
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED FRAMEWORK FOR CAUSAL DISCOVERY AND
LONG-TERM FORECASTING IN NON-STATIONARY EN-
VIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-stationary data is prevalent in various real-world domains such as climate
science, economics, and neuroscience, presenting significant challenges for tasks
like forecasting and causal discovery from observational data. Existing approaches
often operate under the assumption that the data is stationary. In this work, we
introduce a unified framework that combines long-term forecasting and causal
discovery with non-linear relations in a non-stationary setting. Specifically, we
assume that the nonlinear causal relations in the observed space can be transformed
into linear relations in the latent space via projections. In addition, we model
the non-stationarity in the system as arising from time-varying causal relations.
The proposed model demonstrates that adopting a causal perspective for long-term
forecasting not only addresses the limitations of each individual task but also makes
the causal process identifiable, enhances interpretability, and provides more reliable
predictions. Moreover, our approach reformulates causal discovery into a scalable,
non-parametric deep learning problem. Through experiments on both synthetic and
real-world datasets, we show that our framework outperforms baseline methods in
both forecasting and causal discovery, underscoring the benefits of this integrated
approach.

1 INTRODUCTION

Causal discovery over observational time series data is a crucial task, with far reaching applications
across various real-world domains such as climate science, economics, and neuroscience. Causal
discovery methods aim to uncover contemporaneous and/or time-lagged dependencies, from the
observed data. These dependencies not only provide useful insights into the underlying processes gov-
erning the system but also can be extremely beneficial in tasks such as making informed predictions,
identifying key drivers of change, and designing effective interventions.

Most widely-used causal discovery methods are constraint based approaches. They aim to recover
a directed acyclic graph (DAG) representing the causal structure among the observed variables by
using conditional independence tests. Under certain assumptions and and given enough data points,
constraint based methods, provide a theoretical guarantee to be able to recover the true causal graph.
Notable examples include approaches like PCMCI (Runge (2022) )and tsFCI (Entner & Hoyer (2010))
which extend the classic PC and the FCI algorithms respectively(Spirtes et al. (1993), Spirtes (2001))
for time series data. Additionally, many approaches also utilize traditional statistical methods such as
Granger causality and vector auto-regression (VAR). A variable xi Granger causes xj if past values
of xi provide unique and statistically significant information about future values of xj . However, all
these methods share a critical limitation: they assume stationarity, meaning the causal relationships
between variables remain constant over time. This assumption often fails in real-world scenarios
where relationships can evolve due to changing system dynamics. Furthermore, these approaches
tend to struggle with non-linearities and could face scalability issues when applied to large datasets.

Long-term forecasting for non-stationary time series is equally challenging. In recent years, this
problem has been widely studied, and numerous deep learning-based approaches have been proposed.
Transformer based models ( Wu et al. (2022), Zhou et al. (2022), Zhou et al. (2021) ) have gained
popularity due to their exceptional performance in forecasting based tasks. However, recent works
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(Zeng et al. (2022) Das et al. (2024) )have questioned the necessity of such complex architectures,
advocating for simpler MLP-based models that can achieve competitive performanc. Despite their
simplicity, linear models are inherently limited in their ability to capture the non-linearities com-
monly found in real-world data. Transformer-based models, on the other hand can be sensitive to
distributional shifts over time. They may struggle when faced with abrupt changes, evolving trends,
or time-varying dependencies typical of non-stationary systems. It is also important to note that
the majority of datasets benchmark the performance of these models are often stationary, with clear
seasonal and trend dynamics, simplifying the forecasting task Wang et al. (2023).

Given a non-stationary time series, with non-linear causal relations, we present a unified framework
that combines the tasks of causal discovery and long-term forecasting over the observed data.
Specifically, we aim to find a projection of the observables to a latent space such that the non-linear
causal relations in the observed space are transformed into linear relations in the latent space. Further,
we assume the non-stationarity in the data arises from time varying causal weights. As a result, the
causal model in the latent space can be represented as a time-varying coefficients regression model.
This formulation guarantees identifiability of the parameters of the causal model in the latent space,
and by extension, in the observation space. In our current approach we only assume time-lagged
causal relations.

We demonstrate that incorporating a causal perspective into long-term forecasting effectively ad-
dresses the limitations of both tasks. Discovery of the changing causal relations enables us to capture
and leverage the uncertainty in the system, to enhance interpretability and provide more reliable
predictions over a longer time periods. Additionally, our approach reformulates causal discovery
into a scalable, non-parametric, deep-learning based task. Through experiments on both synthetic
and real-world datasets, we show that our proposed method outperforms baseline approaches in both
causal discovery and long-term forecasting.

To summarize, the proposed approach has the following features:

• It accommodates non-linear causal relations among the observed variables by learning a
projection to a latent space where these relations become linear.

• It models non-stationary time series by allowing causal mechanisms to change over time.

• It imposes minimal constraints on the underlying causal structure while ensuring identifia-
bility in both the latent and observation spaces.

• We provide experimental results on both synthetic and real-world datasets, demonstrating
the efficacy of our model.

2 RELATED WORK

Causal discovery for time series Causal discovery in time series, particularly in non-stationary
environments, has been explored through various modeling approaches. One notable work Huang
et al. (2019) uses state-space models to represent non-stationary processes, treating the problem as
a nonlinear state-space model that captures changes in both causal strengths and noise variances.
The underlying hypothesis is that non-stationarity, often seen as a challenge, can actually aid in
identifying causal structures, and that forecasting accuracy naturally improves when informed by
these learned causal relationships. While effective, this approach has limitations: it relies on linear
assumptions, and focuses mainly on the next-step prediction. Building upon this work, our goal
is to relax these conditions by accommodating non-linear relationships between observed causal
variables and dynamically changing causal weights, while extending the framework to support
long-term prediction on both synthetic and real-world datasets. PCMCI−Ω (Gao et al. (2024b))
builds upon the PCMCI (Runge (2022)) framework to present a constraint-based, non-parametric
algorithm designed for semi-stationary environments. In these settings, the data is characterized
by a finite number of causal mechanisms that occur periodically. Another prominent method is
CDNOD (Gao et al. (2024a)), a non-parametric, constraint-based causal discovery technique tailored
for heterogeneous and nonstationary data. CDNOD focuses on detecting variables with changing
causal mechanisms and models these changes using a surrogate variable. It orients the causal edges
from the surrogate variable to the mechanisms that exhibit variability, effectively leveraging data
heterogeneity and distributional shifts to identify both causal structures and their directionalities.
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DYNOTEARS (Pamfil et al. (2020)) represents another significant contribution, adapting the well-
known NOTEARS framework to time series data. DYNOTEARS formulates causal discovery as
a continuous optimization problem, where the graph search is expressed through a differentiable
objective function that quantifies the "DAG-ness" (Directed Acyclic Graph property) of the causal
graph. A comprehensive overview of these methods, among others, is provided in the survey paper
Causal Discovery in Temporal Data (Gong et al. (2023)), which summarizes and categorizes various
techniques used in causal discovery for temporal settings.

Long-term forecasting Transformer-based models have seen significant advancements in time
series forecasting, with various extensions enhancing their capability to capture complex temporal
patterns. Among these, Autoformer (Wu et al. (2022)) is notable for its series decomposition
approach, where the input is divided into trend and seasonal components using a specialized series
decomposition block. A key component in Autoformer is the use of an auto-correlation mechanism,
which identifies period-based dependencies by measuring the similarity between the input and lagged
inputs in the Fourier domain. FEDFormer (Zhou et al. (2022)) takes a different approach with its
Frequency Enhanced Transformer architecture, which operates in the frequency domain to extract
relevant features. Spacetimeformer (Grigsby et al. (2023)) introduces a novel modification in temporal
encoding by flattening the feature vector, to encode both spatial and temporal dimensions.

Linear-based models have gained an increasing popularity as an alternative to more complex architec-
tures, particularly challenging the effectiveness of attention mechanisms in time series forecasting.
DLinear (Zeng et al. (2022)) argues that attention mechanisms, being permutation invariant, often
fail to capture the intricate dependencies inherent in time series data and primarily serve to reduce
computational complexity rather than enhance predictive power. Instead, DLinear proposes a straight-
forward linear model augmented with a seasonal decomposition block, demonstrating that such
a simple approach can achieve performance comparable to, or even surpass, more sophisticated
models that rely heavily on attention. Time Series Dense Encoder (TiDE Das et al. (2024)) further
emphasizes the potential of simpler architectures, proposing a method based solely on multi-layer
perceptrons (MLPs). State space models represent another category of alternatives, with S4 (Gu et al.
(2022))standing out for its capability to model long sequences effectively. S4 addresses the traditional
bottlenecks associated with state-space models and is able to capture long-range dependencies with
remarkable efficiency.

3 PROBLEM FORMULATION

3.1 HYPOTHESIS

Time-varying coefficient models provide a powerful framework to address non-stationarity by al-
lowing the coefficients that govern the relationships between variables, to change over time. Instead
of assuming fixed relationships, time-varying coefficient models adapt to the dynamic nature of the
data, enabling the modeling of evolving dependencies and interactions. We can describe the model in
terms of a regression relation between the observables and a state equation describing the evolution
of the coefficients over time. {

yt = xtβt + et

βt+1 = Aβt + ϵt
(1)

x and y represent the observables, β are the time varying coefficients, A is the matrix governing the
transitions of β and et, ϵt are independent zero mean noise terms. The identification of the system is
quite challenging as the identification of βt depends on identification of the transition matrix A, the
covariance matrix (Q) of the noise term ϵt and the initial conditions of the process β0.

Wall (1987), provides the identifiability conditions for such a system. Further, Huang et al. (2019)
reformulates the problem as a causal discovery task where β constitutes the time varying causal
weights. The work provides a theoretical baseline for causal discovery and forecasting in a non-
stationary time series characterized by a time varying linear causal model. The core result can be
summarized as follows - Given a state space model describing the linear causal relations between
observed variables, the causal weights and their associated noise variance are allowed to change in an
auto-regressive manner. This system is identifiable under both contemporaneous and time-lagged
causal relations.
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Our hypothesis builds upon this proof. Given a non-stationary time series data, with observed casual
variables, we assume that the causal relations are nonlinear in the observation space. Non-stationarity
in the system arises due to smoothly changing casual relations between the observed variables (as
a function of time). We aim to find an alternative mapping or projection of the observations in a
latent space such that the causal relations between the projections in the latent space are linear. The
causal relations in the latent space (similar to the observation space) also change as a function of time.
We assume that the causal weights change smoothly over time and at least one of the causal weight
matrices is full rank.

Given no other constraints, and following the proof from Huang et al. (2019), we claim that in this
projection space the system is identifiable. The projection is a learnt one-to-one mapping, therefore
the identifiability claim can be extended to the causal mechanisms in the observed space.

3.2 NON-LINEAR TIME VARYING CAUSAL MODEL

We observe an n-dimensional multivariate time-series at discrete time steps, X =
{x1,x2, · · · ,xT},xt ∈ Rn. The observations are assumed to have time-lagged non-linear causal
relations with a maximum lag of L time steps. The time series is assumed to be non-stationary such
that these causal relations change over time.

For the observation space,

xi,t = Git({xj,t−τ |xj,t−τ ∈ Pa(xi,t)}, ηi,t) (2)

where Gi,t represents some non-linear function, Pa(xi,t) is the set of all possible parents of xi,t,
τ ∈ {1, 2 · · · , L} is the time lag, and ηt is a zero mean noise variable. The corresponding latent
variables Z = {z1, z2, · · · , zT}, zt ∈ Rd, are assumed to exist in a d-dimensional space where the
causal relations among Z are linear.

zt = Φ(xt) xt = Ψ(zt) (3)

zi,t =

L∑
τ=1

∑
zj,t−τ∈Pai

β
(τ)
i,j,tzj,t−τ + ei,t (4)

Since, we assume a feature-wise transformation, the encoder Φ produces a feature-wise map of the
observations. Thus, d = n. βit ∈ Rd×L represents the adjacency matrix for zi,t such that βt[i, j] ̸= 0,
implies that there is a causal connection between zi,t and zi,t−j and by extension between xt and
xt−j as well. The feature-wise formulation ensures that the causal adjacency matrix remains the
same for the observed as well as the latent space.

The causal weight matrix βt is allowed to change with time as a non-linear function of its time lagged
values with some noise ϵ,

βt = f({βt−r|r ∈ {1, 2, · · · , R}}, t) + ϵt (5)

Each βt ∈ Rd×d×L is a three-dimensional matrix. We note that, all the db = d× d× L components
can individually, follow a different time-varying pattern.

Objective The objective of the approach is two-fold. We aim to recover the changing causal
weights βt, ∀t ∈ [T ] for all time steps. Additionally, given an input of context length C, Xinp =
{xt−C+1,xT−C+2, · · · ,xT}., we aim to predict the next H time points of the time series Xpred =
{xT+1,xT+2, · · · ,xT+H}.

3.3 IDENTIFIABILITY THEORY

The identifiability of the proposed model in the latent space is dependent only on the fact that the
causal weights change over time in a smooth manner. To ensure complete identifiability of the system,
we can assume that there are no interactions among the components of the causal weight matrix and
each component is allowed to follow a completely independent process. Wall (1987) demonstrate why
this is crucial and show that interactions among the components can result in a partially identifiable
system. Further, we make no assumptions on the nature of the noise components in the model.

Theorem 1 presents the identifiability result for a time-varying causal model where the causal weights
β follow a time lagged auto-regressive process.
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Theorem 1 Given a multivariate time series Zt = (z1,t, · · · , zd,t)T generated by the process
zi,t =

L∑
τ=1

∑
zj,t−τ∈Pai

β
(τ)
i,j,tzj,t−τ + ei,t

β
(τ)
i,j,t =

R∑
r=1

α
(τ)
i,j,rβ

(τ)
i,j,t−r + ϵi,j,t

(6)

where zj,t−τ is the time-lagged cause of zi,t with a lag of τ , and β
(τ)
i,j,t is the corresponding causal

weight. β(τ)
i,j,t follows a R-order autoregressive process with αi,j,r being the transition coefficient for

lag r. ei,t represents a stationary zero mean white noise process where E[ei,t] = 0, E[ei,t, ei,t′ ] =
σ2
i δtt′ and E[ei,t, ei′,t] = σ2

i δii′ where σ2
i < ∞ and δ is the delta function. Similarly, for the noise

in the autoregressive process E[ϵi,j,t] = 0, E[ϵi,j,t, ϵi,j,t] = wij .

The model represented by 6 is identifiable.

The proposed Time-varying causal model can be seen as an extension of the varying coefficients
regression model. The proof of theorem 1 can be extended trivially from the identifiability results for
varying coefficient regression models.

Lemma 2 Wall (1987) Given a varying coefficients regression model,
yt =

∑
i

βi,tzi,t + et

βi,t = αi,0 +

P∑
p=1

αi,pβi,t−p + ϵi,t

(7)

where yt an observation variable dependent on the state variable zi,t. βi,t follows a P -order
autoregressive process with αi,p being the transition coefficient for lag p. et and ϵi,t represent
stationary zero mean white noise processes where E[et] = 0, E[et, et′ ] = σ2

eδtt′ and E[ϵi,t] = 0,
E[ϵi,t, ϵi,t′ ] = σ2

ϵiδtt′ . where σ2
e < ∞ and δ is the delta function.

Then the model parameters σ2
e , αi,0, αi,p, σ

2
ϵi∀i, p ∈ N+ are globally identifiable.

This shows that the system is identifiable in the latent space when the causal coefficients follow an
R order auto-regressive process. For the general case, when the coefficients are allowed to follow
any non-linear function of the lagged values described in 5, although, no formal proof exists but our
empirical results strongly suggest that the system remains identifiable.

For the observation space,

xi,t = Φi(zi,t) ∀t ∈ {1, · · · , T},∀i ∈ {1, · · · , d} (8)

Rearranging terms

zt = βt.zt−1 + et

Ψ(xt) = βt(Ψ(xt−1)) + et

xt = Ψ−1(βt(Ψ(xt−1)) + et)

= Φ(βt(Ψ(xt−1)) + et) ≜ Gt(xt−1)

Thus, we can extend the proof of identifiability to the causal model of xt.

4 MODEL DESCRIPTION

The model description can be split-up into three separate objectives - (1) Modeling the mapping
function Φ (2) Modeling the β change function f (3) Modeling the long term prediction architecture.

5
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We use an MLP-based autoencoder (AE) architecture to approximate Φ. The autoencoder is optimized
through the reconstruction loss of the inputs. The problem formulation describes the latent space as
a feature-wise transformation of the observables. Without additional constraints, this implies that
the latent variables Z would simply correspond to an affine transformation of the inputs. To prevent
this, we assume that the latent variables can have an entangled time dependent feature. To capture
these temporal features, each input data point xt ∈ X is concatenated with its associated temporal
information generating a learnable time-dependent embedding xembed. This modification allows the
system to capture dynamic temporal features and can be defined as follows:

z = Φ(xembed) xt = Ψ−1(z, t),∀t ∈ [T ]

The β values at each time step are defined as a learnable parameter array. To approximate the weight
change function f , we utilize a standard Transformer architecture incorporating both multi-head
self-attention and cross-attention mechanisms. The previous β[:t−L] values are used to predict the sub-
sequent βt+1. To ensure the Transformer correctly attends to relevant temporal contexts, a learnable
positional embedding is included in the inputs. This setup allows the Transformer to approximate
the prior distribution - pf (βt|Pa(βt)). However, since the β values are not known, this makes the
prior objective unbounded. Therefore we employ a variational inference framework V to constrain
and refine the learning process. Specifically we approximate the distribution qV (βt|Pa(βt),Pa(xt))
describing the likelihood function conditioned on the observations xt. Reparameterization trick is
then used to minimize the KL divergence between the two distributions. An MLP based model is use
to approximate the distribution qV .

Due to the enforced linear nature of the latent subspace, the next step prediction task is reduced to
estimating the next H timesteps for β from the transformer and use them to estimate ẑ[T+1:T+H]

and x̂[T+1:T+H].

ẑi,t+1 = βT
i,t+1ẑi,[t−L:t] + ei,t+1 x̂t+1 = Ψ−1(ẑt+1)

We utilize an autoregressive prediction scheme for context-based predictions and extend this to a
multi-step strategy for long-term forecasting. To enhance the stability of the autoregressive process,
we employ a teacher-forcing approach during training, to effectively guide the model towards more
reliable predictions.

4.1 ELBO OBJECTIVE

By design, zt can be thought of as an alternate representation of xt, we can thus define the objective
function solely in terms of zt. For simplicity, we assume the look-back window for z and β is the
same.

p(z) =

∫
β

Pr(z|β)Pr(β)dβ

Estimated Lower Bound (ELBO) for the variational inference framework can be written as:

log p(z) ≥
∫
β

q(β|x) log p(z|β).p(β)
q(β|x)

.dβ

= Eβ∼qV (β|x)

[
log p(z|β)−DKL

(
qV (β|x)||pf (β)

)]
log p(zt) ≥ Eβt∼qV

[
T+H∑
t=1

log p

(
zt|[zt−τ ]

τ=L
τ=1 , [βt−τ ]

τ=L
τ=1

)

−DKL

(
qV

(
βt|[βt−τ ]

τ=L
τ=1 , [xt−τ ]

τ=L
τ=1

)
||pf

(
βt|[βt−τ ]

τ=L
τ=1

))]
The above expression is the ELBO for log p(zt). As, xt = Φ−1(zt) we thus obtain an estimated
lower bound for p(xt).

Rewriting the terms -
ELBO ≜ Lprior +LKL

6
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LKL = −DKL

(
qV

(
βt|[βt−τ ]

τ=L
τ=1 , [xt−τ ]

τ=L
τ=1

)
||pf

(
βt|[βt−τ ]

τ=L
τ=1

))

Lprior =

T+H∑
t=1

log p

(
zt|[zt−τ ]

τ=L
τ=1 , [βt−τ ]

τ=L
τ=1

)

=

T∑
t=1

log p

(
zt|[zt−τ ]

τ=L
τ=1 , [βt−τ ]

τ=L
τ=1

)
︸ ︷︷ ︸

Lpresent

+

T+H∑
t=T+1

log p

(
zt|[zt−τ ]

τ=L
τ=1 , [βt−τ ]

τ=L
τ=1

)
︸ ︷︷ ︸

Lfuture

The prediction network f and the variation network V are used to approximate pf and qV respectively.
The KL divergence loss LKL can be easily computed over the estimated distributions. βt is obtained
using the reparmetrization trick.

The prior term Lprior can be split into two components based on the time periods, the observed time
period operating on the input context length as ‘present’, timesteps t ∈ [1, T ] and the prediction
horizon on the prediction length as ‘future’, timesteps t ∈ [T + 1, T +H]

In the ’present’ setting, the prior of the latent space representation can be optimized by decomposing it
into multiple next-step prediction tasks, effectively simplifying the prediction problem into sequential,
stepwise objectives. Conversely, for the future objective, the prior of the latent space is approximated
using the long-term prediction outcomes across the entire forecasting horizon. The distinction
between present and future scenarios is crucial, as it highlights the differing methodologies required
for approximating the likelihood priors in each context.

4.1.1 PRIOR LIKELIHOOD

For the ’present’ case, we find that the prior likelihood reduces to,

log p(zt|[zt−τ ]
L
τ=1, βt) =

d∑
j=1

log p(ej,t)

Thus, the prior can be approximated as summation over the residuals associated with the prediction
of zt. The detailed derivation of the formulation is presented in Appendix A.1 Based on our model
design, we can estimate zt in two ways:

1. forecast ẑt using βt and
2. value obtained from the auto-encoder as zt = Φ(xt) - since have access to xt.

The residual will be equal to the difference between the values obtained from the two prediction
schemes. This is only feasible in the ’present’ setting as we have access to the next time step value in
the observation space. Furthermore, since βt is required for the forecast and is calculated exclusively
based on previously evaluated values, the prior estimation can be made sufficiently precise. This
ensures that the results of both the prediction schemes align.

For the ’future’ case,

log p(zt|[zt−τ ]
L
τ=1, βt) + log p(βt|[βt−τ ]

L
τ=1]) =

d∑
j=1

log p(ej,t) + log p(ϵt) + log

∣∣∣∣∣ ∂ϵt∂βt

∣∣∣∣∣
This result arises from the fact that the transformations in βt are completely independent of any other
factor. This independence can be formally demonstrated by applying the change of variables formula
exclusively to the sequences of β. Thus, we can say that the above equation can be decomposed into
two independent components: one term corresponding to the latent variables and others corresponding
to the causal weights β.

log p(zt|[zt−τ ]
L
τ=1, βt) =

d∑
j=1

log p(ej,t)

7
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and

log p(βt|[βt−τ ]
L
τ=1]) = log p(ϵt) + log

∣∣∣∣∣ ∂ϵt∂βt

∣∣∣∣∣
Considering the first equation, direct minimization of the objective function is not feasible in the same
way as in the ’present’ case. However, since the objective function can be alternatively expressed in
terms of the observables, the task of minimizing the objective becomes equivalent to minimizing the
long term prediction loss. This allows us to effectively align the optimization process with observable
data, leveraging predictive performance as a surrogate for the original objective.

The second equation describes the prediction probability of βt conditioned on its parents. This
objective is already addressed within the model by estimating a bound on the KL divergence between
the prior and the variational approximation qV , as described by the loss term LKL. This approach ef-
fectively constrains and bounds the predictive probability of β, ensuring that the inferred distributions
remain consistent with the modeled dependencies.

The final loss term can be expressed as sum of reconstruction loss from the autoencoder and the
ELBO terms.

Ltotal = LAE +Lprior +LKL

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We generate synthetic data based on the non-linear, time-varying causal model described in Section
3.2. Specifically, we explore three different settings by varying the time-varying process f governing
the change of β, and the projection function Ψ applied to the latent variables.

Case 1: f is linear The causal weights are assumed to follow an AR(2) process of the form

βt = A1βt−1 +A2βt−2 + ϵt

Stability of this process can be defined in terms of the eigen values of the associated companion
matrix. Define companion matrix C.

C =

[
A1 A2

I 0

]
If βt has db features, then C is a (2db × 2db) matrix, with I being an identity matrix and 0 begin a
null matrix each of dimension db.The underlying AR process will be stable if the largest eigen value
of C is less than or equal to one. We can manually define the coefficients Ai to be such that the
condition is satisfied. Alternatively, we can initialize them with random values and find the optimum
values that satisfy the condition, using any gradient based optimizer. We follow the latter approach
with the initial values as A1 = A2 = I and taking ϵt as a zero mean Gaussian noise.

For the latent variables,
zt = β1

t zt−1 + β2
t zt−2 · · ·βL

t zt−L + et

the companion matrix at time t can be defined as

C ′
t =


β1
t β1

t · · · βL−1
t βL

t
I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


The β values change over time. To ensure that the eigen values of C ′

t are less than one for all time
steps, we can scale all the β values. The optimum scale value can be found using gradient descent.
Interestingly, we observe that the scale value is approximately equal to the maximum singular value
of the companion matrix of the entire time series.

Further we can generate the observables as

xt = Ψ−1(zt, t) or equivalently xt = Ψ−1(h(zt), s(t))

8
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where h and s describe some transformations of z and t respectively. Following this scheme, we
generate two datasets,

LinearZ β follows an AR(2) process and xt = Ψ−1(h(zt), t). We consider simple quadratic and
exponential functions of z and use the time step as a trend component. Ψ is an MLP architecture
initialized with random weights.

LinearT β follows an AR(2) process and xt = Ψ−1(zt, s(t)). In this case we introduce some
seasonality and trend based components in the generation of the observables.

Case 2: f is non-linear process Ta more general case where the stability of the process for β
cannot be explicitly defined explicitly and depends heavily on careful initialization of parameters
at t = 0. However, the stability conditions for the latent variable generation process, as previously
mentioned, still apply. Using this scheme, we generate one dataset.

NonLinearT βt follows a non-linear function of its past values with a lag of 2 and xt =
Ψ−1(h(zt), s(t)). Simple quadratic and trigonometric functions of both z and t are used to generate
the observables. This dataset contains a significant seasonality component compared to the linear
datasets. Both f and Ψ are characterized as MLPs initialized with random weights.

For all the three datasets, we generate 6000 samples, with 4 features and a look-back window of 5
time-steps. For long-term forecasting task, we use an input with a context length of 30 time-steps
and evaluate prediction accuracy for forecast windows of 60 and 90 time-steps. The plots for the
observables and latents are presented in Appendix A.2

Baselines:

• Vector ARIMA - VARIMA (Stock & Watson (2001)) Captures dependencies among
multiple variables, accounting for autoregressive, differencing (integration), and moving
average components to forecast future values.

• N-HiTS Model - N-HiTS (Neural Hierarchical Interpolation for Time Series) (Challu et al.
(2022)) is a deep learning model which uses a hierarchical interpolation mechanism to
capture temporal patterns across different resolutions.

• Autoformer (Wu et al. (2022))- Transformer based model that uses an auto-correlation
mechanism to capture long-range dependencies, combined with a decomposition block to
separate trend and seasonal components for improved long-term forecasting.

• D-Linear (Zeng et al. (2022))- Linear model that decomposes the time series into trend and
seasonal components and uses a single linear layer.

• TiDE (Das et al. (2024)) - Linear model that leverages a dense encoder-decoder architecture
to efficiently capture both short and long-term dependencies.

All the models are evaluated using RMSE, and results are presented in Table 1.

Methods LinearZ LinearT NonLinearT
(30∼60) (30∼90) (30∼60) (30∼90) (30∼60) (30∼90)

VARIMA 0.138 0.161 0.153 0.242 0.195 0.120
N-HiTS 0.292 0.321 0.249 0.225 0.221 0.321
Autoformer 0.161 0.194 0.223 0.228 0.224 0.291
D-Linear 0.109 0.157 0.162 0.229 0.073 0.095
TiDE 0.092 0.152 0.158 0.225 0.065 0.078
Ours 0.079 0.139 0.146 0.212 0.072 0.110

Table 1: RMSE scores over the synthetic datasets

5.2 REAL-WORLD DATA

Wang et al. (2023) demonstrates the forecastability of various popular datasets used to benchmark
models for long-term forecasting objective. Following Wang et al. (2023), we choose to evaluate our
model on the M4 dataset due to its highly non-stationary nature. Specifically we choose, M4-Weekly
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and M4-Daily datasets. The datasets are composed of univariate time series divided into multiple
categories such as finance, demographics and industry. We follow the experimental setup as described
in the M4 competition.

Baselines: We compare the performance of our model against the top performing models from the
original M4 competition Makridakis et al. (2020) as well as Koopman Neural forecaster because of
its promising results. Evaluation Metrics: We evaluate our results using the sMAPE criterion, as
outlined in the competition.

Methods M4-Weekly M4-Daily
(45∼13) (18∼14)

Smyl S. 7.817 3.170
Montero-Manso et.al 7.625 3.097
KNF 7.254 2.990
Ours 8.091 3.144
M4-benchmark (naive) 9.161 3.045
M4-benchmark (Com) 8.944 2.980
M4-benchmark (MLP) 21.349 9.321

Table 2: sMAPE scores for M4 datasets

Table 2 compares our model performance with
KNF, the top performing models (Makridakis
et al. (2018)) and the baselines provided by the
dataset authors. Our model performs well on
the M4-Daily dataset but not on the M4-Weekly.
We can also see that it is significantly better
than the baselines provided, and based on the
competition average, our approach scores quite
highly. Our model is heavily dependent on the
look-back window length and the nature of the
β encoders and decoders used. There is con-
siderable scope of improvement by exploring
different hyperparameters and model architec-
tures.

5.3 CAUSAL DISCOVERY OVER THE OBSERVABLES

RMSE Precision Recall F1-score
LinearZ 0.15 0.68 0.63 0.62
LinearT 0.26 0.63 0.49 0.55
NonLinearT 0.07 0.43 0.38 0.40

Table 3: Causal Discovery results

We compare the discovered β values with
the true causal weights for the three synthetic
datasets. The weights discovered by our model
are sampled from the distribution estimated by
the encoder and decoder, thus the weights can
be scale shifted. Additionally, we threshold the
weights at random values for each time point
and calculate the precision recall and F1 scores.
The results are promising for the linear case. For
non-linear dataset, the scale disparity is much higher than the linear case, while the magnitudes of the
values are low. The results are presented in Table 3

6 CONCLUSION

In this work, we propose a unified framework for causal discovery and long-term forecasting on
non-stationary time series data. By leveraging a causal perspective, our approach enhances long-term
forecasting accuracy, as demonstrated by comparative results on both synthetic and real-world datasets.
The framework also transforms causal discovery into a scalable, non-parametric objective, effectively
addressing many limitations commonly associated with this task. Future directions include extending
the framework to incorporate contemporaneous causal relations and conducting experiments with
different modalities such as video.
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A APPENDIX

A.1 PRIOR LIKELIHOOD DERIVATION

For present timesteps: For derivation sake, we simplify the problem statement - Consider only two
features i.e. zt+1 = [z1,t+1, z2,t+1] with a maximum lag of L = 1. For the ’present’ case, βt+1 is
obtained from the past time-lagged values βt−τ (where τ ∈ [L] ) , thus for all purposes, βt+1 can
be assumed independent of zt. Also, lets assume that some invertible function f exists which trans-
forms the sequence A := [z1,t, z2,t, βt+1, z1,t+1, z2,t+1] to B := [z1,t, z2,t, βt+1, η1,t+1, η2,t+1].
Therefore, by the change of variables formula:

log p(A) = log p(B) + log |det(JA→B)|
log p[z1,t, z2,t, βt+1, z1,t+1, z2,t+1] = log p[z1,t, z2,t, βt+1, η1,t+1, η2,t+1] + log |det(JA→B)|

Calculating the Jacobian, we observe that it is of the general form-

JA→B =

[
I 0

∗ diag
(

∂f−1
i

∂zi,t+1

)]
for each of the i features of z. Therefore

log p(zt, βt+1, zt+1) = log p(zt, βt+1, ηt+1) +

n∑
i=j

log

∣∣∣∣∣ ∂fi
−1

∂zi,t+1

∣∣∣∣∣
Taking LHS:

log p(zt, βt+1, zt+1) = log p(zt+1|βt+1, zt) + log p(βt+1, zt)

= log p(zt+1|βt+1, zt) + log p(βt+1) + log p(zt)

As clearly βt+1 ⊥⊥ zt. For the first term on RHS, we have ηt+1 ⊥⊥ zt and βt+1 ⊥⊥ zt.

log p(zt, βt+1, ηt+1) = log p(zt) + log p(βt+1) + log p(ηt+1)

Simplifying we get,

log p(zt+1|zt, βt+1) = log p(ηt+1) +

n∑
i=j

log

∣∣∣∣∣ ∂fi
−1

∂zi,t+1

∣∣∣∣∣
Generalizing -

log p(zt|[zt−τ ]
L
τ=1, βt) =

d∑
j=1

log p(ηj,t) +

d∑
i=j

log

∣∣∣∣∣∂fi−1

∂zi,t

∣∣∣∣∣
By definition, we assume that the causal relations in the latent space are linear, therefore the Jacobian
term is a constant. We can directly write the prior as :

log p(zt|[zt−τ ]
L
τ=1, βt) =

d∑
j=1

log p(ηj,t)

For the future case: For t ≥ T similar to the previous case, we can simplify the prior estimation
problem into a transformation from sequence A := [z1,t, z2,t, βt, z1,t+1, z2,t+1, βt+1] to B :=
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[z1,t, z2,t, βt, η1,t+1, η2,t+1, ϵt+1]. This is different from the present case, since this also involves
estimating βt+1 from βt. (For simplicity, assuming only a lag of L = 1). Here ϵt+1 is the noise
involved in estimating βt+1. Using the change of variables formula-

log p(A) = log p(B) + log |det(JA→B)|

log p[z1,t, z2,t, βt, z1,t+1, z2,t+1, βt+1] = log p[z1,t, z2,t, βt, η1,t+1, η2,t+1, ϵt+1]+log |det(JA→B)|
Evaluating the jacobian

JA→B =


I 0 0

∗ diag
(

∂f−1
i

∂zi,t+1

)
0

∗ ∗
(

∂ϵt+1

∂βt+1

)


Therefore -

log p[zt, βt, zt+1, βt+1] = log p[zt, βt, ηt+1, ϵt+1] +

n∑
i=j

log

∣∣∣∣∣ ∂fi
−1

∂zi,t+1

∣∣∣∣∣+ log

∣∣∣∣∣ ∂ϵt+1

∂βt+1

∣∣∣∣∣
Taking LHS

log p[zt, βt, zt+1, βt+1] = log p(zt+1|βt, zt, βt+1) + log p(βt, zt, βt+1)

= log p(zt+1|zt, βt+1) + log p(zt|βt, βt+1) + log p(βt, βt+1)

= log p(zt+1|zt, βt+1) + log p(zt|βt) + log p(βt+1|βt) + log p(βt)

= log p(zt+1|zt, βt+1) + log p(zt, βt) + log p(βt+1|βt)

Using the facts that zt+1 ⊥⊥ βt|zt, βt+1 and zt ⊥⊥ βt+1 Now for the first term in RHS -

log p[zt, βt, ηt+1, ϵt+1] = log p(zt, βt) + log p(ηt+1) + log p(ϵt+1)

Using the independent noise conditions stating ηt+1 ⊥⊥ zt, ηt+1 ⊥⊥ βt and ϵt+1 ⊥⊥ zt, ϵt+1 ⊥⊥ βt,
Therefore we get, -

log p(zt+1|zt, βt+1)+log p(βt+1|βt) = log p(ηt+1)+log p(ϵt+1)+

n∑
i=j

log

∣∣∣∣∣ ∂fi
−1

∂zi,t+1

∣∣∣∣∣+log

∣∣∣∣∣ ∂ϵt+1

∂βt+1

∣∣∣∣∣
Similar to previous case, relations in zt are linear so the jacobian is constant and can be ignored.

log p(zt+1|zt, βt+1) + log p(βt+1|βt) = log p(ηt+1) + log p(ϵt+1) + log

∣∣∣∣∣ ∂ϵt+1

∂βt+1

∣∣∣∣∣
or more generally -

log p(zt|[zt−τ ]
L
τ=1, βt) + log p(βt|[βt−τ ]

L
τ=1]) =

n∑
j=1

log p(ηj,t) + log p(ϵt) + log

∣∣∣∣∣ ∂ϵt∂βt

∣∣∣∣∣
To observe independent results with βt , we can take A := [βt, βt+1] and B := [βt, ϵt+1], we get -

log p(βt|[βt−τ ]
L
τ=1]) = log p(ϵt) + log

∣∣∣∣∣ ∂ϵt∂βt

∣∣∣∣∣
A.2 SYNTHETIC DATA

Figure 1 shows the plots for the generated data, the latent variables and randomly indexed β values.
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LinearZ Observables LinearZ Observables

LinearT observables LinearT latents

NonLinearT observables NonLinearT latents

Random β values for AR(2) process Random β values for non-linear process

Figure 1: Synthetic data
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