlined respectively. FLOPs was calculated for 720p input. ⋆ indicates the results copied from
Zhang et al. (2023) and Li et al. (2023). In “Training Dataset”, “V” stands for the triplet of Vimeo-90K
and “X” stands for X-TRAIN. In “Runtime”, we evaluate the inference speed of each method on
1024 × 1024 resolution inputs by a 2080Ti GPU. In “Average”, we calculate the average performance
of each method in terms of PSNR and SSIM.

Training
Dataset Vimeo-90K UCF101 SNU-FILM (Choi et al., 2020) Average FLOPs (T) Runtime (ms)

(Xue et al., 2019) (Soomro et al., 2012) easy medium hard extreme

DAIN⋆ (Bao et al., 2019) V 34.71/0.9756 34.99/0.9683 39.73/0.9902 35.46/0.9780 30.17/0.9335 25.09/0.8584 33.36/0.9507 5.51 897.8
AdaCof⋆ (Lee et al., 2020) V 34.47/0.9730 34.90/0.9680 39.80/0.9900 35.05/0.9754 29.46/0.9244 24.31/0.8439 33.00/0.9458 0.36 85.1
CAIN⋆ (Choi et al., 2020) V 34.65/0.9730 34.91/0.9690 39.89/0.9900 35.61/0.9776 29.90/0.9292 24.78/0.8507 33.29/0.9483 1.29 102.4

Softsplat (Niklaus & Liu, 2020) V 36.13/0.9805 35.39/0.9697 40.26/0.9911 36.07/0.9798 30.53/0.9365 25.16/0.8604 33.92/0.9530 0.94 266.4
XVFI (Sim et al., 2021) V 35.09/0.9759 35.17/0.9685 39.93/0.9907 35.37/0.9782 29.58/0.9276 24.17/0.8450 33.22/0.9477 0.37 165.2

M2M-VFI (Hu et al., 2022) V 35.47/0.9778 35.28/0.9694 39.66/0.9904 35.74/0.9794 30.30/0.9360 25.08/0.8604 33.59/0.9522 0.26 60.9
RIFE (Huang et al., 2022) V 35.61/0.9779 35.28/0.9690 39.80/0.9903 35.76/0.9787 30.36/0.9351 25.27/0.8601 33.68/0.9519 0.20 35.2

IFRNet-L (Kong et al., 2022) V 36.20/0.9808 35.42/0.9698 40.10/0.9906 36.12/0.9797 30.63/0.9368 25.26/0.8609 33.96/0.9531 0.79 115.3
EMA-VFI-S (Zhang et al., 2023) V 36.07/0.9797 35.34/0.9696 39.81/0.9906 35.88/0.9795 30.69/0.9375 25.47/0.8632 33.88/0.9534 0.20 76.4
EMA-VFI (Zhang et al., 2023) V 36.64/0.9819 35.48/0.9701 39.98/0.9910 36.09/0.9801 30.94/0.9392 25.69/0.8661 34.14/0.9547 0.91 239.6

AMT-L (Li et al., 2023) V 36.35/0.9815 35.39/0.9698 39.95/0.9913 36.09/0.9805 30.75/0.9384 25.41/0.8638 33.99/0.9542 0.58 183.42
AMT-G (Li et al., 2023) V 36.53/0.9817 35.41/0.9699 39.88/0.9913 36.12/0.9805 30.78/0.9385 25.43/0.8644 34.03/0.9544 2.07 403.7

SGM-VFI (Liu et al., 2024a) V+X 35.81/0.9793 35.34/0.9693 40.14/0.9907 36.06/0.9795 30.81/0.9375 25.59/0.8646 33.96/0.9535 1.78 942.9

VFIMamba-S V+X 36.09/0.9800 35.36/0.9696 40.21/0.9909 36.17/0.9800 30.80/0.9381 25.59/0.8655 34.04/0.9540 0.24 128.0
VFIMamba V+X 36.64/0.9819 35.45/0.9702 40.51/0.9912 36.40/0.9805 30.99/0.9401 25.79/0.8682 34.30/0.9554 0.94 310.9

Table 3: Quantitative comparison with SOTA methods on high-resolution datasets. “OOM” indicates
“Out of Memory” on V100. All results are obtained through the same evaluation procedure.

Training
Dataset

X-TEST (Sim et al., 2021) X-TEST-L (Liu et al., 2024a) Xiph (Montgomery, 1994) Average
2K 4K 2K 4K 2K 4K

XVFI (Sim et al., 2021) X 31.15/0.9144 30.12/0.9045 29.82/0.8951 29.02/0.8866 34.76/0.9258 32.84/0.8810 31.29/0.9012
M2M-VFI (Hu et al., 2022) V 32.13/0.9258 30.89/0.9138 30.90/0.9092 29.73/0.9001 36.44/0.9427 33.92/0.8992 32.34/0.9151
RIFE (Huang et al., 2022) V 31.10/0.8972 30.13/0.8927 29.87/0.8805 28.98/0.8756 36.19/0.9380 33.76/0.8940 31.67/0.8963
FILM (Reda et al., 2022) V 31.61/0.9174 OOM 30.18/0.8960 OOM 36.32/0.9343 33.27/0.8760 /

IFRNet-L (Kong et al., 2022) V 31.78/0.9147 30.66/0.9050 30.76/0.8963 29.74/0.8884 36.21/0.9374 34.25/0.8946 32.23/0.9061
FLDR (Nottebaum et al., 2022) X 31.12/0.9092 30.46/0.9041 29.90/0.8906 29.30/0.8879 34.80/0.9280 33.00/0.8862 31.43/0.9010

BiFormer (Park et al., 2023) V+X 31.32/0.9200 31.32/0.9215 30.36/0.9068 30.14/0.9069 34.20/0.9246 33.49/0.8953 31.81/0.9125
EMA-VFI-S (Zhang et al., 2023) V 30.91/0.9000 29.91/0.8951 29.51/0.8775 28.60/0.8733 36.55/0.9421 34.25/0.9020 31.62/0.8983

AMT-L (Li et al., 2023) V 32.08/0.9277 30.96/0.9147 31.09/0.9103 30.12/0.9019 36.27/0.9402 34.49/0.9030 32.50/0.9163
AMT-G (Li et al., 2023) V 32.35/0.9300 31.12/0.9157 31.35/0.9125 30.33/0.9036 36.38/0.9410 34.63/0.9039 32.69/0.9178

SGM-VFI (Liu et al., 2024a) V+X 32.38/0.9272 31.35/0.9179 30.99/0.9072 29.91/0.8972 36.57/0.9424 34.23/0.9021 32.57/0.9157

VFIMamba-S V+X 32.84/0.9328 31.73/0.9238 31.58/0.9169 30.50/0.9077 36.72/0.9428 34.32/0.9034 32.95/0.9212
VFIMamba V+X 33.34/0.9361 32.15/0.9246 32.22/0.9259 31.05/0.9159 37.13/0.9451 34.62/0.9059 33.42/0.9256

its motions have limited magnitude. This restriction hampers the model’s performance on inputs
with large motions or high resolution. (2) Sequential Learning: To mitigate the limitations of
training solely on Vimeo90K, some methods (Liu et al., 2024a; Park et al., 2023) further train the
model on X-TRAIN (Sim et al., 2021), a dataset characterized by large motions and high-resolution
content, after initial training on Vimeo90K. While this approach successfully enhances the model’s
performance on high-resolution data, it often leads to the forgetting of the small-motion modeling
capabilities acquired from Vimeo90K.

To address these issues and fully exploit the potential of the S6 model, inspired by Bengio et al.
(2009), we propose a curriculum learning strategy for learning inter-frame modeling capabilities
across varying motion magnitudes while maintaining the ability to model small motions. Specifically,
while continuing training on Vimeo90K, we progressively incorporated data from X-TRAIN. The
original size of X-TRAIN is 512×512, to co-train with Vimeo90K, we first resize the frames to S ×S
and then random crop to the same as Vimeo90K. Every T epochs, the resized size S is increased
by 10% (starting from 256), and the temporal interval between selected frames is doubled (starting
from 2), which means the motion magnitude increases as training progresses. This strategy enables
the model to gradually learn inter-frame modeling capabilities across varying motion magnitudes,
starting with smaller motions and progressing to larger ones.

4 Experiments

We provide two models: a lightweight model, VFIMamba-S, and a high-performance model, VFI-
Mamba. Both models have N = 3; the only difference is that VFIMamba has twice the number of
channels as VFIMamba-S. As described in Section 3.4, we employ a curriculum learning strategy in
which T = 50 and train for 300 epochs in total. More model configurations and training details are
provided in the appendix.
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Figure 4: Visualizations from SNU-FILM (Reda et al., 2022) and X-TEST (Sim et al., 2021).
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Figure 5: Comparisons of FLOPs and GPU memory usage with increasing resolution input.

4.1 Comparison with the State-of-the-Art Methods

Quantitative comparison. To validate the versatility of our proposed VFIMamba, we evaluated
its performance (PSNR/SSIM) (Wang et al., 2004) across a variety of well-known benchmarks with
different resolutions. The low-resolution datasets include Vimeo90K (448 × 256) (Xue et al., 2019),
UCF101 (256×256) (Soomro et al., 2012), and SNU-FILM (1280×720) (Reda et al., 2022). Notably,
SNU-FILM is categorized into four levels of difficulty based on frame intervals: Easy, Medium, Hard,
and Extreme. The high-resolution datasets include X-TEST (Sim et al., 2021), X-TEST-L (a more
challenging subset selected by Liu et al. (2024a)), and Xiph (Montgomery, 1994). Originally, these
datasets are in 4K resolution, and following Zhang et al. (2023), we also resize them to 2K for testing.

For 8x interpolation, we followed the testing procedure of FILM (Reda et al., 2022) and used an
iterative approach for frame interpolation. Specifically, we first generated an intermediate frame
based on the input two frames, and then, using a divide-and-conquer strategy, we further divided the
first frame and the generated intermediate frame, as well as the generated intermediate frame and the
last frame, to iteratively generate the remaining frames.

As shown in Tables 2 and 3, VFIMamba achieves state-of-the-art performance on almost all datasets
with FLOPs comparable to efficient models (Kong et al., 2022; Zhang et al., 2023). Specifically,
in large motion scenarios like X-TEST and X-TEST-L, VFIMamba demonstrates a noteworthy
improvement compared with previous metod. This excellent performance underscores the potential of
the S6 model in frame interpolation tasks, and we hope it will draw more attention to the application
of SSMs in low-level video tasks.

Qualitative comparison. To further validate the practical effectiveness of VFIMamba, we also
present a visual comparison with other frame interpolation methods. As illustrated in Figure 4, the
arrows highlight areas where our method excels. VFIMamba demonstrates superior motion estimation
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Table 4: Ablation on different models for inter-frame modeling. We use the V100 GPU for evaluating
and “OOM” indicates “Out of Memory”.

Model Vimeo90K X-TEST SNU-FILM Params (M) 720p Inference

Time (ms)2K 4K hard extreme

w/o S6 35.62/0.9771 28.94/0.8517 27.12/0.8436 30.41/0.9341 25.14/0.8567 16.1 51
Convolution 35.86/0.9790 31.58/0.9167 30.24/0.9044 30.61/0.9365 25.49/0.8631 23.4 55

Local Attention 35.92/0.9790 30.49/0.8917 30.00/0.8845 30.47/0.9338 25.46/0.8625 15.6 59

Full Attention 36.04/0.9798 OOM OOM 30.55/0.9367 25.35/0.8602 15.6 336

S6 36.12/0.9802 32.84/0.9328 31.73/0.9238 30.80/0.9381 25.59/0.8655 16.8 77

Table 5: Ablation on different rearrangement approachs. “Sequential" means sequential rearrangement
and “Interleaved" represents interleaved rearrangement .

Horizontal Scan Vertical Scan Vimeo-90K X-TEST SNU-FILM

2K 4K hard extreme

Sequential Sequential 35.55/0.9765 28.07/0.8327 26.75/0.8327 30.24/0.9319 25.03/0.8545

Sequential Interleaved 35.76/0.9784 31.69/0.9226 30.45/0.9078 30.32/0.9342 25.21/0.8611

Interleaved Sequential 35.79/0.9785 31.49/0.9221 30.35/0.9053 30.12/0.9331 25.11/0.8602

Interleaved Interleaved 36.12/0.9802 32.84/0.9328 31.73/0.9238 30.80/0.9381 25.59/0.8655

and detail preservation in high-motion scenarios compared to other methods. This further substantiates
that the incorporation of the S6 model enhances the performance of inter-frame interpolation tasks.

Efficiency comparison. To validate the efficiency of VFIMamba, we compared the FLOPs and
GPU memory usage required by various high-performance methods (Li et al. (2023) and Lu et al.
(2022b)) as the resolution increases. As shown in Figure 5, VFIMamba requires significantly fewer
FLOPs and GPU memory as the input resolution grows, demonstrating the effectiveness of the S6
model in the VFI task.

4.2 Ablation Study

In this section, we conduct ablation studies using the VFIMamba-S model for efficiency.

Effect of the S6 for VFI. As a core contribution of this work, the S6 model balances computational
efficiency and high performance for inter-frame modeling. To validate its effectiveness, as shown in
Table 4, we experimented by removing the SSM model from the MSB (w/o SSM), replacing the MSB
with convolutions from RIFE (Huang et al., 2022) (Convolution), or local inter-frame attention from
EMA-VFI (Zhang et al., 2023) (Local Attention), or global inter-frame attention (Liu et al., 2024a)
(Full Attention). We observed that only removing the S6 model resulted in a parameter reduction
of only 0.7M but led to a significant performance drop across various datasets, underscoring the
importance of S6. In comparisons with Convolution and Local Attention, we found that although
the S6 model is relatively slower due to its multiple scanning directions, it achieves substantial
performance improvements. Compared to Full Attention, S6 not only surpasses its performance but
also offers faster inference speed and lower memory consumption. In summary, the S6 model indeed
achieves a balance between computational efficiency and performance compared to existing models.

Frame rearrangement for inter-frame modeling. The rearrangement of input frames is crucial
for inter-frame modeling using the S6 model. As analyzed in Section 3.3.2, we posit that interleaved
rearrangement is more suitable for VFI tasks, and we provide experimental validation here. As
shown in Table 5, we experimented with two different rearrangement methods in both horizontal and
vertical scans. The results demonstrate that using interleaved rearrangement consistently achieves
the best performance across all datasets, with significant improvements over other methods. These
findings further validate our analysis that interleaved rearrangement offers superior spatiotemporal
local modeling capabilities for VFI.
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Figure 6: Performance of different learning methods, recorded every 30 epochs. Curriculum learning
has the best performance in both the low-resolution and high-resolution benchmarks eventually.

Table 6: Performance of different methods without or with curriculum learning.
Curriculum

Learning
Vimeo90K X-TEST SNU-FILM

2K 4K hard extreme

RIFE ✗ 35.61/0.9797 31.10/0.8972 30.13/0.8927 30.36/0.9375 25.27/0.8601

✓ 35.60/0.9797 31.40/0.9142 30.23/0.9011 30.47/0.9376 25.38/0.8619

EMA-VFI-S ✗ 36.07/0.9797 30.91/0.9000 29.91/0.8951 30.69/0.9375 25.47/0.8632

✓ 36.05/0.9797 31.15/0.9083 29.98/0.8988 30.73/0.9379 25.53/0.8652

VFIMamba-S ✗ 36.13/0.9802 30.82/0.8997 29.87/0.8949 30.58/0.9378 25.30/0.8620

✓ 36.12/0.9802 32.84/0.9328 31.73/0.9238 30.80/0.9381 25.59/0.8655

Explore different learning strategy. As described in Section 3.4, we proposed a curriculum
learning strategy to fully harness the global modeling capabilities of the S6 model. In Figure 6,
we present the performance of different learning strategies over training epochs on both Vimeo90K
and X-TEST. In addition to the Vimeo90K Only and Sequential Learning strategies mentioned in
Section 3.4, we also compared a baseline approach where the two datasets were directly mixed for
training (Mixed Learning). The results indicate that as epochs increase, the Vimeo90K Only strategy
improves performance exclusively on Vimeo90K with negligible change on X-TEST. Sequential
Learning, while eventually enhancing X-TEST performance, significantly degrades performance on
Vimeo90K. Mixed Learning shows a gradual increase in performance on both datasets but fails to
achieve competitive results. Our proposed curriculum learning strategy, however, achieves the best
performance on both datasets simultaneously by the end of training.

Generalization of curriculum learning To validate the generalization capability of curriculum
learning, we also trained the RIFE (Huang et al., 2022) and EMA-VFI (Zhang et al., 2023) from
scratch using curriculum learning. As shown in Table 6, after training, all models maintained their
performance on the low-resolution dataset Vimeo90K while significantly improving performance on
the X-TEST and SNU-FILM, fully verified the generalization of curriculum learning. Among these,
our VFIMamba achieved the most significant improvement and the highest performance ceiling,
further demonstrating the potential of the S6 model.

5 Conclusion

In this paper, we have introduced VFIMamba, the first approach to adapt the SSM model to the
video frame interpolation task. To achieve global inter-frame modeling with linear complexity, we
devise the Mixed-SSM Block (MSB) for efficient inter-frame modeling using S6. We also explore
various rearrangement methods to convert two frames into a sequence, discovering that interleaved
rearrangement is more suitable for VFI tasks. Additionally, we propose a curriculum learning strategy
to further leverage the potential of the S6 model. Experimental results demonstrate that VFIMamba
achieves the state-of-the-art performance across various datasets, in particular highlighting the
potential of the SSM model for VFI tasks with high resolution.
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A Appendix

Convolution (Before) Local Attention (Before)
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Figure 7: Visualizations of Effective Receptive Field (ERF) (Luo et al., 2016) of different models
before and after training. We utilize the red area in I0 to inspect its corresponding ERF in I1. S6
model has a significantly larger receptive field and becomes more accurate after training.

A.1 Broader impact

In this work, we introduce VFIMamba, the first video frame interpolation model based on SSMs.
Video frame interpolation has wide-ranging applications in real-world video data processing, such
as increasing the frame rate of AI-generated videos and generating slow-motion videos. Enhancing
performance in various scenarios is crucial. However, as a research-oriented work, we trained our
model on a very limited set of datasets (Vimeo90K (Xue et al., 2019) and X-TRAIN (Sim et al.,
2021)), which might result in some degree of overfitting. Consequently, there could be significant
artifacts when applied in real-world usage. This issue can be mitigated by training on a more diverse
and extensive set of datasets.

A.2 Limitations and future work

As the first work to explore the application of SSM models in frame interpolation tasks, we have
achieved high performance, but there are still some limitations. First, although our method is
much faster than attention-based methods, it still falls short of real-time requirements. Future
work on designing a more efficient SSMs would be highly valuable. Second, in this work, we
primarily focused on the role of SSM in inter-frame modeling and did not explore its use in the frame
generation module. In the future, directly using SSM for generating intermediate frames could also
be a promising direction for exploration.

A.3 Visualizations on effective receptive field

To further evaluate the effective receptive field (ERF) of the S6 model in comparison with other
efficient models (CNN, Local Attention) for inter-frame modeling, we used the method described by
Luo et al. (2016). Given a specific region in I0, we visualized the corresponding receptive fields in I1
for different methods.

As shown in Figure 7, when the motion between I0 and I1 is significant, neither convolution nor local
attention can focus on the corresponding region in I1 before or after training. In contrast, the S6
model exhibits a larger global receptive field even before training, with notable concentration in both
horizontal and vertical directions. We attribute this to the sequence rearrangement, where tokens
closer together tend to have higher weights, a phenomenon also observed in VMamba (Liu et al.,
2024b).

After training, the S6 model’s focus becomes more concentrated on the horizontal region of I1,
aligning better with the specified region in I0. This indicates that the S6 model can better capture
dynamics even with significant motion between frames.
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Figure 8: More Visualizations from SNU-FILM (Reda et al., 2022) and X-TEST (Sim et al., 2021).
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Figure 9: Details of frame feature extraction. The same color represents the same block structure.

A.4 More qualitative comparison

As shown in Figure 8, we provide more visualization comparisons. VFIMamba demonstrates better
visual quality compared to other methods.

A.5 Model details

A.5.1 Frame feature extraction

As shown in Figure 9, our frame feature extraction consists of multiple convolutional layers and
PReLU (He et al., 2015). The first convolution maps the image from 3 channels to C, with C = 16
for VFIMamba-S and C = 32 for VFIMamba. Each time patch embedding is applied, the image
resolution is halved, and the number of channels is doubled. Finally, we obtain the shallow features
F i

l for each frame.

A.5.2 Frame generation

As depicted in Figure 10, our frame generation includes an iterative intermediate flow estimation,
local flow refinement, and appearance refinement using RefinNet. First, the intermediate flow
estimation module uses the features F i

ssm obtained from inter-frame modeling with MSB for rough
flow estimation. Specifically, we follow the design of EMA-VFI (Zhang et al., 2023), first utilizing
features F i

ssm from the H
16 ×

W
16 scale and the original image Ii for predicting the flow f and occlusion
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Figure 10: Details of frame generation. IFBlock is adopted from Huang et al. (2022), which is used
optionally to enhance the local detail generation performance.

mask M by several convolutional layers. Then, we iteratively estimate the flow residual ∆ f and
mask residual ∆M using the F i

ssm from the H
8 ×

W
8 scale. After that, inspired by Jia et al. (2022),

which recognizes that the flow obtained through global inter-frame modeling may be coarse for
high-resolution or large-motion scenes, we also introduce the IFBlock (Huang et al., 2022) to further
enhance flow accuracy in local details. We then use the predicted motion to backward warp (Huang
et al., 2022) the input frames to get the coarse intermediate frame Īt. Finally, we adopt a U-Net-
like (Ronneberger et al., 2015) structure to predict the appearance residual using shallow features F i

l
and inter-frame features F i

ssm, resulting in the final frame It.

A.6 Training details

Training loss We used the same training loss as Zhang et al. (2023), which is a weighted combina-
tion of Laplacian loss (Niklaus & Liu, 2020) and warp loss (Liu et al., 2019), with weights of 1 and
0.5, respectively.

Training setting We used curriculum learning to train our model. For the data from Vimeo90K (Xue
et al., 2019), we randomly cropped the frames from 256 × 448 to 256 × 256. For the data from
X-TRAIN (Sim et al., 2021), since each sample contains 64 consecutive frames, we first randomly
select two frames, starting with an interval of 1, which doubles every 50 epochs. Then, we randomly
resized the frames from 512 × 512 to S × S , where S is initially 256 and increased by a factor of
1.1 every 50 epochs, and finally cropped them to 256 ×256 for alignment. The larger the resize size,
the greater the motion magnitude of the generated data. The batch size for Vimeo90K is 32, and
for X-TRAIN it is 8. We then applied time reversal and random rotation augmentations. We used
AdamW as our optimizer with β1 = 0.9, β2 = 0.999, and a weight decay of 1×10−4. With warmup for
2,000 steps, the learning rate was gradually increased to 2 × 10−4, and then we used cosine annealing
for 300 epochs to reduce the learning rate from 2 × 10−4 to 2 × 10−5. Following Jia et al. (2022); Park
et al. (2023); Liu et al. (2024a), we also trained the IFBlock separately on Vimeo90K for 100 epochs
with same training setting to further improve the accuracy of local optical flow at high resolutions.
The same procedure is followed for all ablation experiments.

Training time VFIMamba and VFIMamba-S were both trained on 4 NVIDIA 32GB V100 GPUs.
Training VFIMamba-S takes about 38 hours, while training VFIMamba takes about 108 hours.

A.7 Evaluation protocols

In our paper, we primarily evaluated our methods on six benchmarks in terms of PSNR/SSIM(Wang
et al., 2004): Vimeo90K (Xue et al., 2019), UCF101 Soomro et al. (2012), SNU-FILM (Choi et al.,
2020), Xiph (Montgomery, 1994), X-TEST (Sim et al., 2021), and X-TEST-L (Liu et al., 2024a).

We followed the test procedures of Huang et al. (2022) for Vimeo90K and UCF101, Kong et al.
(2022) for SNU-FILM, Niklaus & Liu (2020) for Xiph, Reda et al. (2022) for X-TEST with iterative
8× frame interpolation, and Liu et al. (2024a) for X-TEST-L with largest interval interpolation.
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Table 7: Licenses and URLs for every benchmark, code, and pretrained models used in this paper.
Assets License URL

Benchmarks

Vimeo90K MIT license https://github.com/anchen1011/toflow
UCF101 non-commercial research and educational purposes https://github.com/lxx1991/pytorch-voxel-flow

SNU-FILM MIT license https://github.com/myungsub/CAIN
XTEST (-L) for research and education only https://github.com/JihyongOh/XVFI

Xiph freely redistributable https://media.xiph.org/video/derf/

Codes and
Pretrained Models

XVFI for research and education only https://github.com/JihyongOh/XVFI
FILM Apache-2.0 license https://github.com/google-research/frame-interpolation
RIFE MIT license https://github.com/hzwer/ECCV2022-RIFE

IFRNet MIT license https://github.com/ltkong218/IFRNet
BiFormer Apache-2.0 license https://github.com/JunHeum/BiFormer
EMA-VFI Apache-2.0 license https://github.com/MCG-NJU/EMA-VFI

AMT CC BY-NC 4.0 https://github.com/MCG-NKU/AMT?tab=License-1-ov-file
SGM-VFI Apache-2.0 license https://github.com/MCG-NJU/SGM-VFI

A.8 License of datasets and pre-trained models

All the dataset we used in the paper are commonly used datasets for academic purpose. All the
licenses of the used benchmark, codes, and pretrained models are listed in Table 7.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This work mainly focuses on exploring the potential of S6 model in VFI, and
the abstract and introduction document our methods and contributions in detail.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of limitations in the appendix A.2.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide model details in Section 3.1-3.4 and appendix A.5. Training details
and evaluation protocols are also provided in the appendix A.6 and A.7. The training code
and models will be open-sourced after publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We have no plans to open-source the source code at this time, but the training
code and models will be open-sourced after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details and evaluation protocols are provided in the appendix A.6 and
A.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed the same experiment protocols as in previously published methods
for video frame interpolation; no error bars are included.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
• The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide setting of compute resources in the appendix A.6.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We’ve read it carefully.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide the broader impacts of our work in the appendix A.1.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
• The conference expects that many papers will be foundational research and not tied

to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Video frame interpolation does not produce new semantic content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original papers we used and respected their license. License
details are listed in Appendix A.8.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have no plans to release the code and models at this time, but they will be
open-sourced and well documented after publication.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose

asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not involved.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not involved.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.

24


	Introduction
	Related work
	Video frame interpolation
	State space models

	Method
	Preliminaries
	Overall pipeline
	State space models for inter-frame modeling
	Mixed-SSM block
	Analysis on rearrangement strategies

	Curriculum learning for VFIMamba

	Experiments
	Comparison with the State-of-the-Art Methods
	Ablation Study

	Conclusion
	Appendix
	Broader impact
	Limitations and future work
	Visualizations on effective receptive field
	More qualitative comparison
	Model details
	Frame feature extraction
	Frame generation

	Training details
	Evaluation protocols
	License of datasets and pre-trained models


