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ABSTRACT

The aim of Continual Learning (CL) is to learn new tasks incrementally while
avoiding catastrophic forgetting. Online Continual Learning (OCL) specifically
focuses on learning efficiently from a continuous stream of data with shifting dis-
tribution. While recent studies explore Continual Learning on graphs exploiting
Graph Neural Networks (GNNs), only few of them focus on a streaming setting.
Many real-world graphs evolve over time and timely (online) predictions could
be required. However, current approaches are not well aligned with the standard
OCL literature, partly due to the lack of a clear definition of online Continual
Learning on graphs. In this work, we propose a general formulation for online
Continual Learning on graphs, emphasizing the efficiency of batch processing
while accounting for graph topology, providing a grounded setting to analyze dif-
ferent methods. We present a set of benchmark datasets for online continual graph
learning, together with the results of several methods in CL literature, adapted
to our setting. Additionally, we address the challenge of GNN memory usage,
as considering multiple hops of neighborhood aggregation can require access to
the entire growing graph, resulting in prohibitive costs for the setting. We thus
propose solutions to maintain bounded complexity for efficient online learning.

1 INTRODUCTION

In traditional machine learning, models are at first trained in an environment where all training data
is simultaneously available to the learning algorithm, and only at a later time model predictions are
produced on new input data. Importantly, data observations are assumed to be mutually independent
and identically distributed. Real-world environments however often generate data in chunks or
streams which often entail shifts in the data distribution or even variations in tasks to be solved. In
turn, previously trained models may require expensive retraining or model reconfiguration to stay up
to date. In this setting, Continual Learning (CL) (Parisi et al., 2019; De Lange et al., 2022), lifelong
learning (Chen & Liu, 2018) and incremental learning (Chaudhry et al., 2018a) are similar machine
learning paradigms sharing the same goal of adapting models to incrementally learn as soon as new
data and new tasks are presented.

Even further, in the online learning setting, training data points are collected sequentially, processed
in real-time by the learning method, and immediately discarded (Chaudhry et al., 2018b; Mai et al.,
2022). Such strict environments are found in monitoring and control problems (Zliobaite et al., 2016;
Gunasekara et al., 2023), such as traffic management, activity recognition, fraud detection, with
other applications such as on data generated by optical sensors (Souza et al., 2020) or prediction of
power production considering environmental conditions (Lobo et al., 2020). Online CL is therefore
an extremely challenging setting that requests models to quickly adapt to new conditions, allowing
for anytime inference with minimal latency and without forgetting already acquired knowledge.

Research on CL extends to graph-structured data as well, often referred to as Continual Graph
Learning (CGL) (Yuan et al., 2023). Indeed, many machine learning tasks naturally represent data
as graphs and address predictions of properties of single nodes or edges, or entire graphs. Common
examples include social networks, citation networks, and biological systems, where relationships
between entities are modeled as graphs. However, most graphs in the real world are not static:
they continuously evolve over time experiencing the addition/removal of nodes and modifications
to the topology. Examples are seen in dynamic environments such as social networks, citation
networks, and traffic systems, where new users join, papers are published, and road conditions
may change (Liu et al., 2021; Zhou & Cao, 2021). Countless deep learning models for graph-
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structured data, such as Graph Neural Networks (GNNs), make predictions by relying on node-
level representation computed from neighboring nodes. While this enables rich representations that
condition the predictions on related observations, it poses unique challenges associated with the
online setting, due to the need for neighboring, past information to make predictions for new nodes,
as well as memory and computational issues due to the rapid growth of certain graph families.

In this paper, we introduce three main contributions to address these challenges. (1) We formalize
the Online Continual Graph Learning (OCGL) framework, establishing a foundation for Contin-
ual Learning on graphs in a node-level streaming environment. By doing so, we bridge the gap
between Online CL and CGL settings. (2) We present a benchmarking environment for OCGL.
We introduce four benchmark datasets and conduct a first set of extended experiments to evaluate
various CL methods, that we suitably adapted to operate under the OCGL setting. We use a hyper-
parameter selection protocol tailored for online learning that ensures a fair comparison between CL
techniques. Insightful conclusions are drawn from the analyses, highlighting the higher performance
of replay-based methods, especially A-GEM. (3) We bring the attention of the research community
to the issue of neighborhood expansion which could undermine the online computational efficiency
due to the complexity of multi-hop aggregation in GNNs. To address it, we propose a first, simple
solution to ensure that models can efficiently scale as the graph evolves. We conduct a second set of
experiments with the proposed neighborhood sampling solution. This work leaves room for further
research to develop more effective approaches to tackle the problem.

2 BACKGROUND AND RELATED WORKS

Continual Learning. Depending on the type of shift in the data distribution, CL has been catego-
rized into three main scenarios (Van De Ven et al., 2022): in task-incremental learning, the model
sequentially learns distinct tasks, which requires availability of task identifiers to make predictions;
class-incremental learning consists in classifying instances with an increasing number of classes,
without task identifiers; finally, domain-incremental learning requires solving the same problem in
different contexts. In the past, the main applications of CL included reinforcement learning (Kirk-
patrick et al., 2017; Rolnick et al., 2019) and especially computer vision (Rebuffi et al., 2017; Lopez-
Paz & Ranzato, 2017; Aljundi et al., 2018; Li & Hoiem, 2018; Masana et al., 2022; Mai et al., 2022),
even though most of the methods that have been developed to address these problem domains are
not limited to these fields and can be used for a wide range of other machine learning tasks. Three
main broad categories of CL approaches to mitigate forgetting have been proposed in the literature
(De Lange et al., 2022): regularization methods, replay methods and architectural methods. Regu-
larization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Li & Hoiem,
2018; Chaudhry et al., 2018a) introduce additional loss terms to preserve important parameters to
retain previously acquired knowledge. Replay methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019; 2018b) use a memory buffer to store some representative samples from
old tasks, to use them jointly with new samples to update model parameters. Architectural methods
(Fernando et al., 2017; Masse et al., 2018; Rusu et al., 2022) avoid changes to model parameters
either by gating mechanisms or by introducing new parameters, allowing the model to grow in size.

Online Continual Learning. In the usual Continual Learning scenarios described above, data arrive
one task at a time, allowing for offline training with multiple passes over the data for the current
task (De Lange et al., 2022). A more realistic yet challenging scenario is that of Online Continual
Learning (OCL) (Chaudhry et al., 2018b; Mai et al., 2022; Soutif–Cormerais et al., 2023), where
data arrive in small batches of only few samples, without the possibility for the model to store all the
data for the current task, either for privacy reasons or memory limitations. In this setting the learning
algorithm must be able to use efficiently the mini-batches that arrive in the non-stationary stream.
Additionally, whereas for CL we assume to know the task boundaries, OCL can be performed in
a boundary-agnostic setting, or task-free, potentially allowing for more varied distribution shifts
compared to the three settings described before (Koh et al., 2021). Many CL methods though are
not suited to this setting and require modifications. An additional characteristic of OCL is the ability
to perform anytime inference: the model should always be up-to-date and ready to make predictions
online after each training batch, reacting quickly to distribution shifts (Koh et al., 2021).

Learning on graphs. Graph Neural Networks (GNN) (Sperduti & Starita, 1997; Scarselli et al.,
2009; Micheli, 2009; Kipf & Welling, 2017) have emerged as the state-of-the-art approach for
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dealing with network data, generalizing convolution to graph structures. The core mechanism
of most GNNs is message passing (Gilmer et al., 2017): at each layer, the hidden embedding
h
(k)
v of each node v is updated using information from its neighborhood N (v) as h

(l+1)
v =

UPDATE(h(l)
v ,AGGREGATE({h(l)

u : u ∈ N (v)})). Here AGGREGATE and UPDATE are dif-
ferentiable functions specified by the particular model. Specifically, as at each step each node up-
dates its embedding using the information (message) coming from its neighbors, after l layers it
will depend on its l-hop neighborhood. Graph-based processing of temporal data has a relatively
short history, primarily encompassing the study of temporal graphs (Kazemi et al., 2020; Gravina
& Bacciu, 2024) and time series data (Cini et al., 2023a; Jin et al., 2024) with dedicated adaptation
strategies to deal with evolving graphs (Cini et al., 2023b) and benchmarks (Huang et al., 2023).

Continual Graph Learning. In the past few years researcher started to develop CL strategies tai-
lored to graph data (Wang et al., 2020), with applications such as recommender systems (Xu et al.,
2020) and traffic prediction (Chen et al., 2021). The main approaches resemble the general CL strate-
gies, with a particular focus on preserving topological information with a loss term on neighborhood
aggregation parameters (Liu et al., 2021), or specific node selection policies to retain informative
nodes as memory buffer (Zhou & Cao, 2021). Recently a number of surveys have been published
on the topic (Febrinanto et al., 2023; Yuan et al., 2023; Zhang et al., 2024; Tian et al., 2024), and
a benchmark has been proposed (Zhang et al., 2022). Continual Graph Learning (CGL) possesses
some peculiarities that differentiate it from other problem domains with independent samples, as
graph structure requires careful consideration. Specifically, we can distinguish between graph-level
CGL and node-level CGL (Zhang et al., 2022). In the first, the model needs to make predictions
about entire graphs, and thus each sample in the training data is an independent graph. Standard
Continual Learning settings and methods can thus be applied with relative ease (Carta et al., 2022).
Instead, in node-level GCL predictions are made about the single nodes in usually one single graph.
In this node-leve CGL setting each new task therefore consists a new subgraph of the overall graph,
with new classes or type of nodes. Specifically, the task subgraph arrives all at once, and offline
training is performed on it. Here, an additional specification needs to be made about the availabil-
ity of inter-task edges (Tian et al., 2024): since message passing GNNs aggregate information from
neighboring nodes, the presence of inter-task edges towards nodes of previous tasks would inevitably
lead to the use of past data. In practice, inter-task edges are often kept, but without access to the
labels from past tasks (Zhang et al., 2024). Finally, the addition of new edges creates an additional
source of backward interference: when evaluating the model on nodes belonging to past tasks, their
neighborhood composition and topology will be changed compared to when the task was observed.

The Online Continual Learning setting described before has been explored in domains like computer
vision (Mai et al., 2022; Soutif–Cormerais et al., 2023) and on sequences (Parisi & Lomonaco,
2020), but to the best of our knowledge it has not yet been applied to graphs. Some papers on CGL
consider a setting referred to as streaming (Wang et al., 2020; Perini et al., 2022), yet the approaches
can be categorized as offline CL as the streams consist of graph snapshots (often corresponding
to entire tasks or nonetheless not classifiable as mini-batches), on which models are trained with
multiple passes.

3 ONLINE CONTINUAL GRAPH LEARNING

This section introduces Online Continual Graph Learning (OCGL), a framework that ports CGL to
the online problem setting. OCGL is particularly applicable to dynamic real-world scenarios such
as social networks or recommender systems, where sudden distribution changes occur, and quick
model adjustments are essential for making anytime predictions.

3.1 PROBLEM FORMULATION

A growing network. We model the data associated with an OCGL problem as an evolving graph
G induced by a stream of nodes v1, v2, . . . , vt, . . . ∈ N. At every time-step t, the monitored sys-
tem is represented as a graph Gt = (Vt,Et,Xt) defined by node set Vt = {v1, . . . , vt}, edge set
Et ⊆ Vt × Vt, and a set of node attributes Xt = {xi}i≤t ⊂ RF . Edge attributes, e.g., accounting
for edge directions or defining the type of node-node relations, can be considered likewise, how-
ever, they are here excluded to ease the presentation. The graph nodes vi can be associated with
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class labels yi ∈ {1, . . . , C} collected in set Y t = {yi}i≤t to be predicted and/or used as train-
ing samples to learn the model. Graph Gt is a snapshot of the temporal graph G which, together
with Y t, collects all information available up to time step t. At every time step t a new node is
acquired from the monitored system and populates the current snapshot graph Gt−1. Specifically,
tuple (vt,N (vt),x

t) containing a new node index vt ̸∈ Vt−1, associated node features xt, and a
set of neighbors N (vt) ⊆ Vt−1 is presented and connected to graph Gt−1 according to the relations
contained in N (vt). Finally, target class label yt of node vt may or may not be acquired contextually
to (vt,N (vt),x

t); for instance, a prediction for node vt might be requested at time t while the true
class label yt is observed only at a later time.

Problem statement. The goal of OCGL is to learn a model fθ to predict class label yt only from
the subgraph of Gt associated with vt and its neighbors of order 1 or more. Parameters θ have a
predefined (maximum) dimension and model fθ is trained incrementally as soon as new nodes and
the associated labels are provided. New nodes are acquired either individually or in small mini-
batches, slightly weakening the online setting as commonly done in the literature (Chaudhry et al.,
2018b). Moreover, minibatches are seen only once and, after prediction and/or training is performed
the mini-batch is discarded. As per the CGL problem setting, we allow the task to change over
time. This requirement on small mini-batches is set to meet the need to perform anytime predictions
Koh et al. (2021) where dealing with the entire graph Gt – or a large subgraph of it – is unfeasible
either memory-wise or computationally. Specifically, we require the training on each mini-batch to
have bounded compute and memory budgets. Although the size of the node mini-batch may vary
between applications, we assume it to be small enough that using only edges within the mini-batch
would not provide sufficient context for effective learning. In contrast to some CGL settings where
training can be done on a task-specific subgraph, in OCGL the mini-batch is too small to be treated
as a meaningful graph on its own, requiring to access neighborhood information.

Mini-batching. Within the introduced OCGL framework, and depending on the application, mini-
batches can include L-hop neighbors with L ≥ 1. Considering L > 1 does not conflict with the
growing nature of the graph. Instead, it reflects the requirements of the predictive model fθ, which
may rely on aggregating multi-hop information. As such, to construct L-hop neighborhoods, an up-
to-date snapshot Gt is assumed to be stored in a Past Information Store (PIS) system, separate from
an eventual memory buffer associated with predictive model fθ, as in the more general lifelong-
learning setup (Chen & Liu, 2018). We do not impose memory limitations on the PIS to allow
graph growth, but we require the training on each mini-batch to have bounded computational time
and memory cost. That is, we assume to make limited use of information from the PIS for each
mini-batch, and to only have access to the labels of nodes in the current batch. The definition of
the evolving graph is general as it does not make assumptions on the distribution shifts happening
in the node stream. This general, task free setting can be easily adapted or made more specific
depending on the node stream: while a real-world stream could be induced by a time-stamp on the
nodes, this setting can be derived from any static graph by establishing an ordering on the nodes.
The three CL scenarios of task-, class- and domain-incremental can thus be easily adapted to an
online setting by ordering nodes by task, similarly to what is done in other domains (Mai et al.,
2022; Soutif–Cormerais et al., 2023).

3.2 NEIGHBORHOOD EXPANSION PROBLEM

The efficiency requirement for online learning poses non-negligible issues associated with reiterated
message passing within multi-layer GNNs. As commented above, at each layer of the L layer, the
GNN aggregates the embeddings of the neighboring nodes, thus requiring access to L-hop neigh-
borhoods. The size of the L-hop neighborhood however scales as O(dL) where d is the average
degree. Moreover, d is time-dependent and can increase as the graph grows. Depending on how
well-connected a graph is, very few hops may be required to go from any node to almost any
other one; empirical evidence on the neighborhood growth is depicted in Figure 2 and those in
Appendix E. Thus, having high d or L would require processing a number of nodes in the order of
the entire (growing) graph for each mini-batch, going against efficiency in our definition of OCGL.
It is therefore of paramount importance to keep a low L or to introduce a strategy to mitigate d.

In cases where the topology of the full graph or the maximum node degree are known a-priori (such
as in citation networks, where we expect the number of references for an article not to explode even
if the body of literature increases), fixing a low number of layers can be a good solution. This is

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the first strategy we evaluate in Section 6. Yet, in many real applications we may not have prior
knowledge on the evolution of average degree. In such cases, even choosing a model with a low
number of layers may be problematic, as the average degree could grow indefinitely and with it the
computational complexity and memory usage for batch training. This issue is similar to the problem
of scaling static GNNs for large graphs, for which mini-batch training is required both for memory
and efficiency reasons. Numerous approaches have been developed to address this problem, such as
fixing a number of neighborhood sampled for aggregation (Hamilton et al., 2017; Chen et al., 2018)
or training on partitions of the graph (Chiang et al., 2019). In our context, the simplest solution
seems to fix the number of neighbors for aggregation through sampling, which guarantees an upper
bound on the size of the computational graph for each batch. Results with neighborhood sampling
are reported in Section 7, after an empirical assessment of the problem of neighborhood expansion.

4 METHODS

Having defined the Online Continual Graph Learning setting, we consider and evaluate some popu-
lar CL techniques, most of which are agnostic with respect to the type of the input data. Some CGL
learning strategies are not applicable to the online setting, such as ER-GNN (Zhou & Cao, 2021),
which stores representative nodes according to metrics computed offline on an entire graph snap-
shot, and thus we resorted to a simplified version which performs reservoir sampling. Additionally,
baselines that require expensive fine-tuning steps such as GDumb (Prabhu et al., 2020) are excluded,
as it would violate the online setting. Overall, most strategies natively require task boundaries, and
have been modified for the task free setting as described below.

1. ER. Experience replay (Chaudhry et al., 2019) is a simple yet powerful replay-based method,
which selects samples to be stored in a memory buffer by reservoir sampling (Vitter, 1985). New
incoming batches for training are then augmented with nodes sampled uniformly from the buffer.

2. EWC. Elastic Weight Consolidation (Kirkpatrick et al., 2017) adds a quadratic term to the loss
to penalize the modification of important parameters. Parameter importance is approximated
by the diagonal of the Fisher information matrix, which needs to be computed offline for each
task. We therefore modify the algorithm to keep one single Fisher information matrix updated
with a running average over the batches, similarly to the MAS approach detailed later. Another
approach would be to keep a moving average, as done in EWC++ (Chaudhry et al., 2018a).

3. A-GEM. Averaged GEM (Chaudhry et al., 2018b) is a more efficient version of GEM (Lopez-
Paz & Ranzato, 2017), which ensures that the average loss for past tasks does not increase. It
achieves this by projecting the gradient of the incoming batch in the orthogonal space of the
gradient computed on samples from a memory buffer, if their scalar product is negative. We
select nodes for the buffer with reservoir sampling (Vitter, 1985).

4. LwF. Learning without Forgetting (Li & Hoiem, 2018) uses distillation (Hinton et al., 2015)
to regularize the loss with logits from a previous version of the model (teacher) on the current
batch. To use it in a task free setting, we introduce an additional hyperparameter: the number of
batches after which the teacher is updated with the current model.

5. MAS. Memory Aware Synapses (Aljundi et al., 2018) is a quadratic regularization similar to
EWC, but it calculates importance as the sensitivity of the output on parameters. MAS is natively
an online method, as the importance scores are accumulated with each new data point.

6. TWP. Topology-aware Weight Preserving (Liu et al., 2021) is another regularization method,
which preserves important weights for topological aggregation in GAT (Veličković et al., 2018),
generalized also to other GNNs. We modify it for the online setting as EWC.

5 EXPERIMENTAL SETUP

In this section we introduce the specific experimental setup used, describing the construction of the
node streams from benchmark datasets, and the details of model training and evaluation1.

Benchmarks. Four node classification graph datasets are used in our experiments: CoraFull (Bo-
jchevski & Günnemann, 2018), Arxiv (Hu et al., 2021), Reddit (Hamilton et al., 2017) and Amazon
Computer (Shchur et al., 2019). The datasets are described in Appendix A. In order to position our
experiments close to the rest of the Continual Learning literature, we devise a node stream derived

1Code available at: (supplementary material, link to be added after double-blind review)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from the class-incremental CL setting, which is considered as the most challenging one for catas-
trophic forgetting (Masana et al., 2022). We divide the nodes in the graph into groups with fixed
order consisting of 2 classes: this would be the sequence of tasks in class-incremental learning (re-
sulting in 35 tasks for CoraFull, 20 tasks for Arxiv and Reddit, and 5 for Amazon Computer), with
task boundaries between pairs of classes. Then, we fix and ordering on the nodes of each task, and
we stream the nodes accordingly. Therefore, the graph will gradually grow with mini-batches of
nodes from two new classes at a time, which are processed in an online fashion. This allows us to
consider metrics from the CL literature which require task boundaries, even though in our experi-
ments the learning algorithm itself is task agnostic and simply adds a new output neuron when an
instance of a new class is observed. For each dataset, we split the graph into 60% for training, 20%
for validation and 20% for testing. A transductive setting is used: validation and test nodes are not
used for loss computation, but they are still used for message passing.

Performance assessment. We consider three metrics widely adopted in the literature: Average Ac-
curacy (AA), Average Forgetting (AF) (Lopez-Paz & Ranzato, 2017), and Average Anytime Accuracy
(AAA) (Caccia et al., 2021). AAA is obtained by evaluating the model on the validation set after each
training batch, which we refer to as anytime evaluation. More details are reported in Appendix B.

Training details. In our experiments the backbone for all the Continual Learning strategies is the
Graph Convolutional Network (GCN) (Kipf & Welling, 2017). For CoraFull, Arxiv and Amazon
Computer datasets we use a 2-layer GCN with a fixed hidden dimension of 256 units as done by
Zhang et al. (2022). On the Reddit dataset a single layer of GCN was used due to requirement of
efficiency for OCGL (Section 3): with an average degree of 984, considering even two layers would
require to use almost the entire graph for each mini-batch (this is further discussed in Section 7,
where we provide results with neighborhood sampling instead). We use Adam optimizer (Kingma
& Ba, 2017) without weight decay, tuning the learning rate as an hyperparameter with the protocol
defined below. We consider the batch size to be fixed, as it could be dependent on the real world
problem, and we experiment with two different sizes for each dataset. For the smaller datasets
CoraFull and Amazon Computer we consider batches of 10 and 50 nodes, while for the larger Arxiv
and Reddit we use sizes 50 and 250 simply for computational reasons. As suggested by Aljundi
et al. (2019), multiple passes on the same mini-batch before passing to the next can be beneficial.
We therefore considered as an additional tuned hyperparameter whether to perform multiple passes
(5) on each batch. As a baseline, we use a bare model which is simply fine-tuned on the incoming
stream without any CL strategy applied. Additionally, we provide an upper bound in the form of a
model that is jointly trained offline on the entire graph.

Hyperparameter selection. Many works in the Continual Learning literature use a learning proto-
col that is akin to the classic machine learning setting, selecting hyperparameters by performing as
many full passes over the task sequence as required by a grid search. This protocol violates stricter
definitions of Lifelong Learning, where the stream is observed only once, and is indeed unrealistic
for real applications where a model needs to quickly adapt to changes in data distribution. Chaudhry
et al. (2018b) therefore proposed a more sensible hyperparameter selection protocol, which has now
been used in several works (Xu et al., 2020; Mai et al., 2022; Soutif–Cormerais et al., 2023) and that
we use for our experiments. With this protocol, only the first few tasks are used for hyperparameter
selection, allowing the model to perform multiple passes, with the same online setting, over them
to select the hyperparameters that lead to the best performance on validation nodes. In our case,
due to the different number of tasks in the datasets used, we considered 20% of the tasks for this
validation, with the exception of Amazon Computer where it was set to 2 as there are only 5 total
tasks. Hyperparameters are then selected based on the AA on the validation set at this validation
boundary. Details on the search space for the various methods are reported in Appendix C.

6 RESULTS ON FULL-NEIGHBORHOOD MINI-BATCHING

We start by discussing empirical results obtained on mini-batches containing the full neighborhoods
of newly presented nodes, in contrast with next Section 7 where neighborhood sampling is analyzed.
Although the neighboring expansion problem (Section 3.2) is present, the results of this section pro-
vide reference performance to be compared against the more realistic setting studied in the next
section. Moreover, we discuss forgetting issues, the impact of the batch size, and the sensitivity to
hyperparameters setting aside potential biases introduced by the neighborhood sampling. A com-
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Table 1: Performance comparison on CoraFull with full neighborhood.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 15.97±0.99 24.52±0.87 −41.84±1.89 11.86±3.11 24.88±0.67 −77.67±3.37

ER 28.32±3.20 35.33±0.65 −63.29±3.59 13.74±2.04 30.00±0.21 −75.10±2.62

EWC 29.34±2.82 43.96±0.78 −20.06±5.40 29.29±1.45 46.55±2.31 −17.56±4.28

A-GEM 31.25±1.58 44.30±1.95 −57.88±2.45 30.22±2.25 39.97±0.64 −55.56±3.31

LWF 19.88±2.43 33.37±1.34 −48.64±3.53 20.70±1.87 28.28±0.66 −55.87±2.84

MAS 29.56±1.58 44.46±1.28 −15.35±1.69 30.08±1.00 52.01±1.30 −10.62±1.33

TWP 20.33±2.36 28.70±0.64 −64.81±2.22 26.61±2.65 36.45±1.42 −60.79±3.14

JOINT 67.55±0.05 - - 67.55±0.05 - -

Table 2: Performance comparison on Arxiv with full neighborhood.

METHOD BATCH SIZE 50 BATCH SIZE 250
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 3.19±0.50 11.09±0.10 −52.49±2.06 4.66±0.90 11.45±0.35 −41.36±1.44

ER 5.92±1.53 16.96±0.87 −49.19±2.97 5.30±0.76 18.61±0.67 −59.95±1.83

EWC 4.43±0.33 10.66±0.12 −65.51±0.22 2.19±1.62 10.96±1.13 −26.93±0.79

A-GEM 16.14±0.90 26.10±0.34 −41.13±0.53 10.61±1.28 22.73±0.43 −44.83±1.40

LWF 3.72±0.71 11.37±0.46 −51.09±1.60 4.55±1.14 10.88±0.17 −50.46±2.69

MAS 5.25±0.50 12.48±0.80 −3.07±0.49 4.51±1.14 13.97±0.67 −34.68±1.03

TWP 2.30±1.10 8.77±1.29 −21.25±6.08 4.43±0.96 13.23±1.88 −30.94±3.59

JOINT 46.85±0.44 - - 46.85±0.44 - -

Table 3: Performance comparison on Reddit with full neighborhood.

METHOD BATCH SIZE 50 BATCH SIZE 250
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 22.16±1.26 39.12±3.15 −62.68±1.59 21.00±1.61 44.66±3.30 −73.06±1.50

ER 33.39±2.12 64.11±0.51 −64.99±2.18 36.93±1.67 61.85±0.46 −60.66±1.66

EWC 22.16±1.26 39.12±3.15 −62.68±1.59 18.51±2.80 37.65±4.90 −67.89±3.09

A-GEM 57.71±2.61 68.22±0.35 −36.45±2.56 35.54±1.27 51.03±3.54 −54.60±1.28

LWF 18.31±2.34 41.08±3.20 −59.92±3.50 21.63±1.99 43.73±2.32 −68.57±2.81

MAS 30.06±1.72 50.31±2.18 −46.72±1.33 21.00±1.61 44.66±3.30 −73.06±1.50

TWP 22.16±1.26 39.12±3.15 −62.68±1.59 17.64±2.29 40.63±3.17 −72.79±2.37

JOINT 90.02±0.12 - - 90.02±0.12 - -

Table 4: Performance comparison on Amazon Computer with full neighborhood.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 13.39±7.46 40.19±2.21 −62.38±7.69 18.54±0.27 40.76±0.52 −74.32±2.26

ER 27.00±4.06 47.48±0.82 −65.36±4.28 19.74±0.48 43.29±0.59 −76.45±0.61

EWC 18.97±0.16 41.84±0.40 −74.89±2.68 18.61±0.27 40.78±0.53 −74.64±2.38

A-GEM 35.50±0.58 57.22±0.92 −57.90±3.41 21.38±0.18 48.94±1.03 −74.58±1.00

LWF 6.55±6.47 36.29±2.88 −48.19±16.77 3.24±0.36 24.60±1.56 −21.84±5.97

MAS 21.85±4.84 46.46±2.32 −38.97±9.99 18.62±6.09 44.84±4.74 −41.79±11.41

TWP 18.49±0.66 41.27±0.55 −72.43±3.74 7.78±6.21 35.65±5.47 −46.67±16.90

JOINT 72.06±9.24 - - 72.06±9.24 - -

parison of the considered CL methods for the four benchmark datasets is reported in Tables 1-4.
All experiments were repeated five times with different initializations, and the metrics are reported
as mean and standard deviation across runs. Additionally, we plot in Figure 3 of Appendix D the
performance measured using anytime evaluation.

Final Average Accuracy. Across all datasets, we observe that none of the compared strategies
comes close to the upper bound consisting of joint training. In general, the considered replay meth-
ods A-GEM and ER achieve higher final AA compared to the baseline and regularization methods.
This can be expected, as rehearsal methods in Continual Learning are generally known to achieve
most of the state-of-the-art results (Van De Ven et al., 2022); this holds true also for CGL (Zhang
et al., 2022). In particular, A-GEM appears to be the best performing strategy in all cases (except
on Reddit when using batch size 250 where it is surpassed by ER), often with a large margin, such
as on Arxiv, where it is the only approach with a considerable improvement on the fine-tuned bare
model. Regularization methods struggle more, as only on CoraFull EWC and MAS are competitive
with A-GEM, while on other datasets their performances are closer to the lower bound.
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(a) Bare (b) MAS (c) A-GEM

Figure 1: Anytime evaluation by task: a breakdown of model performance at the end of each training
batch for three selected methods on CoraFull with batch size 10.

Anytime Average Accuracy. Looking at Average Accuracy gives us an easy way to compare the
performance after the entire learning process. However, since in the online setting we expect the
model to be ready to make predictions at any time, it is arguably more useful to look at Average
Anytime Accuracy as a metric of performance over time. For this purpose Figure 3 (Appendix D)
can give us some additional insights into the performance trends through the node stream. We note
how it is natural and expected that accuracy tends to decrease with the batch index, as new classes
are introduced and the classification task gets increasingly complex. In particular, from Figures
3a and 3b we see that thanks to regularization, on CoraFull the performance of EWC and MAS
is much more stable compared to A-GEM, which is much more sensitive to sudden distribution
shifts. In this case these two methods might thus be preferable for the stability of their performance.
On the other three datasets though the higher stability does not offset their poorer performance.
Another phenomenon we note is that while the performance of regularization methods is almost
monotonically decreasing, the performance of ER and A-GEM shows much higher variations. We
observe abrupt falls at some task boundaries, unexplained by the simple introduction of two new
classes and thus due to catastrophic forgetting caused by interference of the current task with old
ones. On the other hand, there are also instances where performance increases much more than what
could be done with perfect accuracy on the current task, indicating successful backward transfer.

Forgetting and strategy comparison. Average Forgetting by itself is not a reliable metric of perfor-
mance, and must be considered together with accuracy to assess the results of a Continual Learning
methods: indeed, not learning anything would lead to 0 forgetting, but this is not our main goal.
Indeed, Overall the regularization methods achieve a lower AF score. However, due to how AF is
defined, this can be due to lower performances also right after task observation. To better understand
the different results in light of the choice of strategy, we report in Figure 1 a more detailed break-
down of accuracy by task for three representative methods. With this comparison we clearly see how
the fine-tuned baseline (1a), while it can learn new tasks, is not able to retain past knowledge, which
is relatively quickly forgotten. MAS on the other hand (1b), thanks to its regularization is able to
preserve quite well the knowledge it has learned, but it struggles to acquire new knowledge as it is
presented with more and more classes. Instead A-GEM (1c) seems to achieve a better trade-off be-
tween stability and plasticity, maintaining the capacity to learn new tasks while generally preserving
acquired knowledge, even showing signs of backward transfer at some task boundaries.

Impact of batch size. With regards to the dimensions of the node batches in the stream, we do not
observe clear general patterns, as the two considered sizes have somewhat similar results. The only
strategy that consistently benefits from a smaller batch size is A-GEM, with considerable increase
of performance on all datasets except for CoraFull. For this method (and to a lower extent also
for ER), a smaller batch size could thus be a regularizing factor. The fact that very small batch
sizes in an online setting can lead to relatively good performance is also encouraging for the future
development of OCGL techniques, despite the challenges of catastriphic forgetting (and the online
setting for graphs itself, as we discuss in Section 7) that still need to be further addressed.

Sensitivity to hyperparameters. In our experiments the backbone model architecture, including
number of layers and hidden units, is kept fixed. We conducted an ablation study on CoraFull to
assess the impact of these choices, with full results reported in Appendix F. Decreasing the number
of hidden units to 128 lowers performances overall, while increasing it to 512 has mixed results, with
ER and A-GEM showing small changes, LwF, MAS and TWP scoring lower, but EWC reaches 40%
AA. Using 3 GCN layers all results get worse, while with 1 layer there is a general smaller decrease,
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except for the bare baseline and ER which improve compared with 2 layers. We note how the
difference in results might also be due to a sort of butterfly effect caused by the hyperparameter
selection policy: since they are selected early on, they could sub-optimal for the entire stream.

7 RESULTS ON NEIGHBORHOOD SAMPLING

Neighborhood expansion. To assess the neighborhood expansion phenomenon on the four datasets
we used in or experiments, we plot in Figure 2 the size of the l-hop neighborhood in the evolving
graph of each mini-batch in the node stream, for some values of l. The Reddit graph in particular is
very well connected, with two hops containing the majority of the graph, and three hops practically
all nodes. This is the motivation for our use of only one GCN layer on this dataset. CoraFull and
Arxiv have a much more contained neighborhood expansion, while Amazon Computer with two
hops covers about half of the nodes in the worst cases. Additional plots are shown in Appendix E,
with the addition of the number of edges connecting the various hops, which can be used as a proxy
of computational complexity.

Neighborhood sampling. Following the same experimental setup outlined in Section 5, we con-
ducted experiments with neighborhood sampling instead of using full neighborhood information.
As in this case we use sampling to address the problem of neighborhood expansion, we use 2 GCN
layers on all datasets. We choose the number of nodes to be sampled with a double rationale: we
want to guarantee that processing each mini-batch requires much less than the full graph to conform
with the requirements of the online setting, and we want to sample significantly less nodes than the
average degree for our analysis of the sampling strategy to be meaningful. Therefore, we fixed the
number of neighbors to 5 for CoraFull and Amazon Computer, 10 for Arxiv and 15 for Reddit. Full
results are reported in Tables 5-8 and plots with anytime evaluation are shown in Figure 4 (Appendix
D). Specifically, on CoraFull only EWC and A-GEM maintain results similar to those obtained with
full neighborhood aggregation, while the performance of other models degrades sharply. An Arxiv,
where the catastrophic forgetting problem lead to low accuracy scores, the use of sampling does
not appear to particularly worsen performance. In fact, the results of ER benefit from it, surpassing
A-GEM. The same higher performance of ER is shown on Amazon Computer, where additionally

(a) Cora, batch size 10 (b) Amazon Computer, batch size 10

(c) Arxiv, batch size 50 (d) Reddit, batch size 50

Figure 2: Number of nodes in the union of l-hop neighborhoods of each training batch. Smoothed
with rolling average over windows of 10 batches for readability, maximum is reported in the legend.
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Table 5: Performance comparison on CoraFull with neighborhood sampling (5 nodes).

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 8.76±1.53 23.47±2.32 −30.88±2.79 9.80±1.57 23.33±1.32 −36.59±2.87

ER 19.17±1.79 34.55±0.69 −71.14±2.71 10.26±1.79 25.74±0.58 −37.05±3.22

EWC 26.30±3.40 41.46±1.97 −21.71±5.19 30.30±4.25 44.34±2.89 −21.07±4.75

A-GEM 33.08±0.84 33.60±5.88 −58.78±0.67 27.21±1.26 37.81±2.38 −34.14±1.97

LWF 14.87±0.48 25.92±0.81 −49.70±1.68 12.01±0.32 27.20±3.49 −12.97±1.18

MAS 12.64±2.32 39.71±1.08 −35.23±2.27 26.66±2.40 46.70±0.41 −32.75±2.05

TWP 11.73±1.73 23.75±1.75 −28.58±4.52 12.87±3.14 25.05±0.94 −34.96±5.11

Table 6: Performance comparison on Arxiv with neighborhood sampling (10 nodes).

METHOD BATCH SIZE 50 BATCH SIZE 250
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 4.74±0.08 11.88±0.06 −82.97±1.93 4.67±0.83 11.93±0.08 −59.34±2.33

ER 18.41±2.31 36.34±0.26 −72.96±2.62 16.96±1.45 32.91±0.57 −73.34±1.60

EWC 4.81±0.08 12.35±0.19 −77.99±1.52 8.49±3.20 14.84±0.38 −64.19±4.70

A-GEM 16.43±3.20 27.99±0.52 −73.36±3.45 12.39±1.14 21.42±0.57 −74.42±2.18

LWF 4.79±0.08 11.85±0.15 −79.49±1.13 4.48±1.05 11.88±0.15 −61.81±1.90

MAS 3.35±0.99 12.49±0.44 −32.58±1.73 4.56±1.06 13.48±0.72 −49.05±2.86

TWP 4.74±0.05 12.17±0.14 −80.22±0.41 3.65±0.94 11.81±0.06 −61.81±1.90

Table 7: Performance comparison on Reddit with neighborhood sampling (15 nodes).

METHOD BATCH SIZE 50 BATCH SIZE 250
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 12.86±2.56 36.72±2.20 −85.00±2.54 20.44±3.20 42.20±3.85 −58.20±2.50

ER 17.84±2.89 46.24±0.54 −81.01±2.85 19.18±3.80 45.18±3.94 −60.14±5.59

EWC 4.29±2.73 20.40±7.00 −12.64±1.54 5.36±3.16 26.56±6.43 −14.26±1.46

A-GEM 43.24±4.08 63.44±3.05 −55.09±4.18 21.97±4.03 59.51±2.36 −71.29±3.28

LWF 12.77±1.69 37.42±1.46 −83.82±1.89 16.64±1.32 43.40±1.98 −76.59±1.76

MAS 9.91±0.84 35.86±3.21 −88.15±0.70 15.44±2.54 37.62±3.97 −80.23±2.94

TWP 12.60±2.13 36.10±0.26 −85.46±2.23 20.16±4.52 40.96±3.84 −59.25±7.10

Table 8: Performance comparison on Amazon Computer with neighborhood sampling (5 nodes).

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 19.34±0.26 43.03±0.15 −78.66±0.35 18.47±0.76 41.65±0.33 −77.04±1.71

ER 24.37±2.03 52.34±2.30 −59.93±7.94 48.28±7.83 67.00±0.71 −45.77±9.46

EWC 17.60±2.53 40.12±1.60 −35.37±9.96 19.39±0.18 43.32±0.19 −78.15±1.30

A-GEM 20.05±0.59 50.36±1.35 −77.13±0.96 19.95±1.16 50.28±1.24 −77.50±0.52

LWF 19.29±0.48 42.95±0.19 −78.35±0.50 18.12±0.62 41.09±0.67 −76.37±2.36

MAS 18.82±1.19 42.92±1.83 −60.99±7.52 18.66±0.18 43.17±0.61 −77.33±0.72

TWP 19.13±0.45 42.98±0.18 −78.54±0.39 17.82±0.45 41.78±1.01 −71.46±3.48

we do not see the same low performance of LwF as without sampling. Finally, on Reddit the perfor-
mance degradation is more pronounced, as the number of neighbors was cut more substantially. In
summary, as expected due to ignoring some neighborhood information, most of the performances
are lowered, indicating that more research is required to properly address this issue in OCGL.

8 CONCLUSIONS

In this paper, we introduced the formulation of the Online Continual Graph Learning setting, clos-
ing the gap between the Continual Graph Learning and Online Continual Learning literature. We
adapted four node classification datasets to the proposed framework, constructing node streams
starting from the class-incremental learning scenario. Our evaluation of suitably adapted Continual
Learning methods highlights the higher performance of replay-based methods. Finally, we raise the
issue of neighborhood expansion for GNNs, proposing neighborhood sampling as a straight-forward
solution to bound the computational cost of training on each mini-batch. In future works, we plan
to further tackle the issue of neighborhood expansion, developing tailored strategies that can ensure
computational efficiency while better addressing the catastrophic forgetting problem. We further in-
tend to consider more diverse node stream construction and additional tasks such as link prediction.
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Vinicius M. A. Souza, Denis M. Dos Reis, André G. Maletzke, and Gustavo E. A. P. A. Batista.
Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and
Knowledge Discovery, 34(6):1805–1858, November 2020. doi: 10.1007/s10618-020-00698-5.

A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3):714–735, May 1997. doi: 10.1109/72.572108.

Zonggui Tian, Du Zhang, and Hong-Ning Dai. Continual Learning on Graphs: A Survey, February
2024. arXiv:2402.06330 [cs].

Gido M. Van De Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental
learning. Nature Machine Intelligence, 4(12):1185–1197, December 2022. doi: 10.1038/
s42256-022-00568-3.
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A DATASETS

In the experiments for this paper, we used four node-level classification graph datasets. The CoraFull
dataset (Bojchevski & Günnemann, 2018) is a citation network where nodes represent research
papers and edges indicate citations between them, with labels based on paper topics. Arxiv (Hu et al.,
2021) is a larger citation network derived from arXiv papers in the Computer Science category. The
Reddit dataset (Hamilton et al., 2017) consists of posts from different communities of the Reddit
platform, where nodes represent posts, and edges connect posts commented on by the same user,
forming a large interaction graph. Finally, Amazon Computer (Shchur et al., 2019) is a co-purchase
network, where nodes are products and edges indicate frequently co-purchased items within the
computers category on Amazon. Summary statistics for the four graphs are reported in Table 9.

Table 9: Dataset statistics.
DATASET CORAFULL ARXIV REDDIT AMAZON COMPUTER
# NODES 19,793 169,343 227,853 13,752
# EDGES 130,622 1,166,243 114,615,892 491,722
# CLASSES 70 40 40 10

B METRICS

Thanks to the construction of the node stream starting from the class-incremental setting, we can use
two widely used metrics in CL: Average Accuracy (AA) and Average Forgetting (AF) (Lopez-Paz &
Ranzato, 2017). The most comprehensive metric for CL, from which AA and AF are derived, is the
performance matrix M ∈ RT×T , where T is the number of tasks and Mi,j is the test classification
accuracy on task j after the model has observed task i. AA is then defined as AA = 1

T

∑T
i=1 MT,i,

and average forgetting as AF = 1
T−1

∑T−1
i=1 MT,i −Mi,i. AA serves as a single value to quantify

the performance of the model after having observed the entire sequence of tasks, or stream in our
case. AF measures the performance degradation (forgetting), that occurs from when a task was just
observed to the end of training.

To assess the performance of the model throughout the node stream, we also perform anytime eval-
uation, meaning that we evaluate the model on validation nodes after training on each mini-batch
(Koh et al., 2021). This allows us to capture the performance at any point in time, and observe also
graphically how the model reacts to changes in data distribution. We measure this with Average
Anytime Accuracy (AAA) (Caccia et al., 2021), which is a generalization of average incremental ac-
curacy for the online setting. Indicating with AAt the average accuracy after training on batch t, and
having n batches in total, AAA is defined as AAA = 1

n

∑n
t=1 AAt. This can be interpreted as an

Area Under the Curve accuracy score (Koh et al., 2021).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C HYPERPARAMETERS

A standard grid search was performed to select training hyperparameters for the models used in all
experiments. We detail here the specific search space for each of the methods used in our compar-
isons. Two hyperparameters are common for all techniques: the learning rate, selected in the set
{0.01, 0.001, 0.0001, 0.00001}, and the number of passes on each batch before passing to the next
one, chosen between 1 and 5. No weight decay or dropout were used. Method specific hyperparam-
eters are reported in Table 10, and specific details can be found in the original papers. In particular,
the hyperparameters of regularization methods regulate the strenght of the regularization. For LwF
a new hyperparameter has been introduced to adapt to the online setting: the number of batches after
which to update the teacher model. For replay based methods we consider memory size (budget)
and the proportion of memories to use with respect to each training batch.

Table 10: Method specific hyperparameters.
METHOD HYPERPARAMETER CANDIDATES
ER BUDGET: {100, 1000}; MEMORY PROPORTION: {1,2,3}
EWC LAMBDA: {100, 102, 104, 106, 108, 1010}
A-GEM BUDGET: {100, 1000}; MEMORY PROPORTION: {1,2,3}
LWF LAMBDA DIST: {0.1,1,10}; T: {0.2,2,20}, UPDATE EVERY: {1, 10, 100}
MAS LAMBDA: {100, 102, 104, 106, 108, 1010}
TWP LAMBDA L: {102, 104, 106}; LAMBDA T: {102, 104, 106}; BETA: {0.001, 0.01, 0.1}

D ANYTIME EVALUATION PLOTS

We show here the plots with anytime evaluation, on all four datasets and with both choices of batch
size. In Figure 3 we show the results using full neighborhood information (see Section 6 for all the
results and comments), and in Figure 4 the anytime evaluation when using neighborhood sampling
(more details in Section 7 of the main paper).

E NEIGHBORHOOD EXPANSION

Neighborhood expansion has been identified as the main issue with the online setting fro graphs.
In Figure 2 we showed the phenomenon, and we report here additional plots for all datasets and
batch sizes. In particular, in Figures 5-7 we provide measure neighborhood expansion non only in
term of number of nodes in the l-hop neighborhood, as done in Section 7, but we additionally count
the number of edges between hops, which gives us a good proxy of computational time. Interest-
ingly, the number of edges increases more drastically than the number of nodes when incrementing
the number of layers, further confirming the need for a strategy such as sampling to maintain the
computational complexity bounded within the limits of the online learning setting.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) CoraFull, batch size 10 (b) CoraFull, batch size 50

(c) Arxiv, batch size 50 (d) Arxiv, batch size 250

(e) Reddit, batch size 50 (f) Reddit, batch size 250

(g) Amazon Computer, batch size 10 (h) Amazon Computer, batch size 50

Figure 3: Anytime evaluation, showing AA on validation nodes after training on each mini-batch.
We highlight the boundaries between tasks and the threshold up to which hyperparameter selection
is performed.
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(a) CoraFull, batch size 10 (b) CoraFull, batch size 50

(c) Arxiv, batch size 50 (d) Arxiv, batch size 250

(e) Reddit, batch size 50 (f) Reddit, batch size 250

(g) Amazon Computer, batch size 10 (h) Amazon Computer, batch size 50

Figure 4: Anytime evaluation, showing AA on validation nodes after training on each mini-batch,
when performing neighborhood sampling. We highlight the boundaries between tasks and the
threshold up to which hyperparameter selection is performed.
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(a) Batch size 10, smoothed with rolling average over 10 batches.

(b) Batch size 50, smoothed with rolling average over 5 batches.

Figure 5: Neighborhood Expansion on CoraFull dataset (total nodes: 19,793). On the left: number
of nodes in the l-hop neighborhood of the training batch; on the right: number of edges connecting
the l-1 to l-hop neighborhood of the training batch.

(a) Batch size 50, smoothed with rolling average over 10 batches.

(b) Batch size 250, smoothed with rolling average over 5 batches.

Figure 6: Neighborhood Expansion on Arxiv dataset (total nodes: 169,343). On the left: number of
nodes in the l-hop neighborhood of the training batch; on the right: number of edges connecting the
l-1 to l-hop neighborhood of the training batch.
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(a) Batch size 10, smoothed with rolling average over 5 batches.

(b) Batch size 50 (no smoothing).

Figure 7: Neighborhood Expansion on Amazon Computer dataset (total nodes: 13,752). On the
left: number of nodes in the l-hop neighborhood of the training batch; on the right: number of edges
connecting the l-1 to l-hop neighborhood of the training batch.

(a) Batch size 50, smoothed with rolling average over 10 batches.

(b) Batch size 250, smoothed with rolling average over 5 batches.

Figure 8: Neighborhood Expansion on Reddit dataset (total nodes: 227,853). On the left: number
of nodes in the l-hop neighborhood of the training batch; on the right: number of edges connecting
the l-1 to l-hop neighborhood of the training batch.
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F ABLATION STUDY ON CORAFULL

In our experiments, the backbone model for all Continual Learning strategies was fixed as a 2-layer
GCN with 256 hidden units (with the exception of the Reddit dataset where with full neighborhood
only one layer was used), following Zhang et al. (2022). Thus, we performed a small ablation study
on the CoraFull dataset to assess the impact of the number of hidden units and number of GCN
layers. This is conducted only with full neighborhood aggregation.

F.1 NUMBER OF HIDDEN UNITS

Still maintaining a 2-layer GCN, we changed the number of hidden units, from the original 256 to
alternatively 128 and 512. We report the results in Tables 11-12, and we show anytime evaluation
in Figure 9. We observe how overall performance are lower than with 256 hidden units, possibly as
this number may have been validated in previous works. A smaller network seems to consistently
damage performance metrics, while with 512 units A-GEM scores similarly as before, and EWC
actually improves greatly, reaching 40% AA. If the increase in computational complexity with addi-
tional units is not significant, it may thus be worthwhile to consider validating the number of hidden
units as well.

Table 11: Performance comparison on CoraFull with 512 hidden units.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 18.16±0.57 26.30±0.53 −45.41±0.98 9.94±0.40 25.30±0.30 −35.66±1.58

ER 27.09±2.16 35.20±0.29 −64.72±2.34 10.28±0.51 25.49±0.41 −36.63±1.47

EWC 38.56±1.80 48.70±1.01 −22.13±2.76 40.76±1.05 52.15±0.80 −19.52±2.10

A-GEM 34.57±2.03 37.73±0.35 −56.61±2.19 28.59±1.92 42.51±0.38 −16.95±1.35

LWF 19.61±0.84 26.41±0.71 −43.19±1.26 12.93±1.42 27.73±0.26 −36.52±1.35

MAS 3.10±0.31 26.61±1.38 −27.12±1.50 11.52±1.62 37.41±1.42 −23.65±1.91

TWP 18.18±0.57 26.30±0.53 −45.40±0.99 9.90±0.41 25.29±0.29 −35.69±1.48

Table 12: Performance comparison on CoraFull with 128 hidden units.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 15.12±2.27 22.75±1.64 −35.08±2.38 10.74±0.97 24.55±1.10 −25.33±1.83

ER 15.05±2.38 29.55±0.40 −66.55±1.51 13.96±1.18 32.48±0.33 −70.49±1.33

EWC 5.73±1.47 21.50±3.44 −6.50±2.53 5.90±1.73 28.90±2.14 −20.11±4.39

A-GEM 15.94±3.23 28.41±0.65 −71.24±2.38 26.62±1.48 39.37±0.47 −34.64±1.77

LWF 15.30±1.61 26.03±0.28 −69.40±0.69 10.06±2.76 24.78±0.85 −29.47±2.63

MAS 6.25±2.74 28.81±1.89 −24.70±2.94 10.85±3.74 33.50±1.97 −31.71±3.37

TWP 15.12±2.27 22.75±1.64 −35.10±2.35 10.70±0.96 24.56±1.10 −25.33±1.81
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(a) 512 hidden units, batch size 10 (b) 512 hidden units, batch size 50

(c) 128 hidden units, batch size 10 (d) 128 hidden units, batch size 50

Figure 9: Anytime evaluation on CoraFull, showing AA on validation nodes after training on each
mini-batch. We highlight the boundaries between tasks and the threshold up to which hyperparam-
eter selection is performed.
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F.2 NUMBER OF GCN LAYERS

We considered here a different number of GCN layers compared to our main results, 1 and 3 specif-
ically, as on CoraFull also the 3-hop neighborhood has a relatively limited expansion. Results are
reported in Tables 13-14, and anytime evaluation plots in Figure 10. We observe overall lower results
specifically with 3 layers, while ER improves using only 1 GCN layer.

Additionally, as a sort of “0-layer” baseline, we test the usage of a 2 layer MLP, equivalent to our
main backbone GCN applied using the identity as adjacency matrix. This is the same as discarding
graph topology information. While most results are consequently greatly reduced, ER, GEM and
EWC are able to maintain some performance even without using the graph topology.

Table 13: Performance comparison on CoraFull with 1 GCN layer.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 18.39±0.06 24.02±0.02 −76.21±0.08 15.00±0.10 22.94±0.15 −27.09±0.19

ER 38.68±0.67 57.97±0.40 −53.69±0.73 33.38±0.83 55.66±0.18 −60.26±0.72

EWC 18.40±0.11 24.01±0.03 −76.14±0.08 15.01±0.15 22.87±0.11 −27.30±0.22

A-GEM 28.90±1.15 54.16±0.26 −64.51±1.42 29.21±0.86 52.70±0.11 −64.92±1.00

LWF 24.09±0.34 28.77±0.10 −64.59±0.41 15.08±0.13 22.88±0.19 −27.26±0.19

MAS 34.49±0.08 31.93±0.03 −58.54±0.08 15.01±0.15 22.87±0.11 −27.30±0.22

TWP 17.01±0.14 23.36±0.01 −76.52±0.11 15.01±0.05 22.85±0.13 −26.97±0.34

Table 14: Performance comparison on CoraFull with 3 GCN layers.

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 6.66±1.83 18.24±0.13 −83.82±1.84 5.99±0.49 17.70±0.82 −52.80±1.36

ER 9.32±1.41 24.08±0.56 −77.20±1.76 2.74±0.21 16.40±1.04 −32.44±14.08

EWC 18.20±2.25 38.86±2.95 −25.36±2.71 20.89±3.20 43.46±2.09 −23.17±4.05

A-GEM 3.85±0.13 19.97±0.62 −61.79±11.32 23.91±3.51 34.53±0.90 −29.78±3.63

LWF 16.18±1.45 30.47±1.40 −53.27±2.98 15.69±1.90 28.96±1.26 −42.63±4.37

MAS 13.57±1.83 33.62±2.02 −21.95±2.53 28.36±1.24 49.34±1.51 −11.68±1.47

TWP 12.62±2.58 21.91±0.73 −58.41±3.34 7.86±3.14 18.87±1.25 −17.47±4.27

Table 15: Performance comparison on CoraFull with MLP (no graph structure).

METHOD BATCH SIZE 10 BATCH SIZE 50
AA% ↑ AAAval% ↑ AF% ↑ AA% ↑ AAAval% ↑ AF% ↑

BARE 2.90±1.07 16.14±1.17 −36.09±2.86 2.62±0.58 13.22±0.24 −20.90±0.53

ER 25.25±0.63 33.18±0.34 −67.41±0.51 13.61±1.15 31.74±0.12 −76.10±1.10

EWC 18.28±3.78 30.83±2.21 −38.09±4.47 2.22±0.91 18.50±0.63 −45.75±2.93

GEM 26.56±1.70 38.95±0.11 −45.83±1.85 3.10±0.22 16.80±0.17 −20.85±0.49

LWF 5.65±1.09 18.34±0.68 −35.84±2.24 3.53±0.48 14.69±0.33 −22.45±1.18

MAS 2.69±0.20 20.41±0.36 −46.12±0.73 10.78±2.29 26.87±0.58 −42.59±2.54

TWP 4.98±1.28 17.42±0.92 −37.57±4.05 2.57±0.25 13.03±0.39 −21.42±0.97
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(a) 1 GCN layer, batch size 10 (b) 1 GCN layer, batch size 50

(c) 3 GCN layers, batch size 10 (d) 3 GCN layers, batch size 50

(e) MLP (no graph structure), batch size 10 (f) MLP (no graph structure), batch size 50

Figure 10: Anytime evaluation on CoraFull, showing AA on validation nodes after training on each
mini-batch. We highlight the boundaries between tasks and the threshold up to which hyperparam-
eter selection is performed.
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