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ABSTRACT

Existing neural multi-objective combinatorial optimization (MOCO) methods still
exhibit an optimality gap since they fail to fully exploit the intrinsic features of
problem instances. A significant factor contributing to this shortfall is their re-
liance solely on graph-modal information. To overcome this, we propose a novel
graph-image multimodal fusion (GIMF) framework that enhances neural MOCO
methods by integrating graph and image information of the problem instances.
Our GIMF framework comprises three key components: (1) a constructed coor-
dinate image to better represent the spatial structure of the problem instance, (2)
a problem-size adaptive resolution strategy during the image construction process
to improve the cross-size generalization of the model, and (3) a multimodal fusion
mechanism with modality-specific bottlenecks to efficiently couple graph and im-
age information. We demonstrate the versatility of our GIMF by implementing
it with two state-of-the-art neural MOCO backbones. Experimental results on
classic MOCO problems show that our GIMF significantly outperforms state-of-
the-art neural MOCO methods and exhibits superior generalization capability.

1 INTRODUCTION

Multi-objective combinatorial optimization (MOCO) involves optimizing multiple conflicting ob-
jectives within a discrete solution space, resulting in trade-offs between different criteria for infor-
mative decision making. It holds significant importance due to its wide range of real-world applica-
tions in logistics, scheduling, resource allocation and so on (Ehrgott & Gandibleux, 2000; Liu et al.,
2020; Türkyılmaz et al., 2020). MOCO aims to identify a Pareto-optimal set of solutions, where
any improvement in one objective necessitates a compromise in another. Since an MOCO problem
is more complex than its single-objective counterpart, exact methods are generally impractical for
MOCO, due to the NP-hard complexity of typical CO problems. As an alternative, heuristic methods
have been developed to efficiently search for approximate Pareto-optimal solutions. Nevertheless,
the conventional heuristics heavily hinge on problem-specific expertise and instance-specific tuning
work for achieving desirable performance, posing challenges in automatic algorithm development.

With the rapid progress of neural CO methods for single-objective CO problems (Kool et al., 2019;
Kwon et al., 2020; Grinsztajn et al., 2023; Chalumeau et al., 2023; Drakulic et al., 2023; Son et al.,
2023; Xiao et al., 2024; Goh et al., 2024; Liu et al., 2024; Zhou et al., 2024; Wang et al., 2024;
Kong et al., 2024), recent years have witnessed a surge in the development of neural MOCO meth-
ods. Differing from conventional heuristics, the neural MOCO employs deep neural models to
autonomously learn constructive policies from problem instances in a data-driven manner. It allows
for the automatic search of promising end-to-end solutions, bypassing the labor-intensive algorithm
development in conventional heuristics. However, current neural MOCO methods still exhibit an
optimality gap, as they fail to fully exploit intrinsic features of problem instances. They commonly
represent a problem instance as a graph that lacks the informed representations inherent in other
modalities such as images, thus hindering neural models from achieving a comprehensive encoding.

In this work, we construct images of MOCO problems with the aim to offer the complementary
instance information from different modalities, i.e., graphs and images. To advance neural models,
we develop a graph-image multimodal fusion (GIMF) framework to synergize the multimodal rep-
resentation learning for enhancing the MOCO performance. The difference between our framework
and current neural MOCO methods, and the images used in this paper are illustrated in Figure 1.
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Figure 1: Typical neural MOCO methods (a) vs. the proposed GIMF framework (b). An example
of a coordinate image (c) for an M -objective 5-node travelling salesman problem is illustrated, with
blank and black pixels filled with 1 and 0, respectively.

Our contributions are summarized as follows. (1) We propose a transformation from an MOCO in-
stance to construct a coordinate image, which with the graph representation, provides complemen-
tary multimodal information to facilitate comprehensive representation learning in neural models.
(2) During the image construction, we present a problem-size adaptive resolution (PSAR) strat-
egy that effectively enhances the model’s generalization capacity for out-of-distribution problem
sizes. (3) We design a multimodal fusion mechanism with modality-specific bottlenecks (MSB) to
favorably synergize the multimodal information from the graph and image. (4) We demonstrate the
versatility of our GIMF framework by deploying it with two state-of-the-art neural MOCO methods.
Experimental results on classic MOCO problems show the significant superiority of our GIMF. The
advantageous effects of the multimodal fusion and generalizability are corroborated as well.

2 RELATED WORKS

Conventional MOCO methods Conventional MOCO methods are categorized into exact and
heuristic approaches. Exact methods exhaustively identify Pareto-optimal solutions, resulting in pro-
hibitive exponential computational complexity (Ehrgott et al., 2016; Figueira et al., 2017). In con-
trast, heuristic methods, particularly multi-objective evolutionary algorithms (MOEAs) (Deb et al.,
2002; Zhang & Li, 2007; Deb & Jain, 2013; Deng et al., 2022; Qi et al., 2014; Yuan et al., 2016), are
competent to efficiently search for near-optimal solutions. Furthermore, the problem-specific local
search algorithms can be integrated into general MOEAs (Jaszkiewicz, 2002; Shi et al., 2020; 2024)
to enhance the performance. Despite considerable domain knowledge invested in algorithm design,
these conventional heuristics still require intensive intrinsic searches from scratch when solving
each instance, underscoring a significant limitation in their effectiveness. For more detailed survey
on heuristics for MOCO, please refer to Verma et al. (2021); Liu et al. (2020).

Neural MOCO methods Most neural MOCO methods decompose the MOCO problem into a
series of scalarized subproblems, addressing each through a single-objective neural CO method,
such as the notable policy optimization with multiple optima (POMO) (Kwon et al., 2020). Based
on the number of trained models, neural MOCO methods can be grouped into three categories:
multi-model, single-model, and unified-model methods. Multi-model methods train a set of neural
models via transfer learning (Li et al., 2021; Zhang et al., 2021) or meta-learning (Zhang et al.,
2023; Chen et al., 2023a), with each model specialized for each specific subproblem. In contrast,
single-model methods (Lin et al., 2022; Wang et al., 2024) employ a single model for all subprob-
lems, typically represented by preference-conditioned multi-objective combinatorial optimization
(PMOCO) (Lin et al., 2022), but they still require substantial efforts in the separate training for dif-
ferent problem sizes. The most recent unified-model method, the conditional neural heuristic (CNH)
(Fan et al., 2024), trains only a generic model that can generalize across various sizes, achieving the
state-of-the-art performance in neural MOCO. Distinct from the mainstream decomposition-based
neural methods, some orthogonal research attempts to enhance diversity (Chen et al., 2023b) or ac-
celerate heuristics in exact methods (Wu et al., 2022), which significantly increase computational
overhead for limited improvements. This paper focuses on improving the optimality of subproblems
in decomposition-based neural methods by employing the graph-image multimodal fusion.
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3 PRELIMINARY

An MOCO problem can be defined as minπ∈Ω f(π) = (f1(π), f2(π), . . . , fM (π)), where f is the
objective vector with M objective functions, π is the decision variable, and Ω is a discrete feasible
solution space. The Pareto properties of solutions for an MOCO problem are provided as below.

Definition 1 (Pareto dominance) A solution π1 dominates another π2 (denoted as π1 ≺ π2) if
fi(π

1) ≤ fi(π
2),∀i ∈ {1, . . . ,M} and fj(π

1) < fj(π
2),∃j ∈ {1, . . . ,M}.

Definition 2 (Pareto optimality) A solution π∗ is Pareto optimal if it is not dominated by any other
solution π. The Pareto set refers to all Pareto optimal solutions, i.e., P = {π∗ ∈ Ω | ∄π′ ∈ Ω : π′ ≺
π∗}. Its image in the objective space is known as the Pareto front, i.e., F = {f(π) ∈ RM |π ∈ P}.

3.1 DECOMPOSITION-BASED NEURAL MOCO

The decomposition is a widely used technique for MOCO problems. An MOCO problem can be de-
composed into N subproblems, each of which is a scalarized CO problem associated with a weight
vector λ ∈ RM satisfying λi ≥ 0,∀i ∈ {1, . . . ,M} and

∑M
i=1 λi = 1. The scalarized objective

g(π|λ) for a subproblem can be derived by different scalarization functions, e.g., the most straight-
forward weighted sum (WS) represents the objective minπ∈Ω gws(π|λ) =

∑M
i=1 λifi(π). After

decomposition with N weight vectors, the N derived subproblems are solved by neural CO methods.

Neural CO methods for subproblems Treating the solution π as a sequence π = {π1, . . . , πT }
of length T , the solution construction process for a scalarized subproblem is a Markov decision
process, with following definitions: (1) The state at step t ∈ {1, . . . , T} consists of the weight
vector λ, the current partial solution π1:t−1, and the instance G. (2) The action is selecting a node
πt to add to π1:t−1. (3) The state transition is represented as π1:t = {π1:t−1, πt}. (4) The reward is
defined as the negative of the scalarized objective, i.e., R = −g(π|G, λ). (5) The stochastic policy is
parameterized by a neural model θ and used to sequentially construct the solution, with the process
denoted by P (π|λ,G) =

∏T
t=1 Pθ(πt|π1:t−1,λ,G). The policy network is typically trained by

the REINFORCE algorithm (Williams, 1992), with the gradient ∇L(θ) = 1
B

∑B
i=1[(g(πi|λ,Gi)−

b)∇θ logP (πi|λ,Gi)], where B is the batch size, and b is a baseline that is often derived from the
average of multiple optima as done in POMO (Kwon et al., 2020), for reducing the variance.

Graph Transformer An MOCO instance can be defined over a graph G = {V, E}, where V =
{v1, . . . , vn} denotes the node set and E = {e(vi, vj)|vi, vj ∈ V, i ̸= j} denotes the edge set. Given
an instance graph with n nodes featured by z-dimensional vectors u1, . . . ,un ∈ Rz (see Appendix
A), the majority of existing neural MOCO methods all adopt a vanilla graph Transformer (Kool
et al., 2019) (details in Appendix B) to handle the graph input. Generally, L self-attention layers in
encoder evolve node embeddings to h

(L)
1 , . . . ,h

(L)
n ∈ Rd (d = 128). Then, the decoder uses the

attention to autoregressively infer the probability of node selection with T steps.

4 METHODOLOGY

Our graph-image multimodal fusion (GIMF) framework integrates complementary information from
both graph and image modalities. The two key challenges are the construction of informative images
from MOCO instances and the effective fusion of graph and image data. Correspondingly, we
propose an image construction approach with a problem-size adaptive resolution (PSAR) strategy,
and design a multimodal fusion mechanism with modality-specific bottlenecks (MSB).

4.1 IMAGE CONSTRUCTION

Before stepping into the image construction approach, we first introduce the definition of the image.

Definition 3 (Image) An image is defined as a discrete function I : D → CK , where D =
{(x, y)|x, y ∈ Z, 1 ≤ x ≤ W, 1 ≤ y ≤ H} represents the set of pixels, with (x, y) denoting a
pixel, W denoting the image width, and H denoting the image height. The parameter K refers to
the number of channels, and C is the set of possible pixel values for each channel. The image size
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(a.k.a., resolution) is defined as W ×H . The most ubiquitous example is the 3-channel RGB image,
where C3 = [0, 255]3 represents the intensities in the red, green, and blue channels.

Coordinate image for MOCO Given an MOCO instance, we construct its image by specifying
node features as pixels and pixel values separately, referred to as the coordinate image. Our image
construction is generally applicable to different MOCO problems. In this paper, we consider classic
MOCO problems that are extensively studied in the neural MOCO literature (Lin et al., 2022; Chen
et al., 2023a;b; Fan et al., 2024), including the bi/tri-objective traveling salesman problem (Bi/Tri-
TSP) (Lust & Teghem, 2010), bi-objective capacitated vehicle routing problem (Bi-CVRP) (Zajac
& Huber, 2021), and bi-objective knapsack problem (Bi-KP) (Ishibuchi et al., 2015) (Please see
Appendix A for detailed problem statements). Their coordinate images are described below.

For the M -objective TSP, each node i, ∀i ∈ {1, . . . , n}, is featured by ui ∈ R2M representing M
groups of coordinates. Each pair (vi,2j−1, vi,2j), ∀j ∈ {1, . . . ,M}, corresponds to the j-th group of
coordinates. An M -channel coordinate image IM−TSP of the M -objective TSP, can be constructed
by treating each coordinate as a pixel, and defined as follows,

IM−TSP
j (x, y) =

{
0, if (x, y) = (v′i,2j−1, v

′
i,2j)

1, otherwise
, (1)

where (v′i,2j−1, v
′
i,2j) ∈ [1,W ] × [1, H] is a coordinate derived by normalizing the original

(vi,2j−1, vi,2j) ∈ [0, 1]2, that is, (v′i,2j−1, v
′
i,2j) = (⌊Wvi,2j−1⌋ + 1, ⌊Hvi,2j⌋ + 1). An exam-

ple of IM−TSP for a 5-node M -objective TSP instance is illustrated in Figure 1(c). For Bi-CVRP,
each node feature ui ∈ R3 represents a coordinate (v1, v2) ∈ [0, 1]2 and a demand v3 ∈ [0, 1).
The single-channel coordinate image IBi−CVRP can be constructed by taking the normalized co-
ordinate as a pixel and the demand as the pixel value. Formally, the image can be defined by
IBi−CVRP(x, y) = v3, if (x, y) = (v′1, v

′
2). For Bi-KP, the node feature ui ∈ R3 represents two

values (v1, v2) ∈ [0, 1]2 and a weight v3 ∈ (0, 1) of an item. Similarly, the single-channel coordi-
nate image IBi−KP is constructed by taking two normalized values as a pixel and the weight as the
pixel value, resulting in IBi−KP(x, y) = v3, if (x, y) = (v′1, v

′
2).

4.2 PROBLEM-SIZE ADAPTIVE RESOLUTION

The constructed images are processed by a vision Transformer (Dosovitskiy et al., 2021), which is a
mainstream neural model to handle image data. Concretely, a K-channel image with the resolution
W ×H is divided into non-overlapping patches with a uniform size w × h. Each patch is flattened
into a vector and linearly projected to a d-dimensional embedding. The positional encodings (e.g.,
the sinusoidal encoding) are added to the patch embeddings, enabling the model to be aware of the
spatial relations between patches. Then, a standard Transformer encoder with L self-attention layers
evolves the embeddings to capture global features and contextual relationships within the image.

When our coordinate image adheres to the fixed resolution, a common setting in ordinary image-
related tasks, it could pose challenges in the generalization across problem sizes. Specifically, we
define the node density ρ as the ratio of the non-one pixels in our coordinate image (Note: A low
node density means that the number of non-one pixels approximately equals to the problem size n).
Intuitively, the node density increases as the problem size n grows with a fixed resolution, since more
pixels are occupied by non-one values. The density at the patch level varies proportionally due to the
fixed patch size. Consequently, the neural model is subject to the out-of-distribution generalization
issue when the patch-level density significantly differs from those of the training data.

Problem-size adaptive resolution (PSAR) To address the above generalization issue, we propose
a PSAR strategy to maintain a relatively stable density for both the image and patches. Generally, we
can adaptively adjust the resolution by setting an approximately linear relationship between W ×H
and n when constructing our coordinate image, so that the density is roughly uniform with varied
problem sizes. In this paper, we set w = h and W = H = ⌈10

√
n/w⌉ ∗ w to maintain the node

density ρ of approximately 0.01. By doing so, the number of patches (i.e., the length of the patch
sequence) varies with the changing problem size. However, the vision Transformer benefits from
the stable density among patches, and hence can gain better generalization performance.
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Figure 2: Our multimodal neural model based on an encoder-decoder (middle-right) architecture.
The multimodal fusion layer with modality-specific bottlenecks (MSB) (left) leverages modality-
specific bottlenecks to efficiently couple the graph and image information. The dashed line pointing
from the selected node πt to the context embedding hc indicates that hc is determined by πt.

Scalable positional encoding With the fixed patch size, the PSAR results in varied lengths of
the patch sequence. To indicate the positions of patches, we propose to learn scalable positional
encodings. We utilize a multi-layer perceptron (MLP) with a d-dimensional hidden layer and ReLU
activation to map the patch coordinates (xp, yp) ∈ [0, 1]2 into position embeddings, which are then
added to the patch embeddings. The MLP is applicable to varied problem sizes due to the fixed size
of input (i.e., patches).

4.3 MULTIMODAL FUSION

The simple graph structures (e.g., fully-connected graphs for TSP, CVRP, and KP) may obscure spa-
tial relationships among nodes. Our coordinate image offers a more informative view of the spatial
structure, which maps a more explicit node distribution to a image. Meanwhile, the graph remains
essential for fine-grained node-level encoding and decoding. To effectively integrate these two com-
plementary modalities, we develop a multimodal fusion model with modality-specific bottlenecks.

Our multimodal fusion model, built in an encoder-decoder structure, is illustrated in Figure 2. Given
the graph and coordinate image of an instance, the L-layer encoder processes them to generate high-
dimensional node and patch embeddings. After that, the decoder computes the probabilities for node
selection, which are used to sample nodes for constructing the solution.

Single-modal layer In the encoder, the node and patch embeddings are first passed through
L − L′ single-modal graph and vision layers, respectively. Specifically, the initial node embed-
dings h

(0)
1 , . . . ,h

(0)
n ∈ Rd are obtained via linear projection with a trainable matrix Wu and bias

bu, which is formulated by h
(0)
i = Wuui + bu,∀i ∈ {1, . . . , n}. The initial patch embeddings

h
′(0)
1 , . . . ,h

′(0)
n ∈ Rd are derived from the flattened patch vectors u′

1, . . . ,u
′
n′ ∈ Rwh via linear

projection and position encoding, which is formulated by h
′(0)
i = Wu′

u′
i+bu

′
+MLP(xp

i , y
p
i ),∀i ∈

{1, . . . , n′}, where n′ is the number of patches. Then, each single-modal graph and vision layer con-
sists of a multi-head self-attention (MHSA) block and a feed-forward (FF) block. Each block is fol-
lowed by the residual connection (He et al., 2016) and instance normalization (IN). The embeddings
are updated at each layer l,∀l ∈ {1, . . . , L− L′}, as follows,

Ĥ = IN(H(l−1) +MHSA(H(l−1))), H(l) = IN(Ĥ + FF(Ĥ)),

Ĥ ′ = IN(H ′(l−1) +MHSA(H ′(l−1))), H ′(l) = IN(Ĥ ′ + FF(Ĥ ′)),
(2)

where H and H ′ denote the concatenation of the node embeddings {h1, . . . ,hn} and the patch
embeddings {h′

1, . . . ,h
′
n′}, respectively, which are iteratively evolved by single-modal layers.

Multimodal layer After L − L′ single-modal layers, L′ multimodal fusion layers are used to ef-
ficiently synergize the graph and image information. We introduce a small set of bottleneck tokens

5
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to manage cross-modal interaction for condensing essential information and alleviating the compu-
tational burden of full attention calculations. Unlike the vanilla bottleneck approach (Nagrani et al.,
2021), which uses shared bottlenecks across modalities, we propose modality-specific bottlenecks
(MSB) to more precisely concentrate the information within each modality.

Specifically, we introduce nb(nb ≪ n) graph bottlenecks B = {b1, . . . , bnb
} and n′

b(n
′
b ≪ n′)

image bottlenecks B′ = {b′1, . . . , b′n′
b
} into the graph and vision layer, respectively. The initial

graph and image bottlenecks B
(L−L′+1)
i ∈ Rd and B

′(L−L′+1)
i ∈ Rd are random learnable pa-

rameters and updated through L′ multimodal fusion layers. Using the bottlenecks, the efficient
fusion is achieved by two types of multi-head cross-attention (MHCA). As depicted in Figure 2, the
graph-guided and image-guided cross-attentions symmetrically fuse information between the two
modalities. The multimodal cross-attentions at layer l,∀l ∈ {L− L′ + 1, . . . , L} are given below,

{H(l),B(l)} = MHCA({H(l−1),B(l−1)}, {H(l−1),B(l−1),B′(l−1)}),
{H ′(l),B′(l)} = MHCA({H ′(l−1),B′(l−1)}, {H ′(l−1),B′(l−1),B(l−1)}),

(3)

where MHCA(X,Y ) denotes the multi-head cross-attention with X representing the queries and
Y representing the keys and values. The modal-specific bottlenecks improve performance of multi-
modal fusion, while avoiding the computational burden by self-attention between all embeddings in
modalities. We use the FF block, residual connection and IN similarly as in the single-modal layer.

Probability for node selection In the decoder, we apply the node and patch embeddings pro-
cessed by multimodal layers to autoregressively compute the probability for node selection. At each
decoding step t ∈ {1, ..., T}, a context embedding hc, which depends on πt−1 (see Appendix C),
is used to compute a glimpse qc via an MHCA block. This glimpse is then used to calculate the
compatibility score α, as follows,

qc = MHCA(hc, {H(L),H ′(L)}),

αi =

{ −∞, if node i is masked

C · tanh(q
T
c (WKh

(L)
i )√

d/Y
), otherwise

(4)

where Y = 8 represents the number of attention heads and the result is clipped to C = 10 (Kool
et al., 2019). Finally, the probabilities for selecting eligible nodes are normalized using softmax.

Deployment onto neural MOCO methods Our GIMF is a generic framework that can be in-
tegrated with existing neural MOCO methods. We implement it with the state-of-the-art CNH to
further enhance the performance in solving MOCO problems. Additionally, we implement GIMF
with the well-known PMOCO, a type of method different from CNH, to demonstrate its flexibility.
The resulting methods are referred to as GIMF-C and GIMF-P, respectively. GIMF-C employs a
dual-attention to associate the instance with the weight vector of the scalarized subproblem, while
GIMF-P utilizes a hypernetwork to tackle the weight vector of the scalarized subproblem. Further
details about GIMF-C and GIMF-P are given in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Problems We assess our GIMF framework on four well-established MOCO problems commonly
examined in neural MOCO research, including Bi-TSP, Bi-CVRP, Bi-KP, and Tri-TSP. Detailed de-
scriptions are provided in Appendix A. For the experiments, we use three standard instance sizes:
n = 20/50/100 for Bi-TSP, Bi-CVRP, and Tri-TSP, and n = 50/100/200 for Bi-KP. While CNH
and GIMF-C are trained across problem sizes n ∈ {20, 21, · · · , 100}, other neural methods are
trained separately for each problem size. Moreover, we evaluate the model’s out-of-distribution gen-
eralization capability on larger instances of Bi-TSP150/200 and three widely used TSPLIB (Reinelt,
1991) benchmark instances, i.e., KroAB100/150/200.

Hyperparameters Most hyperparameters for GIMF-P and GIMF-C are configured in line with
the original PMOCO and CNH, respectively. For our model, L = 6, L′ = 3, and nb = n′

b = 10.
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The patch dimensions are fixed at w = h = 16. The model undergoes training for 200 epochs, with
each epoch processing 100,000 randomly selected instances and a batch size of B = 64. The Adam
optimizer (Kingma & Ba, 2015) is used with a learning rate of 10−4 (except 10−5 for Bi-KP) and
weight decay of 10−6. The N weight vectors for the decomposition are generated according to (Das
& Dennis, 1998), with N = 101 for M = 2 and N = 105 for M = 3.

Baselines We compare our method against state-of-the-art neural MOCO methods, the widely
used MOEAs, and strong problem-specific heuristics, as outlined below. (1) Neural MOCO meth-
ods: This includes the state-of-the-art CNH (Fan et al., 2024) and PMOCO (Lin et al., 2022). Addi-
tionally, we include multi-model methods such as DRL-MOA (Li et al., 2021), MDRL (Zhang et al.,
2023), and EMNH (Chen et al., 2023a). In particular, DRL-MOA trains N POMO models for the
N subproblems, starting with 200 epochs for the first model and using 5-epoch parameter transfer
for each subsequent model. Both MDRL and EMNH fine-tune the N POMO models from a shared
pretrained meta-model with the same structure, following the training and fine-tuning configura-
tions as described in (Chen et al., 2023a). (2) Widely used MOEAs: Specifically, MOEA/D (Zhang
& Li, 2007) and NSGA-II (Deb et al., 2002) are implemented with 4,000 iterations, representing
decomposition-based and dominance-based MOEAs, respectively. MOGLS (Jaszkiewicz, 2002),
also with 4,000 iterations and 100 local search steps per iteration, and PPLS/D-C (Shi et al., 2024),
which runs for 200 iterations, are both tailored for MOCO with a 2-opt heuristic for TSP and CVRP
and a greedy transformation heuristic (Ishibuchi et al., 2015) for KP. (3) Strong problem-specific
heuristics: For the multi-objective TSP and KP, WS-LKH and WS-DP combine the weighted sum
(WS) scalarization with the strong LKH (Tinós et al., 2018) and dynamic programming (DP) solvers
to handle scalarized subproblems. All methods adopt WS scalarization for fair comparisons, and are
executed on a machine equipped with an RTX 3090 GPU and an Intel Xeon 4216 CPU. Our codes
will be made publicly available.

Metrics To assess the performance of the MOCO methods, we use the widely recognized hyper-
volume (HV) indicator (Audet et al., 2021), where a higher HV value indicates a superior solution
set (see Appendix E for more details). We report the average HV, the gaps relative to GIMF-C-Aug,
and the total computation time for 200 instances. Methods with “-Aug” incorporate instance aug-
mentation (Lin et al., 2022) (details in Appendix F) to enhance performance. A Wilcoxon rank-sum
test at a 1% significance level is conducted to assess statistical differences. The best result and those
not significantly different from it are highlighted in bold, while the second-best result and those not
significantly different from it are underlined. The names of our methods are also presented in bold.

5.2 EXPERIMENTAL RESULTS

Comparison analysis The comparison results are presented in Tables 1 and 2. GIMF-C con-
sistently outperforms CNH across all scenarios, establishing itself as the new state-of-the-art neural
MOCO method. Similarly, GIMF-P shows significant improvement over PMOCO in every case, and
it even surpasses PMOCO-Aug, which employs instance augmentation, on Bi-CVRP100, achieving
a gap of 0.66% vs 2.67%. These results confirm the effectiveness of GIMF in synergizing the com-
plementary strengths of graph and image information. Moreover, when enhanced with instance aug-
mentation, GIMF’s performance improves further. Compared with the cumbersome multi-model
methods that require training or fine-tuning numerous models, GIMF-C maintains superiority in
most cases, with only slight underperformance relative to EMNH on Bi-CVRP and Bi-KP. Notably,
GIMF-C still manifests significant superiority over EMNH on Bi-TSP and Tri-TSP, such as a gap
of 1.00% vs 3.01% on Tri-TSP100. Additionally, GIMF significantly reduces computational time
compared with conventional methods, as demonstrated by GIMF-C-Aug, which requires just 21
minutes vs 6.0 hours for WS-LKH, while delivering competitive results.

Out-of-distribution size generalization analysis We evaluate the model’s generalization ca-
pability on the out-of-distribution larger-size Bi-TSP150/200 instances and benchmark instances
KroAB100/150/200. The results of the neural methods are obtained based on models trained on Bi-
TSP100, except CNH and GIMF-C trained across sizes n ∈ {20, 21, · · · , 100}, as shown in Table
3 and Figure 3. Compared with all neural baselines and well-known MOEAs, GIMF-C achieves the
best generalization performance across all out-of-distribution cases. Similarly, GIMF-P consistently
outperforms PMOCO in all scenarios. The visualized Pareto fronts of KroAB100/150/200 in Figure

7
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Table 1: Comparison results on Bi-TSP and Bi-CVRP both with 200 random instances.

Method
Bi-TSP20 Bi-TSP50 Bi-TSP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.6270 0.00% 10m 0.6415 -0.05% 1.8h 0.7090 -0.31% 6.0h

MOEA/D 0.6241 0.46% 1.7h 0.6316 1.50% 1.8h 0.6899 2.39% 2.2h
NSGA-II 0.6258 0.19% 6.0h 0.6120 4.55% 6.1h 0.6692 5.32% 6.9h
MOGLS 0.6279 -0.14% 1.6h 0.6330 1.28% 3.7h 0.6854 3.03% 11h
PPLS/D-C 0.6256 0.22% 26m 0.6282 2.03% 2.8h 0.6844 3.17% 11h

DRL-MOA 0.6257 0.21% 6s 0.6360 0.81% 9s 0.6970 1.39% 21s
MDRL 0.6271 -0.02% 5s 0.6364 0.75% 9s 0.6969 1.40% 17s
EMNH 0.6271 -0.02% 5s 0.6364 0.75% 9s 0.6969 1.40% 16s

PMOCO 0.6259 0.18% 6s 0.6351 0.95% 10s 0.6957 1.57% 19s
GIMF-P 0.6266 0.06% 7s 0.6374 0.59% 12s 0.7006 0.88% 24s
CNH 0.6270 0.00% 14s 0.6387 0.39% 17s 0.7019 0.69% 29s
GIMF-C 0.6271 -0.02% 15s 0.6399 0.20% 19s 0.7041 0.38% 33s

MDRL-Aug 0.6271 -0.02% 33s 0.6408 0.06% 1.7m 0.7022 0.65% 14m
EMNH-Aug 0.6271 -0.02% 33s 0.6408 0.06% 1.7m 0.7023 0.64% 14m

PMOCO-Aug 0.6270 0.00% 1.1m 0.6395 0.27% 3.2m 0.7016 0.74% 15m
GIMF-P-Aug 0.6271 -0.02% 1.5m 0.6403 0.14% 4.7m 0.7043 0.35% 20m

CNH-Aug 0.6271 -0.02% 1.5m 0.6410 0.03% 4.1m 0.7054 0.20% 16m
GIMF-C-Aug 0.6270 0.00% 2.0m 0.6412 0.00% 5.5m 0.7068 0.00% 21m

Method
Bi-CVRP20 Bi-CVRP50 Bi-CVRP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

MOEA/D 0.4255 1.07% 2.3h 0.4000 2.49% 2.9h 0.3953 3.07% 5.0h
NSGA-II 0.4275 0.60% 6.4h 0.3896 5.02% 8.8h 0.3620 11.23% 9.4h
MOGLS 0.4278 0.53% 9.0h 0.3984 2.88% 20h 0.3875 4.98% 72h
PPLS/D-C 0.4287 0.33% 1.6h 0.4007 2.32% 9.7h 0.3946 3.24% 38h

DRL-MOA 0.4287 0.33% 10s 0.4076 0.63% 12s 0.4055 0.56% 33s
MDRL 0.4291 0.23% 8s 0.4082 0.49% 13s 0.4056 0.54% 32s
EMNH 0.4299 0.05% 7s 0.4098 0.10% 13s 0.4072 0.15% 31s

PMOCO 0.4267 0.79% 7s 0.4036 1.61% 12s 0.3913 4.05% 27s
GIMF-P 0.4287 0.33% 7s 0.4076 0.63% 12s 0.4051 0.66% 29s
CNH 0.4287 0.33% 15s 0.4087 0.37% 17s 0.4065 0.32% 31s
GIMF-C 0.4292 0.21% 15s 0.4089 0.32% 18s 0.4068 0.25% 36s

MDRL-Aug 0.4294 0.16% 11s 0.4092 0.24% 36s 0.4072 0.15% 2.8m
EMNH-Aug 0.4302 -0.02% 11s 0.4106 -0.10% 35s 0.4079 -0.02% 2.8m

PMOCO-Aug 0.4294 0.16% 13s 0.4080 0.54% 36s 0.3969 2.67% 2.7m
GIMF-P-Aug 0.4298 0.07% 17s 0.4098 0.10% 48s 0.4075 0.07% 3.0m

CNH-Aug 0.4299 0.05% 22s 0.4101 0.02% 45s 0.4077 0.02% 2.5m
GIMF-C-Aug 0.4301 0.00% 25s 0.4102 0.00% 54s 0.4078 0.00% 3.1m

3 clearly show that the solutions identified by GIMF-C (or GIMF-P) are superior to those found by
CNH (or PMOCO). Detailed results on these benchmark instances are provided in Appendix G.

Effectiveness of the multimodal fusion mechanism with MSB To verify the effectiveness of our
MSB, we compare GIMF with models utilizing other multimodal fusion mechanisms. The base-
lines include the vanilla self-attention (VSA) using a unified Transformer stream, the vanilla cross-
attention (VCA) with two dedicated Transformer streams, a variant of MSB using fully learnable
bottlenecks (FLB) in each layer, and the vanilla shared bottlenecks (SB) (Nagrani et al., 2021) with
the same total number of bottlenecks as MSB. As shown in Figure 4, the results on in-distribution Bi-
TSP100 demonstrate that all multimodal methods outperform CNH, although the differences among
these methods are not significant. However, the results differ on the out-of-distribution Bi-TSP200,
where GIMF performs the best, while VCA, the worst-performing model, even falls short of CNH.
In conclusion, while incorporating image information improves in-distribution performance, our
multimodal fusion mechanism with MSB is critical for superior out-of-distribution performance.

Effectiveness of the PSAR strategy To assess the effectiveness of the PSAR strategy, we remove
it from both GIMF and VSA, resulting in the variants GIMF w/o PSAR and VSA w/o PSAR. For
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Table 2: Comparison results on Bi-KP and Tri-TSP both with 200 random instances.

Method
Bi-KP50 Bi-KP100 Bi-KP200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-DP 0.3561 -0.06% 22m 0.4532 0.02% 2.0h 0.3601 0.00% 5.8h

MOEA/D 0.3540 0.53% 1.6h 0.4508 0.55% 1.7h 0.3581 0.56% 1.8h
NSGA-II 0.3547 0.34% 7.8h 0.4520 0.29% 8.0h 0.3590 0.31% 8.4h
MOGLS 0.3540 0.53% 5.8h 0.4510 0.51% 10h 0.3582 0.53% 18h
PPLS/D-C 0.3528 0.87% 18m 0.4480 1.17% 47m 0.3541 1.67% 1.5h

DRL-MOA 0.3559 0.00% 9s 0.4531 0.04% 18s 0.3601 0.00% 1.0m
MDRL 0.3530 0.81% 6s 0.4532 0.02% 21s 0.3601 0.00% 1.2m
EMNH 0.3561 -0.06% 6s 0.4535 -0.04% 21s 0.3603 -0.06% 1.2m

PMOCO 0.3552 0.20% 6s 0.4523 0.22% 19s 0.3595 0.17% 1.3m
GIMF-P 0.3560 -0.03% 8s 0.4533 0.00% 21s 0.3602 -0.03% 1.3m

CNH 0.3556 0.08% 18s 0.4527 0.13% 27s 0.3598 0.08% 1.2m
GIMF-C 0.3559 0.00% 18s 0.4533 0.00% 29s 0.3601 0.00% 1.4m

Method
Tri-TSP20 Tri-TSP50 Tri-TSP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.4712 -0.15% 12m 0.4440 -0.54% 1.9h 0.5076 -1.18% 6.6h

MOEA/D 0.4702 0.06% 1.9h 0.4314 2.31% 2.2h 0.4511 10.09% 2.4h
NSGA-II 0.4238 9.93% 7.1h 0.2858 35.28% 7.5h 0.2824 43.71% 9.0h
MOGLS 0.4701 0.09% 1.5h 0.4211 4.64% 4.1h 0.4254 15.21% 13h
PPLS/D-C 0.4698 0.15% 1.4h 0.4174 5.48% 3.9h 0.4376 12.78% 14h

DRL-MOA 0.4699 0.13% 6s 0.4303 2.56% 9s 0.4806 4.21% 19s
MDRL 0.4699 0.13% 5s 0.4317 2.24% 9s 0.4852 3.29% 16s
EMNH 0.4699 0.13% 5s 0.4324 2.08% 9s 0.4866 3.01% 16s

PMOCO 0.4693 0.26% 5s 0.4315 2.29% 8s 0.4858 3.17% 18s
GIMF-P 0.4702 0.06% 6s 0.4354 1.40% 10s 0.4927 1.79% 23s

CNH 0.4698 0.15% 10s 0.4358 1.31% 14s 0.4931 1.71% 26s
GIMF-C 0.4701 0.09% 12s 0.4382 0.77% 16s 0.4967 1.00% 29s

MDRL-Aug 0.4712 -0.15% 2.6m 0.4408 0.18% 25m 0.4958 1.18% 1.7h
EMNH-Aug 0.4712 -0.15% 2.6m 0.4418 -0.05% 25m 0.4973 0.88% 1.7h

PMOCO-Aug 0.4712 -0.15% 5.1m 0.4409 0.16% 28m 0.4956 1.22% 1.7h
GIMF-P-Aug 0.4712 -0.15% 13m 0.4415 0.02% 42m 0.5001 0.32% 2.7h

CNH-Aug 0.4704 0.02% 8.0m 0.4409 0.16% 33m 0.4996 0.42% 2.1h
GIMF-C-Aug 0.4705 0.00% 16m 0.4416 0.00% 44m 0.5017 0.00% 2.9h
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Figure 3: Pareto fronts of benchmark instances, KroAB100/150/200 (left/middle/right).

these variants, we set W = H = ⌈100/w⌉ ∗w, consistent with the size when n = 100. As shown in
Figure 5, PSAR leads to a slight performance improvement on the in-distribution Bi-TSP100. More
importantly, it significantly boosts the out-of-distribution performance for both GIMF and VSA. No-
tably, without PSAR, GIMF and VSA even fall below CNH’s generalization capability. These results
underscore the critical role of the PSAR strategy in enhancing out-of-distribution performance.
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Table 3: Out-of-distribution generalization on larger-size problems with 200 random instances.

Method
Bi-TSP150 Bi-TSP200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.7149 -1.63% 13h 0.7490 -1.77% 22h

MOEA/D 0.6809 3.20% 2.4h 0.7139 3.00% 2.7h
NSGA-II 0.6659 5.33% 6.8h 0.7045 4.28% 6.9h
MOGLS 0.6768 3.78% 22h 0.7114 3.34% 38h
PPLS/D-C 0.6784 3.55% 21h 0.7106 3.45% 32h

DRL-MOA 0.6901 1.89% 45s 0.7219 1.92% 1.5m
MDRL 0.6922 1.59% 40s 0.7251 1.48% 1.4m
EMNH 0.6930 1.48% 40s 0.7260 1.36% 1.4m

PMOCO 0.6910 1.76% 45s 0.7231 1.75% 1.5m
GIMF-P 0.6958 1.08% 60s 0.7267 1.26% 2.1m

CNH 0.6985 0.70% 1.1m 0.7292 0.92% 1.9m
GIMF-C 0.6995 0.55% 1.2m 0.7321 0.53% 2.2m

MDRL-Aug 0.6976 0.82% 47m 0.7299 0.83% 1.6h
EMNH-Aug 0.6983 0.73% 47m 0.7307 0.72% 1.6h

PMOCO-Aug 0.6967 0.95% 47m 0.7283 1.05% 1.6h
GIMF-P-Aug 0.7003 0.44% 1.0h 0.7311 0.67% 2.1h

CNH-Aug 0.7025 0.13% 52m 0.7343 0.23% 1.7h
GIMF-C-Aug 0.7034 0.00% 1.1h 0.7360 0.00% 2.2h
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Figure 4: Effects of multimodal fusion
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Figure 5: Effects of the PSAR strategy

Hyperparameter Study We conducted experiments to investigate the impact of hyperparameters.
The detailed results, provided in Appendix H, indicate that both the number of multimodal fusion
layers and the configuration of bottlenecks can influence the performance of multimodal fusion. For
the problems we study, L′ = 3 and nb = n′

b = 10 are the desirable settings.

6 CONCLUSION

This paper proposes a generic GIMF framework that integrates complementary graph and image
information for neural MOCO. We first construct a coordinate image to introduce structured image
data, and the PSAR strategy during image construction is designed to enhance out-of-distribution
generalization. Then, we develop a multimodal fusion mechanism with MSB to efficiently fuse
graph and image information. Our GIMF framework is deployed with two state-of-the-art neural
MOCO methods. Experimental results confirm its effectiveness, and the ablation study highlights
the necessity of both PSAR and MSB, particularly for improving out-of-distribution performance.
A limitation of our current approach is its generalization performance on real-world scenarios and
various MOCO problems. In future work, we plan to address this by exploring the hierarchical
approach (Goh et al., 2024) and multi-task learning technique (Zhou et al., 2024).

Another potential limitation of our method is that constructing images requires problem-specific de-
signs to a certain extent, and incorporating images slightly increases the demand for computational
resources. However, the resulting performance improvements are substantial, making this trade-off
worthwhile. Furthermore, while the problems studied in this paper are well-suited for image repre-
sentation, there may be some other MOCO problems for which generating simple yet meaningful
images is challenging. In these cases, the applicability of our method remains an open question.
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A DETAILED STATEMENTS OF THE STUDIED MOCO PROBLEMS

Multi-objective traveling salesman problem (MOTSP) In the M -objective traveling salesman
problem with n nodes, each node i ∈ 1, ..., n is associated with M groups of 2-dimensional coordi-
nates. The Euclidean distance cmij between nodes i and j is determined by their coordinates for objec-
tive m. The task is to find a tour π that visits all nodes while minimizing the total distances for each
of the M objectives. Specifically, the objective is to minimize f(π) = (f1(π), f2(π), . . . , fM (π)),
where fm(π) =

∑n−1
i=1 cmπi,πi+1

+ cmπn,π1
,∀m ∈ {1, . . . ,M}. The instances are generated by uni-

formly sampling coordinates within the range [0, 1]2M .

Multi-objective capacitated vehicle routing problem (MOCVRP) We study the bi-objective
capacitated vehicle routing problem (Bi-CVRP), which involves n customer nodes and one depot
node. Each node has a 2-dimensional coordinate, and each customer is associated with a demand.
A fleet of homogeneous vehicles, all with the same capacity, is based at the depot and must serve all
customers before returning. When serving a customer, the vehicle’s remaining capacity must be at
least equal to the customer’s demand. The two conflicting objectives are to minimize the total tour
length and the makespan, defined as the longest route. For Bi-CVRP instances, the coordinates of
both the depot and customers are uniformly sampled from the range [0, 1]2, while demands are drawn
from the set {1, . . . , 9}. Vehicle capacity is set at 30, 40, and 50 for 20 ≤ n < 40, 40 ≤ n < 70, and
70 ≤ n ≤ 100, respectively. All demands are normalized by the vehicle capacity for consistency.

Multi-objective knapsack problem (MOKP) In the multi-objective knapsack problem with M
objectives and n items, each item has a weight and M distinct values. The items are represented as
nodes in the instance graph. The objective is to select items that maximize all M objectives simul-
taneously, while ensuring the total weight does not exceed the knapsack capacity. The instances are
generated by sampling the weight and values of each item from a uniform distribution over [0, 1].
The knapsack capacity is set to 12.5 for 50 ≤ n < 100 and 25 for 100 ≤ n ≤ 200, respectively.

B ARCHITECTURE OF THE GRAPH TRANSFORMER

The MOCO instance graph can be processed by a graph Transformer (Kool et al., 2019) based on
an encoder-decoder architecture. Given n nodes with z-dimensional features u1, . . . ,un ∈ Rz ,
the encoder first transforms them to the initial node embeddings h

(0)
1 , . . . ,h

(0)
n ∈ Rd via linear

projection as h
(0)
i = Wuui + bu,∀i ∈ {1, . . . , n}, and then compute the final node embeddings

h
(L)
1 , . . . ,h

(L)
n via L Transformer layer. Each Transformer layer sequentially comprises a multi-

head self-attention (MHSA) block, a residual connection and instance normalization (IN) block,
a feed-forward (FF) block, and another residual connection and IN block. The node embeddings
H(l) = {h(l)

1 , . . . ,h
(l)
n } are updated as follows,

Ĥ = IN(H(l−1) +MHSA(H(l−1))) (5)

H(l) = IN(Ĥ + FF(Ĥ)). (6)
The decoder take the derived node embeddings as inputs to calculate the selection probabilities
for candidate nodes in an autoregressive manner with T steps. Specifically, at decoding step
t ∈ {1, ..., T}, the glimpse qc is first computed using a problem-specific context embedding hc,
as follows,

qc = MHCA(hc,H
(L)), (7)

where MHCA(X,Y ) the multi-head cross-attention with X as the querys and with Y as the keys
and values. The definition of hc is provided in Appendix C. Then, the compatibility is calculated by
the attention mechanism, as follows,

αi =

{ −∞, if node i is masked

C · tanh(q
T
c (WKh

(L)
i )√

d/Y
), otherwise

(8)

where Y = 8 is the number of attention heads and C = 10 is use to clip the result. Finally, the
probabilities of node selection is obtained using a softmax function.
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C CONTEXT EMBEDDING

For MOTSP, the context embedding hc at each decoding step is constructed by concatenating the
embeddings of the first and last visited nodes, with all visited nodes masked when calculating node
selection probabilities. In MOCVRP, the context embedding hc consists of the embedding of the
last visited node and the remaining vehicle capacity, and nodes already visited or with demands
exceeding the remaining capacity are masked during probability computation. For MOKP, the con-
text embedding hc combines the graph embedding h̄ =

∑n
i=1 hi/n with the remaining knapsack

capacity, masking selected items and those with weights larger than the remaining capacity during
probability calculations.

D DETAILS OF GIMF-C AND GIMF-P

D.1 GIMF-C

Following CNH (Fan et al., 2024), GIMF-C also employs a multi-head dual-attention mechanism to
handle the given weight vector and uses a size-aware decoder to capture the feature of the problem
size. Thus, we adopt the multi-head dual-attention (MHDA) mechanism for each modality. Specif-
ically, the initial embedding of the weight vector h(0)

n+1, node embeddings H = {h(0)
1 , . . . ,h

(0)
n },

and patch embeddings H ′ = {h′
1
(0), . . . ,h′

n
(0)} are first obtained using separate linear projections.

Then, in each single-modal Transformer layer l,∀l ∈ {1, . . . , L−L′}, the multi-head self-attention
(MHSA) is replaced by the MHDA, as follows,

{Ĥ, ĥn+1} = IN({H(l−1),h
(l−1)
n+1 }+MHDA(H(l−1),h

(l−1)
n+1 )), (9)

{H(l),h
(l)
n+1} = IN({Ĥ, ĥn+1}+ FF({Ĥ, ĥn+1})), (10)

{Ĥ ′, ĥ′
n+1} = IN({H ′(l−1),h′

n+1
(l−1)}+MHDA(H ′(l−1),h′

n+1
(l−1))), (11)

{H ′(l),h′
n+1

(l)} = IN({Ĥ ′, ĥ′
n+1}+ FF({Ĥ ′, ĥ′

n+1})), (12)

where h′
n+1

(0) = h
(0)
n+1 and MHDA(X,Y ) is defined as follows,

MHDA(X,Y ) = {MHSA({X,Y }):−1 +MHCA(X,Y ),MHSA({X,Y })−1}. (13)

After L−L′ single-modal Transformer layers, the embeddings are updated by L′ multimodal fusion
layers. The multimodal fusion layers involve additional nb graph bottlenecks B = {b1, . . . , bnb

}
and n′

b image bottlenecks B′ = {b′1, . . . , b′n′
b
}. In each layer l,∀l ∈ {L − L′ + 1, . . . , L}, the

embeddings are updated though the graph-guided and image-guided dual-attention, as follows,

H̃ = MHCA({B(l−1),H(l−1),h
(l−1)
n+1 }, {B(l−1),H(l−1),h

(l−1)
n+1 ,B′(l−1)}) (14)

{B(l),H(l),h
(l)
n+1} = {H̃:−1 +MHCA({B(l−1),H(l−1)}, {h(l−1)

n+1 ,B′(l−1)}), H̃−1}, (15)

H̃ ′ = MHCA({B′(l−1),H ′(l−1),h′
n+1

(l−1)}, {B′(l−1),H ′(l−1),h′
n+1

(l−1),B(l−1)}) (16)

{B′(l),H ′(l),h′
n+1

(l)} = {H̃ ′
:−1 +MHCA({B′(l−1),H ′(l−1)}, {h′

n+1
(l−1),B(l−1)}), H̃ ′−1}.

(17)

In the decoder, the size-injected node embeddings H̄(L) are obtained by adding the problem size
embedding (Fan et al., 2024) to the node embeddings. Then, the glimpse is derived as follows,

qc = MHCA(hc, {H̄(L),H ′(L)}). (18)

Finally, the probabilities of node selection can be computed as the same.

D.2 GIMF-P

Following PMOCO (Lin et al., 2022), GIMF-P directly uses the multimodal fusion model as the base
model. To manage each scalarized suproblem associated with a weight vector, GIMF-P employs a
hypernetwork with a multi-layer perceptron (MLP) structure to generate decoder parameters, using
the weight vector as input.
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Table 4: Reference points and ideal points for the MOCO problems.
Problem Size r z

Bi-TSP

20 (20, 20) (0, 0)
50 (35, 35) (0, 0)

100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-CVRP
20 (30, 4) (0, 0)
50 (45, 4) (0, 0)

100 (80, 4) (0, 0)

Bi-KP
50 (5, 5) (30, 30)

100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP
20 (20, 20, 20) (0, 0)
50 (35, 35, 35) (0, 0)

100 (65, 65, 65) (0, 0)

E HYPERVOLUME

Hypervolume (HV) is a widely used indicator for evaluating the performance of MOCO methods,
as it effectively measures both the convergence and diversity of the obtained Pareto front without
requiring ground truth. The HV of a Pareto front F with respect to a reference point r ∈ RM ,
denoted as HVr(F), is defined as:

HVr(F) = µ

 ⋃
f(π)∈F

[f(π), r]

 , (19)

where µ represents the Lebesgue measure, and [f(π), r] refers to an M -dimensional hypercube,
i.e., [f(π), r] = [f1(π), r1] × · · · × [fM (π), rM ]. The HV is normalized as HV′r(F) =

HVr(F)/
∏M

i=1 |ri − zi|, where z is an ideal point such that zi < min{fi(π)|f(π) ∈ F} (or
zi > max{fi(π)|f(π) ∈ F} for maximization), ∀i ∈ {1, . . . ,M}. According to prior literature
(Chen et al., 2023a;b), the same r and z are used across all methods for a given MOCO problem, as
summarized in Table 4.

F MULTI-OBJECTIVE INSTANCE AUGMENTATION

During the inference phase, instance augmentation Lin et al. (2022) can be used to improve per-
formance by transforming an instance into multiple variations that all share the same optimal solu-
tion. Each transformed instance is then solved, and the best solution among them is chosen. For
Bi-CVRP, there are 8 possible transformations based on the 2-dimensional coordinates, such as
(x, y), (y, x), (x, 1 − y), (y, 1 − x), (1 − x, y), (1 − y, x), (1 − x, 1 − y), (1 − y, 1 − x). For the
M -objective TSP, this leads to 8M transformations, as each of the M groups of coordinates can be
permuted independently. For KP, this instance augmentation is not applicable.

G GENERALIZATION RESULTS ON BENCHMARK INSTANCES

The detailed out-of-distribution generalization results are presented in Table 5, further confirming
the exceptional generalization ability of our GIMF.

H HYPERPARAMETER STUDY

Effects of the number of multimodal fusion layers We vary the number of multimodal fusion
layers L′ while keeping the total number of layers fixed at L = 6. The results in Figure 6 show
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Table 5: Detailed results on benchmark instances.

Method
KroAB100 KroAB150 KroAB200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.7022 -0.34% 2.3m 0.7017 -0.99% 4.0m 0.7430 -1.42% 5.6m

MOEA/D 0.6836 2.31% 5.8m 0.6710 3.43% 7.1m 0.7106 3.00% 7.3m
NSGA-II 0.6676 4.60% 7.0m 0.6552 5.70% 7.9m 0.7011 4.30% 8.4m
MOGLS 0.6817 2.59% 52m 0.6671 3.99% 1.3h 0.7083 3.32% 1.6h
PPLS/D-C 0.6785 3.04% 38m 0.6659 4.16% 1.4h 0.7100 3.08% 3.8h

DRL-MOA 0.6903 1.36% 10s 0.6794 2.22% 18s 0.7185 1.92% 23s
MDRL 0.6881 1.67% 10s 0.6831 1.68% 17s 0.7209 1.60% 23s
EMNH 0.6900 1.40% 9s 0.6832 1.67% 16s 0.7217 1.49% 23s

PMOCO 0.6878 1.71% 9s 0.6819 1.86% 17s 0.7193 1.82% 23s
GIMF-P 0.6936 0.89% 11s 0.6878 1.01% 21s 0.7231 1.30% 26s

CNH 0.6947 0.73% 28s 0.6892 0.81% 37s 0.7250 1.04% 43s
GIMF-C 0.6958 0.57% 25s 0.6907 0.59% 35s 0.7285 0.56% 42s

MDRL-Aug 0.6950 0.69% 13s 0.6890 0.83% 19s 0.7261 0.89% 28s
EMNH-Aug 0.6958 0.57% 12s 0.6892 0.81% 18s 0.7270 0.76% 27s

PMOCO-Aug 0.6937 0.87% 12s 0.6886 0.89% 19s 0.7251 1.02% 27s
GIMF-P-Aug 0.6971 0.39% 15s 0.6924 0.35% 26s 0.7271 0.75% 45s

CNH-Aug 0.6980 0.26% 31s 0.6938 0.14% 37s 0.7303 0.31% 54s
GIMF-C-Aug 0.6998 0.00% 30s 0.6948 0.00% 39s 0.7326 0.00% 59s
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Figure 6: Effects of the number of fusion layers

that the model performs best when L′ = 3. If L′ is too small, there may be insufficient fusion
of multimodal information. Conversely, if L′ is too large, the model’s ability to learn from single
modalities may weaken, reducing its performance. Therefore, selecting an appropriate value for L′

is essential to achieve a balance between multimodal fusion and single-modality learning, ultimately
improving the model’s performance.

Effects of the number of bottlenecks For the number nb (where we set n′
b = nb) of bottlenecks

introduced for multimodal fusion, the model performs best when nb is set to 10, as shown in Figure
7. Introducing too many bottlenecks can increase the model’s complexity, making effective learning
more difficult, while too few bottlenecks may hinder the proper fusion of multimodal information,
limiting the model’s capabilities. Thus, selecting an appropriate number of bottlenecks ensures
effective multimodal fusion and improves the model’s performance.
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Figure 7: Effects of the number of bottlenecks
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