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ABSTRACT

In drug discovery, molecular dynamics (MD) simulation for protein-ligand bind-
ing provides a powerful tool for predicting binding affinities, estimating transport
properties, and exploring pocket sites. There has been a long history of improving
the efficiency of MD simulations through better numerical methods and, more re-
cently, by augmenting them with machine learning (ML) methods. Yet, challenges
remain, such as accurate modeling of extended-timescale simulations. To address
this issue, we propose NeuralMD, the first ML surrogate that can facilitate numer-
ical MD and provide accurate simulations of protein-ligand binding dynamics. We
propose a principled approach that incorporates a novel physics-informed multi-
grained group symmetric framework. Specifically, we propose (1) a BindingNet
model that satisfies group symmetry using vector frames and captures the multi-
level protein-ligand interactions, and (2) an augmented neural ordinary differen-
tial equation solver that learns the trajectory under Newtonian mechanics. For
the experiment, we design ten single-trajectory and three multi-trajectory binding
simulation tasks. We show the efficiency and effectiveness of NeuralMD, with
a 2000× speedup over standard numerical MD simulation and outperforming all
other ML approaches by up to ˜80% under the stability metric. We further quali-
tatively show that NeuralMD reaches more stable binding predictions.

1 INTRODUCTION

The simulation of protein-ligand binding dynamics is one of the fundamental tasks in drug
discovery (Kairys et al., 2019; Yang et al., 2020; Volkov et al., 2022). Such simulations of
binding dynamics are a key component of the drug discovery pipeline to select, refine, and tailor
the chemical structures of potential drugs to enhance their efficacy and specificity. To simulate
the protein-ligand binding dynamics, numerical molecular dynamics (MD) methods have been
extensively developed. However, the numerical MD methods are computationally expensive due to
the expensive force calculations on individual atoms in a large protein-ligand system.
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To alleviate this issue, machine learning (ML) surrogates have been proposed to either augment or
replace numerical MD methods to estimate the MD trajectories. However, all prior ML approaches
for MD are limited to single-system dynamics (e.g., small molecules or proteins) and not protein-
ligand binding dynamics. A primary reason is the lack of large-scale datasets. The first large-scale
dataset with binding dynamics was released in May 2023 (Siebenmorgen et al., 2023), and to our
knowledge, we are now the first to explore it in this paper. Further, prior ML-based MD approaches
limit to studying the MD dynamics on a small time interval (1e-15 seconds), while simulation on a
longer time interval (e.g., 1e-9 seconds) is needed for specific tasks, such as detecting the transient
and cryptic states (Vajda et al., 2018) in binding dynamics. However, such longer-time MD simula-
tions are challenging due to the catastrophic buildup of errors over longer rollouts (Fu et al., 2022a).

Another critical aspect that needs to be integrated into ML-based modeling is the group symmetry
present in protein-ligand geometry. Specifically, the geometric function should be equivariant to
rotation and translation (i.e., SE(3)-equivariance). The principled approach to satisfy equivariance
is to use vector frames, which have been previously explored for single molecules (Jumper et al.,
2021), but not yet for the protein-ligand binding complexes. The vector frame basis achieves SE(3)-
equivariance by projecting vectors (e.g., positions and accelerations) into the vector frame basis, and
such a projection can maintain the equivariant property with efficient calculations (Liu et al., 2023).

Our Approach, NeuralMD. We propose NeuralMD, a multi-grained physics-informed approach
designed to handle extended-timestep MD simulations for protein-ligand binding dynamics. Our
multi-grained method explicitly decomposes the complexes into three granularities: the atoms in
ligands, the backbone structures in proteins, and the residue-atom pairs in the complex, to obtain a
scalable approach for modeling a large system. We achieve group symmetry in BindingNet through
the incorporation of vector frames, and include three levels of vector frame bases for multi-grained
modeling, from the atom and backbone level to the residue level for binding interactions.Further,
our ML approach NeuralMD preserves the Newtonian mechanics. In MD, the movement of atoms
is determined by Newton’s second law, F = m · a, where F is the force, m is the mass, and a is the
acceleration of each atom. By integrating acceleration and velocity w.r.t. time, we can obtain the
velocities and positions, respectively. Thus in NeuralMD, we formulate the trajectory simulation
as a second-order ordinary differential equation (ODE) or second-order stochastic differential
equation (SDE) problem. Specifically, we augment derivative space by concurrently calculating the
accelerations and velocities, allowing simultaneous integration of velocities and positions.

2 PRELIMINIARIES

Ligands. In this work, we only consider binding complexes with small molecules as ligands. Small
molecules can be treated as sets of atoms in the 3D Euclidean space, {f (l),x(l)}, where f (l) and x(l)

represent the atomic numbers and 3D Euclidean coordinates for atoms in each ligand, respectively.

Proteins. Proteins are essentially chains of amino acids or residues, where there are 20 natural
amino acids. Noticeably, amino acids are made up of three components: a basic amino group (-
NH2), an acidic carboxyl group (-COOH), and an organic R group (or side chain) that is unique to
each amino acid. Additionally, the carbon that connects all three groups is called Cα. (We refer
to this Wiki page for more details.) In this work, due to the large volume of atoms in proteins,
we will use coarse-grained modelings on proteins and binding complexes. With this regard, the
backbone-level data structure for each protein is {f (p), {x(p)

N ,x
(p)
Cα

,x
(p)
C }}, for the residue type and

the coordinates of N −Cα −C in each residue, respectively. (We may ignore the superscript in the
coordinates of backbone atoms for brevity since such backbone structures are unique for residues in
proteins) In addition to the backbone level, for a coarser-grained data structure, we further consider
residue-level modeling for binding interactions, {f (p),x(p)}, where the coordinate of Cα is treated
as the residue-level coordinate, i.e., x(p)x

(p)
Cα

.

Molecular Dynamics Simulations. Generally, molecular dynamics (MD) describes how each atom
in a molecular system moves over time, following Newton’s second law of motion:

F = m · a = m · d
2x

dt2
, (1)

where F is the force, m is the mass, a is the acceleration, x is the position, and t is the time. Then,
an MD simulation will take Newtonian dynamics to get the trajectories. The Numerical molecular
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dynamics (MD) methods fall into two categories: Newtonian and Langevin dynamics. Newtonian
dynamics is ideal for systems with minimal thermal effects or when deterministic trajectories are
needed. Conversely, Langevin dynamics is preferred for systems where thermal effects are sig-
nificant, particularly at finite temperatures. In this study, we introduce two versions: an ordinary
differential equation (ODE) solver for Newtonian dynamics and a stochastic differential equation
(SDE) solver for Langevin dynamics.

Problem Setting: Protein-Ligand Binding Dynamics Simulation. In this work, we focus on sim-
ulating the protein-ligand binding dynamics in the semi-flexible setting Salmaso & Moro (2018),
i.e., proteins with rigid structures and ligands with flexible movements (Siebenmorgen et al.,
2023). Thus, the problem is formulated as follows: suppose we have a rigid protein structure
{f (p), {x(p)

N ,x
(p)
Cα

,x
(p)
C }} and a ligand with its initial structure and velocity, {f (l),x

(l)
0 ,v

(l)
0 }. We

want to predict the trajectories of ligands following the Newtonian dynamics, i.e., the movement of
{x(l)

t , ...} over time. We also want to clarify two critical points about this problem setting. (1) We
consider trajectory prediction, i.e., positions as labels, and no explicit energy and force labels are
considered. ML methods for energy prediction followed with numerical ODE/SDE solver may re-
quire smaller timescales (around 1e-15 seconds), while trajectory prediction, which directly predicts
the positions, is agnostic to the magnitude of timescales. This is appealing for datasets like MISATO
with larger timescales (1e-9 seconds). (2) Each trajectory is composed of a series of geometries of
ligands, and such geometries are called snapshots.

3 METHOD: BINDINGNET AND NEURALMD

In this section, we introduce BindingNet, a multi-grained SE(3)-equivariant geometric model for
protein-ligand binding. The input of BindingNet is the geometry of the rigid protein and the ligand
at time t, while the output is the force on each atom in the ligand. Our architecture is SE(3)
equivariant by extending the equivairant frames for small molecules in Du et al. (2022) to 1. Atom
level: Fligand; 2. Protein level: Fprotein; 3. Fcomplex. See appendix D for the formal definition.

Atom-Level Ligand Modeling. We first generate the atom embedding using one-hot encoding and
then aggregate each atom’s embedding, z(l), by aggregating all its neighbor’s embedding within
the cutoff distance c. Then, we obtain the atom’s equivariant representation by aggregating its
neighborhood’s messages as (x

(l)
i − x

(l)
j ) · z(l)

i . A subsequent scalarization is carried out based

on the atom-level vector frame as h
(l)
ij = (h

(l)
i ⊕ h

(l)
j ) · Fligand, where ⊕ is the concatenation.

Finally, it is passed through several equivariant message-passing layers (MPNN). The outputs are
atom representation and vector (h(l) and vec(l)), and they are passed to the complex module.

Backbone-Level Protein Modeling. For the coarse-grained modeling of proteins, we consider three
backbone atoms in each residue. We first obtain the atom embedding on three atom types, and then
we obtain each atom’s representation z(p) by aggregating its neighbor’s representation. Then, we
obtain an equivariant atom representation by aggregating the edge information, (x(p)

i −x
(p)
j ) · z(p)

i ,

within cutoff distance c. Following which is the scalarization on the residue frame h
(p)
ij = (h

(p)
i ⊕

h
(p)
j ) · Fprotein. Recall that we also have the residue type, and with a type embedding z̃(p), we

can obtain the final residue-level representation using an MPNN layer as h(p) = z̃(p) + (h
(p)
N,Cα

+

h
(p)
Cα,C)/2. We leave the Residue-Level Complex Modeling in appendix F.

NODE for molecular dynamics As clarified in Section 2, molecular dynamics follows Newtonian
dynamics, and we solve it as an ordinary differential equation (ODE) problem or a stochastic differ-
ential equation (SDE) problem. The BindingNet takes in the molecular system geometry (x(l)

t ,x(p))
at arbitrary time t, and outputs the forces.

To learn the MD trajectory following second-order ODE, we propose the following formulation of
the second-order ODE within one integration call:[

dx/dt
dv/dt

]
=

[
v

F/m

]
, (2)
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where F is the output forces from BindingNet. This means we augment ODE derivative space
by concurrently calculating the accelerations and velocities, allowing simultaneous integration of
velocities and positions. Ultimately, following Newtonian mechanics, the coordinates at time t are
integrated as:

F (l)
τ -ODE = BindingNet(f (l),x(l)

τ , f (p),x
(p)
N ,x

(p)
Cα

,x
(p)
C ). (3)

On the other hand, Langevin dynamics introduces a stochastic component for large molecular
systems with thermal fluctuations. Concretely, Langevin dynamics is an extension of the standard
Newtonian dynamics with the addition of damping and random noise terms:

F (l)
τ -SDE = BindingNet(f (l),x(l)

τ , f (p),x
(p)
N ,x

(p)
Cα

,x
(p)
C )− γmv +

√
2mγkBTR(t), (4)

a(l)
τ =

F
(l)
τ

m
, v̂

(l)
t = v

(l)
0 +

∫ t

0

a(l)
τ dτ, x̂

(l)
t = x

(l)
0 +

∫ t

0

v̂(l)
τ dτ. (5)

The objective is the mean absolute error between the predicted coordinates and ground-truth
coordinates: L = Et

[
|x̂(l)

t − x
(l)
t |

]
. An illustration of NeuralMD pipeline is in appendix Figure 2.

Figure 1: Visualization of last-snapshot binding predictions on three PDB complexes. NeuralMD stays more
stable than DenoisingLD, exhibiting a lower degree of torsion with the natural conformations. Other methods
collapse heavily, including GNN-MD and VerletMD, where atoms extend beyond the frame for the latter.

4 EXPERIMENTS

Datasets. We consider MISATO in our work (Siebenmorgen et al., 2023). It is built on 16,972
experimental protein-ligand complexes extracted from the protein data bank (PDB) (Berman et al.,
2000). For each protein-ligand complex, the trajectory comprises 100 snapshots in 8 nanoseconds
under the fixed temperature and pressure. We want to highlight that MD trajectories allow the
analysis of small-range structural fluctuations of the protein-ligand complex. See appendix E for the
basic statistics.

Experiments Settings. We consider two experiment settings. The first type of experiment is the
single-trajectory prediction, where both the training and test data are snapshots from the same tra-
jectory, and they are divided temporally. The second type of experiment is the multi-trajectory
prediction, where each data point is the sequence of all the snapshots from one trajectory, and the
training and test data correspond to different sets of trajectories.

Evaluation Metrics. For both experiment settings, the trajectory recovery is the most straightfor-
ward evaluation metric. To evaluate this, we take both the mean absolute error (MAE) and mean
squared error (MSE) between the predicted coordinates and ground-truth coordinates. Stability is
also an important metric for evaluating the predicted MD trajectory. The intuition is that the predic-
tion on long-time MD trajectory can enter a pathological state (e.g., bond breaking), and stability is
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the measure to quantify such observation. It is defined as Pi,j

∥∥∥xi−xj∥−bi,j
∥∥ > ∆, where bi,j is

the pair distance at the last snapshot (the most equilibrium state), and we take ∆ = 0.5 Å. Another
metric considered is frames per second (FPS) on a single Nvidia-V100 GPU card, and it measures
the MD efficiency.

Results on single-trajectory prediction We provide the visualization of some examples in Fig-
ure 1. Quantitative results are in Table 2 and baselines are introduced in appendix G. The first
observation is that the baseline VertletMD has a clear performance gap compared to the other meth-
ods. This verifies that using ML models to predict the energy (or force) at each snapshot, and then
using a numerical integration algorithm can fail in the long-time simulations (Fu et al., 2022a). Ad-
ditionally, we can observe that the recovery error of trajectory (MAE and MSE) occasionally fails
to offer a discernible distinction among methods (e.g., for protein-ligand complex 3EOV, 1KT1, and
4G3E), though NeuralMD is slightly better. However, the stability (%) can be a distinctive factor in
method comparisons, where we observe NeuralMD outperform on all 10 tasks up to ˜80%. More
detailed analysis is also provided in appendix G.
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A MORE PRELIMINARIES AND RELATED WORK

Numerical methods for MD can be classified into classical MD and ab-initio MD, where ab-initio
MD calculates the forces using a quantum-mechanics-based method, such as DFT, while classical
MD uses an approximated function fit to ab-initio calculations to predict the atomic forces. More
recently, the machine learning methods for MD have opened a new perspective by utilizing the
group symmetric tools for geometric representation and the neural ODE Chen et al. (2018).

On one hand, many works have studied the protein-ligand binding problem in the equilibrium
state (Stepniewska-Dziubinska et al., 2018; Jiménez et al., 2018; Jones et al., 2021; Yang et al.,
2023), but not the MD simulation for binding dynamics. On the other hand, existing machine
learning (ML) methods have studied molecular simulation (Zhang et al., 2018; Doerr et al., 2020;
Musaelian et al., 2023; Fu et al., 2022b), but they are mainly studying small molecules or proteins.
In this work, we propose an ML framework as an MD simulation to learn the protein-ligand binding
dynamics.

B VISUAL ANALYSIS

Figure 2: Brief pipeline of NeuralMD. In the three key modules of BindingNet, there are three vertical boxes,
corresponding to three granularities of vector frames, as in Equations (23) to (25). More details are in Ap-
pendix F.
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C GROUP SYMMETRY AND EQUIVARIANCE

In this article, a 3D molecular graph is represented by a collection of 3D point clouds. The cor-
responding symmetry group is SE(3), which consists of translations and rotations. Recall that we
define the notion of equivariance functions in R3 in the main text through group actions. Formally,
the group SE(3) is said to act on R3 if there is a mapping ϕ : SE(3) × R3 → R3 satisfying the
following two conditions:

1. if e ∈ SE(3) is the identity element, then

ϕ(e, r) = r for ∀r ∈ R3.

2. if g1, g2 ∈ SE(3), then

ϕ(g1, ϕ(g2, r)) = ϕ(g1g2, r) for ∀r ∈ R3.

Then, there is a natural SE(3) action on vectors r in R3 by translating r and rotating r for multiple
times. For g ∈ SE(3) and r ∈ R3, we denote this action by gr. Once the notion of group action is
defined, we say a function f : R3 → R3 that transforms r ∈ R3 is equivariant if:

f(gr) = gf(r), for ∀ r ∈ R3.

On the other hand, f : R3 → R1 is invariant, if f is independent of the group actions:

f(gr) = f(r), for ∀ r ∈ R3.

For some scenarios, our problem is chiral sensitive. That is, after mirror reflecting a 3D molecule,
the properties of the molecule may change dramatically. In these cases, it’s crucial to include reflec-
tion transformations into consideration. More precisely, we say an SE(3) equivariant function f is
reflection anti-symmetric, if:

f(ρr) ̸= f(r), (6)
for reflection ρ ∈ E(3).

8
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D EQUIVARIANT VECTOR FRAMES
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Figure 3: Three granularities of vector frame basis in BindingNet: (a) atom-level basis for ligands, (b)
backbone-level basis for proteins, and (c) residue-level basis for the protein-ligand complex.

Frame is a popular terminology in science areas. In physics, the frame is equivalent to a coordinate
system. For example, we may assign a frame to all observers, although different observers may
collect different data under different frames, the underlying physics law should be the same. In
other words, denote the physics law by f , then f should be an equivariant function.

There are certain ways to choose the frame basis, and below we introduce two main types: the
orthogonal basis and the protein backbone basis. The orthogonal basis can be built for flexible 3D
point clouds such as atoms, while the protein backbone basis is specifically proposed to capture the
protein backbone.

D.1 BASIS

Since there are three orthogonal directions in R3, one natural frame in R3 can be a frame consisting
of three orthogonal vectors:

F = (e1, e2, e3).

Once equipped with a frame (coordinate system), we can project all geometric quantities to this
frame. For example, an abstract vector x ∈ R3 can be written as x = (r1, r2, r3) under the frame
F , if: x = r1e1 + r2e2 + r3e3. An equivariant frame further requires the three orthonormal vectors
in (e1, e2, e3) to be equivariant. Intuitively, an equivariant frame will transform according to the
global rotation or translation of the whole system. Once equipped with an equivariant frame, we can
project equivariant vectors into this frame:

x = r̃1e1 + r̃2e2 + r̃3e3. (7)

We call the process of x → r̃ := (r̃1, r̃2, r̃3) the scalarization or projection operation. Since
r̃i = ei · x is expressed as an inner product between equivariant vectors, we know that r̃ consists of
scalars.

In this article, we assign an equivariant frame to each node/edge, therefore we call them the local
frames. Given two atoms with 3D positions (xi,xj), we can find the atom (denoted by xk) that is
nearest to the center of (xi,xj) by KNN algorithms. Then the equivariant frame is defined by:

Vector-Frame(xi,xj) := Gram-Schmidt{xi − xj ,xi − xk, (xi − xj)× (xi − xk)}. (8)

The Gram-Schmidt orthogonalization makes sure that the Vector-Frame(xi,xj) is orthonormal.

Reflection Antisymmetric Since we implement the cross product × for building the local frames,
the third vector in the frame is a pseudo-vector. Then, the projection operation is not invariant under
reflections (the inner product between a vector and a pseudo-vector change signs under reflection).
Therefore, our model can discriminate two 3D geometries with different chiralities.

Our local frames also enable us to output equivariant vectors by multiplying scalars (v1, v2, v3) with
the frame: v = v1 · e1 + v2 · e2 + v3 · e3.

Equivariance w.r.t. cross-product The goal is to prove that the cross-product is equivariant to
the SE(3)-group, i.e.:

gx× gy = g(x× y), g ∈ SE(3)-Group (9)

9
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Geometric proof. From intuition, with rotation matrix g, we are transforming the whole basis, thus
the direction of gx× gy changes equivalently with g. And for the value/length of gx× gy, because
|gx× gy| = ∥gx∥ · ∥gy∥ · sin θ = ∥x∥ · ∥y∥ · sin θ = |x× y|. So the length stays the same, and the
direction changes equivalently. Intuitively, this interpretation is quite straightforward.

Analytical proof. A more rigorous proof can be found below: First, we have that for the rotation
matrix g:

gx× gy =

gT
1 x

gT
2 x

gT
3 x

×

gT
1 y

gT
2 y

gT
3 y

 =

 gT
2 x · gT

3 y − gT
3 x · gT

2 y
−gT

1 x · gT
3 y + gT

3 x · gT
1 y

gT
1 x · gT

2 y − gT
2 x · gT

1 y

 , (10)

where gi,x,y ∈ R3×1.

Because ATC ·BTD −ATD ·BTC = (A×B)T (C ×D), so we can have:

gx× gy =

 gT
2 x · gT

3 y − gT
3 x · gT

2 y
−gT

1 x · gT
3 y + gT

3 x · gT
1 y

gT
1 x · gT

2 y − gT
2 x · gT

1 y

 =

 (g2 × g3)
T (x× y)

(g3 × g1)
T (x× y)

(g1 × g2)
T (x× y).

 (11)

Then because:
det(g) = (g2 × g3)

Tg1 = gT
1 g1 = 1

=⇒(g2 × g3)
Tg1g

−1
1 = gT

1 g1g
−1
1

=⇒(g2 × g3)
T = gT

1 .

(12)

Thus, we can have

gx× gy =

(g2 × g3)
T (x× y)

(g3 × g1)
T (x× y)

(g1 × g2)
T (x× y)

 =

gT
1 (x× y)

gT
2 (x× y)

gT
3 (x× y)

 = g(x× y). (13)

Rotation symmetric The goal is to prove

Vector-Frame(gxi, gxj) = gGram-Schmidt{xi − xj ,xi − xk, (xi − xj)× (xi − xk)}. (14)

Thus we can have:

Vector-Frame(gxi, gxj) = Gram-Schmidt{gxi − gxj , gxi − gxk, (gxi − gxj)× (gxi − gxk)}
= Gram-Schmidt{g(xi − xj), g(xi − xk), g((xi − xj)× (xi − xk))}.

(15)

Recall that Gram-Schmidt projection (Gram-Schmidt{v1,v2,v3}) is:

u1 = v1, e1 =
v1

∥v1∥
,

u2 = v2 −
uT

1 v2

∥u1∥
u1, e2 =

v2

∥v2∥
,

u3 = v3 −
uT

1 v3

∥u1∥
u1 −

uT
2 v3

∥u2∥
u2, e3 =

v3

∥v3∥
.

(16)

Thus, the Gram-Schmidt projection on the rotated vector (Gram-Schmidt{gv1, gv2, gv3}) is:

u′
1 = gv1,

u′
2 = gv2 − g

uT
1 v2

∥u1∥
u1,

u′
3 = gv3 − g

uT
1 v3

∥u1∥
u1 − g

uT
2 v3

∥u2∥
u2,

(17)

Thus, Gram-Schmidt{gv1, gv2, gv3} = gGram-Schmidt{v1,v2,v3}.

10
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Transition symmetric

Vector-Frame(xi + δx,xj + δx) = Gram-Schmidt{xi − xj ,xi − xk, (xi − xj)× (xi − xk)}.
(18)

Because the basis is based on the difference of coordinates, it is straightforward to observe that
Gram-Schmidt{v1 + t,v2 + t,v3 + t} = Gram-Schmidt{v1,v2,v3}. So the frame operation is
transition equivariant.

Reflection antisymmetric

Vector-Frame(xi,xj) ̸= Vector-Frame(−xi,−xj). (19)

From intuition, this makes sense because the cross-product is anti-symmetric.

A simple counter-example is the original geometry R and the reflected geometry by the original
point −R. Thus the two bases before and after the reflection group is the following:

Gram-Schmidt{xi − xj ,xi − xk, (xi − xj)× (xi − xk)} (20)
Gram-Schmidt{−xi + xj ,−xi + xk, (xi − xj)× (xi − xk)}. (21)

The bases between v1,v2,v3 and {−v1,−v2,v3}} are different, thus such frame construction is
reflection anti-symmetric.

D.2 SCALARIZATION

Once we have the three vectors as the vector frame basis, the next thing is to do modeling. Suppose
the frame is F = (e1, e2, e3), then for an equivariant vector (tensor) h, the scalarization is:

h⊙F = (h⊙ e1,h⊙ e2,h⊙ e3) = (h1,h2,h3). (22)

D.3 MULTI-GRAINED SE(3)-EQUIVARIANT VECTOR FRAME

Proteins are essentially macromolecules composed of thousands of residues (amino acids), where
each residue is a small molecule. Thus, it is infeasible to model all the atoms in proteins due to the
large volume of the system, and such an issue also holds for the protein-ligand complex. To address
this issue, we propose BindingNet, a multi-grained SE(3)-equivariant model. The vector frame
basis ensures SE(3)-equivariance, and the multi-granularity is achieved by considering frames at
three levels.

Vector Frame Basis for SE(3)-Equivariance. Recall that the geometric representation of the
whole molecular system needs to follow the physical properties of the equivariance w.r.t. rotation
and translation. Such a group symmetric property is called SE(3)-equivariance. We also want to
point out that the reflection or chirality property is equivariant for properties like energy, yet it is
not for the ligand modeling with rigid protein structures (i.e., antisymmetric to the reflection). The
vector frame basis can handle this naturally, and we leave a more detailed discussion in Appendix D,
along with the proof on group symmetry of vector frame basis. In the following, we introduce three
levels of vector frames for multi-grained modeling.

Atom-Level Vector Frame for Ligands. For small molecule ligands, we first extract atom pairs
(i, j) within the distance cutoff c, and the vector frame basis is constructed using the Gram-Schmidt
as:

Fligand = (
x

(l)
i − x

(l)
j∥∥∥x(l)

i − x
(l)
j

∥∥∥ ,
x

(l)
i × x

(l)
j∥∥∥x(l)

i × x
(l)
j

∥∥∥ ,
x

(l)
i − x

(l)
j∥∥∥x(l)

i − x
(l)
j

∥∥∥ ×
x

(l)
i × x

(l)
j∥∥∥x(l)

i × x
(l)
j

∥∥∥ ), (23)

where × is the cross product. Note that both x
(l)
i and x

(l)
j are for geometries at time t -

henceforth, we omit the subscript t for brevity. Such an atom-level vector frame allows us to do
SE(3)-equivariant message passing to get the atom-level representation.

Backbone-Level Vector Frame for Proteins. Proteins can be treated as chains of residues, where
each residue possesses a backbone structure. The backbone structure comprises an amino group, a

11
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carboxyl group, and an alpha carbon, delegated as N −Cα−C. Such a structure serves as a natural
way to build the vector frame. For each residue in the protein, the coordinates are xN , xCα

, and
xC , then the backbone-level vector frame for this residue is:

Fprotein = (
xN − xCα

∥xN − xCα∥
,

xCα − xC

∥xCα − xC∥
,

xN − xCα

∥xN − xCα∥
× xCα − xC

∥xCα − xC∥
). (24)

This is built for each residue, providing a residue-level representation.

Residue-Level Vector Frame for Protein-Ligand Complexes. It is essential to model the
protein-ligand interaction to better capture the binding dynamics. We achieve this by introduc-
ing the residue-level vector frame. More concretely, proteins are sequences of residues, marked as
{(f (p)

0 ,x
(p)
0 ), ..., (f

(p)
i ,x

(p)
i ), (f

(p)
i+1,x

(p)
i+1, ...}. Here, we use a cutoff threshold c to determine the

interactions between ligands and proteins, and the interactive regions on proteins are called pockets.
We construct the following vector frame for residues in the pockets sequentially:

Fcomplex = (
x

(p)
i − x

(p)
i+1∥∥∥x(p)

i − x
(p)
i+1

∥∥∥ , x
(p)
i × x

(p)
i+1∥∥∥x(p)

i × x
(p)
i+1

∥∥∥ , x
(p)
i − x

(p)
i+1∥∥∥x(p)

i − x
(p)
i+1

∥∥∥ ×
x

(p)
i × x

(p)
i+1∥∥∥x(p)

i × x
(p)
i+1

∥∥∥ ). (25)

Through this complex-level vector frame, the message passing enables the exchange of information
between atoms from ligands and residues from the pockets. The illustration of the above three levels
of vector frames can be found in Figure 3. Once we build up such three vector frames, we then
conduct a scalarization operation (Du et al., 2022), which transforms the equivariant variables (e.g.,
coordinates) to invariant variables by projecting them to the three vector bases in the vector frame.

12
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E SPECIFICATIONS ON MISATO

In this section, we provide more details on the MISATO dataset (Siebenmorgen et al., 2023).

For small molecule ligands, we ignore the Hydrogen atoms.

(a) Training data. (b) Validation data. (c) Test data.

Figure 4: Distribution on # atoms in small molecule ligands for all protein-ligand complex.

(a) Training data. (b) Validation data. (c) Test data.

Figure 5: Distribution on # residues in proteins for all protein-ligand complex.

We also plot the distribution of the energy gap between each time step and the initial snapshot, i.e.,
Et −E0. The distribution is in Figure 6. We can observe that as the time processes, the mean of the
energy stays almost the same, yet the variance gets higher.

(a) Training data. (b) Validation data. (c) Test data.

Figure 6: Distribution on energy Et − E0.
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F DETAILS OF NEURALMD

Residue-Level Complex Modeling. Once we obtain the atom-level representation and vector
(h(l), vec(l)) from ligands, and backbone-level representation (h(p)) from proteins, the next step is to
learn the protein-ligand interaction. We first extract the residue-atom pair (i, j) with a cutoff c, based
on which we obtain an equivariant interaction edge representation hij = (h

(l)
i +h

(p)
j )·(x(l)

i −x
(p)
j ).

After scalarization, we can obtain invariant interaction edge representation hij = hij · Fcomplex. Fi-
nally, we adopt an equivariant MPNN layer to get the atom-level force as:

vec(pl)ij = vec(l)i · MLP(hij) + (x
(l)
i − x

(p)
j ) · MLP(hij), F

(l)
i = vec(l)i + Aggj∈N (i)vec(pl)ij . (26)

In the last equation, the ultimate force predictions can be viewed as two parts: the internal force
from the molecule vec(l)i and the external force from the protein-ligand interaction vec(pl)ij .

F.1 ARCHITECTURE DETAILS

In this section, we provide more details on the model architecture in Figure 7, and hyperparameter
details in Table 1.

Figure 7: Detailed pipeline of NeuralMD. In the three key modules of BindingNet, there are three vertical
boxes, corresponding to three granularities of vector frames, as in Equations (23) to (25).

Table 1: Hyperparameter specifications for NeuralMD.

Hyperparameter Value

# layers {5}
c {5}
cutoff c 5
learning rate {1e-4, 1e-3}
optimizer {SGD, Adam }
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Table 2: Results on ten single-trajectory binding dynamics prediction. Results with optimal training loss are
reported. Four evaluation metrics are considered: MAE (Å, ↓), MSE (↓), and Stability (%, ↓).

PDB ID Metric VerletMD GNN-MD DenoisingLD NeuralMD
ODE (Ours)

NeuralMD
SDE (Ours)

5WIJ
MAE 9.618 2.319 2.254 2.118 2.109
MSE 6.401 1.553 1.502 1.410 1.408
Stability 79.334 45.369 18.054 12.654 13.340

4ZX0
MAE 21.033 2.255 1.998 1.862 1.874
MSE 14.109 1.520 1.347 1.260 1.271
Stability 76.878 41.332 23.267 18.189 18.845

3EOV
MAE 25.403 3.383 3.505 3.287 3.282
MSE 17.628 2.332 2.436 2.297 2.294
Stability 91.129 57.363 51.590 44.775 44.800

4K6W
MAE 14.682 3.674 3.555 3.503 3.429
MSE 9.887 2.394 2.324 2.289 2.234
Stability 87.147 57.852 39.580 38.562 38.476

1KTI
MAE 18.067 6.534 6.657 6.548 6.537
MSE 12.582 4.093 4.159 4.087 4.085
Stability 77.315 4.691 7.377 0.525 0.463

PDB ID Metric VerletMD GNN-MD DenoisingLD NeuralMD
ODE (Ours)

NeuralMD
SDE (Ours)

1XP6
MAE 13.444 2.303 1.915 1.778 1.822
MSE 9.559 1.505 1.282 1.182 1.216
Stability 86.393 43.019 28.417 19.256 22.734

4YUR
MAE 15.674 7.030 6.872 6.807 6.826
MSE 10.451 4.662 4.520 4.508 4.526
Stability 81.309 50.238 32.423 23.250 25.008

4G3E
MAE 5.181 2.672 2.577 2.548 2.478
MSE 3.475 1.743 1.677 1.655 1.615
Stability 65.377 16.365 7.188 2.113 2.318

6B7F
MAE 31.375 4.129 3.952 3.717 3.657
MSE 21.920 2.759 2.676 2.503 2.469
Stability 87.550 54.900 16.050 3.625 22.750

3B9S
MAE 19.347 2.701 2.464 2.351 2.374
MSE 11.672 1.802 1.588 1.527 1.542
Stability 41.667 43.889 8.819 0.000 0.000

G MORE EXPERIMENT RESULTS

G.1 EXPERIMENT SETUP

To verify the effectiveness and efficiency of NeuralMD, we design ten single-trajectory and three
multi-trajectory binding simulation tasks. For evaluation, we adopt the recovery and stability met-
rics (Fu et al., 2022a). NeuralMD achieves 2000× speedup compared to the numerical methods.
We observe that NeuralMD outperforms all other ML methods (Zhang et al., 2018; Musaelian et al.,
2023; Fu et al., 2022b; Wu & Li, 2023; Arts et al., 2023) on 12 tasks using recovery metric, and
NeuralMD is consistently better by a large gap using the stability metric (up to ˜80%). Qualita-
tively, we illustrate that NeuralMD realizes more stable binding dynamics predictions in three case
studies. They are three protein-ligand binding complexes from Protein Data Bank (PDB), as shown
in Figure 1.

Baselines. In this work, we mainly focus on machine learning methods for trajectory prediction,
i.e., no energy or force labels are considered. GNN-MD is to apply geometric graph neural net-
works (GNNs) to predict the trajectories in an auto-regressive manner (Siebenmorgen et al., 2023;
Fu et al., 2022b). More concretely, GNN-MD takes as inputs the geometries at time t and pre-
dicts the geometries at time t+ 1. DenoisingLD (denoising diffusion for Langevin dynamics) (Arts
et al., 2023; Wu & Li, 2023; Fu et al., 2022b) is a baseline method that models the trajectory pre-
diction as denoising diffusion task (Song et al., 2020), and the inference for trajectory generation
essentially becomes the Langevin dynamics. CG-MD learns a dynamic GNN and a score GNN (Fu
et al., 2022b), which are essentially the hybrid of GNN-MD and DenoisingLD. Here, to make the
comparison more explicit, we compare these two methods (GNN-MD and DenoisingLD) separately.
Additionally, we consider VerletMD, an energy prediction research line (including DeePMD (Zhang
et al., 2018), TorchMD (Doerr et al., 2020), and Allegro-LAMMPS (Musaelian et al., 2023)), where
the role of ML models is to predict the energy, and the MD trajectory is obtained by the veloc-
ity Verlet algorithm, a numerical integration method for Newtonian mechanics. We keep the same
backbone model (BindingNet) for energy or force prediction for all the baselines.

G.2 MAIN RESULTS ON SINGLE-TRAJECTORY PREDICTION

The main results in shown in Table 2.

G.3 MORE RESULTS ON SINGLE-TRAJECTORY PREDICTION

One main benefit of using NeuralMD for binding simulation is its efficiency. To show this, we list
the computational time in Table 3. We further approximate the wall time of the numerical method for
MD simulation (PDB 5WIJ). Concretely, we can get an estimated speed of 1 nanosecond of dynam-
ics every 0.28 hours. This is running the simulation with GROMACS (Van Der Spoel et al., 2005) on
1 GPU with 16 CPU cores and a moderately sized water box at the all-atom level (with 2 femtosec-
ond timesteps). This equivalently shows that NeuralMD is ˜2000× faster than numerical methods.
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Table 4: Results on three multi-trajectory binding dynamics predictions. Results with optimal validation loss
are reported. Four evaluation metrics are considered: MAE (Å, ↓), MSE (↓), and Stability (%, ↓).

Dataset MISATO-100 MISATO-1000 MISATO-All

MAE MSE Stability MAE MSE Stability MAE MSE Stability

VerletMD 90.326 56.913 86.642 80.187 53.110 86.702 105.979 69.987 90.665
GNN-MD 7.176 4.726 35.431 7.787 5.118 33.926 8.260 5.456 32.638
DenoisingLD 7.112 4.684 29.956 7.746 5.090 18.898 15.878 10.544 89.586

NeuralMD-ODE (Ours) 6.852 4.503 19.173 7.653 5.028 15.572 8.147 5.386 17.468
NeuralMD-SDE (Ours) 6.869 4.514 19.561 7.665 5.037 16.501 8.165 5.398 19.012

Table 3: Efficiency comparison of FPS between VerletMD and NeuralMD on single-trajectory prediction.

PDB ID 5WIJ 4ZX0 3EOV 4K6W 1KTI 1XP6 4YUR 4G3E 6B7F 3B9S Average

VerletMD 12.564 30.320 29.890 26.011 19.812 28.023 31.513 29.557 19.442 31.182 25.831
NeuralMD (Ours) 33.164 39.415 31.720 31.909 24.566 37.135 39.365 39.172 20.320 37.202 33.397

G.4 MD PREDICTION: GENERALIZATION AMONG MULTIPLE TRAJECTORIES

A more challenging task is to test the generalization ability of NeuralMD among different trajecto-
ries. The MISATO dataset includes 13,765 protein-ligand complexes, and we first create two small
datasets by randomly sampling 100 and 1k complexes, respectively. Then, we take 80%-10%-10%
for training, validation, and testing. We also consider the whole MISATO dataset, where the data
split has already been provided. After removing the peptide ligands, we have 13,066, 1,357, and
1,357 complexes for training, validation, and testing, respectively.

The quantitative results are in Table 4. First, we can observe that VerletMD has worse performance
on all three datasets, and the performance gap with other methods is even larger compared to the
single-trajectory prediction. The other two baselines, GNN-MD and DenoisingLD, show similar
performance, while NeuralMD outperforms in all datasets. Notice that stability (%) remains more
distinguishable than the two trajectory recovery metrics (MAE and MSE).

G.5 ABLATION STUDIES: FLEXIBLE BINDING

Recall that, in the main paper, we have discussed using the semi-flexible binding setting, i.e., proteins
with rigid structures while small molecule ligands with flexible structures, and the goal is to predict
the trajectories of the ligands. If we want to take both proteins and ligands with flexible structures,
one limitation is the GPU memory cost. However, we would like to mention that it is possible to
do NeuralMD on protein-ligand with small volume, and we take an ablation study to test them as
below.

Problem Setup. Both the proteins and ligands are flexible, and we want to predict their trajectories
simultaneously. In the main paper, we consider three levels of vector frames. Here in the flexible
setting, due to the large volume of atoms in the protein-ligand complex, we are only able to consider
two levels, i.e., the atom-level and residue-level. Thus, the backbone model (BindingNet) also
changes accordingly. The performance is shown in Table 5, and we can see that NeuralMD is
consistently better than the GNN-MD on all three metrics and all 10 single trajectories. We omit the
multi-trajectory experiments due to the memory limitation.
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Table 5: Results on ten single-trajectory binding dynamics prediction. Results with optimal training loss are
reported. Four evaluation metrics are considered: MAE (Å, ↓), MSE (↓), and Stability (%, ↓).

GNN-MD NeuralMD (Ours)

5WIJ
MAE 7.126 3.101
MSE 4.992 2.070
Stability 68.317 30.655

4ZX0
MAE 9.419 2.580
MSE 6.269 1.724
Stability 67.492 29.013

3EOV
MAE 10.695 3.664
MSE 7.447 2.521
Stability 67.782 39.714

4K6W
MAE 8.347 3.056
MSE 5.605 2.007
Stability 63.839 36.972

1KTI
MAE 8.900 6.815
MSE 5.820 4.268
Stability 65.010 26.805

1XP6
MAE 8.496 1.910
MSE 5.673 1.276
Stability 70.019 33.907

4YUR
MAE 11.710 7.568
MSE 7.759 4.966
Stability 69.163 34.636

4G3E
MAE 1314.425 3.282
MSE 814.641 2.152
Stability 65.703 21.095

6B7F
MAE 182.278 3.166
MSE 115.688 2.121
Stability 72.027 26.931

3B9S
MAE 3.590 2.477
MSE 2.431 1.615
Stability 54.890 18.817
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