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Abstract: Machine Learning-based workflows are being progressively used for the automatic de-
tection of archaeological objects (intended as below-surface sites) in remote sensing data. Despite
promising results in the detection phase, there is still a lack of a standard set of measures to evaluate
the performance of object detection methods, since buried archaeological sites often have distinctive
shapes that set them aside from other types of objects included in mainstream remote sensing datasets
(e.g., Dataset of Object deTection in Aerial images, DOTA). Additionally, archaeological research
relies heavily on geospatial information when validating the output of an object detection procedure,
a type of information that is not normally considered in regular machine learning validation pipelines.
This paper tackles these shortcomings by introducing two novel automatic evaluation measures,
namely ‘centroid-based” and ‘pixel-based’, designed to encode the salient aspects of the archaeol-
ogists’ thinking process. To test their usability, an experiment with different object detection deep
neural networks was conducted on a LiDAR dataset. The experimental results show that these two
automatic measures closely resemble the semi-automatic one currently used by archaeologists and
therefore can be adopted as fully automatic evaluation measures in archaeological remote sensing
detection. Adoption will facilitate cross-study comparisons and close collaboration between machine
learning and archaeological researchers, which in turn will encourage the development of novel
human-centred archaeological object detection tools.

Keywords: evaluation measures; machine learning; object detection; archaeology; LIDAR

1. Introduction

Archaeological research has been quick to introduce Machine Learning-based work-
flows for the automatic detection of archaeological objects on remote sensing data over
the last five years [1-7]. While initial applications of Machine Learning (ML) techniques
have mainly used object detection-based approaches [1,5,6], more recent studies have
moved toward finer-grained ones based on semantic segmentation-based techniques [2,3].
These include different variations of the VGG-19 CNN [8], U-Net [9] and Mask-RCNN [10]
architectures, which demand an additional effort in the training set preparation as they
require pixel-level labels.

Although such works demonstrated the effectiveness of Deep Learning for automat-
ically identifying archaeological objects, they often evaluate the detection performance
either using customised semi-automatic measures [6], which requires the archaeological
domain knowledge to be used, or applying a range of different performance evaluation
procedures [1-5] that prevent the comparison between different workflows [11-13]. An
approach to address the lack of consensus on the choice of a standard evaluation measure
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is the adoption of the Intersection over Union (IoU), one of the most commonly used mea-
sures for assessing the performance of an object detection method [14-18]. Archaeological
research, however, requires an evaluation measure based on the geographical position of
the predicted bounding box in relation to the shapes or areas containing archaeological ob-
jects [12], as opposed to directly measuring the IoU between the predicted and the ground
truth bounding boxes and using a threshold to determine true positives. Following these
considerations, Verschoof-van der Vaart et al. [6] introduced a semi-automatic ‘GIS-based’
measure that eases the comparison of the results with other (archaeological) geospatial data
and provides opportunities to easily visualise the results of the object detection task [19].
From a machine learning perspective, the main limitation of this measure is the requirement
of external GIS software (like QGIS), which prevents its use both inside a loss function and
into any end-to-end automatic evaluation approaches. This paper addresses this short-
coming by proposing two automatic evaluation measures designed to encode the salient
aspects of the archaeologists’ thinking process. These measures could empower from one
side archaeological research—providing a standard tool for comparing the performance
of different archaeological object detection work-flows—and machine learning research
supplying an automatic measure that enables the development of approaches tailored to
archaeological research. The availability of a such standard evaluation tool will in turn
encourage the development of innovative human-centred machine learning tools—based
on active leaning [20]—for the automatic identification of archaeological objects.

This paper provides two main contributions to the current state of the art: first, the
design of two algorithms describing novel automatic performance evaluation measures,
namely ‘centroid-based” and ‘pixel-based’ (the Python implementation is available at
https://github.com /IIT-CCHT /esa-cls-evaluation-measures (accessed on 14 February
2022)); secondly, the experimental evaluation of the ability of the two proposed automatic
measures to approximate the semi-automatic GIS-based approach [6]. The experiments
are conducted by comparing nine variations of the same state-of-the-art object detection
network trained and tested on a LiDAR dataset from the Netherlands (see Section 2),
containing two classes of archaeological objects of interest: barrows (discrete objects) and
Celtic fields (landscape patterns).

2. Research Area and Archaeological Classes

The archaeological and LiDAR data used in this research derive from a region known
locally as the Veluwe, in the western part of the province of Gelderland in the Netherlands
(Figure 1). This region (ca. 2200 km?) consists of multiple north-south orientated ice-
pushed ridges, separated by relatively flat valleys originating from the Saale glacial period
(ca. 350,000 to 130,000 BCE). In later periods, the area was partially covered with cover sand
and drift-sand (i.e., aeolian sand) deposits [21,22]. Nowadays, the Veluwe is predominantly
covered with forest and heath, interspersed with agricultural fields, variously sized areas of
habitation and major and minor roads. The area holds one of the largest clusters of known
archaeological objects in the Netherlands. The majority of the extant objects can be found
in heathland or under forest cover [11]. While their location has certainly contributed to
their present-day preservation, it also limits the detailed investigation of known sites and
the survey of their surrounding landscape for potential new archaeological objects [23].
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Figure 1. The research area on a height model of the Netherlands (source of the background image
and elevation model: Ref. [24], coordinates in Amersfoort/RD New, EPSG: 28992; after Ref. [6]).

Two classes of archaeological objects are of interest for this research: prehistoric
barrows and Celtic fields (Figure 2). These classes were chosen because these objects
have been studied extensively in several recent archaeological projects [12,25,26], which
generated up-to-date inventories of these object classes in the research area, their dating,
and their state of preservation. Furthermore, barrows and Celtic fields are clearly visible
in LiDAR data—contrary to in other remote sensing datasets or the situation in the field
where these objects are generally hard to discern due to the fact that the majority of
the extant objects are located under forest cover [23,27]. This makes these classes good
candidates for object detection tasks. The majority of barrows on the Veluwe—small, round,
or oval-shaped earthen mounds that demarcate the burial place of a select group of people—
were erected and used in the Neolithic and Bronze Age (between 2800 and 1400 cal BCE;
refs. [26,28]). Celtic fields are a later prehistoric (late Bronze Age until the Roman Period;
ca. 1100 cal BCE-200 CE) parcelling system composed of adjoining, roughly rectangular,
embanked plots, which form a characteristic checker-board pattern in LiDAR data [25].
Barrows are examples of ‘discrete” archaeological objects due to their convex, compact and
localised shapes, while Celtic fields are examples of ‘landscape patterns’ [29,30] since they
have a large-scale non-localised shape.
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Figure 2. Excerpts of LIDAR data, visualised with a Simple Local Relief Model [31], showing: barrows
(left) and Celtic fields (right). The bottom row shows the corresponding annotations (source of the
elevation model: Ref. [24]).

3. Related Work: The GIS-Based Measure

In the research on the Veluwe, barrows (i.e., discrete objects) are generally validated
through hand corings (see [6,11]): the location (i.e., the central coordinate) of these objects is
more informative than their extent (as shown by the predicted bounding boxes), especially
as the appearance of objects in LIDAR data often differs from the real-world situation [32].
Celtic fields (i.e., landscape patterns) are instead generally validated through the additional
analysis of remote sensing data, as validation in the field is often problematic due to the
lack of clear traces and material culture [11]. Therefore, gaining additional information via
the automated detection, e.g., on the extent and coverage of these objects, is more relevant,
especially as this offers information that can be used to answer additional questions on, for
instance, yield and demographics [25].

In both discrete objects and landscape patterns cases, these two types of validation
have been developed to address specific archaeological goals by developing the GIS-based
measure [60]. First, the GIS-based measure converts the predicted bounding boxes into
geospatial vectors. Specifically, in the case of discrete objects, the detections are converted
into points by taking the central coordinate (or centroid) of the bounding box. These points
are then overlaid to a spatial layer of the test area previously divided into cells with sizes
based on the average size of the archaeological objects in question. In this perspective, a
detection has to be close enough to a ground truth, i.e., within the ground truth annotation,
to be considered as a True Positive (TP), while the coverage of the produced bounding box is
of less importance (see Figure 3). Subsequently, the number of TPs and False Positives (FPs)
is determined by selecting all “positive” and 'negative’ grid cells that contain a detection
by means of a GIS software (such as QGIS). Multiple detections in the same grid cell are
individually counted. Finally, False Negatives (FNs) are computed (total number of barrows
in the dataset minus TP) and True Negatives (TNs) (total negative grid cells minus FPs).

Conversely, when the detected objects concern landscape patterns (e.g., plots within a
Celtic field), a different approach is taken. The bounding boxes are converted into polygons,
and then overlaid to a spatial layer containing polygon features for all the Celtic fields in the
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test area, while the rest of the area is filled with a single ‘negative’ polygon (see Figure 4).
The difference in square meters between these two layers is determined by ‘cutting’ the
detected polygons from the spatial layer of the test area by means of a GIS software. This
gives the amount of FN (remaining area of Celtic field) and the amount of TN (remaining
area of ‘negative’ polygon) in square meters. In this case, both the location and coverage of
the produced bounding boxes are regarded as important. TP is computed as the total area
of Celtic fields in the test dataset minus FN, while FP as the total 'negative” area in the test
dataset minus TN.

Figure 3. The semi-automatic GIS-based measure [6] for the archaeological evaluation of discrete
objects: (Left) the detections (black) on the spatial layer with positive grid cells in blue (M) and
negative grid cells in red (M); (Right) results of the processing with detected barrows (TP) in blue (H),
missed barrows (FN) in yellow (' ), wrong detections (FP) in red (M) and remaining empty grid cells
(TN) in green (M).

Figure 4. The semi-automatic GIS-based measure [6] for the archaeological evaluation of landscape
patterns: (Left) the detection polygons (black) on the spatial layer with Celtic fields polygons in
blue (M) and the 'negative’ polygon in red (M); (Right) results of the processing with detected areas
of Celtic field (TP) in blue (M), missed areas of Celtic field (FN) in yellow (' ), wrong detections (FP)
in red (M) and remaining area of ‘negative” area (TN) in green ().

4. Automatic Evaluation Measures

This section described the two automatic performance evaluation measures, called
‘centroid-based” and ‘pixel-based’, and highlights the advantages of their use with respect
to the IoU. The centroid-based measure is suited for discrete objects, while the pixel-based
measure is tailored to landscape patterns. The pseudocodes of the algorithms to compute
the centroid-based and the pixel-wise show that these two measures are designed to be
a fully automatic replacements of the GIS-based measure encoding the salient aspects of
the archaeologists’ thinking process. All these measures take as input the bounding boxes
predicted by an object detection method and output the number of TPs, FPs, TNs and
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FNs. These values are then used to compute metrics generally adopted to evaluate the
performance of object detection methods, such as Precision and Recall.

4.1. Centroid-Based Measure

The centroid-based measure, tailored to discrete objects, provides a quantitative eval-
uation of the spatial relationship between predicted and ground truth objects in order to
reflect the archaeologists” expectation of detecting an object close enough to where it should
be, i.e., within the corresponding ground truth annotation. This spatial relationship is
quantified by considering if the centroid of each predicted object’s bounding box is inside
the closest ground truth bounding box. Specifically, as shown in Algorithm 1, a prediction
is considered as a TP if the predicted object’s centroid falls inside the area of (at least) one
ground truth’s bounding box; otherwise, the prediction is considered as an FP. The associa-
tion between a ground truth object and its eventual prediction is exclusive: whenever a TP
prediction is associated with a ground truth, the latter cannot be associated with any further
predictions. This guarantees that, if there are two or more distinct predictions, the centroids
of which fall inside the same ground truth’s bounding box, only one is considered as a TP,
while the others are computed as FPs. Since this circumstance only occurs sporadically in
our experiments, we decided to neglect additional efforts to select the ‘best match’, i.e., the
detection closest to the centroid, as this would impact computational costs and memory
usage, while providing negligible advantage to performances. Consequently, we adopted a
‘first-come, first-selected” approach. Conversely, all the other ground truth bounding boxes,
which do not have an ‘associated” prediction,—i.e., a predicted object whose centroid falls
inside the ground truth’s bounding box—are considered as an FN (see Figure 5).

Algorithm 1: Centroid-based measure

Input: Annotation and prediction bounding boxes
Output: True Positive (TP), False Positive (FP), False Negative (FN)
1 for each class do
prediction_shapes <— compute_shapes_from_predictions
ground_truth_shapes <— compute_shapes_from_annotations
ground_truth_shapes_copy <— clone(ground_truth_shapes)
for p in prediction_shapes do
for g in ground_truth_shapes_copy do
if g contains centroid ofp then
add p to the set of predicted_TP
L remove g from ground_truth_shapes_copy

© ® NS U R W N

10 if p is not in the set of predicted_TP then
11 | add p to the set of predicted_FP

12 for each class do
13 for g in ground_truth_shapes do

14 for p in prediction_shapes do

15 if g contains centroid ofp then

16 add g to the set of ground_truth_TP
17 L remove p from predicted_shapes

18 if g is not in the set of ground_truth_TP then
19 L add g to the set of predicted_FN
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Figure 5. The centroid-based measure provides a quantitative evaluation of the spatial relationship
between predicted and ground truth objects. (Left) A prediction is considered as a TP (M) if the
predicted (M) object’s centroid falls inside the area of (at least) one ground truth’s bounding box (M).
(Right) If there are two or more distinct predictions whose centroids fall inside the same ground
truth’s bounding box, only one is considered as a TP (M), while the others are considered as FPs (H).

The centroid-based measure gives more importance to the location (i.e., the central
coordinate) of objects than their extent (as shown by the predicted bounding boxes) as
described in [6]. This crucial aspect is not grasped by the IoU that computes the extension
of the overlap between the predicted and the ground truth bounding boxes. Figure 6 shows
two examples that highlight the advantages of the employment of the centroid-based
measure with respect to the IoU.

Figure 6. The IoU is not the ideal measure for the evaluation of discrete archaeological object methods
since it does not consider the geographical position of the predicted bounding box in relation to the
shapes or areas counting archaeological objects. (Left) The centroid-based measure considers, in
line with the archaeologists’ thinking process, the prediction as a TP (M) since the centroid of the
predicted (W) bounding box falls inside the ground truth’s bounding box (M). On the other hand, the
IoU considers the prediction as an FP (M) because the intersection between the two bounding boxes
is less than 0.5 times their union (see e.g., PASCAL VOC [15]). (Right) another example where the
centroid-based is able to correctly consider a prediction as a TP, while the IoU considers it as an FP
(see Section 7).

4.2. Pixel-Based Measure

The pixel-based measure, suited for landscape patterns [29,30] such as Celtic fields,
considers the object detection task as the classification of each pixel of an image. Specifically,
as shown in Algorithm 2, for each class, a binary mask is calculated of both the ground
truth annotations and predicted objects. The mask has the same width and height of the
original image and represents the presence (or absence) of all the objects of the given class,
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as it assumes for each corresponding position the binary value 1 if in that position an
object instance is present, or conversely the binary 0 whenever it is not. Then, the ground
truth mask and the prediction mask are compared on a pixel-wise level, using an AND
(bit-wise) operator: each pixel where both masks contain the binary value 1 (presence of
an archaeological object) is considered as a TP, while pixels with binary value 1 in the
ground truth mask and binary value 0 in the prediction mask are considered as an FN, and
conversely pixels with binary value 0 in the ground truth mask and binary value 1 in the
prediction mask are considered as FPs.

Algorithm 2: Pixel-based measure

Input: Annotation and prediction bounding boxes
Output: True Positive (TP), False Positive (FP), False Negative (FN)
1 for each class do

2 annotation_mask <— compute_annotation_binary_mask

3 prediction_mask < compute_prediction_binary_mask

4 TP = bitwise_ AND (annotation_mask, prediction_mask)

5 FP = bitwise_ AND (bitwise_NOT (annotation_mask), prediction_mask)
6 | FN = bitwise_ AND (annotation_mask, bitwise_NOT (prediction_mask))
7 end

Since the pixel-based measure works by definition in a pixel-wise fashion, a single
bounding box can partly be counted as a TP and as an FP, depending on the overlap with
the ground truth (see Figure 7). The IoU is not the ideal measure for such patterns because
it does not take into account the amount of coverage between the predicted and the ground
truth bounding boxes at a pixel level, but it considers if the whole predicted bounding box
is a TP or an FP: if the ratio between the corresponding coverage (intersection) and their
union is greater than a given threshold, it is a TP; otherwise, it is an FP (see Figure 8 and
Section 7).

Figure 7. The pixel-based measure provides a quantitative evaluation of the coverage of the ground
truth bounding boxes with the predicted ones. The figure shows that a polygon representing an
archaeological landscape pattern (a Celtic field) is annotated using a series of overlapped bounding
boxes (ground truth M). Each pixel of a predicted (M) bounding box is considered as a TP (M) if
it belongs to one of the ground truth bounding boxes; otherwise, it is considered as FP (M). The
pixels of each ground truth bounding boxes that are not covered by any predicted bounding box are
considered as FN (H) (see Section 7).



Remote Sens. 2022, 14, 1694

90f18

Figure 8. The IoU is not the ideal measure for landscape patterns since it does not take into account
the amount of coverage between the predicted and the ground truth bounding boxes at a pixel level,
but it considers if the whole predicted bounding box is a TP or an FP. (Left) All the intersections
between the predicted (W) bounding boxes and each ground truth’s (M) bounding box are less than
0.5 times the corresponding union. The prediction is therefore considered as FP (M) and all the
ground truth’s bounding boxes are considered as FNs (M). (Right) On the other hand, the pixel-based
measure, in line with the archaeologists’ thinking process, considers the detection of landscape
patterns as the classification of each pixel of an image: each pixel is therefore evaluated as TP, FP or
TN without considering any threshold (see Figure 7 and Section 7).

5. Experimental Setup

In this section, the experimental setup, designed for assessing the discrepancies among
the two automatic measures (see Section 4) and the semi-automatic (GIS-based) measure
(see Section 3), is described. The section is organised as follows: Section 5.1 provides a
detailed description of the datasets used to train, validate and test the object detection
networks. In Section 5.2, the experimental methodology, in which nine object detection
networks are trained and tested on the same LiDAR dataset, is presented.

5.1. Datasets

Starting in 1997, the Dutch Directorate-General for Public Works and Water Manage-
ment has commissioned nation-wide LiDAR coverage for the Netherlands. In this research,
the second generation of this LIDAR dataset, called the Actueel Hoogtebestand Nederland 2
(AHN?2), is used (See Table 1 for an overview of the parameters of the LIiDAR data). This
dataset is freely available as an interpolated Digital Terrain Model (DTM), disseminated in
GeoTTFF raster images (or tiles) measuring 10,000 by 12,500 pixels (5 km by 6.25 km), from
the online repository PDOK [24].

To assemble the datasets, 16 GeoTIFF tiles were downloaded and processed with a
Fill_nodata tool in QGIS 3.4 Madeira [33] to reduce the number of no-data points. Subse-
quently, the tiles were visualised with the Simple Local Relief Model visualisation [31] from
the Relief Visualisation Toolbox 1.3 [34]. Thirteen tiles were selected as training data, one tile
as validation data and two tiles as test data. All tiles were sliced into subtiles of 600 by
600 pixels with 30 pixel overlap on all sides [6].
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Table 1. The parameters of the LIDAR data used in this research, after Ref. [35].

Parameters AHN2 LiDAR Data

purpose water management
time of data acquisition April 2010
equipment RIEGL LMS-Q680i Full-Waveform
scan angle (whole FOV) 45°

flying height above ground 600 m

speed of aircraft (TAS) 36 m/s

laser pulse rate 100,000 Hz

scan rate 66 Hz

strip adjustment yes

filtering yes

interpolation method moving planes
point-density (pt per sq m) 6-10
DTM-resolution 0.5 m

5.1.1. Training and Validation Datasets

The 14 tiles selected for training and validation were dissected into 5796 subitiles,
of which only a minority contain an archaeological object of interest. The subtiles that
did contain barrows and/or Celtic fields were selected and labelled with Labellmg [36],
a graphical image annotation tool to generate object bounding boxes (Figure 2). Every
individual barrow was annotated, resulting in 1340 examples. In the case of Celtic fields,
every individual plot was labelled, resulting in 1382 examples. The objects included
in the datasets represent both clear and less conspicuous examples, in various states of
preservation (e.g., a portion of the extant barrows has been physically reconstructed decades
ago in an attempt to preserve them). In the case of overlapping objects, e.g., a barrow
within a Celtic field, the concerned subtile was excluded from the training dataset, as this
might generate complications with the pixel-based evaluation measure (see Section 4.2).
The developed training dataset contains 993 subtiles, while the validation dataset—used to
monitor the network during training—includes 88 subtiles (Table 2).

Table 2. The datasets used in this research.

Dataset Subtiles Barrows Celtic Fields Objects
training 993 1213 1318 2531
validation 88 127 64 191
test 825 130 997 1127

5.1.2. Test Dataset

For the test dataset, two separate areas on the Veluwe were selected: both have been
extensively researched in the (recent) past [25,26] and contain multiple examples of the
archaeological classes of interest, in various states of preservation. Furthermore, these two
areas contain a representative sample of the different types of land-use and terrain present
on the Veluwe.

To create the dataset, all subtiles (828 in total) of the two areas were collected and
manually annotated by two expert researchers: both with ample experience in analysing
LiDAR data and considerable knowledge of the archaeology of the research area. These
annotations were also compared and supplemented with information on extant archaeo-
logical objects on record in any of the Dutch national archaeological databases [37]. Again,
subtiles containing overlapping archaeological objects were excluded (see above).

The resulting test dataset (see Table 2) consists of 825 subtiles of which 164 (19.8%)
contain a total of 1127 examples, split into 130 barrows and 997 Celtic field plots (the total
area covered by Celtic fields equals circa 2.42 km? spread over 66 demarcated areas). The
other 661 subtiles (80.2%) do not contain any archaeological object from the two classes
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of interest. The resulting ratio of positive and negative subtiles (i.e., with or without
archaeological objects of interest respectively) of about 1:5 (positive:negative) in the test
dataset accurately represents the real-world situation of scarce archaeological objects in
different types of complex and dynamic terrain [6].

5.2. Experimental Methodology

Object detection is a popular and fast evolving field within Deep Learning research.
Consequently, original, potentially ground-breaking research is published regularly and
comparing all developed networks and architectures is out of the scope of this research.
Furthermore, developing a network from scratch is regarded as unnecessary and inefficient.
Therefore, Detectron2 [38], a Pytorch-based library developed by Facebook Al Research
(FAIR), is used in this research. This library aims towards an enhanced flexibility and
extensibility through a proper re-factored modular design and the ability to provide fast
training on single or multiple GPU servers. Moreover, it fills the gap between research
(development) and industry (use) by providing different implementations of state-of-the-
art object detection networks and algorithms. Detectron2 was initially used to rapidly
construct and explore different architectures and combinations of pre-trained models.
Preliminary experiments with different approaches (e.g., RetinaNet-based single-shot
detection models) did not result in any significant gain, and eventually the choice was
made to settle on a single, state-of-the-art object detection network, Faster R-CNN [39], to
test the proposed measures.

5.2.1. Faster R-CNN

Faster R-CNN is an object detection network, and one of the latest evolutions of the
R-CNN architecture [40]. This "two-stage’ detector consists of two parts: a region proposal
network (RPN; a small fully connected network) that generates the object proposals, while
feature extraction and classification are done by the Fast R-CNN detector [41]. An input
image is passed through a backbone, pre-trained CNN that uses an intermediate layer as
a convolutional feature extractor. The extracted feature map is sent as input to the RPN,
which in turn outputs a set of rectangular object proposals, each with a likelihood that
the proposal contains a relevant object. This is done by generating so-called anchor boxes
(pre-fixed temporary bounding boxes) with three different scales and three aspect ratios
(1:1, 1:2 and 2:1) at set intervals (called stride). The main task of the RPN is to deliver an
‘attention mechanism’ by providing a set of relevant object proposals. These ‘proposals” are
then filtered based on their ‘objectness score’, i.e., the probability that a proposal represents
an object, and passed as input to the Region of Interest (RoI) pooling module. Instead of
trying to classify each proposal, the Rol pooling module improves the training efficiency
by extracting a fixed-length feature vector for each region proposal with the aim of reusing
these convolutional feature maps as input of a region-based object detection network (Fast
R-CNN). The network classifies the fixed-length features into a given number of classes
by returning class scores and a background class, and uses a linear regressor to tighten
the bounding box to fit the true sizes of the object [39]. Based on a set confidence score
threshold, object proposals are discarded or given as output of the network. Both the RPN
and Fast R-CNN are trained simultaneously during the training of Faster R-CNN [42].

5.2.2. Faster R-CNN Implementations

In our experiments, nine different Faster R-CNN networks were used (see also
Figures 9 and 10). In these models, the backbone CNN, the feature extraction and the
training regime were varied. These variations will be explained in the following.

The main difference among Faster R-CNN networks is the backbone, pre-trained CNN
(i.e., the first part of Faster R-CNN), the principal role of which is to extract the feature
map for the following components. In this research, different versions of the ResNet-
based architecture [43] were used. These CNNs are composed of alternations of stem
blocks and bottleneck blocks. While the former is basically a down-sampling convolutional
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block, the latter introduces shortcut convolutions to combine input and output features.
By using a combination of different block sizes (i.e., numbers of layers inside a block)
and numbers of blocks, different ResNet-based architectures have been developed [43].
ResNet50 (R_50), ResNet101 (R_101) and ResNeXt-101-32x8d (X_101_32x8d) were used.
The latter architecture basically performs a multi-path parallel convolution through several
ResNet blocks and then merges the results [44].

Moreover, the backbone CNNss in our different Faster R-CNN networks were further
varied with three different modifications (C4, FPN and DCS5) to the feature extraction
process:

¢ C4: uses the original approach of the Faster R-CNN paper, with ResNet conv4 back-
bone and conv5 head [39];

e  FPN (Feature Pyramid Network): adds a layer that can extract multi-scale feature
maps, thereby taking advantage of different receptive fields [45];

¢ DCS5 (Dilated-C5): introduces dilations in Resnet conv5 backbone, i.e., a dedicated
convolutional layer with the ability to change its sampling grid in order to enlarge its
receptive field [46].

Finally, the different backbone CNNs have been pre-trained with different training
regimes, either 1x or 3x. In the former, the CNN has been pre-trained for 12 epochs on
the Microsoft COCO dataset [17], while the latter concerned 37 epochs. In Section 6.1, the
results of the different networks are presented.

5.2.3. Hardware Setup

The experiments with the different Faster R-CNN networks were run on a 64 GB
RAM Dual Intel Xeon 4114 machine, equipped with four NVIDIA GeForce RTX 2080Ti
GPUs. Typical training time for each model took between 10 and 40 minutes, depending
on the exact number of epochs. Although Detectron2 offers many options to customise
various hyperparameters to refine a model’s behaviour—either in the training or testing
phase—in this research, most of the default configurations and parameters were retained.
Therefore, the DefaultTrainer class provided in Detectron2 [38] was used. In addition, the
maximum number of iterations was set to 10,000, and the base learning rate to 0.01. To
periodically evaluate the model on the validation dataset, the evaluation period was set to
1000. As the implementation did not make use of ‘early stopping’, a method was developed
and implemented to save the model, through a "hook’ subclass, at several points during
training, to choose a point in the training process with the best validation/training loss
curve trade-off. Finally, to increase the models” precision, the confidence threshold was
adjusted to 0.8 [39]. While different data augmentation techniques were experimented with,
empirically, it was determined that the default augmentations (i.e., resize and flip) were the
most effective.

6. Results

The following paragraph describes the experimental results by comparing the
performance—gained from using the different evaluation measures—of the nine object
detection networks. The discrepancies among the two automatic evaluation measures
(centroid-based and pixel-based) and the semi-automatic GIS-based measure [6] are then
explored. In Section 7, general trends within the results will be discussed and the effective-
ness of the two automatic evaluation measures to resemble the archaeologists’ thinking
process—as distilled in the GIS-based measure—and the applicability for archaeological
research are considered.

6.1. Experimental Results

Experiments were performed to assess the ability of the two proposed automatic
measures to approximate the semi-automatic (GIS-based) measure developed by archaeol-
ogists [6]. To this aim, nine different networks, based on the Faster R-CNN architecture,
were trained and tested on the same LiDAR dataset containing archaeological objects.
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Specifically, the following steps were performed and the obtained experimental results
were used to construct different figures.

i Each trained model was evaluated on the test dataset;

ii The predictions of each model were given as input to the two automated measures
(see Section 4) and to the semi-automatic (GIS-based) measure (see Section 3);

iii The number of TP, FP and TN for each class (barrow and Celtic field) were obtained
from each evaluation measure;

iv Based on these values, F1-scores (for each class and a mean) were computed per
model, for each evaluation measure.

Figures 9 and 10 show that the centroid-based and the pixel-based have the same trend
of the GIS-based measure, demonstrating that the two novel automatic measures encode
the salient aspect of the archaeological thinking process distilled into the semi-automatic
GIS-based measure. Specifically, the average discrepancy between the centroid-based and
the GIS-based for barrows (Figure 9) is less than 1% and the average discrepancy between
the pixel-based and GIS based for Celtic fields (Figure 10) is less than 3%.

F1 class barrow
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024
023
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Figure 9. An experimental evaluation of the discrepancy between the centroid-based, in orange (M),
the pixel-based measure in green (M), and the semi-automatic GIS-based measure, in blue (M),
employed to assess the detection performance of nine different object detection networks in identi-
fying barrows. The centroid-based measure has the same trend of the GIS-based one. The average
discrepancy between the two curves (orange and blue) is less than 1%.
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Figure 10. An experimental evaluation of the discrepancy between the pixel-based measure, in
green (M), the centroid-based, in orange (M), and the semi-automatic GIS-based measure, in blue (H),
employed to assess the detection performance of nine different object detection networks in identi-
fying Celtic fields. The pixel-based measure has the same trend of the GIS-based one. The average
discrepancy between the two curves (green and blue) is less than 3%.
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7. Discussion

The results (Figures 9 and 10) show a high similarity in the performance (F1-score)
calculated with the different evaluation measures, although some variation can be detected
among the nine Faster R-CNN networks and can be explained by a difference in the
capacities of individual models to correctly distinguish and delimit objects, especially small
objects (see Figure 11). An in-depth analysis of the results, based on the visual inspection
of overlays (see, for instance, Figure 11) containing the prediction results and the ground
truth, has shown several causes for the observed variation among the different evaluation
measures. To start with, the graph for discrete objects (Figure 9) shows that the pixel-based
measure deviates the most from the general trend, which is apparent among the other
evaluation measures. This is most probably caused by the fact that the pixel-based measure
is sensitive to wrongly approximated bounding boxes (see Figure 11): if the predicted
bounding box is slightly different in size or shape, as compared to the ground truth, FP
and FN are created, even though the presence and location of a particular object is correctly
predicted. Then, on the other hand, bounding boxes are of no relevance for the centroid-
based approach wrongly approximated as only the position of the centroid in relation to the
ground truth annotation is determining. The same goes for the GIS-based measure, where
only the location of the bounding box, and not the extent, is of relevance. Several specific
discrepancies, for instance for the pixel-based measure for model X_101_32x8d_FPN_3x
on barrows (Figure 9), is presumably caused by this problem, in combination with a high
loss (error) in the bounding box regressor (see [39]), which is responsible for correctly
approximating bounding boxes.

Furthermore, a larger variation can be observed among performance in the Celtic
field class (Figure 10). The lines depicting the different measures clearly deviate, while, in
the other plot, the lines are much closer together (Figure 9), although the general trend is
the same. A possible cause of the difference in performance between the centroid-based
measure, which is consistently lower, and the other measures lie in the fact that many of
the ground truth bounding boxes overlap (see Figure 12). As explained in Section 4.1, the
association between a ground truth and a prediction is exclusive in this measure. Therefore,
in the case of many overlapping ground truth bounding boxes, the centroid-based measure
will produce more FPs, resulting in a lower performance. Furthermore, in the case of the
pixel-based and GIS-based measure, a single bounding box can partly be counted as TP
and as FP, depending on the overlap with the ground truth. Conversely, the pixel-based
measure gives consistent higher performance than the GIS-based measure. This might be
caused by a difference in scale: the pixel-based measure calculates performance based on
pixels of 0.5 meters in size, while the GIS-based measure uses the amount of square meters.

Figure 11. A comparison between a barrow ground truth (left) and the prediction (right) obtained
with the X_101_32x8d_FPN_3x model, showing a wrongly approximated bounding box.
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Figure 12. Celtic field ground truth (left) vs. prediction (right) obtained with the R_50_C4_3x model,
showing a clear difference between the often overlapping, ground truth bounding boxes and the
predicted bounding boxes.

7.1. Archaeological Implications

Machine Learning is progressively being used to automatically detect archaeological
objects in remote sensing data. Research has shown, however, that this particular task is not
as straightforward as more general object detection tasks, such as finding people or house-
hold objects in photographs [12]. Consequently, standard evaluation measures are ill-fitted
for this task due to inherent differences between archaeological objects and more common
objects and their disregard of geospatial information. Therefore, the evaluation measures
presented in this paper, which are geared towards archaeology, give a better indication of
the performance of archaeological object detection methods and make their application
better suited for archaeological research, encouraging their wide-spread application within
wider archaeological research frameworks and heritage management [47]. More generally,
these automated detection methods can alleviate the labor and time-investment of the anal-
ysis of remote sensing data and offer opportunities to efficiently investigate archaeological
hypotheses on a landscape scale. Finally, the ability to rapidly detect objects in remote
sensing data might also prevent the irretrievable loss of archaeological sites and information
due to the ever-increasing threat to archaeology, for instance due to agriculture and urban
development [48], but also looting and systematic and deliberate destruction [49].

8. Conclusions

The experimental results showed that the two proposed automatic measures encode
what is salient and important for archaeological research. This is a crucial requirement
for any measure to become widely accepted in the archaeological community as a stan-
dard evaluation tool for comparing different archaeological object detection workflows.
The centroid-based and the pixel-based measures provide the necessary archaeological
information for further (field) research. We envision that the community will consider
these two measures as a standard performance evaluation tool from now on. This research
also shows the necessity of interaction between archaeological and machine learning re-
searchers in order to obtain satisfactory results across both the disciplines (see also [27,50]).
A fundamental aspect in designing and implementing the next generation of archaeological
object detection methods will be the increase in the role of the archaeologist in the learning
process to provide domain knowledge to the machine [12]. A possible method to enable the
archaeologist to provide continuous feedback to the machine depending on the correctness
of its predictions are active learning-based approaches [51]. These will also enable us to
overcome the need for a large amount of labelled training data, which is one of the main
challenges in archaeological automated detection [52]. Active learning takes advantage of
the availability of unlabelled data by posing queries to archaeologists about the data needed
to be labelled by them and is one of the instances of the human-in-the-loop paradigm,
which contributes to make machine learning models more interpretable [53,54]. Based
on these considerations, we argue that the adoption of a standard evaluation measure to
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assess the performance of archaeological object detection methods will enable a cross-study
comparison and a cross-fertilisation between scholars in machine learning and archaeology;,
which in turn will encourage the development of novel human-centred machine learning
methods for the detection of archaeological objects.
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