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ABSTRACT

In the current paradigm of image captioning, deep learning models are trained
to generate text from image embeddings of latent features. We challenge the
assumption that fine-tuning of large, bespoke models is required to improve
model generation accuracy. Here we propose Label Boosted Retrieval Aug-
mented Generation (LaB-RAG), a small-model-based approach to image cap-
tioning that leverages image descriptors in the form of categorical labels to
boost standard retrieval augmented generation (RAG) with pretrained large lan-
guage models (LLMs). We study our method in the context of radiology re-
port generation (RRG) over MIMIC-CXR and CheXpert Plus. We argue that
simple classification models combined with zero-shot embeddings can effec-
tively transform X-rays into text-space as radiology-specific labels. In combi-
nation with standard RAG, we show that these derived text labels can be used
with general-domain LLMs to generate radiology reports. Without ever train-
ing our generative language model or image embedding models specifically for
the task, and without ever directly “showing” the LLM an X-ray, we demon-
strate that LaB-RAG achieves better results across natural language and radiol-
ogy language metrics compared with other retrieval-based RRG methods, while
attaining competitive results compared to other fine-tuned vision-language RRG
models. We further conduct extensive ablation experiments to better under-
stand the components of LaB-RAG. Our results suggest broader compatibility
and synergy with fine-tuned methods to further enhance RRG performance. Our
anonymized code is available at: https://anonymous.4open.science/
r/label-boosted-RAG-for-RRG-CEBF.1

1 INTRODUCTION

Radiology reports are free-text natural language notes describing the observations seen in radiolog-
ical images, such as X-rays, CT scans, or MRI scans. These reports are written by board-certified
radiologists, highly specialized doctors (Rosenkrantz et al., 2020) who are in worsening short supply
(Kumar et al., 2020; Christensen et al., 2023; Rimmer, 2017; Ismail et al., 2024). Motivated by the
popularization of large language models (LLMs), there has been an increasing interest in AI tools to
help bridge the radiologist shortage gap (Hosny et al., 2018; Najjar, 2023; Kelly et al., 2022).

Radiology report generation (RRG) is the task of automatically generating these reports given the
images (Sloan et al., 2024; Messina et al., 2022). While RRG can be applied to any radiological
imaging modality, the most frequent modality studied in the literature is chest X-rays (CXRs). This
is evidenced by the large number of publicly available paired CXR-report datasets (Sloan et al.,
2024), such as MIMIC-CXR (Johnson et al., 2019), CheXpert Plus (Chambon et al., 2024), and
others (Demner-Fushman et al., 2016; Bustos et al., 2020; Vayá et al., 2020; Nguyen et al., 2022).
For CXRs, RRG is typically formulated as generating the “Findings” or “Impression” section of the
report (Messina et al., 2022). Conceptually, the findings section describes all positive or negative ob-
servations seen in the X-ray, while the impression section summarizes and interprets those findings
with recommendations for clinical diagnosis (ESR, 2011).

1Data-ingest submodule: https://anonymous.4open.science/r/cxr-data-ingest-D14F
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Figure 1: Overview of LaB-RAG for RRG compared to standard RAG.

At its core, RRG is a form of image captioning, specialized for medical imaging (Stefanini et al.,
2022). In recent years, LLMs have demonstrated impressive performance across medicine (Nori
et al., 2023; Chen et al., 2023; Saab et al., 2024). For other medical vision-language tasks, efforts
typically involve training models for the target task (Beddiar et al., 2023; Ayesha et al., 2021),
particularly when starting with an out-of-domain foundation model (FM) (Bommasani et al., 2021).

Model adaptation classically involves model training via supervised fine tuning (SFT). Yet, SFT
of FMs is becoming increasingly difficult as models become larger, requiring compute resources
greater than consumer-grade workstations can provide (Tuggener et al., 2024). While parameter-
efficient fine tuning (PEFT) methods have demonstrated competitive results (Ding et al., 2023), a
form of LLM adaptation that does not require model training is in-context learning (ICL) (Dong
et al., 2022). The goal of ICL is to have an LLM infer the target output using examples of input-
output pairs given jointly at inference time with the target input (Min et al., 2022). Related to ICL
is retrieval augmented generation (RAG), a framework for providing additional context to an LLM
prompt by retrieving documents related to the input query (Lewis et al., 2020). ICL and RAG can
be combined to retrieve examples that are specific to the target input (Gao et al., 2023). However,
ICL and RAG applied to the image to text task of RRG requires considering model modality.

While general domain vision-language FMs are improving even on medical vision-language tasks
(Saab et al., 2024; Meta, 2024), there are an increasing number of medical modality specific
FMs which have demonstrated stronger results (Moor et al., 2023; Wornow et al., 2023; Zhang
& Metaxas, 2024; He et al., 2024; Thieme et al., 2023; Neidlinger et al., 2024; Chen et al., 2024a;
Lu et al., 2024; Boecking et al., 2022; Bannur et al., 2023; Gu et al., 2021; Bolton et al., 2024; Zhang
et al., 2023). It is an open area of research on how to compose together multiple FMs which were
not necessarily jointly trained (Chen et al., 2022; Lin et al., 2024). Such composition depends on
the task; in image captioning, the image must inform the text generation. We argue that the image
features need not solely be high-dimensional latent embeddings, as with modern multimodal LLMs.

We propose LaB-RAG, Label Boosted Retrieval Augmented Generation, a method for image cap-
tioning which improves upon RAG and ICL. We study LaB-RAG in the context of RRG. Figure 1
and Table 1 present conceptual comparisons of LaB-RAG versus standard RAG and SFT methods.

Our main contributions are as follows:

• A modular framework for image captioning using rich embeddings coupled with
small to mid-scale models. By training simple machine learning (ML) models (e.g. lo-
gistic regression) over zero-shot image embeddings to derive categorical labels, we use the
labels to filter RAG retrieved text and to contextualize ICL examples. LaB-RAG composes
frozen, disjoint vision and language models at the low cost of training classical ML models
agnostic to the downstream task.

• State of the art performance for RRG. On clinical radiology metrics, we demonstrate
that LaB-RAG for RRG beats other retrieval based models, and we show that LaB-RAG
achieves state of the art performance when compared with SFT models from the literature.

• A novel framework complementary to training methods that improve models.
Through extensive ablation experiments of LaB-RAG over the two largest public CXR
datasets, we better understand the potential synergy of alternate modeling choices. Our
results suggest that LaB-RAG is complementary to SFT and other methods.
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Table 1: Conceptual comparison of LaB-RAG with other standard frameworks.

Comparison LaB-RAG RAG SFT

SOTA on clinical metrics ✓ ✓
No fine tuning of DL models ✓ ✓
Uses disjoint vision/text models ✓ ✓
Modular inference components ✓ ✓
Simple model ensemble ✓

2 RELATED WORK

As interest in RRG has steadily increased (Sloan et al., 2024), there are an abundance of available
RRG models from the literature trained to generate reports over CXRs. Additionally, the recent
BioNLP workshop at ACL 2024 hosted a shared task on RRG (Demner-Fushman et al., 2024) where
several new models were presented. These published methods can be categorized by the report
sections they generate, the “Findings” (Tanida et al., 2023), “Impression” (Endo et al., 2021; Ramesh
et al., 2022b; Jeong et al., 2024; Nguyen et al., 2023; Ranjit et al., 2023), both independently (Chen
et al., 2024b; Nicolson et al., 2024a), or both jointly (Sun et al., 2024). Models from the literature
can be further divided by the method for generation, either by a trained LLM conditioned on high-
dimensional image embeddings (Nicolson et al., 2024a; Chen et al., 2024b; Tanida et al., 2023;
Nguyen et al., 2023) or by text retrieval and processing (Endo et al., 2021; Ramesh et al., 2022b;
Jeong et al., 2024; Nguyen et al., 2023; Sun et al., 2024; Ranjit et al., 2023).

There are two primary ways by which LLMs are fine-tuned to generate the report based on input
CXR embeddings. CXRMate (Nicolson et al., 2024a) is trained with image embeddings input via
cross attention (Vaswani et al., 2017; Chen et al., 2021; Lin et al., 2022). CheXagent (Chen et al.,
2024b) and RGRG (Tanida et al., 2023) are instead trained with image embeddings prepended as
input tokens before the report, adapting the image embeddings into token embedding space.

The following retrieval-based methods use cross-modal image-to-text retrieval, requiring training of
a retrieval model with a joint embedding space for CXRs and their corresponding reports (Zhang
et al., 2022). CXR-RePaiR-Gen (Ranjit et al., 2023) leverages CXR-ReDonE (Ramesh et al., 2022b)
for its cross-modal retrieval models and otherwise is the closest implementation of a standard RAG
pipeline. FactMM-RAG (Sun et al., 2024) also employs RAG for inference, but trains its own
retrieval model using RadGraph (Jain et al., 2021) labels to inform the joint embedding space. This
is broadly similar to the training of X-REM’s (Jeong et al., 2024) retrieval model, however X-REM
uses CheXbert (Smit et al., 2020) labels. X-REM outputs a concatenation of retrieved text as the
final report. CXR-RePaiR (Endo et al., 2021) also uses concatenation of retrieved text for its final
output, however its retrieval model is trained via the basic CLIP (Radford et al., 2021) method.
CXR-ReDonE (Ramesh et al., 2022b) is the same as CXR-RePaiR except the training/retrieval data
was cleaned to remove “priors” indicating a previous CXR (Ramesh et al., 2022a).

The most closely related method compared to LaB-RAG is Pragmatic Retrieval/Llama (Nguyen
et al., 2023). Like LaB-RAG, Pragmatic derives categorical labels directly from the CXR. However,
Pragmatic trains an end-to-end ResNet50 (He et al., 2016) model, whereas LaB-RAG uses simpler
logistic classifiers trained over extracted image embeddings. Additionally, Pragmatic requires the
report’s “Indication”, the clinical motivation for the imaging study. While LaB-RAG uses both
image embedding similarity and label matching for retrieval, Pragmatic Retrieval only uses label
matching of image and indication for retrieval of report text. Pragmatic Retrieval concatenates
label-retrieved text as the final report. Pragmatic Llama does no retrieval, instead training an LLM
to generate the report given the indication text and the positive image labels as text. LaB-RAG also
uses labels as textual image descriptors but relies on ICL, and thus does not require LLM training.

3 LAB-RAG FRAMEWORK

LaB-RAG is a label boosted RAG algorithm with ICL to do image captioning. LaB-RAG retrieves
paired example text using image embedding similarity. Retrieved texts are then fed into a general
domain LLM with strong instruction following and natural language comprehension capabilities.

3
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Figure 2: LaB-RAG inference for RRG. Symbols correspond to those in Algorithm 1.

We improve upon standard RAG by incorporating predicted categorical labels into both the
example retrieval and text augmentation steps. The overview of LaB-RAG applied to RRG is
presented in Figure 2 with its high-level pseudocode described in Algorithm 1. We study LaB-RAG
on two CXR datasets, MIMIC-CXR (Johnson et al., 2019) and CheXpert Plus (Chambon et al.,
2024). We conduct extensive experimental comparisons and evaluate our generated reports against
ground truth reports using natural language and radiology-specific metrics.

3.1 IMAGE, TEXT, AND LABEL DATA

For our study, we use chest X-rays, radiology report sections, metadata, and data splits from either
MIMIC-CXR v2.1.0 (Johnson et al., 2024) or CheXpert Plus (Chambon et al., 2024). The datasets
are split at the patient level. We extract categorical labels from the ground-truth radiology reports
using either the CheXbert (Smit et al., 2020) or CheXpert (Irvin et al., 2019) labeler; we specifically
extract labels from the report section we aim to generate, i.e. Findings or Impression. The final
number of samples used in each of our experiments depends on the availability of all required data
modalities. Further details on the datasets are provided in Section B.1.

As reports are written at the study level and the extracted labels are derived from the report, the
categorical labels are also defined per study. Both labelers extract the same 14 label types, where
each label describes an observation, including “No Finding”. Each label gets a value of 1 (positive),
0 (negative), -1 (uncertain), or null (unmentioned). Given the multilabel multiclass assignment, it
is possible to have a study with no positive labels; in such cases, we assign a positive “Other” label
which is negative in all other instances. Our final labels are sets of 15 labels per study.

3.2 IMAGE EMBEDDINGS

We extract zero-shot, frozen image feature embeddings to enable retrieval of similar images with
their associated text and to train our image classifier. For our experiments, we utilize two domain-
adapted image models, BioViL-T (Bannur et al., 2023) and GLoRIA (Huang et al., 2021). To enable
more fair comparisons, we select these models for their similarity in contrastive pretraining (Oord
et al., 2018) (though LaB-RAG is training objective agnostic) and their reported high performance
on linear probing tasks and embedding-based retrieval. Importantly, we use only use BioViL-T on
MIMIC-CXR experiments and GLoRIA on CheXpert Plus, as we observed strong training dataset

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode of LaB-RAG for RRG

Input: inference image iinf
Input: retrieval studies with image-label-text tuples S ← {sx ← (ix, lx, tx)}
Input: image embedding model θimg
Input: text generative model ϕtxt

1: compute inference embedding e⃗inf ← θimg(iinf )
2: compute retrieval embeddings E ← ⟨e⃗x | e⃗x = θimg(ix)⟩⊺
3: binarize retrieval labels B ← ⟨bx | bx = 1{lx=1}⟩
4: train image classification model ψimg ← argminψ LBCE(ψ,E,B), ψ : E → B

5: infer inference image label b̂inf ← ψimg(e⃗inf )

6: compute image cosine similarity d⃗← ⟨dx | dx = (e⃗inf · e⃗x) / ∥e⃗inf ∥∥e⃗x∥⟩
7: sort studies by similarity r⃗ ← ⟨sx | dx ≥ dx+1⟩
8: Label Filter: filter or rerank sx ∈ r⃗ by comparing labels b̂inf to bx ∈ B (e.g. filter bx = b̂inf )
9: retrieve studies Sk of the k highest ranked samples in r⃗

10: prepare prompt pinf using retrieved text tx ∈ Sk
11: Label Format: format pinf with labels b̂inf and lx ∈ Sk (e.g. list positive labels l = 1)
12: generate report t̂inf ← ϕtxt(pinf )

Output: generated report t̂inf

specificity in early preliminary experiments. We further compare both to ResNet50 (He et al., 2016)
trained on ImageNet (Deng et al., 2009). See Section B.3 for further details.

3.3 TRAINING LAB-CLASSIFIERS FOR LABEL PREDICTION

Because the reference labels are extracted from the radiology report, using these labels of the target
X-ray in the generation of its corresponding report would constitute data-leakage. We train a set
of logistic regression models, LaB-Classifiers, on frozen image embeddings to classify images
directly, thereby preventing this leakage (Figure 5). See Section B.2 for further details.

3.4 LABEL BOOSTED RAG ALGORITHM

To generate captions from images, LaB-RAG uses RAG with retrieved example text for ICL. We
enhance both retrieval and augmentation steps using categorical labels describing the images and
their corresponding text. Given an image at inference time, we rank the similarity of the inference
image to all retrieval images in image embedding space (Figure 2 Top). We apply label-based logic
to filter or rerank the similarity scores (Figure 2 Middle), described in Section 3.4.1. We retrieve the
corresponding text of the highest ranked images and augment a prompt with the retrieved examples
and their labels (Figure 2 Middle), described in Section 3.4.2. The formatted prompt is input to a
pretrained, frozen LLM to generate the target caption (Figure 2 Bottom). See Algorithm 1.

For RRG, LaB-RAG by default uses the following modular components: (1) image embeddings
from domain and dataset adapted models (BioViL-T for MIMIC-CXR and GLoRIA for CheX-
pert Plus), (2) inference label predicted by an ensemble of small logistic classifiers, (3) extracted
CheXbert retrieval labels, (4) an “Exact” label filter, (5) retrieval of the top-5 ranked examples, (6)
the “Simple” label format and prompt, and (7) a general domain generate language model, Mistral-
7B-Instruct-v0.3 (MistralAI, 2024). Given a retrieval corpus of the target report section, LaB-
RAG is able to generate any arbitrary section; for our experiments, we filter the retrieval and
inference sets to only studies with the target section.

3.4.1 LABEL BOOSTED FILTERING

LaB-RAG does binary label matching to filter or rerank the ranked list of retrieval samples. LaB-
RAG’s label boosting module takes an input list of samples, ranked by image similarity to the infer-
ence image, and outputs a ranked list of samples (Algorithm 1 Step 8). We experiment with three
variations of this module. The simplest variant is “No-filter”, where we do not perform label-based
filtering or reordering.

5
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“Exact” filtering requires that retrieved sample labels match the inference image’s labels:

filter
exact

(r⃗, b̂inf ) = ⟨sx ∈ r⃗ | bx = b̂inf ⟩ (1)

where r⃗ is a sorted list of samples s, bx is the binary label set of a sample sx, and b̂inf is inference
image’s predicted binary label set. This filtering will most often result in a shorter list than the input
r⃗ and it is possible that the output will be an empty list if the inferred label does not match any
labels in the retrieval set (e.g. if the inferred label is unrealistic: both positive “No Finding” and
“Atelectasis” in the context of RRG).

“Partial” filtering relaxes the constraint of the exact filter by re-sorting the retrieved samples based
on the count of overlapping positive labels between each sample’s label and the inferred image label:

filter
partial

(r⃗, b̂inf ) = ⟨sx ∈ r⃗ | f(bx) ≥ f(bx+1),idx r⃗ (sx) < idx r⃗ (sx+1) if f(bx) = f(bx+1)⟩

f(b) = |b ∩ b̂inf | (2)

where r⃗, sx, bx, and b̂inf are the same as above, and f(b) is the count of overlapping positive labels
between b and b̂inf . The second condition gives a stable reordering of r⃗, such that two samples with
the same number of overlapping positive labels retain their relative position from image similarity.
Notably, the number of overlapping positive labels does not depend on which labels overlap, nor
does it consider the number of overlapping negative labels. This means that two samples with the
same number of positive labels overlapped with the image labels can have different positive labels
compared to each other and any sample may have more or less total positive labels compared with
the image labels. For the “Partial” filter, the lengths of the input and output list are equal.

3.4.2 LABEL BOOSTED FORMATTING AND PROMPTS

LaB-RAG uses categorical label names as textual image descriptors for image captioning. It does so
by formatting the labels as text in the prompt for both the retrieved text examples and the inference
image. Because the label formatting is intricately associated with the prompt structure, we include
the description of our prompts here. In the context of RRG, each CheXpert/CheXbert-style label is
a 14 multiclass multilabel with a 15th binary class label of exclusion (our “Other” label). We thus
present four label format and prompt combinations varying the degree of label verbosity and label
type description and instruction. The “Naive” prompt does not utilize label descriptors and is closest
to a standard RAG prompt with some model instructions.

The “Simple” prompt formats positive labels as a comma separated list before each example of
text. It additionally applies the label formatting to the predicted labels of the inference image and
appends this label text to the end of the prompt to condition the generation of the image’s report; the
instructions within the prompt include minimal further details describing the label.

The “Verbose” prompt additionally includes all label values (negative, uncertain, and unmentioned
for CheXpert labels) and expands the model instructions to describe these value types. The prompt
does not describe the labels themselves. The “Instruct” prompt uses the exact same template as
“Verbose” but adds explicit instructions on how to handle each value type. As the predicted image
labels are binary positive or negative, the label set for the inference image will never have labels
listed under other values. Section C lists examples of the precise prompts and label formats.

4 EVALUATION STRATEGY

To evaluate and compare LaB-RAG, we adopt RRG-specific metrics, F1-RadGraph (Jain et al.,
2021) and F1-CheXbert (Smit et al., 2020). These measure clinical relevance by computing the F1-
score between model derived annotations of clinical terms between the actual and generated reports.
The CheXbert annotations are the binarization of the 14 CheXpert/CheXbert labels, while RadGraph
annotations are broader in scope. We use the radgraph v0.1.12 and f1chexbert v0.0.2 python
packages for their implementations of RadGraph and CheXbert. We also measure natural language
metrics, using huggingface evaluate v0.4.2 to compute BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and BERTScore (Zhang* et al., 2020). We refer to our code and Section B.4 for
additional details. We report independent results on “Findings” and “Impression” sections.

6
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Figure 3: Left: LaB-RAG beats other retrieval methods (CXR-RePaiR/ReDonE, X-REM) on RRG
metrics. On F1CheXbert, LaB-RAG achieves SOTA on “Findings” generation and performs no dif-
ferent than SFT methods on “Impression” generation (CheXagent, CXRMate). Right: Ablation of
individual label boosting components of LaB-RAG. With minimal additional complexity over stan-
dard RAG, LaB-RAG has greater gain in F1CheXbert on “Findings” than alternate SFT methods.

4.1 COMPARISON TO LITERATURE MODELS

We compare against both retrieval-based (CXR-RePaiR (Endo et al., 2021), CXR-ReDonE (Ramesh
et al., 2022b), X-REM (Jeong et al., 2024)) and direct latent image embedding tuned models (CXR-
Mate (Nicolson et al., 2024a;b), CheXagent (Chen et al., 2024b), RGRG (Tanida et al., 2023)).
For CXRMate, we specifically use the version submitted to the 2024 BioNLP workshop (Demner-
Fushman et al., 2024; Nicolson et al., 2024b). As each method may have slightly different filtering
strategies for data preprocessing, we evaluate on the intersection of the test data splits for each
method. LaB-RAG’s data preprocessing only requires there be a ground truth reference text to
compare against, thus our test split tends to be a superset of other methods’ test splits. As not all
of these models were developed over the CheXpert Plus (Chambon et al., 2024) dataset, we only
compare against performance over MIMIC-CXR (Johnson et al., 2019) which was included in all
selected models’ training. More detailed descriptions of preparing and running each method from
the literature are presented in Section B.5.

5 STUDIES AND EXPERIMENTS ON LAB-RAG

In the following sections, we present results and analyses of our studies on LaB-RAG including
comparisons of LaB-RAG to literature models and experiments on varying modular components of
our framework over both MIMIC-CXR and CheXpert Plus. Tables 12 and 13 show full experimental
results across all metrics, with corresponding significance figures in Sections E.1 and E.2.

5.1 BASELINE COMPARISONS

As a baseline, we compare LaB-RAG to models from the literature over MIMIC-CXR (Figure 3
Left). LaB-RAG achieves state of the art (SOTA) on F1CheXbert on “Findings” generation,
compared to SFT methods (RGRG (Tanida et al., 2023), CheXagent (Chen et al., 2024b), CXR-
Mate (Nicolson et al., 2024b)), however underperforms in F1RadGraph. Similarly on “Impression”
generation, LaB-RAG does significantly better than CheXagent and comparably to CXRMate on
F1CheXbert but worse in F1RadGraph. We do observe that no model performs absolutely well on
F1RadGraph for either section, achieving at highest F1RadGraph 0.25; as established by Yu et al.
(2023), this translates to approximately 3 major errors in the report, as determined by board-certified
radiologists. Notably, LaB-RAG does significantly better than other retrieval-based methods bench-
marked (CXR-RePaiR (Endo et al., 2021), CXR-ReDonE (Ramesh et al., 2022b), X-REM (Jeong
et al., 2024)). Differences across natural language metrics are small in magnitude (Figure 7).

Furthermore, we consider the lift of our modular label boosting components over standard RAG
(Figure 3 Right). We find that on F1CheXbert, the “Exact” label filter or “Simple” label format
both result in a comparable improvement compared with standard RAG, however the effects of the
two label boosts are additive, particularly on “Findings” generation. When comparing to litera-
ture models on generating the “Findings” section, standard RAG is comparable to CheXagent on
F1CheXbert. CXRMate (Nicolson et al., 2024a) achieves a 5.7% gain over CheXagent (Chen et al.,
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Figure 4: Left: Domain and dataset specificity of image embeddings significantly improves LaB-
RAG generations. Right: Improving labeler quality significantly improves LaB-RAG generations.
Extr: Extracted from inference target’s ground-truth report, Pred: Predicted from inference image,
cxB: CheXbert derived labels, cxP: CheXpert derived labels. For predicted labels, classifiers were
trained over labels derived from either the CheXbert or CheXpert labeler.

2024b), however this required complex training strategies and additional data. LaB-RAG achieves
upwards of an 11% lift over both CheXagent and standard RAG for minimal additional com-
putation. Full results shown in Figures 8 and 15; we note that the small test set size of CheXpert
Plus leads to less significant effects with wider standard errors, particularly for “Findings”.

5.2 VARIATIONS OF LAB-RAG

Label Filter and Label Format. In Figures 8 and 15, we observe that the “Exact” label filter or
the “Simple” label format alone result in comparable results. We note that when using only the
“Simple” label format, the labels of the retrieved samples may not be relevant towards the target
image. In this setting, we hypothesize that the LLM is able to attribute which parts of the example
reports are relevant for the corresponding labels. To test this in the context of a non-trivial label filter
and the “Simple” label format, we present inexact label matched examples to the LLM by using our
“Partial” label filter. Figures 9 and 16 show that with the default “Simple” prompt, the filters are not
meaningfully different in performance. We confirm that inexactly labeled examples are selected by
examining the image similarity rank of the filtered selections. In Figure 6, compared to the “Partial”
filter, we observe the “Exact” filter selects fewer of the most visually similar examples. In other
words, the “Partial” filter presents more mismatched labels to the LLM, yet the stable performance
implies the language model is attending to only relevant parts of the examples. Thus small models
in the form of the “Exact” label filter and the “Simple” label format focus and contextualize
the retrieved examples, synergizing with LLMs with strong natural language capabilities.

Similar to alternate label filters, we find that alternate label formats besides the “Simple” format
either result in worse or no different performance (Figures 10 and 17).

Language Model Choice and Number of Retrieved Samples. Motivated by the finding that strong
natural language comprehension enables enhanced LaB-RAG performance for RRG, we experiment
with alternate language models: Mistral-7B-Instruct-v0.1 (Jiang et al., 2023), BioMistral (Instruct-
v0.1 further pretrained on PubMed Central) (Labrak et al., 2024), and Mistral-7B-Instruct-v0.3 (Mis-
tralAI, 2024) (the default for our experiments). We find that generally newer model versions improve
RRG performance, while biomedical domain adaptation may be detrimental (Figures 11 and 18).
This is contrary to previous literature (Gu et al., 2021) on biomedical domain adaptation, leading us
to again hypothesize that for a language-intensive approach (RAG and ICL), improved natural lan-
guage capabilities may be more important than domain specific knowledge (Fan et al., 2024). Future
work may include experimenting with an LLM with RRG-specific instruction following capabilities.

Experiments to quantify the effect of retrieving more or less example reports demonstrate minimal
differences overall and slight dropoff with fewer than 5 in select settings (Figures 14 and 21).

Image Embedding Quality and Label Quality. As we observe that improvements to the language
model enhances generations, we next experiment with image model (Figure 4 Left) and label qual-
ity (Figure 4 Right). First, we find that a domain-specific image model (i.e. BioViL-T or GLoRIA)
drastically improves embeddings for downstream performance (full results in Figures 12 and 19).
Specifically, the embeddings are used for similarity-based retrieval and to train a set of logistic clas-
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Table 2: Selected “Findings” report section exemplifying differences between F1CheXbert and
F1RadGraph. The corresponding CheXbert label is given for blue entities; these entities are
also used by RadGraph. Red entities are only extracted by RadGraph. LaB-RAG and CXRMate
both score perfect F1CheXbert, but CXRMate attains F1RadGraph 0.63 vs LaB-RAG’s 0.48.

A
ct

ua
l AP view of the chest. Right PICC (supp. dev.) is seen with tip at the upper SVC. Rel-

atively low lung volumes are seen. The lungs however remain clear without consolidation,
effusion or pulmonary vascular congestion. Cardiac silhouette appears moderately enlarged
(cardiomegaly), likely accentuated due to low lung volumes and AP technique.

L
aB

-R
A

G The lung volumes are low. This is accentuating the cardiomediastinal silhouette, although
there is likely moderate-to-severe cardiomegaly (cardiomegaly). The mediastinum is
prominent, which could be due to technique. A right internal jugular catheter (supp.
dev.) is present with the tip in the low SVC. There is no pneumothorax. The lungs are
clear without consolidation or edema. There is no pleural effusion.

C
X

R
M

at
e Single portable view of the chest was compared to previous exam from ___. Right-sided

PICC (supp. dev.) is seen with tip in the upper SVC. The lungs are clear of fo-
cal consolidation or pulmonary vascular congestion. The cardiac silhouette is enlarged
(cardiomegaly) but stable in configuration. There is no large pleural effusion. There is
no pneumothorax. Osseous and soft tissue structures are unremarkable.

sifiers. The other input for training the classifiers are the “ground-truth”, extracted labels. Following
Smit et al. (2020), we observe that CheXbert labels yield better results than CheXpert labels (full
results in Figures 13 and 20). We further simulate the effect of using even higher quality labels by
using labels extracted from the ground-truth report, providing a theoretical maximum of solely im-
proving classifier performance. We find that directly using extracted labels improves performance
across the board, and would result in SOTA performance. Interestingly, even when using CheXbert
extracted labels, we do not achieve perfect F1CheXbert; we hypothesize that this small gap may be
a result of the LLM ignoring labels presented in the prompt or noise in CheXbert labeling of either
the ground-truth or generated reports. Further work is needed to elucidate this observation. Overall,
these findings support the claim that LaB-RAG is complementary to SFT methods which may
individually or holistically improve the modular components of the method, such as improving
the language model, image embeddings, or classification accuracy.

5.3 EXTENDED ANALYSES

We sought to understand the difference in Figure 3 Left between SOTA measured by F1CheXbert
and underperformance on F1RadGraph. Table 2 presents a real “Findings” section for a MIMIC-
CXR report written by a radiologist and its corresponding generations by LaB-RAG and CXRMate
(Nicolson et al., 2024b). We annotate entities which result in a specific CheXbert (Smit et al., 2020)
label, namely “Cardiomegaly” and “Support Device”. As the computed CheXbert labels of both
generations from LaB-RAG and CXRMate exactly match those of the actual report, this results in
F1CheXbert of 1.0. The CheXbert entities are also identified by RadGraph (Jain et al., 2021), how-
ever RadGraph identifies many more such entities. Examining RadGraph annotations, we observe
that the entities of the actual report more closely align with those of CXRMate’s generation, hence
the F1RadGraph achieved for CXRMate was 0.63 vs Lab-RAG’s 0.48. Yet, overall, as in Yu et al.
(2023), both generated reports make substantive errors which may impact clinical interpretation.

6 CONCLUSION

We present LaB-RAG: a new modular framework for image captioning that leverages cate-
gorical labels extracted by small models to boost large language models. We study and analyze
LaB-RAG in the context of RRG, showing that it achieves SOTA on clinical language metrics. We
offer insights into the importance of different components of LaB-RAG, suggesting potential for fu-
ture synergy with SFT and other training methods. The key to LaB-RAG is leveraging inexpensive
models to derive categorical labels as natural descriptors of images. Doing so enables LaB-RAG to
further boost models with strong capabilities within a flexible and modular framework.
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ETHICS STATEMENT

For our study, though all data we use in our study are publicly available and deidentified, we do still
work with real patient data. These data were retrospectively collected with no impact to real patient
care. The dataset authors follow standardized procedures to de-identify data and remove protected
health information (PHI) in accordance with HIPAA regulations. For MIMIC-CXR, we follow
procedures outlined by PhysioNet (Goldberger et al., 2000) to have all researchers with data access
complete human research training and sign the PhysioNet data use agreement (DUA). We strictly
control access to the data in our compute environments in accordance with the credentialing process
for data access. Though these data access steps are not required for CheXpert Plus (Chambon
et al., 2024), we still follow this strict procedure to ensure best practices for data governance. We
make no efforts to re-identify data subjects from any free-text data (which may have escaped de-
identification) or any other sources. Additionally, as we do no fine-tuning of our own LLMs over
this data, we do not need to consider whether it is a DUA violation to share LLM weights which may
have memorized and can reproduce training text. To the best of our ability, we adhere to scientific
principles of research integrity. We make no claims to the real-world clinical viability of any of our
models and recognize that strict validation must be done before any such consideration can be made.
These are necessary steps to protect the patients whom we aim to help.

REPRODUCIBILITY STATEMENT

Our anonymized code and instructions for full reproducibility is available at:
https://anonymous.4open.science/r/label-boosted-RAG-for-RRG-CEBF

Our anonymized data-ingest submodule linked from the main repo is available separately at:
https://anonymous.4open.science/r/cxr-data-ingest-D14F
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APPENDIX

A ABBREVIATIONS AND TERMS

Table 3: Reference of abbreviations.

Term Meaning

LaB-RAG Label Boosted Retrieval Augmented Generation
Label Filtering Using categorical labels to filter retrieved examples
Label Formatting Using categorical labels as text descriptors of images

RRG Radiology report generation
CXR Chest X-ray
AP Anterior-posterior (i.e. from front to back)
PICC Peripherally inserted central catheter
SVC Superior vena cava

AI Artificial intelligence
ML Machine learning
DL Deep learning
LLM Large language model
RAG Retrieval augmented generation
FM Foundation model
SFT Supervised fine-tuning
PEFT Parameter-efficient fine-tuning
ICL In-context learning
SOTA State of the art
NLP Natural language processing
CLIP Contrastive language-image pretraining

B EXTENDED METHODS

B.1 CHEST X-RAY DATASETS

We utilize two CXR datasets for our study, MIMIC-CXR (Johnson et al., 2019) and CheXpert Plus
(Chambon et al., 2024). The descriptive statistics of the patient cohorts used in our studies is pre-
sented in Table 9. In our experiments, we use the training and validation splits (described below) as
our retrieval set and evaluate inference results over the test split.

MIMIC-CXR: Imaging studies were collected in the emergency department at the Beth Israel Dea-
coness Medical Center (BIDMC) in Boston, MA between 2011 and 2016. Multiple chest X-rays
may be present for a single imaging study, and a patient may have multiple imaging studies. We use
the training, validation, and testing splits provided by Johnson et al. (2019). The dataset is split at
the patient level, meaning all images for all studies belonging to a single patient are contained in one
split. Demographic information was joined from the MIMIC-IV v2.2 (Johnson et al., 2023b;a) hosp
module. We use code from the MIMIC Code Repository (Johnson et al., 2018) to extract radiology
report sections from the free text reports. All data were accessed through PhysioNet (Goldberger
et al., 2000).
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Figure 5: Overview of training per-label LaB-Classifier logistic regressions.

CheXpert Plus: Imaging studies were collected from Stanford Hospital in Palo Alto, CA between
2002 and 2017. CheXpert Plus is an enhancement of the original CheXpert dataset (Irvin et al.,
2019) to include, among other new facets, radiology reports. As such, besides small amounts of
missing data, the provided patient-level data splits between the two versions have remained largely
unchanged. This is significant for our experimental design, as the dataset authors only define devel-
opment and validation splits. Following Huang et al. (2021), we use the provided validation split as
“test” and resample the development set into new “train” and “validate” splits. This better enables
us to do multi-step experiments (see Section B.2) and prevent data-leakage. We do note that the test
split of CheXpert Plus is both absolutely and relatively small with N=200 studies; the small test set
size is further exacerbated when considering only studies with specific report sections (i.e. N=61 for
CheXpert Plus test-set studies with “Findings” sections).

Multi-view studies: It is standard clinical practice to capture multiple views for a single imaging
study, conceptually showing alternate angles of the patient. For our experiments, we select one
image per study by preferentially selecting images based on the captured view position. Broadly,
we select frontal views, then lateral views, then all other views. Specifically, we use the order of
preference for view positions from the ACL 2024 BioNLP workshop’s RRG shared task (Demner-
Fushman et al., 2024). The number of selected views per dataset and split is given in Table 8.

Extracting Labels: By default, we use CheXbert (Smit et al., 2020) extracted labels for experi-
ments. For our study on label quality, we additionally use CheXpert (Irvin et al., 2019) extracted
labels. We specifically extract labels from the ground-truth radiology report sections we aim to
generate, i.e. Findings or Impression; we do not use the labels provided by either dataset authors
as these were derived over mixed report sections. The CheXbert extracted label prevalence across
datasets and splits is presented in Table 10.

B.2 LAB-CLASSIFIER TRAINING

We fit 14 per-label binary logistic regressions over extracted image embeddings (see Section 3.2).
We derive “ground-truth” labels to train our classifiers by binarizing the extracted labels as positive
(value of 1) or not (value of 0, -1, or null). We fit the models on the training split and find a per-label
probability threshold which maximizes the f1-score over the validation split. We repeat this process
for each alternate image embedding or labeler we experiment with. We present the per-label F1
score of the predicted labels across embeddings, labelers, and datasets in Table 11. We adopt the
same heuristic as in Section 3.1 for computing the predicted image label, where if no positive label
is predicted by the classifier, the image is assigned an implicit positive “Other” label. For training
the logistic classifiers, we use sklearn (Pedregosa et al., 2011) v1.5.1 with L2 regularization, the
saga solver for 500 iterations, and otherwise default hyperparameters. From a computational cost
perspective, training and inference of 14 linear models is orders of magnitude fewer in parameters
than a DL-based image encoder model.

B.3 OTHER IMPLEMENTATION DETAILS
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Image Embeddings: We extract zero-shot image embeddings with the frozen image encoders of
each model. For BioViL-T and GLoRIA, we use projected embeddings for image-based retrieval
(128d and 768d, respectively) and we use unprojected embeddings for training our image classifier
(512d and 2048d, respectively). For ResNet50, we use the final 2048d hidden layer output for both
retrieval and classifier training.

LLM Inference: We serve the generative language model component of LaB-RAG using vLLM
(Kwon et al., 2023) and do greedy decoding up to 512 tokens, with a set seed, and temperature 0.

B.4 EVALUATION STRATEGY

For all metrics, actual and generated text are input as whole reports; reports are not split on the
sentence level. This gives a score between 0 and 1 for each report for each metric. We compare
results by considering the per-metric scores across all reports. We show barplots of the per-metric
average scores with errorbars showing the standard error. To test for statistical significance, we per-
form paired t-tests within one set of experiments, applying Bonferroni correction for the number of
comparisons made within a single metric. For experiments on variations of LaB-RAG, we compare
all pairwise combinations of the variants; for comparing to literature models, we only consider pairs
including LaB-RAG. Statistically significant pairs are annotated with brackets in the barplot with
‘*’ denoting p < 0.05; nonsignificant pairs are not annotated. We refer to our code for precise
implementation details.

B.5 LITERATURE MODEL INFERENCE

In this section, we provide our extended descriptions for baseline models from the literature eval-
uated over MIMIC-CXR. We select models based on model architecture, generated report section,
SOTA performance on evaluation metrics, and finally availability of open source inference code.
The final set of models we compare against are as follows: CXR-RePaiR (Endo et al., 2021), CXR-
ReDonE (Ramesh et al., 2022b), X-REM (Jeong et al., 2024), RGRG (Tanida et al., 2023), CheXa-
gent (Chen et al., 2024b), and CXRMate-RRG24 (Nicolson et al., 2024b). We compare models over
the intersection of each method’s test split subsets.

CXR-RePaiR: formulates report generation as a pure retrieval task. It uses a model, trained via
CLIP on radiology report-image pairs from MIMIC-CXR, to rank similarity between test images
and a large retrieval corpus. We use the mode of CXR-RePaiR where the generated report output is
the the top-1 retrieved whole reports.

CXR-RePaiR generates the “Impression” section over the MIMIC-CXR test split. Only the subset
of the test split with an extractable “Impression” section is considered. While we adopt a similar
strategy, CXR-RePaiR uses a custom implementation of “Impression” section extraction that differs
from ours. CXR-RePaiR thus uses 2192 test studies as compared to our “Impression” test split of
2224.

CXR-ReDonE: improves upon CXR-RePaiR by preprocessing the training and retrieval reports to
remove references to prior imaging studies. Additionally, the joint-embedding model was trained via
ALBEF instead of CLIP. We use the provided checkpoint of the retrieval model which was trained
over the new data and via the new method; we do inference using whole reports with priors omitted
as the retrieval set. The generated reports are then the top-1 retrieved whole report. CXR-ReDonE
uses the “Impression” sections preprocessed by CXR-RePaiR and so results in the same test split
subset.

X-REM: also trains a vision-language model via ALBEF, however they introduce a novel similarity
metric during training which incorporates CheXbert labels. An intermediary step retrieves the top-
10 whole reports ranked by their new similarity score. Finally, they apply a model-based natural
language filter to each retrieved report and only select those that are deemed relevant up to a limit;
we adopt the author default limit of 2 reports, thus the output report is a concatenation of up to 2
reports. X-REM also uses the “Impression” sections preprocessed by CXR-RePaiR with the same
test split subset.
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CheXagent: is presented by its authors as a foundation model trained to follow instructions in
the CXR domain. CheXagent follows a complex training scheme and utilizes other CXR datasets.
At a high-level, CheXagent is trained by aligning image latent embeddings to the an LLM’s token
embedding space. Additionally, the authors introduce a novel dataset for instruction tuning, their
final training step.

CheXagent is able to generate both “Findings” and “Impression” sections. “Impression” generated
is simply prompted with “Generate impression”. “Findings” are generated by concatenating gener-
ations of individual “Local Findings” per anatomical compartment. “Local Findings” are generated
by prompting with “Describe [Anatomical Compartment]” where the compartments are: “Airway”,
“Breathing”, “Cardiac”, “Diaphragm” and “Everything else (e.g., mediastinal contours, bones, soft
tissues, tubes, valves, and pacemakers)”. These compartments were inspired by documentation
provided by the authors. CheXagent inference code is flexible and allows for generation over our
specified subsets of the test split for “Findings”, “Impression”, or both sections.

CXRMate: uses an encoder-decoder transformer architecture. It is both able to generate a single
report over multiple images from a single imaging study and it takes as input reports from prior
studies. Additionally, it is trained with a complex reinforcement learning framework. Interestingly,
the authors experiment with RadGraph and CXR-BERT in their reward function, arguing that CXR-
BERT better captures radiology report semantics; CXR-BERT is the language encoder of the vision-
langauge model BioViL (Boecking et al., 2022).

We specifically use the checkpoint of CXRMate submitted to the ACL 2024 BioNLP workshop’s
task for RRG (Nicolson et al., 2024b), though we only input the single image per study defined by
our data preprocessing steps. While CheXagent generates both “Findings” and “Impression” jointly,
the model provides a utility to split these sections after generation. We are then able to run inference
using our subsets of the test split for which we have “Findings”, “Impression”, or both sections.

RGRG: generates the “Findings” section of a report by combining individual sentences that de-
scribe specific anatomical regions. This is accomplished by training a model over a specialized
dataset, derived from MIMIC-CXR, which pairs anatomical region bounding boxes with sentences
from the corresponding report detailing those regions. Thus RGRG learns to extract localized image
latent embeddings to generate sentences grounded in the specific anatomical feature. As RGRG’s
language model is a decoder-only transformer, the image embeddings are prepended input as tokens.
Unlike CheXagent, where individual anatomical regions must be prompted by the user, RGRG au-
tomatically selects relevant regions using a custom trained object detector model. As RGRG only
generates the “Findings”, we evaluate using our test split subset for studies with an extractable
“Findings” section.

Excluded models: As discussed in Section 2, RRG models can be categorized by the report section
they generate. LaB-RAG is able to generate any target section given a corresponding retrieval cor-
pus and thus comparison to other models only depend on code and data availability. FactMM-RAG
(Sun et al., 2024) and CXR-RePaiR-Gen (Ranjit et al., 2023) are also retrieval based methods, how-
ever they do not share code for reproducibility. While BioViL-T (Bannur et al., 2023) and BioViL
(Boecking et al., 2022) report RRG metrics and are usable as encoders, they do not share code for
autoregressive or precise retrieval based generation. Finally, the critically missing component of
Pragmatic Retrieval/Llama’s (Nguyen et al., 2023) codebase is tooling to extract the required “In-
dication” section. Nguyen et al. (2023) refer to the MIMIC Code Repository (Johnson et al., 2018)
for this extraction, though we found the tool does not derive the “Indication” section. It is unclear to
what precise modification is necessary to replicate the method of Nguyen et al. (2023).
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C LABEL FORMAT & PROMPTS

Table 4: The “Naive” label format does not incorporate labels.

You are an expert radiological assistant.
Your task is to generate a radiology report after <<Report>> given context information.
The context information contains examples of reports written for similar cases.
Use the examples to generate a report for the current case.
Strictly follow the instructions below to generate the reports.

**Instructions**

1. The report must be based on the information in the context.
2. The report must mimic the style of the reports shown in the context.
3. Do not generate blank reports.

CONTEXT:
Example: 1
(Report Text)

(More Examples)

Now generate the report for the current case.
Always generate reports based on the examples shown.
<<Report>>

Table 5: The “Simple” label format uses positive labels for the examples and target image.

You are an expert radiological assistant.
Your task is to generate a radiology report after <<Report>> given context information.
The context information contains examples of reports written for similar cases
and their associated labels.
Use the examples and their associated labels to generate a report for the current
case based on the current label.
Strictly follow the instructions below to generate the reports.

**Instructions**

1. The report must be based on the information in the context and the current label.
2. The report must mimic the style of the reports shown in the context.
3. Do not generate blank reports.

CONTEXT:
Example: 1
Label: (Positive Labels)
(Report Text)

(More Examples)

Now generate the report for the current case using its label below.
Always generate reports based on the examples shown.
Label: (Positive Labels)
<<Report>>
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Table 6: The “Verbose” label format uses positive, negative, uncertain, and unmentioned labels for
the examples and target image.

You are an expert radiological assistant.
Your task is to generate a radiology report after <<Report>> given context information.
The context information contains examples of reports written for similar cases
and their associated labels.
The labels provided are expert annotations.
More information about the labels is described below.

The individual labels used represent common chest radiographic observations
and fall under four categories: ‘Positive’, ‘Negative’, ‘Uncertain’ and ‘Unmentioned’.
These categories correspond to the mention or presence of the labels or their equivalent in the report.
Below is a description and example of each of the label categories:
1. ‘Positive’: A label is positive if the associated observation or disease is stated as present

in the report, for example: ‘moderate bilateral effusions observed’.
2. ‘Negative’: A label is negative if the associated observation or disease is stated as absent

in the report, for example: ‘no evidence of pulmonary edema’.
3. ‘Uncertain’: A label is uncertain if there is ambiguity about the presence or absence of

the associated observation or disease in the report, for example: ‘pneumonia cannot be excluded
in the appropriate clinical context’.

4. ‘Unmentioned’: A label is unmentioned if there is no mention of the associated observation
or disease in report.

Use the examples, their associated labels, and the label descriptions to generate a report
for the current case based on the current label.
Strictly follow the instructions below to generate the reports.

**Instructions**

1. The report must be based on the information in the context and the current label.
2. The report must mimic the style of the reports shown in the context.
3. Do not generate blank reports.

CONTEXT:
Example: 1
Positive: (Positive Labels)
Negative: (Negative Labels)
Uncertain: (Uncertain Labels)
Unmentioned: (Unmentioned Labels)
(Report Text)

(More Examples)

Now generate the report for the current case using its label below.
Always generate reports based on the examples shown.
Positive: (Positive Labels)
Negative: (Negative Labels)
Uncertain: (Uncertain Labels)
Unmentioned: (Unmentioned Labels)
<<Report>>
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Table 7: The “Instruct” label format uses the same format as “Verbose” with additional instructions.

(Same as Verbose)

**Instructions**

1. The report must be based on the information in the context and the current label.
2. The report must mimic the style of the reports shown in the context.
3. Do not generate blank reports.
4. Ensure that the positive labels are clearly described as being present in the report,

using example language from the context.
5. Ensure that the negative labels are clearly described as being absent in the report,

using example language from the context.
6. Describe the uncertain labels as necessary.
7. Ensure that the unmentioned labels are not mentioned in the report.

(Same as Verbose)

D EXTENDED TABLES

Table 8: Counts for selected single image view for each imaging study. Views presented in order of
selection preference (e.g. PA before AP).

Dataset Section View, N (%) Overall Train Validate Test

M
IM

IC
-C

X
R

Findings

PA 71455 (45.9) 70204 (46.1) 546 (45.7) 705 (30.0)
AP 78015 (50.1) 75905 (49.9) 605 (50.6) 1505 (64.1)
LATERAL 160 (0.1) 156 (0.1) 2 (0.2) 2 (0.1)
LL 1396 (0.9) 1356 (0.9) 9 (0.8) 31 (1.3)
AP AXIAL 1 (0.0) 1 (0.0)
LAO 1 (0.0) 1 (0.0)
LPO 1 (0.0) 1 (0.0)
Unknown 4660 (3.0) 4522 (3.0) 34 (2.8) 104 (4.4)
Total 155689 152146 1196 2347

Impression

PA 77755 (41.0) 76449 (41.1) 594 (39.1) 712 (32.0)
AP 104960 (55.4) 102697 (55.3) 877 (57.7) 1386 (62.3)
LATERAL 168 (0.1) 165 (0.1) 2 (0.1) 1 (0.0)
LL 1457 (0.8) 1420 (0.8) 8 (0.5) 29 (1.3)
AP AXIAL 1 (0.0) 1 (0.0)
LAO 1 (0.0) 1 (0.0)
Unknown 5210 (2.7) 5075 (2.7) 39 (2.6) 96 (4.3)
Total 189552 185808 1520 2224

C
he

X
pe

rt
Pl

us Findings

PA 8568 (18.3) 8504 (18.3) 56 (17.7) 8 (13.1)
AP 38178 (81.6) 37865 (81.6) 260 (82.3) 53 (86.9)
Lateral 13 (0.0) 13 (0.0)
Total 46759 46382 316 61

Impression

PA 28711 (15.3) 28495 (15.3) 185 (15.0) 31 (15.5)
AP 158823 (84.7) 157602 (84.7) 1052 (85.0) 169 (84.5)
Lateral 36 (0.0) 36 (0.0)
Total 187570 186133 1237 200
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Figure 6: Image embedding similarity rank of label-filtered retrieved samples on MIMIC-CXR.
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E.1 MIMIC-CXR EXPERIMENTS
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Figure 7: Comparison of LaB-RAG to literature models on MIMIC-CXR. CXR-RePaiR, CXR-
ReDonE, and X-REM are other retrieval based models, like LaB-RAG. RGRG, CheXagent, and
CXRMate are fine-tuned models.
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Figure 8: Ablations of LaB-RAG’s core label filter and label format compared to standard RAG on
MIMIC-CXR.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

bleu4 rougeL bertscore f1radgraph f1chexbert
0.0
0.2
0.4
0.6
0.8
1.0

*
*

*

MIMIC-CXR - Findings, N=2347

No-filter
Exact
Partial

bleu4 rougeL bertscore f1radgraph f1chexbert
0.0
0.2
0.4
0.6
0.8
1.0 *

*

MIMIC-CXR - Impression, N=2224

No-filter
Exact
Partial

Figure 9: Variations of LaB-RAG label filter on MIMIC-CXR. By default, LaB-RAG uses the Exact
filter.
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Figure 10: Variations of LaB-RAG label format on MIMIC-CXR. By default, LaB-RAG uses the
Simple format.
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Figure 11: Alternate generative language models for LaB-RAG on MIMIC-CXR. By default, LaB-
RAG uses Mistral-v3.
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Figure 12: Alternate image embedding models for LaB-RAG on MIMIC-CXR. By default, LaB-
RAG uses the dataset adapted model, in this case BioViL-T for MIMIC-CXR.
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Figure 13: Ablation experiment testing the impact of label quality on LaB-RAG on MIMIC-CXR.
Extracted labels are derived from the ground-truth report using either the CheXbert or CheXpert
labelers. Predicted labels are inferred using linear classifiers trained over the respective label type.
By default, LaB-RAG uses predicted CheXbert labels.
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Figure 14: Variations on number of retrieved reports for LaB-RAG on MIMIC-CXR. By default,
LaB-RAG uses 5 retrieved reports.
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E.2 CHEXPERT PLUS EXPERIMENTS
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Figure 15: Ablations of LaB-RAG’s core label filter and label format compared to standard RAG on
CheXpert Plus.
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Figure 16: Variations of LaB-RAG label filter on CheXpert Plus. By default, LaB-RAG uses the
Exact filter.
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Figure 17: Variations of LaB-RAG label format on CheXpert Plus. By default, LaB-RAG uses the
Simple format.
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Figure 18: Alternate generative language models for LaB-RAG on CheXpert Plus. By default, LaB-
RAG uses Mistral-v3.
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Figure 19: Alternate image embedding models for LaB-RAG on CheXpert Plus. By default, LaB-
RAG uses the dataset adapted model, in this case GLoRIA for CheXpert Plus.
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Figure 20: Ablation experiment testing the impact of label quality on LaB-RAG on CheXpert Plus.
Extracted labels are derived from the ground-truth report using either the CheXbert or CheXpert
labelers. Predicted labels are inferred using linear classifiers trained over the respective label type.
By default, LaB-RAG uses predicted CheXbert labels.
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Figure 21: Variations on number of retrieved reports for LaB-RAG on CheXpert Plus. By default,
LaB-RAG uses 5 retrieved reports.
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