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Abstract001

Tables have gained significant attention in002
large language models (LLMs) and multimodal003
large language models (MLLMs) due to their004
complex and flexible structure. Unlike lin-005
ear text inputs, tables are two-dimensional,006
encompassing formats that range from well-007
structured database tables to complex, multi-008
layered spreadsheets, each with different pur-009
poses. This diversity in format and purpose010
has led to the development of specialized011
methods and tasks, instead of universal ap-012
proaches—making navigation of table under-013
standing tasks challenging. To address these014
challenges, this paper introduces key concepts015
through a taxonomy of tabular input representa-016
tions and an introduction of table understanding017
tasks. We highlight several critical gaps in the018
field that indicate the need for further research:019
(1) the predominance of retrieval-focused tasks020
that require minimal reasoning beyond mathe-021
matical and logical operations; (2) significant022
challenges faced by models when processing023
complex table structures, large-scale tables,024
length context, or multi-table scenarios; and025
(3) the limited generalization of models across026
different tabular representations and formats.027

1 Introduction028

Tables have garnered increasing attention due to029

advances in large language models (LLMs) and030

multi-modal large language models (MLLMs), ow-031

ing to the unique challenges they present. Un-032

like linear text, tabular data possess an inher-033

ently visual, two-dimensional format that requires034

specialized pipelines to be processed effectively,035

as shown in Figure 1. Additionally, tables ex-036

hibit structural flexibility, serving a wide range037

of purposes—from well-structured database ta-038

bles to hierarchical, multi-layered spreadsheets and039

multimedia-linked info-boxes. These variations040

in purpose and structure have driven the develop-041

ment of diverse input representations, tasks, and042

CREATE TABLE Method ( 

Name VARCHAR(255), 

Acc. FLOAT);

[[0, ‘Name’, ‘Acc.’], 

[1, ‘Ours’, ‘60.1’]]

augmentation

Output

a)

b) c)

Representation

TQA

Table2Text

What is the highest acc.?

Summarize the 1st row.

auxiliary inputs

…

Input

Model
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Figure 1: Workflow of table-related tasks in large models.
Tables or databases, possibly accompanied by additional input
data, are transformed into input representations, which could
take the form of (a) serialization, (b) database schema, (c)
images, or other format with optional augmentations. These
inputs are then processed by models usually leveraging SQL,
and other tools to generate task specific outputs.

specialized methods and datasets. However, such 043

specialization often comes at the expense of uni- 044

versality (Zhang et al., 2024a), making it difficult 045

for new researchers to navigate the field effectively. 046

While existing surveys (Fang et al., 2024; Zhang 047

et al., 2024b; Lu et al., 2024; Badaro et al., 2023; 048

Ren et al., 2025) have explored various prompting, 049

training, and transformer-based methods for table 050

processing, there is a need for a comprehensive 051

survey that uncovers new opportunities, focusing 052

on tasks and benchmarks in tabular understanding. 053

To address the existing gap and assist researchers 054

in navigating table-related tasks, this paper presents 055

a systematic taxonomy of tabular data representa- 056

tions and introduces a broad range of both well- 057
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TQA

What are the distinct creation years of the departments managed by a 

secretary born in state Alabama? (MMQA)

Head

Head ID Name Born State

1 Tiger Woods Alabama

… … …

SELECT DISTINCT Department.Creation FROM 

Head JOIN Management ON Head.Head_ID = 

Management.Head_ID JOIN Department ON 

Management.Department_ID = 

Department.Department_ID WHERE 

Head.Born_State = 'Alabama'; Ans: 1903

TQA

In 2018,what was the total sales increase in the segment with most funds 

in 2017? (MULTIHIERTT)

The following table presents product and service sales and operating 

expenses by segment (dollar in millions):

Segment … 2018 2017

Sales Expenses Sales Expenses

… … … … … …

Aerospace System

Product … 11,087 9,889 10,064 8,988

Service … 2,009 1,796 2,067 1,854

Ans: (11087-10064)

+ (2009-2067) = 965
(complex table and text)

A) Solvable by SQL B) Unsolvable by SQL

Product sales for 2018 

increased $4.3 billion, or 25 

percent, as compared with 

2017. The increase was 

primarily due to the 

addition of $2.9 billion of 

product sales from 

Innovation Systems and 

higher restricted and F-35 

volume at Aerospace 

Systems (....abbreviate...)

activity_date account_id type … amount

… … … … …

… … … … …

Text2SQL

Give me the account ID whose sales amount surpass 3,000 today.

Text-to-SQL:

Spider 2

I need a daily report on key sales activities. (Spider 2)

Advance Reasoning

SELECT account_id 

FROM table_sales 

WHERE amount > 3000 

AND activity_date = 

CURRENT_DATE;

Ans:  I listed account_id of transaction amount surpass 3000… 101, 204, and 356.

                                          (ambiguous high-level question)

Ans:  account_id 101, 204, and 356.

Ans: Based on historical data, BMW's 3-Series saw a recovery from 

2009 to 2010. Thus, modest growth could be expected in 2011…

                     (predictive, analytical question)

Forecast

Please help me forecast the sales of different categories and models of 

BMW in 2011.(Text2Analysis)

Complex Input Data

Department ID Head ID

2 5

… …

Management

Department

Department ID Creation …

7 1903 …

… … …

T
ex

t-to
-S

Q
L

:

Figure 2: The left side illustrates examples of tasks that can be addressed with SQL-based methods such as typical Text-to-SQL
task and a Table QA task from MMQA (Anonymous, 2024). In contrast, the right side presents tasks that demand advanced
reasoning or involve complex inputs, such as those found in Spider 2 (Lei et al., 2024), Text2Analysis (He et al., 2024), and
MULTIHIERTT (Zhao et al., 2022), which go beyond the capabilities of SQL-based approaches.

established and novel tasks. For instance, we exam-058

ine Table QA, which focuses on answering natural059

language questions based on table content, and060

Table-to-Text, which involves generating natural061

language summaries from tabular data. We also062

highlight innovative tasks such as leaderboard con-063

struction, which aggregates result tables from sci-064

entific papers to provide a comprehensive compar-065

ison of methods in one specific field. For well-066

established tasks, we compile key benchmarks067

and their associated table formats, categorizing im-068

provements in newer benchmarks relative to earlier069

ones to highlight emerging research trends.070

Furthermore, our survey reveals new opportuni-071

ties by focusing on tasks and challenges identified072

in widely used benchmarks. Despite significant073

progress in prompting and training methods—as074

highlighted in existing surveys (Lu et al., 2024;075

Badaro et al., 2023; Ren et al., 2025)—and the076

robust performance of recent tabular foundational077

models that integrate tabular data during the pre-078

training and fine-tuning stages of 72B base models079

(Su et al., 2024), current table processing bench-080

marks tend to concentrate on limited reasoning081

tasks and often rely on simplistic, synthetic tables082

with inconsistent input representations. While ef-083

fective for initial evaluations, these benchmarks084

fall short in assessing the performance of more085

advanced methods and models in real-world sce- 086

narios that require higher-level reasoning and the 087

processing of complex inputs, ultimately limiting 088

their generalizability and broader applicability. 089

2 Findings and Future Direction 090

In this section, we outline three key findings that 091

underscore the need for further investigation. 092

2.1 Limited Scope Beyond Mathematical 093

Reasoning 094

Recent work has begun to saturate performance 095

on many widely used benchmarks. For example, 096

question-decomposition pipelines have yielded sig- 097

nificant improvements (Gao et al., 2023; Ye et al., 098

2023; Wang et al., 2024b); the method proposed 099

by Hussain (2025) achieved over 80% accuracy 100

on the Wiki-Table Questions benchmark (Pasupat 101

and Liang, 2015) and more than 93% on TabFact 102

(Chen et al., 2020b), two popular datasets for table 103

QA and fact verification. Moreover, the success of 104

table foundation models—integrating specialized 105

table encoders into large-scale language models 106

pre-trained and fine-tuned on tabular data (Su et al., 107

2024)—signals a growing trend toward applying 108

tabular methods to larger models. These advances 109

suggest it is time to move beyond data retrieval- 110

based tasks, as most benchmarks rely on detailed 111
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queries that prompt models to extract specific in-112

formation from tables using logical operations.113

Many existing benchmarks are even constructed114

by first generating SQL queries or sequences of115

mathematical expressions, which are then trans-116

lated into natural language query (Pasupat and117

Liang, 2015; Iyyer et al., 2017; Pal et al., 2023;118

Anonymous, 2024), or by framing questions whose119

answers can be fully derived using mathematical120

functions (Zheng et al., 2023; Zhang et al., 2023d;121

Zhao et al., 2022; Kweon et al., 2023). While ef-122

forts have focused on enhancing task complexity123

through additional reasoning steps or embedding124

complex mathematical functions, the core structure125

of these tasks remains fundamentally unchanged.126

As shown in Figure 2, such descriptive questions127

can be solved relatively easily by text-to-SQL meth-128

ods when tables are well-structured.129

Notably, recent work (Majumder et al., 2024)130

has further pushed the boundaries by emphasizing131

higher-order reasoning skills. For example, He132

et al. (2024) introduced tasks that extend beyond133

basic descriptive analysis, such as insight identifi-134

cation, similar to what is shown in Figure 3, which135

demands diagnostic thinking; forecasting, which re-136

quires predictive thinking; and chart creation from137

ambiguous queries, a task that requires prescrip-138

tive thinking—selecting the appropriate chart type139

and determining optimal intervals to produce vi-140

sually appealing figures. In these tasks, models141

cannot simply rely on finding synonyms or related142

attributes in the table to perform data retrieval. In-143

stead, they must understand the overall context of144

the table and the user’s intent to address the query.145

A similar direction is explored by Spider 2 (Lei146

et al., 2024), which introduces questions requir-147

ing higher levels of reasoning. Unlike benchmarks148

such as Spider (Yu et al., 2018) and its extensions,149

which introduce marginal difficulties by swapping150

explicit schema names with synonyms or rephras-151

ing utterances (Deng et al., 2021; Gan et al., 2021a),152

Spider 2 presents high-level, intent-driven queries,153

as illustrated in Figure 2. For example, instead154

of asking explicitly (e.g., “Give me the account155

ID whose sales surpass a threshold today”), Spi-156

der 2 poses abstract, goal-oriented queries (e.g., “I157

need a daily report on key sales activities”). These158

queries challenge models to infer the user’s intent,159

requiring a deep understanding of both the database160

schema and the query’s broader context. Fur-161

thermore, Dong et al. (2025) introduce multi-turn162

conversations that teach models to seek clarifica-163

Dataset A

Name Acc.

Ours 62.1 (+2.2)

Baseline 59.9a)
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n
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n
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Performance on Dataset A

Name Acc.

Ours 60.1

Thiers 59.9

Baseline 33.2

Ablation 60.0
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Name Acc.

Ours 70.7 (-4.6)

Baseline 75.3

b
) 

o
u

tl
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w/o y -10.3 (31%)
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Figure 3: Illustration of the proposed task: Scientific Doc-
ument Understanding with Tables which require diagnosing
implicit knowledge embedded in tabular data, which may not
be well addressed in text. Examples include: a) inconsistent re-
sults under conditions; b) outliers in values; and c) key trends.

tion whenever a user’s initial query is ambiguous, 164

thereby better mirroring real-world interactions and 165

mitigating the multiple-interpretation issue identi- 166

fied by Pourreza and Rafiei (2023b). 167

2.2 Lack of Robustness on Input Complexity 168

Another area of opportunity in current table-related 169

research is enhancing model robustness when pro- 170

cessing complex input scenarios, including intri- 171

cate table structures, long tables, lengthy texts, and 172

multi-table contexts—challenges that have mini- 173

mal impact on human performance (Anonymous, 174

2024; Pal et al., 2023). Benchmarks such as HiTab 175

(Cheng et al., 2022) and MULTIHIERTT (Zhao 176

et al., 2022) have been instrumental in highlight- 177

ing these challenges. HiTab features hierarchical 178

multidimensional tables, while MULTIHIERTT 179

further incorporates lengthy texts where answers 180

may be embedded, as well as multi-table scenarios. 181

Both benchmarks report model performances be- 182

low 50%, compared to a human accuracy of around 183

83% on MULTIHIERTT. Similarly, benchmarks 184

like MultiTableQA (Pal et al., 2023) and MMQA 185

(Anonymous, 2024), which focus on multi-table 186

question answering from well-structured databases 187

such as those in the Spider benchmark, provide 188

valuable insights into current model limitations. 189

For instance, in MMQA the strongest model evalu- 190

ated, o1-preview (OpenAI, 2024), achieves an ex- 191

act match score slightly above 50%, while human 192

performance reaches approximately 89%. 193

Scientific Document Understanding with Tables. 194

Scientific documents provide a rich test bed for 195

information extraction and table extraction (Bai 196

et al., 2024; Yang et al., 2022; Kardas et al., 2020). 197

These papers typically contain complex ablation, 198
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Name Acc.

Ours 60.1

… …

Method

Serialization

Image

Table encoder

Data Schema

XML

JSON

LaTeX

Markdown

Value Pair

Text Template

Data Matrices

X-Separated

Table (Column)

CREATE

<table><tr><th>Name</th><th>Acc.</th></tr> 

<tr><td>Ours</td><td>60.1</td></tr></table>

[ { "Name": "Ours", "Acc.": 60.1 } ]

\hline Name & Acc. \\ \hline Ours & 60.1 \\

| Name | Acc. | |------|------| | Ours | 60.1 |

( “Ours”, 60.1)

The method name Ours has an accuracy of 60.1. 

[[0, "Name", "Acc. "], [1, "Ours", "60.1"]]

Name X Acc. <row> Ours X 60.1

Name X Ours <col> Acc. X 60.1

Table: Method - Name - Acc.

CREATE TABLE Method ( 

        Name VARCHAR(255) PRIMARY KEY, 

        Acc. FLOAT );

CREATE TABLE Method ( 

                Name VARCHAR(255), 

                Acc. FLOAT 

                PRIMARY KEY (Name));

pd.DataFrame({Name: [‘Ours’], Acc.:[60.1]})

Tree embedding

Graph embedding

Type embedding

Other embeddings…

Index Mapping (0, 0, “Name”) (0, 1, “Acc.”) (1, 0, “Ours”) (1, 1, 60.1)

Figure 4: Taxonomy of table input representation methods, encompassing serialization, image, specialized table encoders, and
data schema. Examples illustrating each representation type are shown on the right.

analysis, and method-comparison tables alongside199

extensive textual discussion, all of which demand200

sophisticated reasoning for accurate interpretation201

(Zhang et al., 2023c; Asai et al., 2024). Build-202

ing on this foundation, future work can harness203

scientific-document data to develop higher-level204

table-reasoning systems that demand a broad reper-205

toire of skills—such as trend detection, diagnostic206

assessment, and forecasting (see Figure 3).207

2.3 Limited Generalization Across Tabular208

Representations209

Despite recent advances, current models still strug-210

gle to generalize across diverse tabular representa-211

tions. Their performance on commonly used bench-212

marks can vary by up to 5% depending on how213

closely input formats align with the data encoun-214

tered during pretraining (Sui et al., 2024), as simi-215

larly observed by Gao et al. (2023) in the Text-to-216

SQL domain. Benchmarks highlight this issue by217

relying on a variety of input representations chosen218

based on convenience and accessibility. As demon-219

strated in our collection of major benchmarks (see220

Tables 1, 2, and 3), tabular representations for the221

same type of task lack universality. Even when222

categorized under the same format, such as JSON,223

the internal structures can vary greatly (Aly et al.,224

2021; Chen et al., 2020c), further complicating225

…
……………………
…...………………
…....................
.......................
.......................
........

Name Acc.

Ours 60.1

Base 33.2

Dataset

Name Metric

Ours {Acc,:60.1, F1:51}

Theirs 59.9 39.3

Ablation Result

w/o text link

Method

Name & \multicolumn{c}{2}{Metric} \\

Ours & \multicolumn{c}{2}{\{Acc: 60.1, F1: 51\}} \\

Theirs & 59.9 & 39.3 \\ 

\multicolumn{3}{c}{Ablation Result}\\

w/o text & \href{link}{link} \\

Method <row>

Name | Metric <row>

Ours | {Acc:60.1, F1:51} <row>

Theirs | 59.9, 39.3 <row>

Ablation Result<row>

w/o text | [link]

{"Method": 

    { "Name": ["Ours", "Theirs", "Ablation Result"],

        "Metric": [ {Acc:60.1, F1:51}, ["59.9", "39.3"],

   {"w/o text": "link"} ] 

 } }

semi-structured table

a) LaTeX

b) | - separated

c) JSON

Figure 5: Comparison of serialization methods for semi-
structured tables: a) LaTeX, b) X-separated, and c) JSON.
Each method has its strengths and weaknesses in handling
aspects such as nested value structures, row or column hierar-
chies, embedded document links, and flexible data types.

performance evaluations and introducing bias. 226

Efforts to address these inconsistencies are 227

emerging. For example, Lei et al. (2023) provides 228

standardized serialization options such as Mark- 229

down and flattened text, though additional formats 230

remain underexplored. Another line of research 231

(Zheng et al., 2024) focuses on visual representa- 232

tions of complex tables—such as Table Cell Locat- 233

ing and Merged Cell Detection—to generate serial- 234

ized versions from images. Integrating these tasks 235

into fine-tuning pipelines has proven beneficial. 236

Future research could explore serialization-to- 237

serialization tasks, where models transform one 238

4



format (e.g., JSON) into another (e.g., LaTeX or239

Markdown). Integrating such task could enhance240

models’ robustness to varied input styles and create241

opportunities for fine-tuning across multiple repre-242

sentations. Additionally, limited investigation has243

been conducted into the effectiveness of different244

representations for complex tables. For instance,245

LaTeX’s \multicolumn command effectively cap-246

tures hierarchical structures, whereas other formats247

may ignore this type of relationship during serial-248

ization process, as Figure 5 shown.249

3 Modalities of Table Representation250

In this section, we introduce key tabular representa-251

tions that are essential for enabling large models to252

process table data effectively. Since these models253

require one-dimensional input formats, structured,254

two-dimensional tables must be converted accord-255

ingly. This transformation, however, often results256

in the loss of valuable structural information. To257

address these challenges, various methods have258

been developed, including serialization, database259

schema representations, image-based formats, and260

specialized table encoders, as illustrated in Figure 4.261

Recent studies (Sui et al., 2024; Zhang et al., 2023a)262

demonstrate that model performance is sensitive to263

the chosen input representation, underscoring the264

data-dependent nature of current approaches to pro-265

cessing tabular data. Unfortunately, many existing266

benchmarks rely on representations selected pri-267

marily for convenience (Sundararajan et al., 2024),268

lacking of robust, unbiased comparisons.269

3.1 Serialization270

Serialization has long been a common method for271

representing tabular data, transforming tables into272

serialized text. Its primary advantages lie in com-273

patibility with standard models and ease of access274

to existing formats, such as HTML or Markdown275

tables on the web, LaTeX tables in PDF documents,276

and JSON or key-value pairs in code environments277

(see Figure 4). Most current benchmarks rely on278

serialization, as illustrated in Tables 1, 2, and 3.279

Below, we highlight several noteworthy papers:280

Sensitivity of Input Design. Models are not only281

sensitive to different serialization formats, but vari-282

ations in input design can also cause significant283

fluctuations in performance across table interac-284

tion tasks such as table partitioning, cell lookup,285

and reverse lookup (Sui et al., 2024). For example,286

omitting marked partitions or altering the input or-287

der has resulted in performance drops of up to 20%, 288

while removing example shots has led to accuracy 289

deteriorations of as much as 50%. 290

Sampling and Augmentation. Long or multi- 291

table inputs pose challenges for serialization due 292

to model input length limitations, often resulting in 293

truncation or data loss. To address these constraints, 294

researchers have developed methods for sampling 295

rows or columns that capture the key information 296

in a table. Recent research (Sui et al., 2023) demon- 297

strates that embedding-based sampling techniques, 298

such as centroid and semantic-based sampling, out- 299

perform other approaches. Furthermore, they show 300

a balanced combination of augmentation data (e.g., 301

table sizes and keyword explanations) and sampled 302

table text has proven effective in achieving better 303

overall performance within token limits. 304

3.2 Data Schema 305

Another input representation for table is to provide 306

the schema of tables rather than presenting the en- 307

tire table content. Common schema representations 308

include database structures in SQL and dataframes 309

in pandas, as illustrated in Figure 4. Using a data 310

schema allows models to bypass input length limita- 311

tions by focusing only on the structural blueprint of 312

the data. However, this approach relies on strictly 313

well-structured tables to be effective and loss of 314

potential useful detailed content and value. 315

Sensitivity of Input Design. Like serialization, 316

models are not only sensitive to the schema format, 317

but also its designs: Zhang et al. (2023a) evalu- 318

ated schema input designs on GPT-3.5 and found 319

that using three example rows yielded the best re- 320

sults. Additionally, they highlighted that model 321

performance declines sharply when primary and 322

foreign keys (PF keys) in the data schema are omit- 323

ted, which Chen et al. (2024) also mentioned. 324

Normalized structure. Given the trend toward 325

schema-based methods and the improved results 326

observed in Table QA tasks using Python or SQL 327

code to interact with schema-based tables (Wang 328

et al., 2024b; Pourreza and Rafiei, 2023a; Ye et al., 329

2023), exploring methods to convert complex data 330

structures into more structured tables could be bene- 331

ficial to enhance the compatibility of such methods. 332

3.3 Image 333

With the advancement of MLLMs, there is grow- 334

ing interest in using images as an input format 335
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Benchmark Sources / Domain # Q # T Passage Table Format Output Directions
WTQ (2015) Wikipedia 22,033 2,108 HTML cells -
SQA (2017) Wikipedia 17,553 6,066 HTML cells Input Complexity
HybridQA (2020c) Wikipedia 69,611 13,000 ✓ JSON text-span Input Complexity
FetaQA (2021a) Wikipedia - 10,330 Data Matrices free-form Answer Format
TAT-QA (2021) Financial Reports 16,552 7,431 ✓ Data Matrices number Domain, Input
OTT-QA (2021) Wikipedia - 45,841 ✓ JSON text-span Input, Reasoning

AIT-QA (2022) Airline Industry 515 113 Data Matrices cells Domain, Input
FinQA (2022) Financial Report 8,281 2,789 ✓ Data Matrices number Domain Knowledge
MMCoQA (2022) MMQA (2018) 1,715 10,042 ✓ JSON text-span Input Complexity
HiTab (2022) Wikipedia, Statistic 10,672 3,597 Row-Separated text-span Input Complexity
MULTIHIERTT (2022) Financial Report 10,440 2,513 ✓ HTML number Input, Reasoning

Open-WikiTable (2023) Wikipedia 67,023 24,680 Row-Separated text-span, SQL Answer Format
QTSUMM (2023) Wikipedia 7,111 2,934 Data Matrices free-form Answer Format
TEMPTABQA (2023) Wikipedia 11,454 1,208 JSON, HTML text-span Reasoning Difficulty
CRT-QA (2023d) TabFact (2020b) 1,000 423 Row-Separated text-span Reasoning Difficulty
IM-TQA (2023) Baidu Encyclopedia 5,000 1,200 Index Mapping text-span Input Complexity

TabCQA (2023a) Financial Report 109,089 7,041 Text Template,
Value Pair text-span Input Complexity

MultiTabQA (2023) Spider (2018), Synthetic,
TAPEX (2022) Corpus 136,461 - Row-Separated sub-table Answer, Input

TABMWP (2023a) Online Learning Web 38,431 37,544 Row-Seperated,
SpreadSheet, Image free-form Reasoning Difficulty

FREB-TQA (2024) WTQ, WikiSQL (2017),
SQA, TAT-QA 75,205 8,590 Data Matrices text-span Input, Reasoning

Text2Analysis (2024) Data Analysis Libraries 2,249 347 - code, text Reasoning Difficulty
MMQA (2024) Spider (2018) 3,313 3,312 JSON sub-table Input Complexity

Table 1: Summary of benchmarks for Table-based Question Answering. Sizes shows the number of questions and tables. Passage
indicates if an input passage is included. Directions categories each benchmark’s primary focus compare to previous ones.

due to their adaptability, accessibility, and abil-336

ity to preserve structural information (Wydmański337

et al., 2024). Specifically, Zheng et al. (2024)338

achieved superior results using images with a fine-339

tuned LLaVA model (Liu et al., 2023b), outper-340

forming models with OCR and serialization set-341

tings. They found that additional training focused342

on table structure understanding—such as cell ex-343

traction and cell location—enhance the model’s344

ability to accurately interpret tables.345

Image resolution. While images offer the advan-346

tage of preserving the original table layout, they347

face constraints similar to serialization: the amount348

of data they can present is limited by image size and349

resolution, which can significantly impact model350

performance (Li et al., 2024). As tables grow larger,351

the information becomes blurred at a fixed resolu-352

tion, leading to deteriorated performance. One po-353

tential approach is to use images as supplemental354

input alongside serialized text or data schema (Luo355

et al., 2023). This combined input strategy could356

potentially allow the model to receive structural357

information directly from the image while access-358

ing detailed content from the text-based format.359

However, to the best of our knowledge, systematic360

evaluations of this approach remain lacking.361

3.4 Table Encoder362

Specific table encoder designs have been employed363

in smaller-scale language models to handle table-364

related tasks, utilizing various embeddings such as 365

column-based (Iida et al., 2021), row-based (Herzig 366

et al., 2020), tree-structured (Wang et al., 2021c), 367

and graph-based embeddings (Wang et al., 2021a). 368

Building on these approaches, recent work has 369

demonstrated a trend toward employing specialized 370

encoders in larger base models, effectively creating 371

table foundation models (van Breugel and van der 372

Schaar, 2024; Su et al., 2024; Ma et al., 2024). 373

In particular, TableGPT2 leverages a specialized 374

table encoder—with column- and row-wise atten- 375

tion—to integrate tabular data during the pretrain- 376

ing and fine-tuning stages of 7B and 72B base 377

models (Su et al., 2024), outperforming other ta- 378

ble generalist models across a range of tasks while 379

remaining competitive with task-specific methods. 380

4 Table-Related Tasks 381

In this section, we introduce key table-related tasks 382

such as Table Question Answering (TQA), Table- 383

to-Text, and Table Fact Verification (TFV), along 384

with other intriguing applications like leaderboard 385

construction that actively utilize tables. 386

4.1 Table Question Answering 387

TQA1is one of the most common and well-studied 388

table tasks, with various benchmarks developed as 389

shown in Table 1. It typically involves a free-form 390

question and a single table, sometimes accompa- 391

nied by an optional passage or passage links, and 392
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Benchmark Sources / Domain # Q # T Table Format Focus Text Input Directions
Rotowire (2017) NBA - 4,853 JSON N/A Domain Knowledge
ToTTo (2020) Wikipedia 134,161 83,141 Index Mapping Highlight Span Caption -
Logic2Text (2020d) WikiTable 10,800 5,600 Row-Separated N/A Logic Summarization
LogicNLG (2020a) TabFact (2020b) 37,000 7,300 Data Matrices N/A Logic Comparison

SciGen (2021) Scientific Paper 53,000 - Row-Separated N/A Caption Domain Knowledge
NumericNLG (2021) Scientific Paper 1,300 1,300 JSON N/A Caption Domain Knowledge
FetaQA (2021a) ToTTo (2020) - 10,330 Matrices Text Query Input Complexity

E2E (2020), WTQ
DART (2021b) WikiTable (2023) 82,191 5,623 XML, JSON N/A Table Title Table Structure

WebNLG (2019)

QTSUMM (2023) Wikipedia 7,111 2,934 Data Matrices Text Query Input Complexity
FindSUM (2023c) Company Report - 21,125 Data Matrices N/A Long Text Input Complexity

Table 2: Summary of benchmarks for Table-to-Text and Table Summarization. Focus specifies the subset of table content
intended for natural language generation, while N/A indicates the entire table should be transformed to natural language.

Benchmark Sources / Domain # Q # T Table Format Output Directions
TabFact (2020b) Wikipedia 117,843 18,000 Row-Separated S, R -
InfoTabs (2020) Wikipedia 23,738 2,540 HTML, JSON S, R, N Output Format
FEVEROUS (2021) Wikipedia 87,062 - JSON / Mapping S, R, N Output Format
SEM-TAB-FACTS (2021b) Science 5,715 2,961 XML S, R, N, EC Domain Knowledge
XInfoTabs (2022) InfoTabs 23,738 2,540 JSON S, R, N Multi-Language
EI-InfoTabs (2022) InfoTabs 23,738 2,540 JSON S, R, N Indic-Language
SciTab (2023b) SciGen(Moosavi et al., 2021) 1,255 - JSON / Mapping S, R, N Domain Knowledge

Table 3: Summary of benchmarks for Table-based Fact Verification. S in the output denotes Supported, R represents Refuted, N
stands for Neither or Not Enough Evidence, and EC refers to Evidence Cells.

the output is expected to be information derived393

from the table or passage, generally presented as394

cell spans, calculated values, or minimal text spans.395

TQA benchmarks have expanded significantly396

over the past two years, inspiring future work397

across multiple directions, including domain398

knowledge, answer format, input complexity, and399

reasoning difficulty. Domain-specific benchmarks400

now better reflect real-world scenarios in fields401

such as airlines (Katsis et al., 2022) and finance402

(Zhu et al., 2021; Chen et al., 2022). Answer for-403

mats have also diversified, with benchmarks re-404

quiring free-form responses (Nan et al., 2021a;405

Zhao et al., 2023; Wang et al., 2024a) and SQL406

queries (Kweon et al., 2023), beyond traditional407

cell values or text spans. Input complexity has408

increased through multi-table datasets (Pal et al.,409

2023; Zhao et al., 2022), hierarchical tables (Cheng410

et al., 2022), and semi-structured tables (Lu et al.,411

2023a), which challenge models to navigate in-412

tricate structures. Reasoning requirements have413

similarly intensified, incorporating hypothetical414

questions (Li et al., 2023b), implicit time-based415

inference (Gupta et al., 2023), and sequential or416

conversational queries (Iyyer et al., 2017; Li et al.,417

2022; Liu et al., 2023a). Overall, recent bench-418

marks generally demand more complex reasoning419

steps and operations to yield accurate answers.420

1For a more comprehensive understanding of TQA, see
this curated list of relevant papers: https://github.com/
lfy79001/Awesome-Table-QA

4.2 Table-to-Text and Table Summarization 421

Table-to-Text and Table Summarization are table 422

tasks initially developed to evaluate whether mod- 423

els could accurately interpret and describe table 424

content. In these tasks, the input typically includes 425

a table, sometimes with specified cell spans as 426

shown in the Focus column in Table 2. If a span or 427

region is provided, the model generates a textual 428

description or summary of that specific area; if not, 429

it summarizes the entire table. With advances in 430

models’ table understanding, this task has become 431

less prominent, as the number of related publica- 432

tions has steadily decreased since 2021. 433

Query Focused Summarization. A recent, note- 434

worthy benchmark in this area is QTSUMM (Zhao 435

et al., 2023), which requires models to gener- 436

ate text-based summaries of specific table regions 437

in response to questions. By integrating the 438

aspect of table search based on textual queries 439

from TQA with the descriptive demands of Table- 440

to-Text, QTSUMM introduces new complexities 441

that push models to move beyond simple fact re- 442

trieval. Notably, QTSUMM includes “why” ques- 443

tions, prompting models to reason about underly- 444

ing causes or explanations—a shift that aligns more 445

closely with human interests and highlights the im- 446

portance of generating responses that incorporate 447

causal understanding and contextual depth. 448

Lack of Multilingual Benchmarks. A notable 449

gap in current research is the absence of multilin- 450
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Figure 6: Illustration of automatic leaderboard construction
pipeline. Results are extracted from ablation and performance
tables in each paper. The red line highlights inconsistency
across paper that may require examination across texts.

gual benchmarks for table-to-text tasks. As high-451

lighted in (Osuji et al., 2024), to the best of our452

knowledge, no table-to-text benchmarks exist in453

languages other than English, significantly limiting454

the applicability and inclusivity of this task.455

4.3 Table Fact Verification456

Table Fact Verification (also referred to as Table457

Reasoning or Table Natural Language Inference) is458

a task designed to assess fact-searching and logic459

inference capabilities within tables. In this task,460

the input typically consists of a statement or claim461

alongside a reference table. The model’s output462

is a verification label—such as “Supported,” “Re-463

futed,” or “Not Enough Information”—indicating464

whether the claim aligns with the table content.465

Some benchmarks also require a justification for466

the answer, as shown in Table 3. Recent methods467

have enabled models to achieve over 80% accu-468

racy on widely used benchmarks like TabFact and469

FEVEROUS (Sui et al., 2024; Ye et al., 2023; Wang470

et al., 2024b), demonstrating substantial progress471

in fact-checking within tabular data. However, sce-472

narios involving longer contexts, multiple tables,473

or complex table structures remain unassessed.474

4.4 Leaderboard Construction475

Beyond the widely studied tasks, an intriguing di-476

rection proposed by Kardas et al. (2020) is leader-477

board construction. This task aims to streamline478

the comparison of experimental results within a479

research domain through scientific papers, offering480

a concise and structured view of progress.481

Existing methods, such as those proposed in482

(Kardas et al., 2020; Yang et al., 2022), have made483

notable strides in automating this process. These484

approaches typically employ pipelines that clas-485

sify and extract data from performance and ab-486

lation tables in scientific papers, leveraging tech- 487

niques like Named Entity Recognition (NER) or 488

string matching to form tuples (Task, Dataset, Met- 489

ric) or quadruples (Task, Dataset, Metric, Score). 490

Such methods provide a foundational framework 491

for building leaderboards and have proven effective 492

in capturing basic performance comparisons across 493

different methods and datasets. However, as sci- 494

entific tasks and methodologies grow increasingly 495

complex, these pipelines face limitations. Tasks of- 496

ten require varying schemas to account for unique 497

aspects, and surface-level extraction may not fully 498

capture the nuances of more intricate experiments 499

or analyses. For instance, discrepancies in reported 500

results between papers, as illustrated in Figure 6, of- 501

ten necessitate a deeper comparison and reasoning 502

over both tables and textual content to resolve. 503

4.5 Other Tasks 504

Emerging new table-related tasks include innova- 505

tions such as tabular synchronization across lan- 506

guages (Khincha et al., 2023) and column name ab- 507

breviation expansion (Zhang et al., 2023b). Among 508

these, Text-to-Table has gained increasing atten- 509

tion in 2024 (Ramu et al., 2024; Jiang et al., 2024; 510

Deng et al., 2024). The task was first formalized 511

by Wu et al. (2022) as a sequence-to-sequence task 512

by inversely applying table-to-text datasets. Recent 513

studies have explored various methods, such as in- 514

corporating knowledge graphs (Jiang et al., 2024), 515

to enhance its utility as a data integration task for 516

field like finance, medicine, and law. 517

5 Further Reading 518

For readers seeking deeper insights into table- 519

related research areas, several survey papers offer 520

valuable perspectives. For methodologies aimed 521

at improving table reasoning with LLMs, work 522

by Zhang et al. (2024b) provides a detailed taxon- 523

omy and an analysis of emerging trends. Lu et al. 524

(2024) explores prompting and training techniques 525

for table-related tasks in the context of LLMs and 526

VLMs. Meanwhile, Badaro et al. (2023); Ren et al. 527

(2025) presents a focused analysis of transformer- 528

based, smaller-scale models designed for tabular 529

data. For an in-depth perspective, the comprehen- 530

sive 30-page survey by Fang et al. (2024) provides 531

an extensive overview of table understanding tasks, 532

datasets, and corresponding fundamental methods. 533
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Limitations534

This study presents a comprehensive survey of535

table-related tasks with LLMs and MLLMs, high-536

lighting key trends and emerging opportunities.537

While we have made our best effort to provide538

a thorough review, certain limitations remain. Due539

to space constraints, we focus on summarizing540

the main trends rather than providing exhaustive541

technical details for each approach. Our selection542

of works primarily draws from major NLP con-543

ferences, including ACL, EMNLP, NAACL, and544

ICLR, along with relevant studies from other do-545

mains and preprints. While we strive to incorporate546

the latest research, many new works continue to547

emerge during our submission of this paper. Given548

the rapid evolution of this field, our survey offers a549

snapshot of current progress rather than a definitive550

account. We will continue to track developments551

and refine our analysis in future updates.552
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Benchmark Sources / Domain Sizes Input Format T / Q Directions
WikiSQL (2017) Wikipedia 80,654 Row Header, Row-Separated 1.0 -
Spider (2018) Academic Databases, Online CSV, WikiSQL 10,181 Table(col), Type, PF 1.6 -

SEDE (2021) Stack Exchange 12,023 Table(col), Type, PF 1.3 Noise Utterance
SpiderDK (2021b) Spider 535 Table(col), Type, PF > 1 Domain Knowledge
SpiderSyn (2021a) Spider 8,034 Table(col), Type, PF > 1 Query Perturbation
SpiderRealistic (2021) Spider 508 Table(col), Type, PF > 1 Query Perturbation
MIMICSQL (2021) Electronic Medical Records 10,000 Row Header, Row-Separated 1.8 Domain Knowledge

KaggleDBQA (2021) ATIS, GeoQuery, Restaurants, Yelp,
Academic, IMDB, Scholar, Advising 272 Table(col), Type, PF, context 1.2 Domain Knowledge

ADVETA (2022) Spider, WikiSQL, WTQ - Table(col), Type, PF > 1 Table Perturbation
BIRD (2023a) Kaggle, Machine Learning platform 12,751 Table(col), Type, PF, context > 1 Table Size
Dr.Spider (2023) Spider 15,000 Table(col), Type, PF > 1 Table, Query Perturbation
EHRSQL (2023) Electronic Medical Records 24,000 Table(col), Type, PF 2.4 Domain, Reasoning
ScienceBench (2023c) CORDIS, SDSS, OncoMX 6,000 Table(col), Type, PF > 1 Data Synthesis, Domain

TrustSQL (2024) ATIS, Advising, EHRSQL, Spider 27,784 CREATE(EoT) > 1 Reasoning
Spider2 (2024) Cloud Data Warehouses 632 Table(col), PF > 1 Reasoning, Table Size
Spider2V (2024) Cloud Data Warehouses 494 Agent Workspace > 1 Input Modality

Table 4: Summary of benchmarks for Text-to-SQL. Sizes refers to the number of SQL query pairs, and T/Q indicates the number
of tables required to answer a single query.

evolved to incorporate additional contextual infor-1202

mation—such as table schemas and optional sam-1203

ple rows—with the evaluation focus shifting from1204

exact match (EM) to execution accuracy (EX) as1205

the primary metric. A prominent benchmark in1206

this area, Spider (Yu et al., 2018), significantly in-1207

creased task complexity by introducing databases1208

composed of multiple tables, foreign keys, and the1209

requirement to employ a variety of functions.1210

Building on Spider, several adaptations and ex-1211

tensions have broadened the task’s scope and com-1212

plexity. Multilingual adaptations (Min et al., 2019;1213

Tuan Nguyen et al., 2020; Dou et al., 2022) ex-1214

panded Text-to-SQL to cross-lingual and multilin-1215

gual settings, enabling SQL generation across di-1216

verse languages. Other extensions include Spider-1217

DK (Gan et al., 2021b), which incorporates domain1218

knowledge, and Spider-Syn (Gan et al., 2021a) and1219

Spider-Realistic (Deng et al., 2021), which obscure1220

schema-related words or column names to simulate1221

noisy utterances and more realistic queries.1222

Text-to-SQL has been well-studied with ques-1223

tion decomposition pipelines (Gao et al., 2023; Ye1224

et al., 2023; Wang et al., 2024b), with current mod-1225

els nearing saturation on some commonly used1226

benchmarks.1227

Effect of Noisy Input. Beyond evaluation issues,1228

Text-to-SQL faces inherent challenges, especially1229

when handling ambiguity, or on very large tables.1230

As noted in (Chen et al., 2024), performance drops1231

significantly without PF keys, as variations in col-1232

umn names across tables and limited sample rows1233

complicate element matching. Moreover, as high-1234

lighted in (Lei et al., 2024; Maamari et al., 2024),1235

model performance deteriorates sharply when pro-1236

cessing extremely long database schema, a scenario 1237

prevalent in real-world industrial databases. 1238

B Responsible NLP Miscellanea 1239

B.1 AI Assistants 1240

We acknowledge the use of GPT-4o and GPT-o3- 1241

mini for grammar checking and word polishing. 1242
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