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ABSTRACT

We study the problem of minimizing a convex objective when only noisy gradi-
ent estimates are available. Assuming that stochastic gradients have finite a-th
moments for some o € (1,2], we show - for the first time - that the last iterate
of clipped stochastic gradient descent (Clipped-SGD) converges with high prob-
ability at rate 1/K (2¢=2)/(3) on smooth objectives, with only polylogarithmic
dependence on the confidence parameter. We complement our theoretical results
with empirical evidence that supports and illustrates these findings.

1 INTRODUCTION

Stochastic first-order optimization methods such as SGD (Robbins & Monro, 1951), Adam
(Kingma & Ba, 2014), and their numerous variants are central to the training of modern machine
learning models. In practice, these algorithms are almost always combined with additional tech-
niques that enhance stability and performance. One such technique — gradient clipping (Pascanu
et al., 2013) — has become a standard component in the training of large language models (LLMs)
(Devlin et al., 2019; Brown et al., 2020; Fedus et al., 2022; Touvron et al., 2023).

Originally introduced to address the problem of exploding gradients in recurrent neural networks,
gradient clipping has since proven valuable well beyond this initial motivation. It has been shown to
improve convergence under generalized smoothness conditions (Zhang et al., 2020a), to provide ro-
bustness against heavy-tailed noise where gradient variance can be unbounded (Zhang et al., 2020b),
and to enable strong high-probability convergence guarantees (Gorbunov et al., 2020; Cutkosky &
Mehta, 2021; Parletta et al., 2024; Sadiev et al., 2023; Nguyen et al., 2023). Nevertheless, in the case
of convex problems, most existing theoretical results for clipped methods (including Clipped-SGD)
analyze the behavior of averaged iterates, while the practically more relevant last iterate remains
largely unexplored.

Contributions. In this work, we close a long-standing gap in the theory of clipped stochastic
gradient descent by analyzing the last iterate under heavy-tailed noise. Our main contributions are:

* First high-probability last-iterate guarantees for Clipped-SGD. We establish the first
high-probability convergence rate for the last iterate of Clipped-SGD on convex smooth
objectives. Assuming stochastic gradients have finite a-th moments with o € (1,2], we
prove that after K iterations the method achieves an error of at most

o ((Polvioa(K/0)
K2(a—1)/3a

with failure probability at most 6 € (0,1). In the special case of & = 2, this results in a
polynomial gap compared to the best-known in-expectation rate of 1/+/I, where clipping
is unnecessary. Crucially, our result covers the full spectrum of heavy-tailed noise and
provides high-probability guarantees for a single run — significantly stronger than standard
in-expectation bounds.

* General analysis of step-size and clipping schedules. We develop a unified analysis for
polynomially decaying step-sizes and varying clipping levels, bounding the optimization
error as a function of these schedules. This yields principled guidelines for tuning and
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identifies optimal exponents, while avoiding restrictive assumptions such as a bounded
optimization domain.

* Any-time parameter choices. Our parameter selection is horizon-free: it does not require
prior knowledge of the number of iterations and remains valid in streaming or indefinite-
training scenarios, where restarting schemes are impractical. Our results hold without re-
liance on large minibatches, making them applicable in resource-constrained settings.

We complement our result with empirical evidence supporting the advantage of the last iterate over
the average.

2 NOTATION AND PROBLEM SETUP
In this section, we introduce the main notation and discuss the assumptions used in the analysis.

Notation. The norm ||z| := \/(z, ) denotes the Euclidean norm in R%. E¢[ - ] denotes the
expectation w.r.t. the random variable £. We also denote the clipping operator as clip(z, \) =

min {1, HT/\H} x. The initial distance, i.e., the distance between the starting point ¢ and a solution'

x*, we denote as Ro = ||zg — x*|.

Problem. We study the following problem:

i f(2), 0

under the following standard hypothesis.
Assumption 1 (Convexity). The differentiable function f is convex, i.e.,

fy) = f(@) + (Vf(2),y —z) Va,yeR™

In addition to convexity, we assume that f is L-smooth.
Assumption 2 (Smoothness). The differentiable function f is L-smooth, i.e.,

f) < F@)+ (V@)y -2 + 2y — 2l Vay R

Finally, although the optimizer does not have direct access to f, we assume access to a stochastic
gradient oracle V f(z, £) satisfying the following condition.

Assumption 3 (Stochastic oracle). The stochastic oracle V f(x,€) is unbiased and have bounded
a-th central moment with o € (1, 2], i.e.

E[Vf(@.8]=Vf();  E[IVF(z,&—Vf@)]] <o

This assumption was introduced by Nemirovskij & Yudin (1983) and later rediscovered by Zhang
et al. (2020b), after which it has become standard in the analysis of stochastic methods under heavy-
tailed noise. For problem (1), we study Clipped-SGD with time-varying stepsize -y, and clipping
level \.:

Tpy1 = T — Yk - clip(V fe, (k) Ak),
where V f¢, (z1) = V f(zk, &) is the stochastic gradient sampled independently of the past.

Stochastic Optimization. The above problem encompasses, as a special case, the classical
stochastic optimization problem:

min | £(x) = Ecop [((z.€)] | @)
zER

where £ is the loss function, x are the model parameters and £ represents the randomness due to data
sampling from the unknown distribution D. In this setting, the stochastic gradient can be computed

'Our results hold for any solution of the considered problem.



Under review as a conference paper at ICLR 2026

from the sample & as Vf(x, &) = V{(z,€). Note that, when £ = (Z,Y) € R? x R, Equation (2)
also covers the statical supervise learning problem. Another important special case of Equation (2)
is the finite-sum setting,

fl@) =" fi().
i=1
which underlies many training procedures in machine learning.

High-probability convergence guarantees. For an iterative sequence zy, kK:o (produced by some
stochastic method) and a target criterion C'({z} }X_), the standard goal is to ensure

E[C ({zr}izo)] <e

Such in-expectation bounds describe average behavior, but they do not capture the variability of the
random process. High-probability bounds, by contrast, guarantee that the performance criterion is
met with confidence at least 1 — 4, i.e.,

P{C ({}lo) <<} 215
thereby directly limiting the probability of unfavorable deviations.

Although one can obtain such bounds from expectation guarantees via Markov’s inequality, this
typically yields rates with an undesirable polynomial 1/ dependence. Modern approaches instead
achieve bounds with only polylogarithmic dependence on 1/§, which greatly improves reliability
and reduces the number of iterations required to reach a target confidence level. In other words, the
goal of high-probability convergence analysis is to establish convergence rates of the same order as
the optimal in-expectation guarantees, with only a minimal dependence on the confidence parameter

J, ideally O(4/log(1/9)).
3 RELATED WORKS

The literature on SGD and Clipped-SGD is vast and multifaceted, and a comprehensive survey is
beyond the scope of this work. In what follows, we focus only on the closely related works.

In-expectation convergence bounds. Early studies on SGD for smooth and non-smooth (but Lip-
schitz) objectives investigated convergence in expectation under finite-variance noise (Nemirovskij
& Yudin, 1983; Nemirovski et al., 2009; Ghadimi & Lan, 2013b;a). In this setting, the average iterate
of SGD achieves a rate of O(1/+v/K)?, which is known to be optimal (Agarwal et al., 2012). Similar
optimal rates for the last iterate in the non-smooth case were established in (Shamir & Zhang, 2013;
Jain et al., 2021), while for smooth objectives the best known rate remained O(1/K*/3) (Moulines
& Bach, 2011) for a long time, until (Liu & Zhou, 2024) — building on ideas from (Zamani &
Glineur, 2023) — proved the optimal rate O(1/+/K), thereby unifying the analysis of both smooth
and non-smooth cases.

Under the more general bounded o € (1,2] moments model considered in this work, Zhang
et al. (2020b) show that plain SGD does not converge (in terms® of E[||x; — x*||?], and prove
in-expectation convergence bounds for Clipped-SGD for non-convex smooth and strongly convex
problems with bounded gradients. Vural et al. (2022) derive average-iterate O(1/K(“~1)/¢) bound
for Stochastic Mirror Descent (SMD) over convex Lipschitz objectives and show that it is optimal.
In the same non-smooth setting, Parletta et al. (2025) show that the last iterate of Clipped-SGD
enjoys the same optimal rate. Moreover, for strongly convex objectives, Jakoveti¢ et al. (2023)
investigate the last-iterate convergence of a general class of robust SGD variants assuming only
a = 1. However, these results require additional assumptions, such as symmetry of the noise dis-
tribution and constraints on its effective dimension. To the best of our knowledge, there exist no
last-iterate in-expectation convergence bounds for Clipped-SGD in the case of convex L-smooth
problems with the stochastic oracle satisfying Assumption 3.

The O hides poly-logarithmic factors.

3In the case of non-smooth problems, Fatkhullin et al. (2025) prove O(1/K(@~1/<) average-iterate con-
vergence rate of SGD.
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Table 1: Comparison of the state-of-the-art non-accelerated in-expectation and high-probability
convergence results for SGD/Clipped-SGD-like methods applied to smooth convex problems.

Reference Convergence type | Iterate Stochasticity Rate
2
(Ghadimi & Lan, 2013b) In-expectation Average As.3,a=2 o0 (L}];” + %)
2 2
(Taylor & Bach, 2019) In-expectation Last As.3,a=2 (@] (L?(OJS >
(Liu & Zhou, 2024) In-expectation Last As. 3, a € (1,2] ()] (Kz(Lf?l’)/& + K(fﬁf)/cx)
(Ghadimi & Lan, 2013b) | High probability | Average Sub-Gaussian @] LII;g + %
2
(Liu & Zhou, 2024) High probability Last Sub-Weibull O (5 + B
~ 2
(Sadiev et al., 2023) High probability | Average | As.3,a € (1,2]V| O (& 4 fag -
(Nguyen et al., 2023) High probability | Average | As.3,a € (1,2] o LI}??’ + % @
This work High probabilit Last | As.3 1,2 oL 4 B0
is wor igh probability as s.3,a € (1,2] %+ o/

M Sadiev et al. (2023) make all assumptions only on a ball centered at 2* with radius ~ Ry.
) The rate from Nguyen et al. (2023) has better logarithmic factor than the one from Sadiev et al. (2023).

® B = max {Roa, L(afl)/(Sa—l)R(()4a72)/(3a—1)0_2a/(3a71)7 L1/3R3/302/3}.

High-probability convergence bounds. The first high-probability results for SGD were estab-
lished under sub-Gaussian noise assumptions (Nemirovski et al., 2009; Harvey et al., 2019), which
are considerably stronger than those considered in this work. Moreover, these guarantees apply
only to the average iterate. In this setting and for non-smooth objectives, Liu et al. (2023) showed
that the average iterate of Stochastic Mirror Descent (and hence of SGD) converges at the optimal
rate with only a modest confidence overhead of O(4/log(1/6)). Similar last-iterate guarantees (in-
cluding for smooth objectives) were later obtained by Eldowa & Paudice (2024) and Liu & Zhou
(2024). Both works also relaxed the sub-Gaussian assumption to the broader class of sub-Weibull
tails (Vladimirova et al., 2020), which were further explored in non-convex settings by Madden et al.
(2024). While more general, these tail models still imply the existence of moments of all orders.

In contrast, under the heavy-tailed noise model studied here, several works (Nazin et al., 2019;
Gorbunov et al., 2020; Nguyen et al., 2023; Sadiev et al., 2023; Liu & Zhou, 2024; Gorbunov et al.,
2024; Parletta et al., 2024; 2025) have shown that clipping yields convergence of the average iterate

at rate O(1/K(@=1/2) for convex L-smooth objectives. To the best of our knowledge, results for
the last iterate in this regime require additional structural assumptions such as strong convexity or
the PL condition (Sadiev et al., 2023). Our work closes this gap by establishing, for the first time,
high-probability convergence rates for the last iterate of SGD on convex smooth objectives. Finally,
refinements of the o € (1, 2] model have been proposed in Puchkin et al. (2024), who demonstrate

that in certain cases it is possible to surpass the O(1/K(@~1/) barrier.

4 MAIN RESULTS

In this section we state our high-probability last-iterate guarantee for Clipped-SGD and explain the
ideas behind its proof.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then, if we choose

1 p(@o,L,O’)
1024 In® (@) " 956 - 4Ya (k + 1)8 In® (@)

Ak

 256/Bryg In”? <6<k§1)2)’

Y, = min

)
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where

a—1 2c )

) 1 2
1, t=0; o C3a—ig3a-1 (303

2a 2
. o b 3a—1 o 3
by, = {dk, t > 0 (@0, L, o) = min \/ o/C \/ o/C \/ o/C

parameters 3 satisfies

24+«
3a '

g =

and

1
C= L
max{ ’41_1/‘”])((1)0,[/70') }7
then, after K iterations of Clipped-SGD, we have that
fleg) = [
2 az1 o des2 5y 4, 4 (6(K+1)°
LRZ log* (6(K5H) ) max { Roo, Li=1 RE* o521 L3RS o3 b log (f)

=0 K * K1-P

K
hold with probability at least 1 — 0 > t%
t=1

Corollary 1. Let the conditions of Theorem 1 hold. Then, if we choose § in the optimal way, i.e.

B = Z2 we derive that

a1 o 2e=2 a1 4 o
LRz meX Roo, L3a=T Ry g3-1, L3R03
0

holds with probability at least 1 — 2§. Here (7)() denotes polylogarithmic dependency.

4.1 PROOF SKETCH AND TECHNICAL NOVELTIES

We now outline the analysis and highlight the three key innovations.

Potential-based high-probability convergence proof. We analyze the method using the following
potential:

* C *
Sy = di(f(xr) — ) + §||95k — 2", dry1 = di +mC, do =0,

where C' > L plays the role of an effective smoothness constant that absorbs the stochastic terms
appearing in the high-probability bounds. In the special case of C' = L, this potential reduces to the
one proposed by Bansal & Gupta (2017) to study the convergence of Gradient Descent. Moreover,
Taylor & Bach (2019) consider @ with C' = L to derive the last-iterate in-expectation convergence
rate (see Table 1). Since we consider high-probability convergence, our descent lemma differs from
the one derived by Taylor & Bach (2019) and yields

K-1 K-1 K-1
i <Oog— > WClme — " 0k) — Y (Wdig1 — 2ex) (Vi) 0k) + D ekl 3
k=0 k=0 k=0

with e, == M and 8y, = gr — Vf(zk), g = clip(V fe, (zx), Ax). We control the three
martingale-type sums produced by the right-hand side via Bernstein/Freedman inequalities with a
time-varying failure budget J; ~ 1/¢2 and a union bound over .
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Clipping level \;, ~ 1/1/b. A central technical choice is

V®/C
i = f_/ N with by, = dy, (k > 0),
256 /by i, I/ (20

rather than proportional to 1/ like in the existing average-iterate convergence bounds, e.g., (Sadiev
et al., 2023; Nguyen et al., 2023). The additional division by /by, comes from the following obser-
vation: since we prove by induction that f(x) — f* decreases as O(1/b) with high probability,
we also get that ||V f(xy)|| < /2L(f(zx) — f*) = O(1/v/by). Therefore, we can better balance
the bias/variance terms produced by clipping under Assumption 3 if we select A\, ~ 1/1/by as well.

Horizon-agnostic schedules and log-factors. Both ~;, and )\ are any-time, i.e., no prior knowl-
edge of K is assumed. This influences two aspects of the proof:

* Similarly to the prior high-probability analysis of Clipped-SGD (Gorbunov et al., 2020;
Sadiev et al., 2023) for smooth convex objectives, we bound the sums from (3) for each
K > 0 with high probability and then apply the union bound for estimating the probability
of the “good” event . However, since the horizon is unknown, we cannot select the
failure probability at each step as /K for each k = 0,..., K — 1. Instead, the failure
probability for step k is upper bounded by §/k? in our proof. The choice &, ~ 1/k? (and
the resulting ), 0, < 0) introduces at most polylogarithmic dependence on 1/§, while
keeping the schedules horizon-free.

* Moreover, due to the horizon independence of the parameters, the derived upper bound

for @ contains a logarithmic factor ~ In(6(K + 1)2/8). This leads to the In® and In®/?
exponents in 7y and Ay, respectively. We refer to Appendix B.3 for further details.

Remark 1. Using C' in place of L in the potential allows us to bound stochastic terms through
(Ro, o) as required by the high-probability analysis, while seamlessly recovering the deterministic
case C = L wheno = 0.

Remark 2. When oz — 1, then our result shows convergence to some (finite) neighborhood, which is
well-aligned with existing average-iterate results (see Table 1) and the lower bound for the Lipschitz
convex case (Vural et al., 2022).

5 EXPERIMENTS

In this section, we present the results of numerical simulations showing the practical advantages
of the last iterate over the average. We consider the problem of minimizing a convex and smooth
function f: R? — R from noisy estimates v f(z) of its gradients. In all experiments, we run
Clipped-SGD with the step-size and clipping level schedules suggested by the theory, optimizing
the constants via a grid-search procedure. Finally we report the performance of both the average and
the last iterate in terms of the 0.95-percentile of the function values across 1000 repetitions.

Corrupted gradients. We set v f(z) = Vf(x) + N, where N is a random vector with compo-
nents sampled i.i.d. from a Pareto distribution rescaled and reshaped so that it satisfies E[V f(z)] =
Vf(x),E[||Vf(z)—Vf(x)|? < 1, and all moments of order greater than 2.001 are infinite, which
closely matches our assumption with @ = 2. We set d = 100 and consider two cases: first, for a
fixed unit vector a we let f(z) = In(1 +exp((z,a))); second, we also consider f(x) = (1/2)|z|*.
Notice that both objectives are smooth (and convex), but the second is also strongly convex. The
results are shown in the left and central plots of Figure 1, where it is possible to see that the last
iterate performs better than the average.

Statistical learning. We also consider the following statistical learning problem, in which we aim

to minimize

flx) = Ezy)~u [ln(l + eXp(—Y(ac,Z>))]
using only sampling access to u = pz - py|z. We set d = 10 and take pz to be an isotropic
distribution with components sampled from a Student-¢ distribution with 2.001 degrees of freedom,
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Figure 1: Experimental results: (left) f(z) = In(1 + exp({z, a))), (center) f(z) = 1|z and
(right) f(z) = E(zy)~pu[In(1 + exp(=Y(z, Z)))]. The z-axis shows the iteration counter k, while
the y-axis (in logarithmic scale) reports the objective value f(zy) at the iterate z;. Note that in the

left and center plots, the y-axis corresponds to the optimization error since inf,cra f(x) = 0.

so that each component has variance 1/d but infinite moments of higher order. Moreover, we set
py|z=- = Ber(p(z)) over {£1} with p(z) = sigmoid((w,z)). We use Vf(z) = V,In(1 +
exp(=Y (x, Z))) for (Z,Y) ~ 1 and note that E[V f(z)] = Vf(z). We estimate f(z) at a given
point z via the Median-of-Means* estimator with 10 samples from . The results are shown in the
right plot of Figure 1, where it is possible to see that the last iterate performs better than the average.

Discussion. For fairness, both the average and the last iterate are evaluated under the same step-
size and clipping level schedules: namely, those for which our theory guarantees convergence of the
last iterate. We emphasize that the optimal schedules for the average iterate differ from these ones.
In additional experiments (see appendix), we observed that the last iterate actually performs even
better when the average iterate is run under its own optimal schedule. This suggests that our current
O(1/K'/?) bound for the last iterate may be an artifact of the analysis, and that there might exist a
schedule (possibly the one already known to be optimal for the average iterate) that makes the last
iterate achieve the optimal rate as well. A rigorous proof of this conjecture is left to future work.

6 CONCLUSION

We presented the first high-probability last-iterate guarantees for Clipped-SGD on convex L-
smooth objectives under heavy-tailed noise with finite a-th moments, a € (1,2]. Our analysis
is based on a potential function tailored to high-probability control, a new clipping schedule that
scales as 1/(v/bx7yx), and horizon-agnostic parameter choices. These ingredients yield a rate of

O(1/K2(e=1/32) for the last iterate with only polylogarithmic dependence on 1/5. Empirically,
we observe a clear advantage of the last iterate over the average under heavy-tailed perturbations.

Limitations and future work. The rate at & = 2 leaves a polynomial gap from the O(1/vK)
expectation benchmark (Liu & Zhou, 2024); tightening the last-iterate high-probability rate is a
compelling direction. Extending the theory to (Lo, L1)-smooth objectives, which is done for the
average iterate by Gaash et al. (2025) under sub-Gaussian noise assumption and by Chezhegov
et al. (2025) under Assumption 3, without losing horizon-freeness, is another natural next step.
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A APPENDIX

In this section, we provide additional known details intended to support our analysis.

A.1 TECHNICAL DETAILS

Additional notation. We introduce the following notation:
gt = Clip (vfﬁt (xt)v >‘t) 3
0r = g1 — V f(21),
0 =gt — Ee, [9e],

07 = E¢,[g:] — Vf(ze),
Ry = ||lzy — ™|,

Ay = f(x) = fu

We also use the following standard results.

Lemma 1 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector from R? and X =

clip(X, ). Then, || X —E [)?} H < 2X. Moreover, if for some 0 > 0 and o € (1,2] we have
E[X]=2€RLE[|X — 2| <0 and ||z|| < 3, then
N 2%
[E[%] =< < =
~ 2
E MX - xH } < 18)2-%g7,

e [|% e [x][] < e

This lemma provides sufficient bounds for quantities such as the bias and variance of the clipped
stochastic gradient, which satisfies Assumption 3.

Next, we use one of the most popular concentration inequalities: Bernstein’s inequality (Bennett,
1962; Dzhaparidze & Van Zanten, 2001; Freedman et al., 1975).

Lemma 2 (Bernstein’s inequality). Let the sequence of random variables {X;};>1 form a martin-
gale difference sequence, i.e., E[X; | X;_1,...,X3] = O forall ¢ > 1. Assume that conditional
variances 01»2 =E [Xf | Xioq,..., X 1] exist and are bounded and also assume that there exists de-
terministic constant ¢ > 0 such that | X;| < ¢ almost surely for all 4 > 1. Then forallb > 0, G > 0

andn > 1
P{

Additionally, we formulate Young’s inequality.

>

i=1

n b2
> b and E 2<Gy <2 - .
o; < }_ eXP( 2G+2§b>

=1

Proposition 1 (Young’s inequality.). For any z,y € R? and p > 0 the following inequality holds:
2 2 1 2
o+ ol < (4 o) ol + (14 2) I

In particular, forp = 1

2 2 2
lz+yl” < 2llz)” + 2|yl

11
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B MISSING PROOFS

This section is organized as follows. First, we introduce an auxiliary numerical lemma required for
the main proof. Next, we state the descent lemma, which serves as the foundation for deriving the
main result. Finally, we present the convergence rate theorem for Clipped-SGD based on the last
iterate.

B.1 AUXILIARY NUMERICAL LEMMA

Lemma 3 (Numerical lemma). Suppose thatt > 0, 8 € (0,1), m > 0 and n > 0. Then, we have

(t+1)0=5 -1
( 1-p

In"(t+1)

)T —
) (t+1)™" < (t+ 1)ym-(-B)n

Proof. Let us consider

(t+1)F —1\" _
-_ t+1)7™.
(=) e
For the case ¢t = 0 it is obvious: 0 < 0. For ¢ > 1, it can be rewritten as
(t+1)'F—1\" B e(1=B)In(t+1) _ 1\ " B
e t+ 1) =(In(t+1)——-——+—— t+1)™"™
< 1-8 t+1) DT mesy ) ¢

A-g)n(+1) _ 1\ "
=" (t+1)"" (e )

(1-38)In(t+1)
What is more, it is known that for all z > 0 we have
xT

e’ —1
< e’

T

It is enough to apply Taylor series or compare the growth of both parts. Therefore, with § < 1 and
In(t + 1) > Osince t > 1, we have

<(t+1)15—1

c(1=B)n(t+1) _ 1\ "
1-p

> G+ =I"@t+1)™™ <(1 B+ D)
<Iln"(t+1)~™ (e(lfﬁ) ln(t“))n
— lnn(t + 1)—m(t 4 1)(1—B)n

In"(t+1)
(t + 1)m—(1—B)n :

This finishes the proof. O

B.2 DESCENT LEMMA

Lemma 4 (Descent lemma). Suppose that Assumptions 1 and 2 hold. Then, after K iterations of
Clipped-SGD, we have

K-1 K-1 K-1
Br < PBo— Y WO (wr —a™,00) = Y (drsr — 2ex) (Vf (), 06) + Y erll0x],
k=0 k=0 k=0

2
where d11 = dp +7C, do := 0, ¢ := % and @y, := di(f(z) — )+ %ka — ac*||2
with ypdi41 > ep.

Proof. Our proof closely follows the proof of Theorem 5 from Taylor & Bach (2019). Main idea
lies in constructing the potential which reflects the convergence of the algorithm. According to

12
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Assumptions 1 and 2, we have
0> (di1 — di)(f(zr) — f*+ (Vf(@r), 2" — 1))

=i (o) + (Tf s = ) + Gl =l = fonen))

= dp1(f(@p+1) — f7) = de(f(z) = 1) + (dpr — di) (Vf(x8), 2" — a1)
o (VS @) onin = ) + 5 s = )

= dea (@) = 1)+ Sz — o) = S e — 2|

T O I I P P

+ (drg1 — di) (V f(zp), 2" — ap)

L
s ((VF @i =) + o -l

where in the inequality we apply Assumptions 1 and 2, and in the second equation we add and
subtract the same terms twice. Decomposing |1 — z*||%, we obtain

02> dpp1(flapgr) — 7))+ 5H$k+1 — | - §||95k+1 —*|?
—di(f(xr) — f7) — §||$k —*|” + §||$k —a"|?
+ (div1 — di) (V f(z1), 2" — 21)
L
i ((VF @) o = o) + 5 o =l

= der(Fin) = 1)+ 5 lonar = 2P = di(FGaw) = £7) = 5 o — |

C C
) <||$k — 2P+ 2 (1 — oy Tk — )+ [T — J?k||2) + EHJCk — x|

+ (dig1 — di) (Vf(xp), 2" — x) — dpy <<vf(33k)a$k+l — o) + §\|$k+1 - $k|2>

2

= i (o) = )+ S s = 27 = du o) = 1) = 5 o =

C

— 5 (2 <l‘k+1 — Tk, Tk — l‘*> + ka—i-l - kaQ)

+ (k41 — di) (Vf(zg), 2" — xk) — di41 ((Vf(mk)7wk+1 —xy) + %kaJrl - $k|2> .

Using the notation for the considered potential, applying the update rule and noting that dy 1 —dy =
v, C, we have

C C
0> dir (f(2r41) = f7) + Flongr = 2"|° = di(F(ax) = 17) = Fllaw — 27|

D) (2 (Ths1 — Th, T — ) + [|Tp41 — Ik||2>

2
L
+ (di+1 — di) (Vf(xr), 2" — 1) — dia <<Vf(xk)a-73k+1 — i) + §||$k+1 - $k|2)
o Ldu +C
= @1 — O — O (Tpy1 — T, 7 — ) — %llxkﬂ —z)?
+wC(Vf(zr), 2" — ) — der1 (V (1), 1 — k)
. Ldy1+ C)v} .
=®pi1 — Op +WC (2 — 2%, g1) — MH%HQ +C(V f(zr), 2" — zp)

2
+ Vdit1 (Vf(xk), gk) -

13
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Using the notation of gj, and 6y, we get

Ldy1 + C)y? .
st 2O 2 430 C (V). — )

0> ®ppy — Pp +C (2p — 2%, g1) —
+ Yrdi1 (Vf(2k), gr)
= Bpp1 — O +%C (wr — 2", 01) + Yedir1 (VS (1), 0) + Wi ||V f ()12
- st LOVR (19 )|+ 29 1)) + 6]

2
(Ldpg1 + C)yi 2
10|

:<I>k+1—<1>k +7kC(xk—x*,9k>— 9

2
+ Ondiss = (i + C1R) (953 + (s — LD o2

2
%, rearranging terms gives the following inequality:

Due to the notation of ey :=
By < O — oL (zg, — 2, 01) — (yedisr — 2ex) (VF (1), 0k) + ex |01,

where we apply Y dg41 > €, to eliminate the term related to ||V f (4 )||°. Summing up finishes the
proof. O

B.3 PROOF OF THEOREM 1

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then, if we choose

i 1 p(q)()a L7 0)
Ve = min —, i @
1024 L (S0 7956 4% (k + 1) n* (S
and
(3}
Ak = 50/0 6(k+1)2 , (5)
9256+/B5s, In”2 (T)
where
dp, t>0;
b = {f f—0 (©)

p(®0, L, o) = min W W NS ™

)

I 2
C’%a 10—3a 1 (303

parameter (3 is clarified later, and

1
= L
¢ max{ ’41—1/ﬂp<<1>o,L,o>}’ ®)

then, after K iterations of Clipped-SGD, we have that
fleg) = 1"
4 (6(K+1)* Roo. [3o=T 133107f =22y L3 R‘é 20t 6(K+1)2
LR31n (f) max { Rgo, L3 o5-1 L3R$o3 ¢ ln <f>

=0 K + KA

K
hold with probability at least 1 — Z .

14
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Remark 3. During the proof, some constrains over 3 appear. This parameter obviously has a strong
impact on a final convergence bound. This is why, in the course of the proof, parameter 5 must be
chosen with greater care. These constraints are formulated as Conditions.

Remark 4. In the definition of p(®¢, L, o) we use the recurrent equation. Indeed, after substitution
of (8) into (7), function p(®Py, L, o) can be expressed as a function of itself. However, this form is
more intuitive for the proof, since C' plays the role of effective constant of smoothness for the poten-
tial ®;. Of course, in the end of the proof of Theorem 2, we provide an explicit form of p(®g, L, o)
in terms of problem parameters Ry, L and o for formulating the final convergence bound.

Proof. The proof in constructed in the similar manner as in Sadiev et al. (2023). For each k =
0, 1, ... let us consider probabilistic events E: inequalities

— — 6(t+1)2
—ch = 0) = 3 (s 260 (7o) 00+ 3 el < o (2

1=0 1=0
12
P, < 2®,1In (6(75—:;))

k
hold for all t = 0, ..., k simultaneously. We want to show via induction that P{E;} > 1—-6 3 &.
t=1

For k = 0 it is obvious. Now, let us assume that P{Ep_1} > 1 — 0 Z for some 7' > 1. Then,

applying Lemma 4, we have

t—1 t—1 t—1
O, <D — Y WC (m—a%,0) = (ndirr — 2e) (Vf(@1),60) + Y e|6]|
=0 =0 =0

forallt =0,...,T. The only thing we should check is to guarantee y;d;11 > e;. In fact, we have

(Ldiy1 + C)7}

5 <~ 2dt+1 > (Ldt+1 + C)’}/t

Yediy1 > e =

Then, it is enough to guarantee
2dy 41
—_— 9
TS C(dt+1 + 1) ©)

since L < C'. Now, it can be obviously shown that the RHS of (9) is increasing due to the growth of
dy+1, and the LHS is decreasing according to the (4). Therefore, it is enough to guarantee

< 2d;
0= C(dy+1)
Thus, we have

1
(70C + 1)70C < 29C & (10)* < %C & 7o < rok

Moreover, one can have

_ 1 min l 41_1/01)((1)071170’)
BT (o) L' (t+1)P
1

1 1

min { =, 47 p(dy, L 0)} =
3 ((6(t+1)2 {L’ . 3(6@+1)2)’
10241n* (25 1024C n* (2522

where the first inequality holds since the logarithmic factor appears in the denominator. Conse-
quently, we can apply Lemma 4 with (4). Continuing, for all ¢ = 0,...,T — 1 the event Ep_;
implies

<

(10)

t—1 t—1 t—1
O, <D — Y WC (m—2%,60) = (ndirr — 2e) (Vf(@1),60) + Y e|6]|
=0 =0 =0

2
comom (1),

15
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What is more, the event E_; implies

T-1 T-1 T-1
q)T § q)() — Z ’}/tC <{L't — .’17*, 6t> — Z(’}/tdt+1 — 2675) <Vf(xt), 9t> + Z €t||9t||2~ (11)
t=0 t=0 t=0

At the same time, the event Ep_; implies

{ 2L(f(xe) — f*), t>0;

||Vf(xt)H L||$0—CE*H, t=0;

R 2
4L®o In (502

< PA , t>0; ’
V2L, t=0;
where b, is defined in (6) and in the second inequality we use that Ry = % < %. Hence,
with (10) we get
L&, In (6(t+1) ) 'O A
[Vf(@o)ll < 24| ———= s = (12)
by 27

since

ey 20./® Sl dr (tt1)2
A ) ®0/c (10) ofC ( ) - L®gln ( )

2 51ayBy (ngl)?) B Vb by ’

where we also apply C' > L. Simultaneously, we have

e — ] < ) 22t
<2 <

Now, let us decompose (11) using the notation of bias and unbiased part:

T-1 T—1 T-1
Op <o — > C {w — 2*,0;) — Z(’YtdtJrl —2e,) (VF(1),00) + D exl|6]?
t=0 =0 t=0
T—1 —1
S%*Z%C@t*x*,@ Z’th’ zp —a*,0))
t=0 t=0
@ ®
T-1 T-1
= > (vedir = 2e0) (VF(1),01) = Y (vedigr — 2e4) (Vf (1), 67)
t=0 t=0
® ®
T—1 T—1 T-1 )
+ 37 2e (10217 — Ee, [I017])) + 3 2eike, [1621°] + 3 26k,
t=0 t=0 t=0
® ® ©

where we apply Young’s inequality for HG,? + 6% H2

Next, we are going to give sufficient bound on each term: @, ..., @. However, before we start, let
us give extra boundaries for the sequence {b,}. For the case ¢t = 0 we have b; = 1. On the other
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hand, for ¢t > 0 we get

1 y>0 (4) p((I)OaL7U)C
= O < by =
10241° (9) 7 =T Z = £ 256 4= (k+ 1)7

t
p(@o,L,O’)C / 1 p(q)(),L,O')C =81
ke e B! —dz | < 1 .
= 256 -4« + Y= 95647 1-p

(13)

To reflect the correct behavior of convergence with a« — 1, we need to bound b; as above. Never-
theless, to obtain the correct bound for fixed « € (1, 2], it is enough to use

p((I)O’ L7 J)C tliﬁ
25647~ 1-3

The problem arises when we consider the limit @ — 1. In the next part of the proof it will be shown
that

(14)

a—=>1=-=>1

due to the constraints over /3. Consequently, we could get

lim L
ﬁlgﬁl—ﬂ_oo
instead of
=8 -1
lim —— =In(¢+1).
ﬁﬂ 1-p n(t+1)

As a result, for more reasonable analysis, we must use (13) instead of (14).
Next, since boundaries over the true gradients hold, we can apply Lemma 1 to obtain

1071 < 2,
ot <

Ee, [I071%] < 18370,

Now we are ready to bound terms @ — @.
Bound for @. By definition 6}, we get
Ee.[-%C (xe — 2™, 6})] = 0.

Moreover, we have that event E7_; implies

6(t+1)2
(I)O lIl (75 ) @ (I)O

|[=7:C (e — 2%, 01")| < % C ||z — ™[ |0} || < dyeC
' ' c 64y In? (S50 )

®y D,
— = C.
2

S (o =
2
21In ( 5 )
Next, we define o2:

. 6(t+ 1)2 "
o =B 1FC (o = a” 1)) < anpooCn (A0 e, o]

2 2
o )/2 and G = 2% ln(%)/m:

T-1 b2 5
E 2 < < = .
P{|®|>band ot_G}_2exp< 5 +2§b> 372

t=0

Therefore, we can apply Bernstein’s inequality with b = %o 1n<
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Consequently, we have

t=0
‘What is more, we have

T-1
5
P{®| < beither » o7 >G} > 1= o

—1 T-1
t+1) t+1)2
Y or < § 4723,C'In 5( + )E& [Hey\ﬂ <) 7297%Cln (6<§)> PP
t=0

) T=1 72, /q>o/c2 a(bOCyo‘ao‘ In (M)
= 2562-op "5 (6<th1>2)

Using the notation of b, and emphasizing that b,

I NG

= m, we obtain
B @O n (27
T-1792.10241 =2 n3~ sﬂ/2< )\/%276!@007;"0“ . (W)
—a |2 6(t+1)2
2562~ In® ="/ (%)
72102412 1?72 (9) 92
R N e

T—

[

M |

O
t=0 t

Il
=)

\ /\
i
o

~
i

IN

2
To get sufficient bound depending on In (W), we must have this term in power of one. Thus,
we obtain

Condition 1:
{Ba>1=p>1. (15)

Moreover, we get

T—1 T—1 T
1 V6T 672
Zdr = < yo 3/9

E t—|—1 > t+1 1+/xdx 1+1n(T)_31n<\/3> /21n ( 5)

t=0 t= 1

(16)
since 1" > 1. Therefore, with (17) one can have
T-1 T-1 —a/sq 3—3a/s (6
ey 72102412 In® "2 (9) @2 (1,416 108 .232<1>3 (6T2)
< 2 S orm
= =0 2567 - 4(t + )Pt (S 2562 - 4 J
% (°F)
< Y
- 24
where we used that 3 — 3¢/2 < 4 — q.
Bound for @. The event Ep_; implies
T-1 T-1 T-1
. . 6(t+1)2\ 220
=2 wC e —a",08) <3 nClla—at| 07 < 32 %Cln( aa) ) T
t=0 t=0 t=0 t

T-1 a1
sajm_s [6(t+1)2Y\ 2% - 2562 Loyeb, ?
=3 2/®,CIn" 2( ) ——
; 0 V ®o/c '

T-1
2—a . sas_o [ 6(t+1)2 a=1
=Y 20y/®o/c” " In" PR ((;)) 2% . 256% Loy 2b, 2 .
t=0
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Therefore, applying (13), one can obtain
T—1
2ma . s 1)? a1
@< Y 20y/®ojc” "™ (@) 2. 256° Loy 2b, ?
t=0
(13),¢<t+1 92—
< 20\/®ojc” IR (?) 2% . 256 Lo

T-1
2= sas_o [6(t+1)2 a=1
+> 20/ ®0jc” ™ ((;)) 2% 256 oY yb, 2
t=1

a—1

y 3p(®g, L,0)C (t+1)1P -1\ 2
256 - 4Y/« 1-5 ’

where in the last inequality we apply b; < b1 and 1 + % <1+ (Hll)r;_l < 3(t+11)

where t > 1. Consequently, we get
Q. 5a/p— 6
® < 2C\/Fojc. “In*2? <§) 2% . 256 Loy

T-1 2—a a—1 a—1
6-2562"1C /2 Dy, L,o)C) =T 4. 1)2 N-# -1 2
'y Vo s (AR Yo ()

(256 - 4Y/=) "2 5 1-3

& 20y/Bojc” W™ (§) 2% - 25671 p (Do, L, o)

- (256 - 4"/ ) In®* ()

. =16 256010 /Fofc” “p* (B, L, o) O e <6(t + 1)2> o ((t +1)1F — 1) Kl
D1 (256 40) (¢4 1) (202 0 1-3

1-5_q
7/8 ’

t=1

Applying (7) and using that 3o > 570‘ — 2, one can derive

a—1
8- 25691, Ti 24 - 256919, y <(t + )-8 1) N
564V T (256 4e) B (1 4 1) 2 (ST L
Consequently, applying Lemma 3, one can get
o< 8256710 Tz‘l 24 - 25621 d, y ((t F1)1F - 1) S
= (256 R 41/a)a po (256 ) 41/a)3a2—1 (t n 1)[3a ln2+a/2 (W) 1-06
(Lemma 3) § . 256°1d, Ti 24 - 25691 d, y 1
S @A) (g e el (SR (1)
8- 256°~ 1@, +§ 24 - 256~ 1d, 1
T (256 47e) T A (256 4Ya) B (¢4 )fas e

T-1
8-256°1  24.2561 1
<D 2%0max g ya 9256 - 4Y/) 252 [ (£ 4 1)Pa--A-Df"
=0 ( )

Similar to the bound of @, next inequality should hold:

Condition 2:

(1-B)(a—1) a1
{504 - s > 1= 8> 55 an
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Due to these constraints, we derive

f {8-256“_1 24 - 25691 } 1

®< 2¢
S 2 2PN (5 ) (g4 5 (T

6T
17),(16) . 95621 24 . 95601 T2 Do In [ 22—
< 3P max { (8 o0 o6 }ln <6> < M

256 - 4Y/2)27 (256 . 41/ ) 5 5 12 ’
T—1
where we bound t-s%l in the similar way as for @.
t=0

Bound for ®. Due to the definition 6}, we get
Ee, [~ (medir1 — 2e0) (V f(x1),0¢)] = 0.

Moreover, it is uniformly bounded:

®,Cn (6<t§1)2)

|=(Vedir1 — 2e¢) (V (), 07)] < 3vedirr ||V (o) || 103 ]| < 127 Aedsa

by
(2 3Qodir1  3Po(di +7:C)
~  64b; 64b;
For the case ¢ = 0 we have % = %) < 1; at the same time, if ¢ > 0, one can obtain
n{s

di+v:C _ die+7C
= i

7 < 2 since the sequence of stepsizes {;} is non-increasing: 1C < % <1
Therefore,

dy —

3%0(di +7:L) _ 3%

‘ (Wtdtjq 2et) <Vf($t)a et >| = 64b; - 32

=cC.

Let us define o7 = Eg, |:(("Ytdt+1 —2e:) (Vf(xe), 9}‘))2] Hence, we get

0F < Be, [992d2 1 IV S (@I 1671°] = 9932,y |9 F ()l Ee, [I16717)

Consequently, we can apply Bernstein’s inequality with b = %o 1n(6(?2>/12 and G =
¢31n(6(?2)/1152:
P{|®| > band Tz:_laz < G} < 2exp (—b2> = 0
e S 2G + 2% |~ 3T%

It automatically leads to

T—1
5
- 2
P{®| < b either E o} >G} > 1—ﬁ.

t=0

What is more, we get

-1 T-1 T-1 L, In W)
> of < Y00, IV )P Ee, [1071°] < D 64saPat, —— oo
t=0 t=0 t=0 t

SRS 648702, , LBor/Pofc” "o

T DD 256222t (6<t§1>2)

& = 1296p° (@9, L, 0)d, Loy [#ojc” g

3
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where in the last inequality we substitute the second choice of «y; and bound d:+1/p, < 2. What is
more, d¢1 = by for all ¢ > 0. Hence, one can obtain

= <T L 1296p* (@9, L, o)y LEor/Fofc” 0@
TS 2864+ et (UL

a3 Tf 1206p° (®, L, 0) Lo /P "o . <p(<1>o,L7a)c (1 R 1)1-5 — 1>)a/2
T 2562 - A(t + 1)Be It (w) 256 - 4'/a 15

Noting that (a + b)”/2 < a®? + b*? due to the a/2 < 1, we derive

p LSO Tz‘l 12965°°/2 (@, L, ) O @ /Fofc "o
ST S e 4t 4 1o (@)

12965°/2(®g, L, ) OB /Fojc y ((t+ 1)1-6 — 1>“/2
2562+/2 . 45/2(t+ 1)[3a1 4+e/2 ( (t§1)2> 1-7

129692
2562+/2 . 4%/2(t + 1)Be In*+/2 (6(t+1)2)

129602 ((t F1)F 1)"/2
=0 256242 - 42(¢ 4 1)Po ItV (A7) 1-5 ’

I/\\l

TZO

H

+

where in the last inequality we substitute the third choice of p(®g, L, o). Applying Lemma 3, we
obtain

T-1 T— 9
2 Z 129695

=0 i=0 2562172 - 4%/2(t + 1)Be In*F/? (W)

M

N 129692
=0 256242 - 42(t + 1)Po=(1=R/2 (ST

ML 1

Therefore, conditions over 3 can be formulated as follows:

Condition 3:

ﬁaZléﬁzé;
{504—(1—6)“/221:5223?. (18)

Consequently, with (18), we have

;

, 2;)T 1 259202 (16) 3888PF In (%) . ®2In (6T2)
7t = Lioserres 42(t 1) 2562+ 42 = 1152

—

~
Il
=

t=0
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Bound for @. The event Fp_; implies

T-1 1
=) (vedegr = 2e) (Vf (), 07) <Y Byediia |V ()] |67
=0 —
T-1 Ldg1n (W) o 0
< 6:d Z
2 tdey1 b e
T-1

24 . 25671 dt+1 LR0" | oo 2(6(t+1)2>

VT

ING
(]

t=0
= 12 - 2569 1 dt+10\/¢’0/6‘2ia0’ 5()4/2 2 6
<> 1o/
t=0 bt
T—1 o 6
48 - 256° 1 d; % C/Pofc” ¥ AT 2(
t=0

where in the last inequality we apply d¢+1/b, < 2. Thus, we have

T—1
/2 22—« /g 6(t 1 2
= Z 48- 256&717?@4/-10\/% o "> ((Jg))
148 2569 1p(Dy, L, 0)d; 1 C\/Pofc” o
=0 (256 - 4Y)a(t + 1) In?+/? (6(1&-;71)2)

dt+1:b<t+17(13) - 48 ) 2560‘_1])0‘(@07 La U)sziaaa
- —o (256 - 4Y/=)a(t 4 1)Ba In?+*/2 (w)

P Lo)C ()| (¢+1)'70 — 1)
2564V 1-3
T— 1 . 9562~ 1 sa/z(q)o L U)C1+a/2\/%2—ao_a

; (256 - 4'/=)*/2(t + 1)8e In*+*/2 (@)

481 2560 1" (@0, L) O BjS o <(t+1)1,6’ - 1)%
=0 (256 4y (4 )P e (S 1-3 :

@)
S

X

IN

_|_

where in the last inequality we use (a + b)*/> < a*/? 4 b*/>. Therefore, substituting the third choice
of p(®g, L, o) (7), one can obtain

i 48 - 256&—1@0
=0 (256 - 4"/=)*/2(t 4 1) In2+e/2 (w>

+ > 48 - 2561 g y ((t +1)i6 1)%
=0 (256 - 4"/«)**/2(t + 1)P1n 2+-2/2 (6(t+1)2) 13 .

Applying Lemma 3 to the second term, we get

— 48 - 2562~ 1@,

=0 (256 - 4"«)%/2(t 4 1)Be In2te/2 (w)

n Tz_l 48 - 2561 @,
20 (256 - 4Y/)%/2(t + 1)Pa—(1-p)*/2p? (M)

®<
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To derive a sufficient boundary, it is enough to apply next conditions over /3

Condition 4:
{Bazl:»ﬁz;; (19)
a 24+a
Pa—(1-pB)2>1= > 272
Hence, we have
<19> Z 96 256" 1B, 1o 14 256210, In (%) < &, In (%)
- (256 - 4Y/«)*/2(t +1) — (256 - 4"/ )>*/2 - 12 '

Bound for &. Flrst of all, we have
w2 w2
Ee, [2e0 (11671 — Ee. [I61%]) ] = 0

2)\2 (5) 4(Ldt+1 -+ C) O/C
5 (6(t+1)?
2562, In” (257

deg1/b,<2,13)
Adpyr + 1) /e Lo _..

o5t () T8

Moreover, we have

2e, (116717 — Ec, [1611°] )] < 8eA? = 4(Ldesa + Oy

2
Let us define 07 = Eg, |:46? (||9f||2 — Eg, {||9§‘||2D ] Consequently, it can be bounded as fol-

(nox11” — Ee, [N6x1°])|]

lows:

ot =, et (1ot - e [10¢1%))] < B, [2e
< deee, |[17]°] .

Therefore, we can apply Bernstein’s inequality with b = ®o 1n( ) /sand G = @3 1n( ) /384
T-1 B2 5
2 p—
P {|®| > band t;) ol < G} < 2exp <_20+23b> = -
Hence, we derive
T-1 5
: 2
P{®| < b either §0t > G} >1— 377
What is more, we get
T-1 T-1 T-1
Y ai< Z dceBe, [I1091°] < D 36c(Ldusa + C)yENE 0"
t=0 t=0 =0
2
) = 36¢(Ldy1 + C)% ®0/c

T & opapl (2051

2—a
1 36¢C (dygr + 1720/ ®o/C
2562—ab 7/ 1p5 "/ (6(t§1)2>

36cCdiy17y5o \/‘1’0/0 f 36607?0’0‘\/‘1)0/02_a

0 2562ty I (S ) =5 2562-b; /o (L)

(it+1/bt<<2 a3 Tl 7200dt+1% [®o/C e T-lge 10241=/2cCy & o /‘1’0/0 n3—/2 (9)
T seewt T (M) o 2562~ In®~"/? (%)

=

INA
1M

!

i
<

b
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where in the last inequality we apply dy+1 < 2b; for the first term, and substitute the lower bound
for b; (see (13)) in the second term. Consequently, substituting the stepsize (4), we get

TZI , X Z 72cCp <I>0,L o) d; oo /Bofc "

=0 2562 - 4(t + 1)8e In®+/? (M)
n i 36 - 10241~ a/zccp (fI)o,L 0_) \/% 03 3or/2 (%)

=y & 7260p° (0, L,0)o”/ojc” " § <p(q>0,L,a)C’ <1 N (t+1)1F - 1)>a/2
T 52562 - 4(t + 1)Ba I+ (w) 256 -4/ -

7136 10241~ /2cCp2 (Do, L, 0) 0™ /Fojc "2 (8)

+
; 2562 - 4(t + 1)P« In3+e/2 (@)

)

where we used the upper bound for d; 1 (see also (13)). Using the fact that (a + b)*/> < a*/? 4 b*/?
and applying Lemma 3, we get

i i 72e01 22 (B, L, 0)o/Fojc
0'
=0 im0 256202 421+ 1o T (HELE)

~

1 72001+a/gp3a/2((1>0,L7 O’)O’a\/%27a . <(t 4 1)17[3 - 1><>¢/2
o 5+4a/2 (6(t+1)2 1-—
256242 - 472(t + 1)Pe In"""/? (T) g
36 - 10241/2cCp® (B, L, 0)0® /Fofc” " In® /2 (8)
@ 1.5+ 6(t41)2
2562 - 4(t + 1)B>1In /2 (T)

1 72cCM 2 p 2 (B, L, 0) o™/ ‘I’O/CQ_Q
2562+2/2 . 43/2(¢ 4 1)B [nd+°/2 (Lt?)z)

72cCp® (B, L, 0)o®\/Fofc
2562+°/2 . 43/2(t + 1)506*(1*5)”/2 ln5 (W)
36 - 102417201+ 2 (0, L, 0) 0 \/Bofc P~ (9)
@ 1.5+ 6(t+1)2 '
2562 - 4(t + 1)7 In®*"/? (%)

+
i

!
L

+
it

v

IA
1

!

+
i

)q

+

“
Il
o

Substitution of p(®y, L, o) gives

5
L

i 72cd
i=0 256272 - 4%2(t + 1) In>**/? (M)
T—

T

o
Q
N
I/\

Z 720‘1)0
=5 2562472 - 4%/2(t + 1)Po= (=) 1y? (L2 )

+

t

T—

H

36 - 10241 ~/2cdo In® "2 ()
=0 2562 - A(t + 1) ()

+

Thus, if we choose 3 as follows:
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Condition 5:

60421:>BZ%;
{504(15)@/221;»522;3, (20)

we derive

T—1 T—1 72D,

, 20 72cd,
Z = Z::o 2562+ 4 (1 1) ; 9562+ - 472(¢ + 1)

Zl 36 - 10241~ /2¢cd,,

2.
£ 2562 4(t + 1)

() 144 36102412 o2\ _ o3l (F)
m( )</

<
S SeRomax | S 150 25624 5 384
Bound for ®. The event Fp_; implies

T-1 T-1 T-1
> 2ek, [1071°] < Z Cldesr +1)7Ee, 10717 < > 18C(dres + 1EAF 0"
t=0 _

) 180\/ (I)O/C dt+1 + 1 "/t
2562 b,/ In5 ="/ ( S )

t=0
dt+1/bt<2(|'§)T 1 360 /@0/0 t+17t
— 2562 In®~ /( UGG )

.\ Til 18 - 102412 /BoJc” “ygto® In® =2 (9) |
t

2562—a |5 —°/2 (6(t4g1)2)

Substitution of (4) gives

T—1 T—1 2-a d-
w2 36C/®0/c tfﬂt
> 2eEe, 104117 < Y , ;
— 25620 5"/ (Lt*l) )
t=0 S
T-1 —a 22 o« —3a
ns 18 - 10241 =2C\/®ojc” “ypo /2 (8)
=0 2562— In®~ /2 (76“;1)2)
1L 360p" (%0, L, o) Tl " 0”
T 15 2562 - 4(t + 1) I (6<th1>2)
. Til 18 - 10241=/2Cp (B, L, 0)/Fojc” oI/ (8)
= 2562 - 4(t -+ 1) ™+ (AL
Using (13) as the upper bound for d; 1, we obtain

T-1 T-1 2—a
w2 36Cp* (g, L,0)\/Po/c o“

> 2k, [l <>

t=0

TS5 2562 - A(t + 1)Pe It/ (w)

L (P@0Lo)C () -1\
256 - 4Y/~ -5

18- 10241 Cp* (@0, L, o) Pofc "o I ()
= 2562 (1 + 1) (A )
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Using that (a + b)*/*> < a*/?> 4+ b*/* and applying Lemma 3, we get

T-1 2 T-1 3601+"/2p3”/2((b07L’G)WQ—QUQ

> 2eike, [I61°] < ' Vo

=0 120 256272 - 4%2(t + 1)B In*7 (T>
LS 3Oy @, L) o

= 2562472 . 42 (¢ + 1)Ba—(1-B)2/2 1P (@)

1211810241 /2Cp* (@o, L, 0)/Fofc” "0 In®~"/2 (&)

+
2560 At + 1) 17+ (S50

~+

Then, if we substitute the choice of p(®g, L, o) (7), we have

T-1 T-1
360
Z ‘2etE€t |:||9;1||21| = Z - 54a/2 [ 6(¢t+1)2
t=0 1=0 2562+%/2. 4%2(t +-1)f1n (f)
T-1
360
+> ’ ;
0 2562002 . 42(t + 1)Bo—(1-8)9/2 I’ (%)
N = 18 - 102412,

=0 2562 - 4(t + 1)Ba In* T2 (@) '

Therefore, if we choose 3 in the following way:

Condition 6:

1,
{30521@52&, (21)

/804—(1—6)0‘/221$522;>7a7

one can obtain

T—1 T—1
@n 36®,
20, [161°] < -
; ¢ ; 2562+°/2 . 4%/2(t 4 1)
+TZ_:1 36,
242/2 . 43
£ 9562+ - 4%2(t + 1)
T—1

Z 18 - 10241 —/2,
2.
= 2562 - 4(t + 1)

(16) ) 1—a/2 2
< 30, max{ 72 18-1024 }ln (GT)

2567+ 472" 2562 -4 5
Doln (£
<~ 7
=T 16

26



Under review as a conference paper at ICLR 2026

Bound for @. According to the event Ep_1, we have

4040.2(1

T-1
Z QStHQ?H Z C dt+1 + 1)"}/t )\2(1 5

t=0
T-1 4. 256272C (dytq + 1)72%0 200 In®* 0 <76(t§1)2>

Ve
_ 4 2562“ 20(dy + 1)73%0%* I (9)
\/%2“_2
1140 OO di + 1oy e ()

+ 200—2
t=1

_ 4o . 2562a—20(d1 4 1)73040_2(1 ln5a—5 (g)

) Ve
T=1 4. 2562020 (dyq + 1)%20402%?;11 In®e—? (s(ugnz)

+ 2a0—2 ’
t=1 <I>o/c

©

M

where in the last inequality we use that b, = d; < d;; for all ¢ > 1. Hence, one can obtain

T-1 a— « o 5a—5 (6
3 2e,|Jop|? < £ 2BETEOM + oot T ()
t 200—2
t=0 Po/c
T—1 4. 2562(x QCdt+1,yQa 20 1n5a 5 (G(t-gl)z)
+ 20—2
t=1 Po/C

T—1 4 . 9562~ 2Cd o ,72()( 2a |55 (G(t—gl)z)

+; <I>0/ 200—2 ’

Q

where we divide (d;+1 + 1) into two terms. As a result, substituting (13) to bound d;1, we get

T—1 b2 2562 720(d1+1),}/2a 2a1n5oz 5(%)
Z%tH@tH —
t=0 \/%

T—1 4% . 2562072022 In®e—? (M)
— \/%m—z
(HILAC (1 e 1)’
256 - 4'/° -
140 25622 0o ™ (S )
- \/mQa—Q
" (p(CI)o,L,a)C <1 N (t—|—1)1‘5—1>>0‘1 |

+

+

~

256 - 4"/«
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Substitution of (4) gives

Tz:_l 2€t||9g|‘2 (4<) 4% - 256**2C(dy 4 1)p**(®o, L, 0)0?
T (256)20 - 16y/F0fc " Pt (8)
4 - 2562 ~2Cp** (Do, L, 0)o>
I3 (256)20 - 16(t + 1)\ Bofc™ " e (%)

p(®0,L,o)C (| (17 1)\
256 -4 1-8

T-1
+

X

T—
+

H

4% . 2562972Cp*¥(dy, L, 0)0?
= (256)20 - 16(t + 1)280 /B Pt (6<t+1>2>

(P, L, t+ 1) — 1\
« p(Po, 10 14 (t+1) .
256 - 4'/« 1-p
Abusing facts that (@ + b)*~! < a® 1 + b since « — 1 < 1 and (a + b)* < 2a* + 2b* since
o < 2 allows to derive

T-1

o, 2a—2 20 2c
2€t||9fH2 49 - 256 7*C(dy + 1)p**(®o, L, 0)0

(256)20 - 16,/Fofc " >+ (&)
2. 4% . 9562023 (G [ 5)o
R TR e v i
2. 4% . 956202013 (g [ o) g2 (E 4110 —1\°
£ (256)1 - 640+ e o e (SR (=)
49 . 2562020 pBe1 (0, L, o)

7 (256)30-1 - 4@V a(t 4 1)280 [Bojc T It (6(t§1)2>

ﬂO

-1

+

t

!

+

t

~

+

t

~

N 4o . 25620‘_2Cap3a_1(¢)07L,O’)O’Qa y <(t + 1)1—ﬁ _ 1>a—1
T (256)3a—1 . 4@2"V/a(t 4 1)28a \/%2“*2 Imo+e (6(15-;—1)2) 1-3

Applying Lemma 3, we get

t

i . 04 2—2 20 9
S ey < 24T OO+ D (R, Lo o)

(256)2 16\/@ 1 5+a (7)

n Til 9.4« . 25620‘_201""0‘])30‘((1)0’ L, 0')0'20‘
5 (250 0a(e-+ e e (S
. T-1 9. 4% . 25620472C’lJrozpi?‘oz(q)o7 L, 0_)0_2
= (256)3 - 64(t + 1)280—(1=B)a [Bo]c"" 7% |5 (w)
N T—1 4a . 25620172001}?30171(@07 L7 0_)0_2
=1 (256)30—1 . 4GV a(t 4 1)20a \/%20‘_2 Ino+e (M)
. T-1 40 . 2562a—20ap3a_1(‘1)0, L,O‘)a’ZO‘

t—1 (256)32—1 . 4G*"V/a(t +1)2/3%(1—/3)(%1)\/%20—21116 (6(15—;1)2)'

Then, substituting (7) for each term (to be precise, for the first term we use option 1, for second and
third terms — option 3, and for the last two terms — option 2), with d; + 1 = yC + 1 < 2, one can
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obtain

T—

—

2.4 . 2562472
54+a (6
256)2 - 16In°" ($)

2ed6f] <
t=0

—~

!

2.4 25620‘_2@0
o e

+

t

S

2.4 . 256272
{ (256)30 - 64(t + 1)2B0—(1-B) | (Lt;lf)

+

H
l

!
-

4% . 256202,
T (256)30—1 . 40D/ (¢ 4 1)2Ba Pt (w>

+

o
Il

B

!

+

49 . 2562972,

t

{ (256)3a—1 . 4Bo=/a(t 4 1)2Ba—(1-B)(a=1) | (6(t+1)2

)

;

Hence, to obtain the sufficient bound, it is enough to choose 3 as follows:

Condition 7:
280 >1= > 5k
2a—(1-pF)a—-1)>1= > =2
2a—(1—Bla>1=p>

(22)

Consequently, we have

T-1 T-1

242 . 256272,

2a—2
3 oot 2

4-4% . 256202
(256)% - 16 - tz

. (256)% - 64(t + 1) ; (256)30—1 - 4@~ V/a(t + 1)
_ T2
Z 49 . 95620~ 2(I> (2,) Dy (65 )

(256)2¢ - 16(t+1) — 16

Final bound. If we formulate events Fq, Eg, Es as follows: b = %o 1n<6(?2)/2 and G

. 2
®2 1n(L§> )

24
doln (6(6)2> T—1 ®21n (6(?2)
Eyp = {|®| < — either o? > 24}
t=0
Do ln (45°) 1 afm (U5
Es = {|©| < — 1 either op > 1152}
t=0
@oln (45°) 1 afm (U5
Es =<6 < —s either 2 ol > 384} ,

then the event Er_1 N Eg N Eg N Eg implies

2 2 2 s 2
@0 In (%) (I)O In <%) q)o In (%) (I)O In (%) 6T2
Or < Oy + +3- + +2- <2®gln|{—).

2 12 8 16 0
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Consequently, we have

P{ET} > P{ET_l NEoNEgN E@} =1- P{ET_l ﬂE@ QE@ QE@}
T—1

_ _ _ — 1 36
>1—P{Er_1} —P{Fe} —P{FEg} —P{Eg}>1—-0 - — —
>1-P{Er_1} - P{Eo} - P{Es} — P{Eo} > Et 72

1
t=1
This finishes the inductive step of the proof. Therefore, the event F implies
K +1)?
Py < 20y 1In <6(6+)>

K
with probability at least 1 — ¢ %2 Abusing the notation, with dy = 0 we have
=1

di(f(zg) — f*) < 2CR%1In ((M) :

Thus, the event Ex implies

2CR2In (M) - 2R21n (M)

. 5 5
flox) = f" < K—1 K—1 (23)
Z 7C Z Ve
t=0 t=0
Moreover, it is known that
n
> ai
1 < =1
n = 2
Y+ "
h a;

for a; > 0, since it is AM-HM inequality. Thus, applying it with a; = A/i to (23) leads to

=

K+1)2 K+1)2

o) < 2R3 n (UGS _ 203 (SUgE) oy
x — —_—.
K = K—1 = K2 s o,

Il
=3

Substituting (4), we have

2R8 In (LI{;DZ) K—1 1
zr)— < —
flax) =" < 702 kZ:O -
6(K+1)2 _ 3 (6(k+1)2
< max ¢ 1024L1In ) T
K2 — ) 256 - 4 /Qp(fb,L,a)

(24)

Before we provide a final bound, let us emphasize two important parts. First of all, combining

o 1 at+l 24« @ a+1 : .
Conditions 1-7, we should choose 8 > max {E’ T 5 Ba T W} It is easy to verify that
24+«

{3 should be greater than =°*
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What is more, let us look at the choice of p(®y, L, a). Applying the definition of C' (8), we have

p((Do,L,O') = min ) 1 2
C%a 103a 1 C303
20 2
. RO R3Dt—l g
= 1min
\f(f 23a 1Csa 10'3(1 T 230% H
2 2
. Ry Rémfl RS
= min T
\/>0' 9%5aT [, 3a=1 10'.3a 1 25 L3o3
2 a— 2
Ry (41 p(®o, L, )51 Rg (41 /p(@y, L,0))3 } 25)
’ 2503 '

o 20
23a—1 g3a—1

If p(®g, L, o) equals fourth of fifth choice from (25), we can show that

const - Ript~"(®g, L, o
p(q)07L70-) = ¢ s ( < )

)

and 2. Therefore, we get

o
where r can be equal to 3%
veonst - Ry

t- Rj
cons " :>p((I)OvL7U) =
(o2

" (Do, L =
p(Oa 70) or

As a result, we have
320/ 2
R R RS
p(®9,L,0) =6 [min{ =2 —20 04|, (26)
0 [3a-ig3a-1 L303

Finally, applying (26) to (24) and using that
2 2
In (6(k;—1) ) <In (6(K;L 1) )

and

K-1 K K

K'*8 -1
(k+1) B—Zkﬁ§K5+/x5dx=Kﬂ+7§2K”B,
k=0 k=1 1+5
1

we derive

* < 2fign (M) - 1024 10 (S D (k+1)7n° (M)
flar) =7 < 72 max " 5 " 256-4Yp(P, L, o)

k=0

3(11

da—2
LR2In* (6(K+1) ) max $ Rgo, L R3 . L3R§ §}1 4(@)
+ 5

=0 %

Noting that we choose (3 as the best possible one, i.e. § = 30 , we obtain

da—2
IR maX{ROU L3T R gt LsRoaﬁ}
=0 :

flzr) = f* = i =

where @() denotes polylogarithmic dependency. This concludes the proof.
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