
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOCALLY CONNECTED ECHO STATE NETWORKS
FOR TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Echo State Networks (ESNs) are a class of recurrent neural networks in which
only a small readout regression layer is trained, while the weights of the recurrent
network, termed the reservoir, are randomly assigned and remain fixed. Our work
introduces the Locally Connected ESN (LCESN), a novel ESN variant with a locally
connected reservoir, forced memory, and a weight adaptation strategy. LCESN
significantly reduces the asymptotic time and space complexities compared to the
conventional ESN, enabling substantially larger networks. LCESN also improves
the memory properties of ESNs without affecting network stability. We evaluate
LCESN’s performance on the NARMA10 benchmark task and compare it to state-
of-the-art models on nine real-world datasets. Despite the simplicity of our model
and its one-shot training approach, LCESN achieves competitive results, even
surpassing several state-of-the-art models. LCESN introduces a fresh approach to
real-world time series forecasting and demonstrates that large, well-tuned random
networks can rival complex gradient-trained models. Additionally, we provide a
GPU-based implementation of LCESN as an open-source library.

1 INTRODUCTION

The field of time series forecasting (TSF) is currently dominated by feedforward, gradient-based
neural networks, often based on the Transformer architecture introduced by Vaswani et al. (2017).
Recurrent neural networks (RNNs) lag behind feedforward models to the point where they are only
rarely compared in state-of-the-art papers (Nie et al., 2023). Despite being a natural fit for processing
and predicting time series data, RNNs tend to be challenging to train (Pascanu et al., 2013).

Multiple approaches have been developed to avoid gradient pitfalls and facilitate the training of
recurrent networks, with Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber,
1997) being one of the most popular methods. A lesser-known approach is the Echo State Network
(ESN) introduced by Jaeger (2001), which completely avoids gradient-based training by using a large
random recurrent network called a reservoir that remains untrained. The only trained component
in an ESN is a small linear readout layer computed via linear regression. The basic idea is that
the random reservoir generates a wide variety of complex combinations of input data, making the
extraction of almost any desired output a simple task.

The main advantages of ESNs over gradient-trained models are resistance to overfitting, a fast
(one-shot) training procedure, and a simple architecture (Lukoševičius, 2012; Jaeger, 2001). Since
the ESN is not trained via gradient descent, it can incorporate non-differentiable components and
formulas with unstable gradients. ESNs have been successfully used for sequence prediction and
sequence-to-sequence tasks, but on large real-world datasets, they have been overshadowed by modern
large-scale gradient-based networks. Over the years, many authors have suggested improvements in
reservoir topology and neuron design. In contrast, Matzner (2022) demonstrated that even a basic
ESN can surpass those improvements when its hyperparameters are properly tuned. Unfortunately,
even optimized ESNs have struggled to compete with state-of-the-art models.

We have identified the following two limitations of conventional ESN approaches. The first is the
quadratic time and space complexity of each ESN step, which, in practical terms, limits the network
size to hundreds or a few thousand neurons. The second is that reservoirs with long memory make
the network unstable and oversensitive to hyperparameter perturbations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.1 RESEARCH OBJECTIVE

Our goal is to address the limitations of ESNs and make them competitive with state-of-the-art models
on real-world datasets. Rather than aiming for top rankings in every benchmark, we aim to create a
baseline recurrent model with a distinct architecture significantly different from the industry standard.
Furthermore, we deliberately choose to provide a model that can be built from scratch on consumer
hardware in a reasonable time.

2 RELATED WORK

Feedforward neural networks (multilayer perceptrons; MLPs) and recurrent neural networks (RNNs)
have both been used in time series forecasting (TSF) (Zhang et al., 1998; Lipton et al., 2015) and are
traditionally trained using gradient-based methods. However, as the context length and network size
increase, the gradient magnitude can decrease or increase uncontrollably. This effect is known as
the vanishing and exploding gradient, and it complicates the training process for deep models (Pas-
canu et al., 2013). To overcome these issues, Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and its variants, such as Random Connectivity LSTM (RCLSTM) (Hua et al.,
2019), have been developed to facilitate long-term information retention. Despite their advantages,
these models are known for their computational complexity. Jaeger (2001) introduced the Echo State
Network (ESN) designed to mitigate the high computational costs and the issues of vanishing and
exploding gradients. ESNs are described in detail in Section 3.1.

Following the tremendous success of Transformer-based models in natural language process-
ing (Vaswani et al., 2017), Transformer-based models have been successfully adapted for TSF.
iTransformer (Liu et al., 2024) applies independent attention across variates to build time series
representations, which are combined using a feedforward network. PatchTST (Nie et al., 2023)
leverages self-supervised pre-training to represent fixed-length patches, enabling compressed input
processing and allowing efficient training while incorporating a longer history.

Multiple recent methods have explored time series decomposition, such as the Fourier transform
employed by FEDFormer (Zhou et al., 2022) and TimesNet (Wu et al., 2023). While FEDFormer
combines a transformer with a seasonal-trend decomposition method, TimesNet transforms the
original 1-D input into a 2-D representation processed by 2-D kernels. AutoFormer (Wu et al., 2021)
introduces a novel decomposition architecture featuring an autocorrelation mechanism that discovers
dependencies at the subseries level.

Notably, Zeng et al. (2023) introduced a simple univariate one-layer linear model DLinear that
surprisingly outperformed the state-of-the-art transformer models by a large margin. RLinear (Li
et al., 2023) extended the linear approach of DLinear with RevIn (Kim et al., 2022), a model-agnostic
normalization-denormalization method capable of eliminating the distribution shift within time series.

Finally, the recent introduction of TSMixer (Chen et al., 2023) marks a significant advancement,
surpassing the aforementioned models. TSMixer alternates between time-mixing and feature-mixing
MLPs, akin to the transposition processes of iTransformer. However, it uses MLPs instead of
transformers with complex attention mechanisms.

3 METHODS

3.1 ECHO STATE NETWORKS

A basic Echo State Network with n neurons, nin inputs, and nout outputs consists of a reservoir
represented by a connectivity matrix W ∈ Rn×n, an input weight matrix Win ∈ Rn×nin , a readout
weight matrix Wout ∈ Rnout×n, and a feedback weight matrix Wfb ∈ Rn×nout (see Figure 1).
Neuron activations at time t are denoted by a(t) ∈ Rn, the input values by u(t) ∈ Rnin , the output
values by x(t) ∈ Rnout , and the target by y(t) ∈ Rnout . The following recurrence represents one
discrete step of an ESN, transitioning it to the next time point:

z(t) = Wa(t− 1) +Winu(t) +Wfbx(t− 1) + µb ,

a(t) = (1− γ)a(t− 1) + tanh(z(t)) ,
x(t) = Wouta(t) ,

(1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

te
ac
he
r-
fo
rc
in
g

pr
ed
ic
tio

n

feedback

u1

u2

u3

u4

u5

u6

x1

x2

x3

x4

y1

y2

y3

y4

Win

W

Wout

Wfb

y5

y6

Figure 1: Overview of an Echo State Network.

where z(t) ∈ Rn represents the pre-activation potentials before being processed by the tanh activation
function, γ ∈ R is the leakage parameter, and µb ∈ R denotes a constant bias shared by all neurons.

The initial activation a(0) is set to zero. The reservoir weights W are generated from the uniform
distribution U(µres−σres, µres+σres), the input weights for the i-th input W i

in from U(−σi
in, σ

i
in),

and the feedback weights for the j-th output W j
fb from the uniform distribution U(−σj

fb, σ
j
fb), for

hyperparameters µres ∈ R, σres, σ
i
in, σ

j
fb ∈ R+. Note that we specify the parameters of uniform

distribution using its mean and spread, rather than its borders, to smooth the fitness space for
hyperparameter optimization. After feeding the training data into the network, the output matrix
Wout is trained using ridge regression to minimize the squared error between the predicted sequence
x(t) and the target sequence y(t) (more details in Appendix C). The network output is undefined
until the training procedure sets Wout. Until then, the feedback connections are driven by the target
sequence y(t). Using the target sequence instead of the network’s own output is known as teacher
forcing (Jaeger, 2001; Lukoševičius, 2012).

ESNs represent a dynamical system whose behavior can range from a stable, unchanging state to
a chaotic white noise generator, depending on their configuration (e.g., σres). Between these two
regimes lies the so-called edge of chaos, which, according to some authors, is the regime where
the network performs best (Bertschinger and Natschläger, 2004; Matzner, 2017; Boedecker et al.,
2011). In order to avoid the chaotic regime, the network has to exhibit the echo state property (also
called fading memory), meaning that its state depends only on a finite history of its inputs (Jaeger,
2001). One of the metrics used to measure chaoticity is called the Lyapunov exponent, which can be
estimated by introducing a tiny perturbation into the reservoir and measuring how much the perturbed
and unperturbed networks diverge. Lyapunov exponent ranges from -1 to 1, where negative values
denote order, positive values denote chaos, and zero indicates the edge of chaos. For more details on
its properties and the estimation algorithm, see Sprott (2003).

3.2 HYPERPARAMETER OPTIMIZATION

We use the hyperparameter tuning framework by Matzner (2022), based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001). For more details on
CMA-ES, see Hansen (2016), and consult Matzner (2022) for its use in ESN hyperparameter tuning.

The optimized hyperparameters include the reservoir scaling parameters σres, µres, the bias term
µb, the input scaling parameters σi

in for each input, the feedback scaling parameters σj
fb for each

output (only for sequence-to-sequence tasks), and the ridge regression coefficient λ2 ∈ R+. In total,
this amounts to 4 + nin + nout hyperparameters, where nin and nout are the numbers of inputs and
outputs, respectively, and depend on the task. For details on optimizer settings and parameter limits,
please refer to Appendix D.

3.3 LOCAL TOPOLOGY

Conventional ESNs introduced by Jaeger (2001) use a fully connected reservoir, making the state
transition computationally expensive in both time and memory. Some authors have proposed reservoir
topologies with lower time complexity, such as ring or chain topologies (Rodan and Tino, 2011), but
these do not provide the same performance as conventional fully connected or sparse ESNs (Matzner,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Demonstration of local topology on a grid of 4×6 neurons and 3×3 kernel. Two non-
overlapping kernels are visualized; one wraps around the top edge.

2022). Analysis of reservoirs designed using the HyperNEAT evolutionary algorithm (Stanley
et al., 2009) suggested that placing neurons on a grid and connecting each neuron only within its
neighborhood may be beneficial for increasing the network’s stability (Matzner, 2017). A similar
idea has also been proposed under the term small-world connectivity (Watts and Strogatz, 1998),
where, in addition to neighborhood connections, neurons occasionally form longer connections, thus
reducing the network’s diameter. Small-world reservoirs have been studied, e.g., in the fields of
biologically plausible networks and neuromorphic hardware, where they provide better wiring cost
than fully connected networks (Kawai et al., 2017; Suárez et al., 2021; Daniels et al., 2022).

We propose a local topology that reduces the asymptotic time complexity of the ESN step without
compromising accuracy. This allows for larger reservoirs at the same computational cost. Neurons are
placed on a torus-shaped grid, limiting the maximum distance between them, similar to small-world
connectivity. Each neuron is connected to all neurons within its K ×K neighborhood (see Figure 2).
Adopting the notation of convolutional neural networks, we term the weights for this neighborhood a
kernel. However, contrary to convolutional layers, each neuron has its own kernel, and no weights are
shared. The weights are stored in a tensor Wk ∈ RN×M×K×K , where N×M represents the reservoir
dimensions (i.e., N rows and M columns, totaling NM = n neurons). With a fully connected
reservoir, the weights were stored in a larger matrix W ∈ RN×M×N×M . Therefore, assuming a naive
implementation of matrix multiplication, this technique reduces both the time and space complexity
of the ESN step from O((NM)2) to O(NMK2). Furthermore, the proposed topology is designed
with GPUs in mind, allowing efficient (coalesced) access to GPU memory and avoiding the overhead
of generic sparse matrix computation. According to our measurements, our GPU implementation
provides up to 15x speedup compared to a fully connected reservoir on a consumer-grade GPU for a
network of size 80× 100 and 7× 7 kernel. For details on GPU implementation and comparison with
other methods, please refer to Appendix F.

It may be tempting to use the same kernel for all neurons and turn the local topology into an even
more efficient “recurrent convolutional network”. Unfortunately, as presented in Appendix E.3, using
convolutional kernels does not provide the same performance as the proposed topology.

3.4 FORCED MEMORY

The stability of ESNs is intrinsically linked to their memory capacity. In a conventional ESN, the
network’s entire memory is implicitly encoded within its state, propagating sequentially from one time
step to the next. However, since the reservoir is composed of randomly initialized weights, it does
not differentiate between useful information and noise present in the data. As the memory capacity
of the network increases, its sensitivity to both signal and noise grows accordingly. Eventually, this
heightened sensitivity can lead to the network being overwhelmed by noise, pushing it into a chaotic
state. To prevent the network from crossing the edge of chaos, memory capacity must be limited,
which unfortunately restricts the network’s ability to retain a longer context.

Many authors have proposed methods to improve memory capacity (MC). To give a few examples,
Holzmann and Hauser (2010) added trainable delays between the reservoir and the output layer, Echo
Memory-Augmented Network (EMAN) by Ma et al. (2021) employs a complex low-learning weight
attention mechanism, and Distance-Delayed-Networks (DDN) by Iacob and Dambre (2024) rely on
physics-inspired distance-based delays. Our approach is more straightforward. It simply gives each
neuron a lookback connection to its historical state at a random time horizon. Despite its simplicity,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

m(t-1)
a(t-5) a(t-4) a(t-3) a(t-2) a(t-1) v(t)

Figure 3: An example of forced memory with maximum delay H = 5. The vector v(t), combining
memory m(t− 1) with last state a(t− 1), is used instead of a(t− 1) during state transition.

this method avoids the need to propagate the entire memory through every step and helps the network
to stay at the stable regime.

Formally, in memory forcing, the activation a(t)i of neuron i at time t is directly combined with its
historical activation a(t− hi)i. The delay hi and the combination coefficient (wmem)i are randomly
chosen for each neuron separately and remain fixed. The recurrence equations (1) are modified as
follows, and Figure 3 illustrates this process.

v(t) = wmem ◦m(t− 1) + (1− wmem) ◦ a(t− 1) ,

z(t) = Wv(t) +Winu(t) +Wfbx(t− 1) + µb ,

a(t) = tanh(z(t)) ,
x(t) = Wouta(t) ,

m(t)i = a(t− hi)i ∀i ∈ {1, 2, . . . , n} ,

(2)

where ◦ denotes elementwise multiplication, m(t) ∈ Rn is the memory vector with each element
equal to a historical activation, wmem ∈ Rn represents the preference of the historical state over
the current state, and v(t) ∈ Rn denotes the state combined with its memory. The coefficients
wmem for the affine combination are generated from a uniform distribution U(−1, 1). The delays
hi are initialized as random integers from a uniform distribution U(0, H − 1), where H denotes the
maximum allowed delay (set to 100 in our experiments). Note that we have omitted the leakage
coefficient γ because its role is fulfilled by the memory vector; in fact, leakage can be simulated by
setting hi = 1 and (wmem)i = γ.

3.5 PREDICTION METHODOLOGY

To be comparable to the state-of-the-art feedforward models in TSF benchmarks, we have used the
same training/validation/testing split and the same data normalization technique (Nie et al., 2023).
However, the use of recurrent networks fundamentally differs from that of feedforward models.
Feedforward models expect an input of fixed length Lin and predict an output of fixed length Lout.
The dataset is created by extracting patches of length Lin + Lout from the original time series and
feeding them to the model independently. Having a fixed input and output length has a few benefits,
such as the ability to process many subsequences as a single GPU batch and the flexibility to feed
random subsequences to the model until training convergence. However, it also comes with a few
downsides. For instance, since the patches are independent, it is often necessary to encode the
position of the patch within the whole sequence (e.g., the day, week, and year in the case of real-world
datasets). Additionally, a separate model must be trained for each prediction horizon Lout.

RNNs, on the other hand, only predict the immediately following time point, and the user can repeat
this step as many times as desired to predict the whole horizon. Unlike feedforward models, ESNs
inherently track their position in the input sequence, removing the need for explicit position encoding
due to their potentially unlimited context length. In fact, we do not enhance the input data in any way;
we pass them to the network in their raw form. However, a natural downside of recurrent models
with long memory is the necessity of feeding the entire time series up to the moment of prediction (or
at least a substantial part of it). Fortunately, in the case of ESNs, training and prediction are rather
fast, and we do not need to propagate any gradient through the whole sequence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

x11 x12
x13

x10 x11
x12

u5 u6 u7 u8 u9 u10 u11 u12 u13 u14

training data
teacher forcing

washout data
teacher forcing

validation data
teacher forcing

x9
x10

x11
prediction data

self-feeding

clone

training
Wout lin. reg.

u1 u2 u3 u4

Figure 4: Overview of the prediction procedure.

Ultimately, for a fair comparison with the state of the art, we need to evaluate our model on all
ℓ − Lout + 1 subsequences of the testing data while running solely a self-feeding loop (without
the ground truth data), where ℓ is the length of the test data. The testing procedure is demonstrated
in Figure 4 and works as follows. The network is fed with the washout sequence, and its outputs
and states are ignored. Afterwards, the network is fed with the training data (teacher forced) up to
the beginning of the first validation subsequence. Next, the output weights are trained via linear
regression (as described in Section 3.1). The network is now ready to be used for a self-feeding
prediction loop.

A temporary clone of the network is created and driven by its own output for Lout steps. That is, at
time t, it uses its own output x(t− 1) as input. Its outputs are recorded and compared with the target
sequence. The clone is destroyed, and the original network is fed with the next time point (one step
with teacher forcing). This process of cloning, prediction, and updating is repeated until the cloned
network reaches the end of the validation sequence.

An important topic is the output weights (Wout) adaptation strategy when feeding the validation
data with teacher forcing. Let us list a few options ordered by their computational and memory
complexities and their notation used throughout the paper.

1. LCESN: Keep the output weights fixed after the initial training.
2. LCESN-LMS: Update the weights via a simple signal filter. There are many approaches

addressing the online adaptation of ESNs, such as the popular Recursive Least Squares
method called FORCE (Sussillo and Abbott, 2009), more computationally effective
Backpropagation-Decorrelation (Steil, 2004), and many others (Lukoševičius, 2012). The
evaluation of all existing methods is beyond the scope of this paper, and we chose Normal-
ized Least Mean Squares (NLMS) (Haykin, 2002) as a minimalist baseline.

3. LCESN-LR100: Inherit the filtering from LCESN-LMS, and recalculate the full linear
regression after every 100 steps. This option balances speed and accuracy, and the results
will later show that a shorter interval would bring about a negligible effect.

4. LCESN-LR1: Recompute the linear regression before every self-feeding prediction loop.
This option requires impractical computational resources, but represents an upper bound on
the accuracy of online learning.

Note that all of these methods use the same hyperparameter-optimized network and only differ in the
evaluation procedure. Therefore, there is no need to repeat the hyperparameter optimization, which is
the most time-consuming part of the process. In Section 6, we will present practical measurements
on real hardware.

4 DATASETS

We use the NARMA10 dataset, widely used in ESN literature, along with nine real-world datasets
commonly utilized in state-of-the-art sequence forecasting studies. From longest to shortest, these
datasets are ETTm1, ETTm2 (Electricity Transformer Temperature), Weather, Solar Energy, Electric-
ity, Traffic, ETTh1, ETTh2, and Exchange. We focus only on the multivariate case, i.e., predicting all
available features. For a more detailed description of the datasets, please refer to Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3x3 5x5 7x7 11x11 15x15 19x19
kernel size

10− 17

10− 16

10− 15

10− 14

10− 13

10− 12

10− 11

10− 10

10− 9

10− 8

10− 7

M
SE

state size

113x141
80x100
57x70
40x50

20x25
28x36

Figure 5: Comparison of various network and kernel sizes on NARMA10 benchmark tasks. Each
violin represents the evaluation of 100 unique random sequences predicted by a network selected as
the best of five optimization runs.

5 EXPERIMENT

First, we test the basic LCESN without forced memory and weight adaptation on the NARMA10
benchmark to demonstrate the effect of the local topology. Second, we evaluate the performance
of LCESN in practical terms of consumed time and memory resources on a consumer-grade GPU.
Third, we evaluate the effect of forced memory on ETTm datasets and compare LCESN with the
conventional ESN. Finally, we compare the four full-featured LCESN variants presented in Section 3.5
with state-of-the-art models in time series forecasting on real-world datasets.

To enable building our model from scratch on consumer hardware, we limit each hyperparameter
optimization run to 2000 evaluations, ensuring it fits within a 24-hour deadline on an older NVIDIA
GTX 2080 Ti GPU (released in 2018) and a single core of an average desktop CPU. For a fair
comparison, we use the same hyperparameter optimization technique for baseline ESN and for
the proposed LCESN models. Further technical details of the experimental setup are provided in
Appendix D.

6 RESULTS AND DISCUSSION

6.1 EFFECT OF LOCAL TOPOLOGY

We evaluated a grid of network sizes from 1,000 to 16,000 neurons and kernel sizes from 3×3 to 19×19
on the widely used NARMA10 benchmark task. The model used is the vanilla LCESN without forced
memory and weight adaptation (i.e., a conventional ESN with local topology). As demonstrated in
Figure 5, when the network size increases, the error on NARMA10 drops by orders of magnitude.
Furthermore, the kernel size plays a much less significant role, with 7×7 kernel representing the best
accuracy while still providing acceptable computational demands. An important observation is that
increasing the kernel size further, and thus approaching the fully connected conventional ESN, has
not provided any benefit. In fact, the results with the 19×19 kernel are statistically significantly worse
(p < 0.05) compared to the 7×7 kernel for the two largest networks.

The results suggest that on the NARMA10 benchmark task, the widely used network sizes of 100
to 1,000 neurons are simply too small, and with proper hyperparameters, the performance depends
mostly on the size of the network. Needless to say, the error on NARMA10 is below an interesting
threshold, and it should no longer be used to compare state-of-the-art results in the Echo State

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

20x25
28x36

40x50
57x70

80x100

state size

0

100

200

300

400

500

600

tim
e

[s
]

model
lcesn
esn
lcesn-lr100

20x25
28x36

40x50
57x70

80x100

state size

0

1000

2000

3000

4000

5000

6000

7000

m
ax

 m
em

or
y

[M
iB

]

model
lcesn
esn
lcesn-lr100

Figure 6: Wall-clock time and memory resources required to evaluate the entire ETTh1 dataset using
the models presented in Section 3.5 with 7×7 kernel and known hyperparameters. The measurements
encapsulate all the evaluation phases: generating the network, the washout period, linear regression
training, and test set prediction. The ESN model represents the conventional ESN with a full
connectivity matrix; LCESN reduces it to local topology and adds forced memory; and LCESN-
LR100 additionally performs regression retraining every 100 teacher forced steps.

Network literature. However, it remains a convenient, hard-to-overfit benchmark for checking basic
properties of ESNs and validating new ideas for sequence-to-sequence tasks.

Note that as the network size increases, the improvement gradually diminishes. One possible
explanation is that the size of the training data (12,000 steps) is insufficient for the largest network
(16,000 neurons). However, further increasing the size of the training set has not significantly
improved the results (see Appendix E.1 for details). For comparing various state sizes and alternative
topologies, such as convolution, please refer to Appendices E.2 and E.3.

6.2 BENCHMARKING

The effect of the lower time complexity of the local topology is demonstrated in Figure 6. Notably, in
the case of large networks, the gain from the faster LCESN step fully compensates for the time needed
to recalculate the linear regression every 100 steps (LCESN-LR100). However, the recalculation
consumes a lot of memory resources; therefore, it must be used with caution on large networks and
datasets. The measurements were performed on an NVIDIA GTX 1080 Ti GPU (released in 2017)
supported by a single core of an Intel i7-4770 CPU. Training and evaluation took under 40 seconds
for a 40x50 network.

Building the network from scratch also requires careful tuning of its hyperparameters (Matzner, 2022).
In all our experiments and for all tested models, the optimizer is limited to 2,000 full evaluation cycles.
Each cycle consists of generating a new network, performing regression training, and predicting the
validation sequence. In the case of the ETTh1 dataset, this procedure took less than four hours. Each
of our models is selected as the best from five hyperparameter optimization runs (on the validation
set). Therefore, it took 20 hours in total to train the ETTh1 model.

For a more detailed decomposition and comparison with other models, please refer to Appendix G.

6.3 EFFECT OF FORCED MEMORY

In this experiment, we compared conventional ESN without forced memory and LCESN with
increasing forced memory horizons. None of the tested models uses weight adaptation, meaning that
the LCESN without forced memory denotes an ESN with local topology. The hyperparameters for all
models, including the baseline ESN, are optimized using the same procedure described in Section 3.2.

Figure 7 shows the validation errors of five separate hyperparameter optimization runs on the ETTm1
dataset. Disabling forced memory or setting its maximum horizon to less than 50 steps increases noise,
hindering the hyperparameter optimizer’s ability to estimate the gradient and leading to substantially

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ESN LCESN LCESN LCESN LCESN LCESN

0.5

0.6

0.7

M
SE

no memory no memory H=25 H=50 H=100 H=200

Figure 7: Comparison of the final MSE reached by the hyperparameter optimization on the validation
sequence for five separate runs on the ETTm1 dataset. H denotes the forced memory horizon limit.
The reservoir size is 40×50 with a 7×7 kernel.

0 25 50 100 200
H

−1.00

−0.75

−0.50

−0.25

0.00

Ly
ap
un

ov

Figure 8: Lyapunov exponent versus forced memory horizon for LCESN runs evaluated in Figure 7

worse results with higher variance. Local topology is only supposed to reduce computational costs,
not increase the accuracy. Therefore, unsurprisingly, the ESN baseline has performed similarly to
LCESN with short memory horizons.

Figure 8 demonstrates the relation of forced memory and the network dynamics. Limiting the forced
memory horizon clearly pushes the network toward the edge of chaos. In contrast, longer forced
memory horizons allow the network to stay in a stable regime while still benefiting from long memory.
The right choice of maximum memory horizon depends on the dataset at hand. According to Figure 7,
for the ETTm1 dataset, a 50-step horizon limit would likely suffice, but other datasets may require
longer memory. Therefore, we will use a memory horizon limit of 100 steps for the rest of this work.

6.4 REAL-WORLD DATASETS

We adopted the results of third-party models from Nie et al. (2023) and Liu et al. (2024), except for
the results of the more recent TSMixer, which are obtained directly from its original paper Chen et al.
(2023). Furthermore, Liu et al. (2024) only provide results for a prediction length of 96 time points,
whereas Nie et al. (2023) provide stronger baselines by selecting the best results from six different
prediction lengths for the Transformer-based models. When both baselines are available, we opt for
the stronger results from Nie et al. (2023). TSMixer was not tested on the Solar Energy and Exchange
datasets in its original paper, so those results are omitted from the comparison table, and TSMixer is
not considered in their ranking. However, since it was the overall best-ranked model, it is possible
that it would also perform well on the omitted datasets.

The comparison with existing third-party models and conventional ESN is provided in Table 1. For
complete results with all prediction horizons and for relative ranking between models, see Appendix B.
All four introduced LCESN variants improved upon the conventional ESN on all datasets, highlighting
the effect of forced memory. The three weight adaptation methods implemented by LCESN-LMS,
LCESN-LR100, and LCESN-LR1 notably improve the results of the basic LCESN. Therefore, if
the data frequency and computational resources allow, as in the case of the evaluated real-world
datasets, regular retraining can yield better performance. LCESN-LR1, however, did not significantly
improve upon the results of LCESN-LR100, so its high computational demands have not proven to
be justifiable on the tested datasets. According to the relative ranking across all datasets and horizons
(Appendix B.2), LCESN-LR1 clinched the second place and LCESN-LR100 the third place among
the evaluated models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: The results of the LCESN approach on real-world datasets compared to the results of other
authors. Every number is the average over four prediction horizons 96, 192, 336, and 720. The best
result is red and the second best is blue. The four LCESN variants and the ESN are not compared to
each other. The reservoir size for ESN and LCESNs is 40×50 with a 7×7 kernel. Datasets are sorted
from longest (top) to shortest (bottom).

Models ESN LCESN LCESN-LMS LCESN-LR100 LCESN-LR1 TSMixer DLinear PatchTST iTransformer FEDformer TimesNet RLinear Autoformer
(2001) Ours Ours Ours Ours (2023) (2023) (2023) (2024) (2022) (2023) (2023) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.540 0.527 0.412 0.430 0.364 0.393 0.362 0.392 0.359 0.390 0.347 0.375 0.403 0.407 0.387 0.400 0.407 0.410 0.382 0.422 0.400 0.406 0.414 0.408 0.515 0.493

ETTm2 0.380 0.424 0.283 0.354 0.275 0.332 0.257 0.326 0.255 0.326 0.267 0.322 0.350 0.401 0.281 0.326 0.288 0.332 0.292 0.343 0.291 0.332 0.286 0.327 0.310 0.357

Weather 0.255 0.298 0.232 0.279 0.236 0.272 0.221 0.264 0.221 0.264 0.224 0.264 0.265 0.317 0.258 0.280 0.258 0.278 0.310 0.357 0.259 0.286 0.272 0.291 0.335 0.379

Solar 0.268 0.384 0.202 0.277 0.202 0.268 0.201 0.273 0.201 0.274 N/A N/A 0.330 0.401 0.270 0.307 0.233 0.262 0.292 0.381 0.301 0.319 0.369 0.355 0.885 0.711

Electricity 0.264 0.351 0.225 0.329 0.197 0.308 0.184 0.294 0.183 0.293 0.160 0.257 0.212 0.300 0.205 0.290 0.178 0.270 0.207 0.321 0.192 0.295 0.218 0.298 0.214 0.326

Traffic 1.095 0.533 0.882 0.407 0.845 0.402 0.787 0.392 0.782 0.392 0.408 0.284 0.624 0.383 0.481 0.304 0.428 0.282 0.604 0.372 0.620 0.336 0.626 0.378 0.616 0.384

ETTh1 0.650 0.602 0.818 0.662 0.516 0.510 0.537 0.518 0.541 0.521 0.412 0.428 0.456 0.452 0.469 0.454 0.454 0.448 0.428 0.454 0.458 0.450 0.446 0.434 0.473 0.477

ETTh2 0.559 0.529 0.438 0.464 0.372 0.419 0.378 0.421 0.381 0.422 0.355 0.400 0.559 0.515 0.387 0.407 0.383 0.406 0.388 0.434 0.414 0.427 0.374 0.398 0.422 0.443

Exchange 0.703 0.575 0.889 0.661 0.718 0.602 0.656 0.574 0.639 0.566 N/A N/A 0.354 0.414 0.366 0.404 0.360 0.403 0.518 0.429 0.416 0.443 0.378 0.418 0.613 0.539

1st 0/9 0/9 1/9 0/9 1/9 0/9 3/9 1/9 3/9 1/9 5/7 5/7 1/9 0/9 0/9 0/9 0/9 3/9 0/9 0/9 0/9 0/9 0/9 1/9 0/9 0/9

LCESN variants were most successful on the ETTm1, ETTm2, Weather, and Solar Energy datasets,
even clinching first place in several cases. One of the reasons for the success on those particular
datasets might be their length, as they represent the four longest of the nine tested series, and the
difference in dataset length is substantial. Each of the four listed datasets has more than 52,000 time
points, while each of the remaining five has fewer than 27,000 time points. This suggests that to fully
utilize the potential of LCESN, tasks need to provide a sufficient amount of training data. For more
details on dataset properties, see Appendix A.

We used a medium-sized model of size 40×50 to reduce the experiment duration. Whether a smaller
or larger network could further improve the results remains an open question.

7 CONCLUSION

In recent years, recurrent neural networks (RNNs) have been overshadowed by gradient-trained feed-
forward architectures. Modern time series forecasting papers often do not even consider comparing
with RNNs due to their lack of recent successes.

To revitalize research in this area, we revisited the Echo State Network (ESN) approach — an older,
often overlooked yet promising method — and addressed two of its limitations. First, implementing
a local topology allows for much larger networks with the same computational demands. Second,
introducing forced memory facilitates longer time dependencies and enhances network stability.

The resulting Locally Connected Echo State Network (LCESN) is simple and does not use gradient
descent. It is very fast to train and infer when its hyperparameters are known and can predict at
arbitrary horizons. Although our goal was not to outperform all existing methods, LCESN has
achieved competitive accuracy compared to state-of-the-art models, even surpassing them on some of
the longest tested datasets.

The proposed model can be built from scratch on consumer hardware in less than 24 hours. The
majority of this time is spent on hyperparameter optimization, which we identify as an area with
significant potential for future improvement. When the hyperparameters are known, training and
inference usually take tens of seconds or minutes, depending on the dataset size.

We made the source code in C++ and CUDA publicly available under a permissive license on our
GitHub repository1. We used fixed random seeds and included logs and network checkpoints to
ensure reproducibility.

1Link omitted for anonymity

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers, 2023.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, page III–1310–III–1318. JMLR.org, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-with
an erratum note’. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, 148, 01 2001.

Mantas Lukoševičius. A Practical Guide to Applying Echo State Networks, pages 659–686.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/
978-3-642-35289-8_36.

Filip Matzner. Hyperparameter tuning in echo state networks. In GECCO ’22: Proceedings of the
Genetic and Evolutionary Computation Conference, page 404–412, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 978-1-4503-9237-2. doi: 10.1145/3512290.3528721.

Guoqiang Zhang, B. Eddy Patuwo, and Michael Y. Hu. Forecasting with artificial neural networks::
The state of the art. International Journal of Forecasting, 14(1):35–62, 1998. ISSN 0169-2070.
doi: 10.1016/S0169-2070(97)00044-7.

Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks
for sequence learning, 2015.

Yuxiu Hua, Zhifeng Zhao, Rongpeng Li, Xianfu Chen, Zhiming Liu, and Honggang Zhang. Deep
learning with long short-term memory for time series prediction. IEEE Communications Magazine,
57(6):114–119, 2019. doi: 10.1109/MCOM.2019.1800155.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. arXiv preprint
arXiv:2310.06625, 2024.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning (ICML 2022), volume 162 of Proceedings of Machine Learning
Research, pages 27268–27286. PMLR, 2022.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2D-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems, pages
22419–22430, 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? Proceedings of the AAAI Conference on Artificial Intelligence, 37:11121–11128, 06
2023. doi: 10.1609/aaai.v37i9.26317.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. ArXiv, abs/2305.10721, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. TSMixer:
An all-MLP architecture for time series forecast-ing. Transactions on Machine Learning Research,
September 2023. ISSN 2835-8856.

Nils Bertschinger and Thomas Natschläger. Real-time computation at the edge of chaos in recurrent
neural networks. Neural computation, 16(7):1413–1436, 2004.

Filip Matzner. Neuroevolution on the edge of chaos. In GECCO ’17: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 465–472, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-4920-8. doi: 10.1145/3071178.3071292.

Joschka Boedecker, Oliver Obst, Joseph Lizier, Norbert Mayer, and Minoru Asada. Information
processing in echo state networks at the edge of chaos. Theory in biosciences = Theorie in den
Biowissenschaften, 131:205–13, 12 2011. doi: 10.1007/s12064-011-0146-8.

J.C. Sprott. Chaos and Time-series Analysis. Oxford University Press, 2003. ISBN 9780198508403.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

Nikolaus Hansen. The cma evolution strategy: A tutorial. ArXiv, abs/1604.00772, 2016.

Ali Rodan and Peter Tino. Minimum complexity echo state network. IEEE Transactions on Neural
Networks, 22(1):131–144, 2011. doi: 10.1109/TNN.2010.2089641.

Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A Hypercube-Based Encoding for
Evolving Large-Scale Neural Networks. Artificial Life, 15(2):185–212, 04 2009. ISSN 1064-5462.
doi: 10.1162/artl.2009.15.2.15202.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393:440–442, 1998.

Yuji Kawai, Tatsuya Tokuno, Jihoon Park, and Minoru Asada. Echo in a small-world reservoir: Time-
series prediction using an economical recurrent neural network. In 2017 Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 126–
131, 2017. doi: 10.1109/DEVLRN.2017.8329797.

Laura E. Suárez, Blake A. Richards, Guillaume Lajoie, and Bratislav Misic. Learning function from
structure in neuromorphic networks. Nature Machine Intelligence, 3(9):771–786, Sep 2021. ISSN
2522-5839. doi: 10.1038/s42256-021-00376-1.

Ryan Daniels, J.B. Mallinson, Z.E. Heywood, P.J. Bones, M.D. Arnold, and Simon Brown. Reservoir
computing with 3d nanowire networks. Neural Networks, 154, 07 2022. doi: 10.1016/j.neunet.
2022.07.001.

Georg Holzmann and Helmut Hauser. Echo state networks with filter neurons and a delay&sum
readout. Neural Networks, 23(2):244–256, 2010.

Qianli Ma, Zhenjing Zheng, Wanqing Zhuang, Enhuan Chen, Jia Wei, and Jiabing Wang. Echo
memory-augmented network for time series classification. Neural Networks, 133:177–192, 2021.
ISSN 0893-6080. doi: 10.1016/j.neunet.2020.10.015.

Stefan Iacob and Joni Dambre. Exploiting signal propagation delays to match task memory
requirements in reservoir computing. Biomimetics, 9(6), 2024. ISSN 2313-7673. doi:
10.3390/biomimetics9060355. URL https://www.mdpi.com/2313-7673/9/6/355.

David Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic neural networks.
Neuron, 63:544–557, 2009.

12

https://www.mdpi.com/2313-7673/9/6/355

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

J.J. Steil. Backpropagation-decorrelation: online recurrent learning with o(n) complexity. In 2004
IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), volume 2,
pages 843–848 vol.2, 2004. doi: 10.1109/IJCNN.2004.1380039.

Simon Haykin. Adaptive filter theory. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002.

Tomoyuki Kubota, Kohei Nakajima, and Hirokazu Takahashi. Dynamical anatomy of narma10
benchmark task. ArXiv, abs/1906.04608, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pages
11106–11115. AAAI Press, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, SIGIR ’18, page 95–104, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450356572. doi: 10.1145/3209978.
3210006.

Claudio Gallicchio and Alessio Micheli. Reservoir topology in deep echo state networks. In Igor V.
Tetko, Věra Kůrková, Pavel Karpov, and Fabian Theis, editors, Artificial Neural Networks and
Machine Learning – ICANN 2019: Workshop and Special Sessions, pages 62–75, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-30493-5.

Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, SC ’09, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605587448.

Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev, Brian
Kloppenborg, James Malcolm, and John Melonakos. ArrayFire - A high performance software
library for parallel computing with an easy-to-use API, 2022. URL https://github.com/
arrayfire/arrayfire.

13

https://github.com/arrayfire/arrayfire
https://github.com/arrayfire/arrayfire

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: Sizes of the real-world datasets measured in the number of time steps.
ETTm1/2 Weather Solar Electricity Traffic ETTh1/2 Exchange

Training 34560 36887 36792 18412 12280 8640 5311
Validation 11520 5270 5256 2632 1756 2880 760

Test 11520 10539 10512 5260 3508 2880 1517
Features 7 21 136 321 862 7 8

A DATASETS

A.1 NARMA10

In Nonlinear Autoregressive Moving Average of 10th order (NARMA10), each element is a nonlinear
combination of the last 10 inputs and outputs. Formally, the target sequence is defined as follows:

y(t+ 1) = 0.3y(t) + 0.05y(t)
∑9

i=0 y(t− i) + 1.5u(t− 10)u(t) + 0.1 ,

where u(t) is the random input sequence generated from uniform distribution U(0, 0.5) and y(t) is
the target sequence, both in time t. It should be mentioned that NARMA10 is a chaotic sequence that
can diverge (Kubota et al., 2019), in which case it has to be regenerated.

We use a washout period of 1000 steps, a training period of 12000 steps, and a testing period of 1000
steps. For evaluation, we generate 100 unique NARMA10 sequences (using a different initial random
seed).

A.2 REAL-WORLD DATASTETS

We use nine publicly available datasets ETTh1, ETTh2, ETTm1, and ETTm2 proposed by Zhou et al.
(2021), weather by Wu et al. (2021), and electricity, traffic, solar-energy, and exchange datasets used
by Lai et al. (2018). We focus only on the multivariate case, i.e., predicting all the provided features.
For a brief description of the contents of the datasets, see Appendix A.1 from Liu et al. (2024).

To be comparable to other works, we normalize each covariate in the training set independently to
zero mean and unit variance. We apply the standardization coefficients computed on the training set
to the rest of the data (validation and testing set). The reported results are based on the standardized
data (Chen et al., 2023). See Table 2 for the dataset sizes and consult the source code of the original
papers (Python) or ours (C++) for more details.

We noticed order-of-magnitude outliers in the weather dataset training data. It would be misleading to
fit those using the least squares method (Section C). Therefore, we preventively clip the normalized
training data and the network input to the interval [−10; 10] for all the datasets. The validation and
testing data are left untouched.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B FULL RESULTS ON REAL-WORLD DATASETS

B.1 DETAILED VIEW

Table 3: The full results of LCESN approach on real-world datasets compared to the results of other
authors. The best result is red and the second best result is blue. The reservoir size for ESN and
LCESNs is 40×50 with a 7×7 kernel. The four LCESN variants and ESN baseline are not compared
to each other. Datasets are sorted from longest (top) to shortest (bottom).

Models ESN LCESN LCESN-LMS LCESN-LR100 LCESN-LR1 TSMixer PatchTST DLinear iTransformer FEDformer TimesNet RLinear Autoformer
(2001) Ours Ours Ours Ours (2023) (2023) (2023) (2024) (2022) (2023) (2023) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.392 0.425 0.307 0.360 0.297 0.350 0.291 0.344 0.289 0.343 0.285 0.339 0.329 0.367 0.345 0.372 0.334 0.368 0.326 0.390 0.338 0.375 0.355 0.376 0.510 0.492
192 0.475 0.483 0.363 0.397 0.341 0.377 0.335 0.372 0.332 0.371 0.327 0.365 0.367 0.385 0.380 0.389 0.377 0.391 0.365 0.415 0.374 0.387 0.391 0.392 0.514 0.495
336 0.558 0.544 0.425 0.440 0.379 0.402 0.374 0.400 0.371 0.398 0.356 0.382 0.399 0.410 0.413 0.413 0.426 0.420 0.392 0.425 0.410 0.411 0.424 0.415 0.510 0.492
720 0.734 0.656 0.554 0.524 0.442 0.442 0.449 0.453 0.443 0.450 0.419 0.414 0.454 0.439 0.474 0.453 0.491 0.459 0.446 0.458 0.478 0.450 0.487 0.450 0.527 0.493

Avg 0.540 0.527 0.412 0.430 0.364 0.393 0.362 0.392 0.359 0.390 0.347 0.375 0.387 0.400 0.403 0.407 0.407 0.410 0.382 0.422 0.400 0.406 0.414 0.408 0.515 0.493

E
T

T
m

2

96 0.196 0.301 0.170 0.269 0.166 0.259 0.162 0.256 0.162 0.256 0.163 0.252 0.175 0.259 0.193 0.292 0.180 0.264 0.180 0.271 0.187 0.267 0.182 0.265 0.205 0.293
192 0.292 0.375 0.231 0.318 0.223 0.301 0.218 0.299 0.218 0.299 0.216 0.290 0.241 0.302 0.284 0.362 0.250 0.309 0.252 0.318 0.249 0.309 0.246 0.304 0.278 0.336
336 0.402 0.449 0.295 0.368 0.283 0.342 0.272 0.339 0.271 0.339 0.268 0.324 0.305 0.343 0.369 0.427 0.311 0.348 0.324 0.364 0.321 0.351 0.307 0.342 0.343 0.379
720 0.630 0.573 0.436 0.462 0.427 0.427 0.374 0.410 0.371 0.409 0.420 0.422 0.402 0.400 0.554 0.522 0.412 0.407 0.410 0.420 0.408 0.403 0.407 0.398 0.414 0.419

Avg 0.380 0.424 0.283 0.354 0.275 0.332 0.257 0.326 0.255 0.326 0.267 0.322 0.281 0.326 0.350 0.401 0.288 0.332 0.292 0.343 0.291 0.332 0.286 0.327 0.310 0.357

W
ea

th
er

96 0.172 0.229 0.160 0.213 0.154 0.203 0.149 0.200 0.149 0.200 0.145 0.198 0.177 0.218 0.196 0.255 0.174 0.214 0.238 0.314 0.172 0.220 0.192 0.232 0.249 0.329
192 0.224 0.277 0.205 0.263 0.202 0.252 0.191 0.245 0.192 0.246 0.191 0.242 0.225 0.259 0.237 0.296 0.221 0.254 0.275 0.329 0.219 0.261 0.240 0.271 0.325 0.370
336 0.279 0.318 0.256 0.305 0.262 0.298 0.243 0.287 0.243 0.288 0.242 0.280 0.278 0.297 0.283 0.335 0.278 0.296 0.339 0.377 0.280 0.306 0.292 0.307 0.351 0.391
720 0.346 0.369 0.307 0.335 0.325 0.333 0.302 0.323 0.299 0.322 0.320 0.336 0.354 0.348 0.345 0.381 0.358 0.347 0.389 0.409 0.365 0.359 0.364 0.353 0.415 0.426

Avg 0.255 0.298 0.232 0.279 0.236 0.272 0.221 0.264 0.221 0.264 0.224 0.264 0.258 0.280 0.265 0.317 0.258 0.278 0.310 0.357 0.259 0.286 0.272 0.291 0.335 0.379

So
la

r

96 0.236 0.355 0.171 0.252 0.172 0.249 0.170 0.249 0.170 0.250 N/A N/A 0.234 0.286 0.290 0.378 0.203 0.237 0.242 0.342 0.250 0.292 0.322 0.339 0.884 0.711
192 0.254 0.369 0.195 0.267 0.197 0.262 0.195 0.263 0.195 0.264 N/A N/A 0.267 0.310 0.320 0.398 0.233 0.261 0.285 0.380 0.296 0.318 0.359 0.356 0.834 0.692
336 0.279 0.392 0.214 0.283 0.215 0.276 0.214 0.280 0.213 0.281 N/A N/A 0.290 0.315 0.353 0.415 0.248 0.273 0.282 0.376 0.319 0.330 0.397 0.369 0.941 0.723
720 0.304 0.422 0.228 0.306 0.225 0.286 0.226 0.300 0.225 0.301 N/A N/A 0.289 0.317 0.356 0.413 0.249 0.275 0.357 0.427 0.338 0.337 0.397 0.356 0.882 0.717

Avg 0.268 0.384 0.202 0.277 0.202 0.268 0.201 0.273 0.201 0.274 N/A N/A 0.270 0.307 0.330 0.401 0.233 0.262 0.292 0.381 0.301 0.319 0.369 0.355 0.885 0.711

E
le

ct
ri

ci
ty 96 0.247 0.337 0.219 0.325 0.189 0.301 0.166 0.278 0.164 0.276 0.131 0.229 0.181 0.270 0.197 0.282 0.148 0.240 0.186 0.302 0.168 0.272 0.201 0.281 0.196 0.313

192 0.260 0.346 0.220 0.325 0.190 0.302 0.174 0.286 0.172 0.284 0.151 0.246 0.188 0.274 0.196 0.285 0.162 0.253 0.197 0.311 0.184 0.289 0.201 0.283 0.211 0.324
336 0.268 0.353 0.221 0.326 0.194 0.307 0.184 0.297 0.183 0.295 0.161 0.261 0.204 0.293 0.209 0.301 0.178 0.269 0.213 0.328 0.198 0.300 0.215 0.298 0.214 0.327
720 0.282 0.365 0.240 0.339 0.213 0.320 0.212 0.317 0.212 0.317 0.197 0.293 0.246 0.324 0.245 0.333 0.225 0.317 0.233 0.344 0.220 0.320 0.257 0.331 0.236 0.342

Avg 0.264 0.351 0.225 0.329 0.197 0.308 0.184 0.294 0.183 0.293 0.160 0.257 0.205 0.290 0.212 0.300 0.178 0.270 0.207 0.321 0.192 0.295 0.218 0.298 0.214 0.326

Tr
af

fic

96 0.901 0.490 0.768 0.378 0.732 0.372 0.683 0.364 0.677 0.363 0.376 0.264 0.462 0.295 0.650 0.396 0.395 0.268 0.576 0.359 0.593 0.321 0.649 0.389 0.597 0.371
192 1.024 0.512 0.826 0.389 0.789 0.384 0.733 0.375 0.729 0.374 0.397 0.277 0.466 0.296 0.598 0.370 0.417 0.276 0.610 0.380 0.617 0.336 0.601 0.366 0.607 0.382
336 1.142 0.539 0.892 0.406 0.855 0.402 0.791 0.390 0.787 0.390 0.413 0.290 0.482 0.304 0.605 0.373 0.433 0.283 0.608 0.375 0.629 0.336 0.609 0.369 0.623 0.387
720 1.314 0.592 1.041 0.454 1.006 0.450 0.942 0.439 0.938 0.439 0.444 0.306 0.514 0.322 0.645 0.394 0.467 0.302 0.621 0.375 0.640 0.350 0.647 0.387 0.639 0.395

Avg 1.095 0.533 0.882 0.407 0.845 0.402 0.787 0.392 0.782 0.392 0.408 0.284 0.481 0.304 0.624 0.383 0.428 0.282 0.604 0.372 0.620 0.336 0.626 0.378 0.616 0.384

E
T

T
h1

96 0.460 0.471 0.515 0.510 0.411 0.437 0.407 0.431 0.407 0.431 0.361 0.392 0.414 0.419 0.386 0.400 0.386 0.405 0.376 0.415 0.384 0.402 0.386 0.395 0.435 0.446
192 0.581 0.557 0.708 0.613 0.482 0.485 0.481 0.482 0.483 0.483 0.404 0.418 0.460 0.445 0.437 0.432 0.441 0.436 0.423 0.446 0.436 0.429 0.437 0.424 0.456 0.457
336 0.701 0.640 0.920 0.711 0.543 0.525 0.559 0.532 0.563 0.535 0.420 0.431 0.501 0.466 0.481 0.459 0.487 0.458 0.444 0.462 0.491 0.469 0.479 0.446 0.486 0.487
720 0.857 0.743 1.129 0.813 0.627 0.591 0.700 0.628 0.710 0.633 0.463 0.472 0.500 0.488 0.519 0.516 0.503 0.491 0.469 0.492 0.521 0.500 0.481 0.470 0.515 0.517

Avg 0.650 0.602 0.818 0.662 0.516 0.510 0.537 0.518 0.541 0.521 0.412 0.428 0.469 0.454 0.456 0.452 0.454 0.448 0.428 0.454 0.458 0.450 0.446 0.434 0.473 0.477

E
T

T
h2

96 0.344 0.408 0.323 0.387 0.296 0.364 0.300 0.364 0.301 0.364 0.274 0.341 0.302 0.348 0.333 0.387 0.297 0.349 0.332 0.374 0.340 0.374 0.288 0.338 0.332 0.368
192 0.486 0.492 0.404 0.440 0.364 0.409 0.374 0.411 0.377 0.412 0.339 0.385 0.388 0.400 0.477 0.476 0.380 0.400 0.407 0.446 0.402 0.414 0.374 0.390 0.426 0.434
336 0.645 0.571 0.470 0.487 0.399 0.439 0.409 0.442 0.413 0.444 0.361 0.406 0.426 0.433 0.594 0.541 0.428 0.432 0.400 0.447 0.452 0.452 0.415 0.426 0.477 0.479
720 0.761 0.643 0.554 0.544 0.427 0.465 0.431 0.467 0.435 0.468 0.445 0.470 0.431 0.446 0.831 0.657 0.427 0.445 0.412 0.469 0.462 0.468 0.420 0.440 0.453 0.490

Avg 0.559 0.529 0.438 0.464 0.372 0.419 0.378 0.421 0.381 0.422 0.355 0.400 0.387 0.407 0.559 0.515 0.383 0.406 0.388 0.434 0.414 0.427 0.374 0.398 0.422 0.443

E
xc

ha
ng

e 96 0.417 0.413 0.636 0.535 0.417 0.447 0.335 0.399 0.308 0.382 N/A N/A 0.088 0.205 0.088 0.218 0.086 0.206 0.148 0.278 0.107 0.234 0.093 0.217 0.197 0.323
192 0.568 0.510 0.844 0.642 0.606 0.557 0.545 0.531 0.525 0.521 N/A N/A 0.176 0.299 0.176 0.315 0.177 0.299 0.271 0.315 0.226 0.344 0.184 0.307 0.300 0.369
336 0.825 0.644 1.176 0.778 0.945 0.714 0.842 0.678 0.820 0.670 N/A N/A 0.301 0.397 0.313 0.427 0.331 0.417 0.460 0.427 0.367 0.448 0.351 0.432 0.509 0.524
720 1.003 0.733 0.902 0.688 0.903 0.690 0.903 0.690 0.903 0.690 N/A N/A 0.901 0.714 0.839 0.695 0.847 0.691 1.195 0.695 0.964 0.746 0.886 0.714 1.447 0.941

Avg 0.703 0.575 0.889 0.661 0.718 0.602 0.656 0.574 0.639 0.566 N/A N/A 0.366 0.404 0.354 0.414 0.360 0.403 0.518 0.429 0.416 0.443 0.378 0.418 0.613 0.539

1st 0/36 0/36 5/36 2/36 4/36 2/36 8/36 2/36 7/36 2/36 24/28 20/28 2/36 3/36 2/36 0/36 1/36 8/36 1/36 0/36 0/36 0/36 0/36 4/36 0/36 0/36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 RELATIVE RANKING

Table 4: Relative ranking for models and datasets presented in Table 3. Value at i-th row and j-th
column represents the number of datasets and horizons on which model i outperformed model j.
Models are sorted from best (top) to worst (bottom).

E
SN L
C

E
SN

L
C

E
SN

-L
M

S

L
C

E
SN

-L
R

10
0

L
C

E
SN

-L
R

1

T
SM

ix
er

Pa
tc

hT
ST

D
L

in
ea

r

iT
ra

ns
fo

rm
er

FE
D

fo
rm

er

Ti
m

es
N

et

A
ut

of
or

m
er

R
L

in
ea

r

SU
M

TSMixer 28 27 27 23 24 0 26 28 26 26 27 27 26 315
LCESN-LR1 36 34 26 19 0 4 24 24 19 23 25 26 21 281

LCESN-LR100 35 33 27 0 8 4 24 24 19 22 25 26 21 268
iTransformer 34 22 16 17 17 2 22 27 0 24 26 35 23 265

PatchTST 31 22 14 11 12 2 0 28 13 24 27 33 27 244
LCESN-LMS 33 30 0 8 8 1 22 24 19 22 22 25 21 235

FEDformer 27 20 14 14 13 2 12 23 11 0 19 34 22 211
TimesNet 29 21 14 11 11 1 9 25 10 17 0 29 19 196
RLinear 28 22 15 14 15 2 9 12 12 14 17 31 0 191
DLinear 28 17 12 12 12 0 6 0 8 13 11 24 22 165
LCESN 29 0 6 1 1 1 14 19 14 16 15 18 14 148

Autoformer 24 18 11 10 10 1 3 12 1 1 7 0 5 103
ESN 0 7 2 1 0 0 5 8 2 9 6 12 8 60

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: The list of optimized hyperparameters with their genotype-to-phenotype transformation,
initial values in the phenotype space, initial σ for CMA-ES in the genotype space, and their allowed
range in genotype space. nin denotes the average number of nonzero inputs to a neuron. σi

in and σi
fb

denote the coefficients for i-th input and feedback, respectively.
Hyperparameter Phenotype transform Initial value Initial σ Boundaries

σres x 7−→ e−50x 1/
√
2nin 0.01 [−0.1; 1.1]

µres x 7−→ 2x|x| 0 0.05 [−1.1; 1.1]
σi
in x 7−→ e−50x 1× 10−5 0.01 [−0.1; 2.0]

σi
fb x 7−→ e−50x 1× 10−5 0.01 [−0.1; 2.0]

µb x 7−→ 2x|x| 0 0.05 [−1.1; 1.1]
λ2 x 7−→ e−50x 1× 10−8 0.01 [−0.1; 2.0]

C TRAINING DETAILS

The network is driven by the training data U ∈ RT×nin (fed to the network row by row) with the
target data Y ∈ RT×nout , where T denotes the number of training time steps. Let us define matrix
A ∈ RT×n, whose i-th row is the vector of reservoir activations a(i). Afterward, the linear least
squares method with ridge regularization is used to find Wout as follows:

Wout = argminW ||AW − Y ||22 + λ2 ||W ||22 ,

where || · ||2 denotes the Euclidean norm and λ2 denotes the strength of the regularization.

D EXPERIMENTAL SETTINGS

To minimize the curse of dimensionality, we optimize only a restricted set of parameters. The
maximum memory length H is fixed at 100 because larger values require more GPU memory, and
the model would also require a longer washout sequence. Leakage is fixed at 1, because the optimizer
had a tendency to avoid leakage in the NARMA task, and the model already has the history of states
available through the memory mechanism described in 3.4. Sparsity is fixed at 0, because a randomly
pruned reservoir does not appear to have a significant impact even for fully connected networks
(Matzner, 2022). Furthermore, our topology is sparse by design. σnoise is set to zero because its
purpose is a regularization that is already covered by the ridge regression. The learning rate for
NLMS weight updates µlms is set arbitrarily at 1× 10−3.

We adopt the CMA-ES hyperparameter tuning framework by Matzner (2022), including genotype-to-
phenotype transformations. Generally, the hyperparameters that are supposed to be positive (e.g.,
σres) are optimized in the logarithmic space via x 7−→ e−50x, and hyperparameters that need to take
cautious steps around zero (e.g., µres) are optimized in square root space via x 7−→ 2x|x|. Parameters
denoting convex or affine combination coefficients are optimized directly. Table 5 summarizes the
optimized hyperparameters, the corresponding transformations, and their upper and lower bounds.

In contrast to Matzner (2022), we do not create a new random network for every fitness evaluation.
Instead, we reuse the same random seed, so the optimizer searches for the optimal scaling of a single
network. This technique reduces noise and makes the optimization more stable.

The initial neuron activation is set to zero, and the first 500 steps of training data are used as a washout
period to eliminate the effect of state initialization. Each task is optimized five times, each time with
a different random seed (in a reproducible manner). For NARMA10 validation, each optimization run
is followed by evaluating the best network on 100 new unique random NARMA10 sequences, and
the best result is reported (or visualized). For the real-world datasets, we select the hyperparameters
using the train and validation set, and the network with the best validation accuracy over the five
optimization runs is used for testing on the provided test set. We use a reservoir of 40×50 with a 7×7
kernel.

The models for all the real-world datasets comply with the same optimization rules. In fact, due to
the same random seed, they are the same reservoir, just scaled with different hyperparameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
train steps

10 − 16

10 − 14

10 − 12

10 − 10

10 − 8

10 − 6

10 − 4

10 − 2

M
SE

state size
113x141
57x70

Figure 9: Comparison of various training set sizes of LCESN with 4000 and 16000 neurons and 7×7
kernel on NARMA10. Each point in the scatter plot represents a single evaluation of one of the best
hyperparameters found during the NARMA10 experiments. The only parameter that is changing is
the number of train steps.

By far, the most time-consuming part of the whole training procedure is the hyperparameter opti-
mization. The hyperparameter tuning requires thousands of such evaluations, and thus, it is desired
to minimize its computational time even at the cost of a rougher approximation. Therefore, we use
the pure LCESN variant without linear regression recomputation and NLMS weight updates. We
optimize our network for a prediction horizon of 192 steps and validate only every 30th subsequence.

For sequence prediction tasks, the most important part of the sequence tends to be just before the
sequence to be predicted. To focus on this last part of the sequence, the training sample at time t is
weighted by et/T , where T is the number of samples.

In sequence-to-sequence experiments (e.g., NARMA10), the feedback connections dramatically
improve the results (Matzner, 2022) because the target sequence can be completely different from
the input sequence. Without the feedback, the network would not be able to utilize its own output.
On the other hand, sequence prediction tasks (e.g., our real-world datasets) already use the network
output as the input for the next step, so using feedback connections would be redundant.

E ABLATION STUDY

E.1 EFFECT OF TRAINING SIZE

According to the results presented in Section 6, larger networks seem to have a larger learning
capacity. An important topic is whether the size of the training data was sufficient for the largest
of the evaluated networks and whether their size also brings downsides to smaller training sets.
According to Figure 9, which compares networks of 4,000 and 6,000 neurons on various training set
sizes, larger network dominates the smaller network even with smaller training sets. As the training
set size increases, the smaller network reaches its limit, and the larger one keeps improving.

At least on the NARMA10 task, choosing a larger network does not appear to have negative conse-
quences, except for higher computational demands.

E.2 EFFECT OF STATE SIZE

The aspect ratio of the state size does not appear to play a significant role in the performance of the
network. Figure 10 demonstrates the effect of changing the aspect ratio of the state. Aspect ratio
denotes the ratio of height to width, spanning from a square shape (aspect ratio 1) to a prolonged
rectangle (aspect ratio 0). The state size 71×7 is significantly worse (p < 0.05) than all other
evaluated state sizes. However, the other ratios performed similarly except for an outlier 26×19.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

22x23
24x21

26x19
29x17

33x15
38x13

45x11
56x9

71x7

state size

10 − 8

M
SE

Figure 10: Comparison of various state aspect ratios of LCESN with 500 neurons and 7×7 kernel on
NARMA10. Each violin represents the evaluation of 100 unique random sequences predicted by a
network selected as the best of five optimization runs.

convolution lcesn permutation ring
topology

10 − 15

10 − 14

M
SE

Figure 11: Comparison of various topologies of 4000 neurons on NARMA10. LCESN uses a 7×7
kernel. Each violin represents the evaluation of 100 unique random sequences predicted by a network
selected as the best of five optimization runs.

According to the data, there is a chance that performance may be degraded in extreme cases where
the kernel covers the entire height or width of the network. To mitigate the risk, we use state sizes
closer to the 1:1 ratio.

E.3 ALTERNATIVE TOPOLOGIES

Figure 11 compares multiple reservoir topologies. The ring topology was presented in Rodan and
Tino (2011) as a minimum complexity ESN reservoir that does not affect performance. It simply
connects the neurons to form a circle. The permutation topology (as evaluated, e.g., by Gallicchio
and Micheli (2019) and Matzner (2022)) splits the neurons into multiple rings, each independent of
the others. The convolution topology uses the same kernel technique as LCESN, but the kernels for
all neurons are equal. In our experiments, LCESN significantly outperformed the three remaining
topologies (p < 0.05).

F DETAILS ON GPU IMPLEMENTATION

The topology of LCESN was designed with GPU memory properties in mind. LCESNs leverage
that sparse reservoirs do not appear to harm accuracy (Matzner, 2022) while also providing op-
portunities for more efficient computation. Generic sparse matrix algorithms, however, inherently
suffer from significant overhead due to irregular memory access, which negatively impacts GPU
performance (Bell and Garland, 2009). To overcome these issues, we optimized our implementation
to fully leverage the proposed local topology, minimizing memory overhead and ensuring coalesced
GPU memory access (i.e., access in continuous blocks). The local connectivity is well-suited for GPU
parallelization, allowing each neuron’s state update to be handled independently by GPU threads,
while still effectively utilizing shared GPU memory.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

20x25 28x36 40x50 57x70 80x100 113x141
reservoir size

0

20

40

60

du
ra

tio
n

[μ
s]

method
sparse matrix (CSR)
ours

Figure 12: Average execution times of two different LCESN step implementations with a 7×7 kernel,
based on 10 000 evaluations. Sparse matrix multiplication is performed using the Arrayfire CUDA
library (Yalamanchili et al., 2022), utilizing the compressed sparse row (CSR) format. Experiments
were conducted on an NVIDIA GTX 1080Ti GPU and an Intel i7-4770 CPU.

F.1 PERFORMANCE

Our GPU implementation, tested on an NVIDIA GTX 1080 Ti, demonstrated a 14x speedup compared
to a conventional fully connected ESN and 15x speedup compared a CPU implementation (Intel
i7-4770), using a reservoir of 80x100 neurons and a 7x7 kernel.

The closest alternative to our custom implementation is sparse matrix multiplication. Figure 12
compares the execution times of the LCESN step implemented with our method versus the sparse
matrix method. For very small reservoirs, the performance difference is minimal. However, for larger
reservoirs of size 80×100 our implementation demonstrates an improvement of over 50%.

F.2 ALGORITHM OVERVIEW

The reservoir weights are stored in a tensor of dimensions N × M × K × K, where N × M
represents the size of the reservoir, and K × K represents the kernel size. The element at index
[i, j, k, l] corresponds to the connection weight from the neuron at position [i−K//2+k, j−K//2+l]
to the neuron at position [i, j] of the reservoir. In other words, each kernel slice [i, j, :, :] stores the
connections directed inward to the neuron at position [i, j]. The reservoir activations are stored as a
tensor of dimensions N ×M . These tensors are stored in memory in the conventional column-wise
order.

The order of dimensions is a crucial aspect of the implementation. Subsequent indices in the first
dimension are contiguous in memory, while subsequent indices in other dimensions represent more
distant memory addresses. Specifically for the reservoir weights matrix, each kernel is intentionally
scattered across the memory.

The algorithm roughly consists of the following steps:

1. Allocate a perimeter of dimensions (N + K) × (M + K), which is the reservoir grid
padded by state activations from the opposite side of the reservoir. This ensures that every
neuron can access its entire kernel neighborhood locally, simulating a periodic (torus-shaped)
reservoir. Allocate this perimeter to shared GPU memory.

2. Use the GPU thread index to access the reservoir grid in a top-down, left-right manner. In
other words, allocate the GPU warp to subsequent neurons in the memory.

3. For each thread, traverse the weights of its kernel (top-down, left-right), multiply them by
the corresponding presynaptic activation found in the perimeter, and accumulate the result
in a local variable.

4. Write the accumulated result to the corresponding output in global memory.

By adhering to the specified dimension order and traversal sequence, GPU memory accesses are
coalesced, ensuring optimal performance. For a more detailed description, please refer to the source
code file lcnn_step_cuda.cu.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2.3s

19.2s

32.3s

28.6s

LCESN

iTransformer

34.7s

47.8s

washout training testing

Figure 13: Decomposition of washout, training, and testing times on ETTh1 datasets for LCESN and
iTransformer for prediction horizon of 96 steps.

Table 6: Comparison of inference speed in low-latency (1-step) and high-throughput (96-steps)
scenarios for LCESN and iTransformer. In the 1-step scenario, only a single prediction is required
as soon as possible. In the 96-steps scenario, LCESN has to be run subsequently 96 times in a
self-feeding loop, while iTransformer predicts the entire horizon immediately. Both scenarios used
the same LCESN model, while iTransformer was trained for each of the scenarios separately.

horizon LCESN iTransformer

1-step 8361 steps/s 107 steps/s
96-steps 87 steps/s 97 steps/s

G DETAILED BENCHMARKS

One of the main benefits of ESNs is their fast training procedure and inference. However, LCESN, as
a recurrent model, differs from feedforward models in its usage (see Section 3.5). To clarify the most
suitable tasks for ESNs, we present a detailed analysis of the benchmarking results from Section 6.2
and compare LCESN with alternative approaches.

The majority of time is spent on hyperparameter optimization using the CMA-ES procedure described
in Section 3.2. We conducted 2,000 full evaluation cycles, which, in the case of the ETTh1 dataset,
took less than four hours. The model selected for testing was the one with the best validation error
across five independent hyperparameter runs, resulting in a total optimization time of 20 hours. While
this approach provides a robust lower bound on achievable performance, it is also the weakest aspect
of our method, offering significant opportunities for improvement. For example, early stopping
or more efficient optimization algorithms could reduce this time. We adhered to the framework
by Matzner (2022), leaving optimization improvements for future research.

It is rather difficult to compare running time of our model to others, because of hardware differences
and often complicated reproducibility. Using information from the TSMixer paper (Chen et al.,
2023), it is reported that the hyperparameter search grid required 1,600 training and validation cycles
for each dataset (400 for each of four time horizons), which is similar to our model. Additionally,
it is mentioned that a single training cycle of TSMixer took more than three hours on a high-end
NVIDIA Tesla V100 GPU on a large M5 dataset. It suggests that the hyperparameter tuning was
very time-consuming and may have required a cluster of GPUs. Although transformers may appear
agnostic to hyperparameter perturbations, Liu et al. (2024) (Appendix C, Figure 9) noted considerable
sensitivity in the tested TSF datasets. Unfortunately, the work does not detail their hyperparameter
optimization procedure or its computational costs, making direct comparison challenging. To focus on
LCESN’s practical performance, we assume known hyperparameters in the subsequent experiments.

G.1 TRAINING AND INFERENCE TIME

Liu et al. (2024) (iTransformer) provided a quality code, and we were able to reproduce their results on
the same hardware (NVIDIA GTX 1080 Ti GPU supported by a single core of an Intel i7-4770 CPU).
Since iTransformer was the second strongest competitor, we will use it as a baseline measurement.
Figure 13 illustrates the decomposition of training and testing times for LCESN and iTransformer on
the ETTh1 datasets with a prediction horizon of 96 steps. For LCESN, the linear regression training
procedure required just over two seconds, highlighting one of the strongest upsides of ESNs. The
testing procedure involved running a 96-step self-feeding loop for each testing data point, which is
inherently more time-consuming than training since the training phase traverses the data only once.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G.2 LATENCY VS. THROUGHPUT

Figure 13 does not show a complete picture. Feedforward models like iTranformer predict the entire
prediction horizon at once and support parallel batch processing, while LCESN only predicts the
next step. These differences offer distinct advantages. A fast 1-step prediction excels in low-latency
scenarios, where only the immediate next prediction matters and the others can wait (e.g., control
systems, trading, online signal filtering). In contrast, predicting the entire horizon and supporting
parallel batches provides higher throughput (e.g., processing offline datasets or predicting many
independent time series in parallel). Consult Table 6 for a comparison of latency and throughput of
LCESN and iTransformer. Additionally, a 1-step prediction model like LCESN is flexible and can
handle arbitrary horizons without retraining. Feedforward models like iTransformer, which predict
fixed horizons, are traditionally retrained for each desired horizon separately.

22

	Introduction
	Research objective

	Related work
	Methods
	Echo State Networks
	Hyperparameter optimization
	Local topology
	Forced memory
	Prediction methodology

	Datasets
	Experiment
	Results and discussion
	Effect of local topology
	Benchmarking
	Effect of forced memory
	Real-world datasets

	Conclusion
	Datasets
	NARMA10
	Real-world datastets

	Full results on real-world datasets
	Detailed view
	Relative ranking

	Training details
	Experimental settings
	Ablation study
	Effect of training size
	Effect of state size
	Alternative topologies

	Details on GPU implementation
	Performance
	Algorithm overview

	Detailed benchmarks
	Training and Inference Time
	Latency vs. Throughput

