Efficient Embedding-based Synthetic Data Generation for Complex
Reasoning Tasks

Anonymous ACL submission

Abstract

Synthetic Data Generation (SDG), leveraging
Large Language Models (LLMs), has recently
been recognized and broadly adopted as an ef-
fective approach to improve the performance
of smaller but more resource and compute ef-
ficient LLMs through fine-tuning. A key chal-
lenge in SDG is ensuring the quality and di-
versity of the generated data. In this paper,
we analyze the diversity and distribution of
generated data in the embedding space, and
demonstrate a strong correlation between the
density of examples within a specific neigh-
borhood and the accuracy of predictions on
examples drawn from that region. Building
on this insight, we present a targeted pipeline
for embedding-based sampling that enhances
data diversity and consistently improves perfor-
mance across several benchmarks.

1 Introduction

In recent years, Large Language Models (LLMs)
have dramatically improved machines’s ability to
understand and generate natural language. The
rapid growth in size of the most capable LL.Ms has
raised serious concerns about their resource con-
sumption and sustainability. As a result, there have
been increased research efforts in exploring ap-
proaches to bring the performance of much smaller
LLMs (less than 20B parameters) closer to the per-
formance of larger models (100B+ parameters).
Synthetic Data Generation (SDG) has recently been
recognized and broadly adopted as one effective
approach to improve the performance of smaller,
more resource and compute efficient LLMs through
fine-tuning.

Synthetic Data Generation (SDG) is typically a
model distillation approach that uses a more capa-
ble teacher model to generate synthetic training ex-
amples used to then trained or fine-tuned a smaller
LLM on a specific set of tasks. A key challenge
in SDG is ensuring the quality and diversity of

the generated data. Most SDG techniques generate
new synthetic examples by sampling seed examples
from an existing set of known training examples
(hereafter referred to as the pool of seed examples).
Unfortunately, most prior works (e.g., (Taori et al.,
2023; Wang et al., 2022b)) often rely on random
sampling of the pool of seed examples, which, as
explained by (Gudibande et al., 2023; Sudalairaj
et al., 2024), leads to over-sampling from the dom-
inant modes of the teacher model - resulting in
limited diversity. (Sudalairaj et al., 2024) tackles
this issue by proposing a new approach that first
requires manually building a taxonomy and plac-
ing all examples in the pool of seed examples in
the taxonomy. It then performs stratified sampling
through the taxonomy (taxonomy-driven sampling).
However, the success of the approach depends on
the existence of a well-designed, well balanced and
well-organized taxonomy and the proper mapping
of examples in the pool of seed examples to the
appropriate nodes in the taxonomy.

As opposed to prevailing SDG approaches that
study, organize and sample the pool of seed exam-
ples in the language domain, we propose to study,
organize and sample it in an embedding space. Fur-
thermore, while prior SDG works have paid limited
to no attention to the target (or student) model that
will eventually be fine-tuned on the synthetically
generated data, in this paper, we design the SDG
process to specifically overcome the shortcomings
of the student model. In particular, we analyze
the diversity and distribution of the pool of seed
examples in an embedding space derived from the
student model. Our empirical evaluation shows a
strong correlation between the density of examples
within a specific neighborhood and the accuracy
of predictions on examples drawn from that re-
gion. Building on this insight, we present a targeted
pipeline for embedding-based sampling that sam-
ples new points in sparse regions of the embedding
space to enhance data diversity. Our experimental



evaluation shows that it consistently improves per-
formance across LLMs and benchmarks. The key
contributions of this paper are threefold:

1. An embedding-based SDG targeted to im-
prove data diversity and quality of a specific
student model.

2. An analysis of data diversity of the pool of
seed examples in an embedding space derived
from the student model.

3. An experimental evaluation that shows how
our proposed approach consistently improves
performance on different models and datasets.

The remainder of the paper is organized as fol-
lows. After formally describing the problem of
targeted Synthetic Data Generation in section 2, we
introduce our embedding based targeted SDG in
section 3. We then report, in section 4, the results
of our analysis of data diversity in the embedding
space and the experimental evaluation of our pro-
posed approach on two different small LLMs and
on two different math datasets. After reviewing
prior works in section 5, we concluded in section 6.

2 Problem Statement

Prior works have studied synthetic data generation
with very limited to no consideration for the target
model that will eventually be fine-tuned on the
generated data. In this paper, we study the problem
of synthetic data generation specifically aimed at
addressing the shortcomings of a given student or
target model, denoted SM.

Definition 2.1 (Generator). We define a targeted
synthetic data generator as a function F that takes
as input a pair (D, SM), where

e D = {(z,y)} is a labeled dataset made of
pairs consisting of a natural language text in-
put z and a natural language output label y
that should be produced as a response to the
problem or task described by x

¢ SMis a Large Language Model (LLM) fine-
tuned on D from a base LLM BM.

It returns a new labeled dataset D' = F(D, SM)
such that a model SM’ fine-tuned on D’ from the
same base model BM performs, on average, better
than SM w.r.t. to some performance metrics (e.g.,
accuracy) on validation datasets.

3 Embedding-based SDG Method

3.1 Overview

As indicated in the problem statement, the two
key inputs to our embedding-based Synthetic Data
Generation (SDG) method are a labeled training
dataset D and a target model SM fine-tuned on
D. The main goal is to first identify, in the embed-
ding space, regions where the target model SM
performs poorly. In the experimental evaluation
section 4, we show that regions with a low density
of examples from the training dataset D correlate
with regions where the model SM performs poorly.
Our method targets those sparse regions to gener-
ate synthetic examples in order to increase their
density.

The overview of our approach is depicted in Fig-
ure 1. It consists of the following key steps:

1. Computation of the embedding of each exam-
ple in the labeled dataset D. & denotes the
embedding space, and e denotes the function
that computes the embedding of an example
inD

2. Identification of sparse regions of £ (i.e., re-
gions of £ with low density of embeddings of

examples in the labeled dataset D).
3. For each identified sparse region [, selection

of two points in [ that correspond to the em-
beddings of examples in the labeled dataset
D. We refer to those selected examples as
seed examples. s denotes the seed selection
function.

4. Interpolation of the 2 selected seed examples
whose embeddings are in the sparse region [
to produce a new embedding vector that has
a high probability of belonging to the same
sparse region [. ¢ denotes a function that per-
forms such interpolation and is described in

more detail in section 3.5

5. Decoding of the new embedding produced
in step 4 into a natural language text using a
decoding function d.

6. Generation of a new synthetic data example
using a Teacher LLM 7 M prompted with a
prompt P, the 2 selected seed examples from
step 3, and the natural language decoding of
the new embedding produced at step 4.

Let [ be a low density area of £, s(l) selects a pair
of seed examples of D whose embeddings are in [.
Formally, a new synthetic data point is generated
by

TM(Pg; s(1); [d(i(s(1))]) €))



where ““;” denotes the list concatenation operator;
T M is Teacher Model with a prompt Pg; d is the
decoding function from the embedding space to
natural language; ¢ is the interpolation function
that combines 2 examples in D and returns a new
embedding in £ (more on ¢ in section 3.5).

Given the pair (D, SM), our targeted synthetic
data generator function F is implemented by re-
peatedly generating new synthetic data examples
(i.e., invoking the formula (1) above) on sparse
regions / of the embedding space £.

In the remainder of this section, we provide a
detailed description of the key steps of the proposed
embedding-based SDG approach.

3.2 Embedding Computation

We first need to embed each training example in D
in an embedding space £. Given an input sequence
t of m tokens, a transformer-based LLM (Vaswani,
2017) SM computes, in its embedding layer, m
embedding vectors of dimension /N and an atten-
tion weight (i.e., a m-dimension vector where each
component indicates the relative importance of
each input token). Let SM®(¢) denote the N x m
matrix representing those m N-dimension embed-
dings, and SM"(t) denote the m-dimensional at-
tention weight vector. We could use the weighted
sum of the token embeddings as the final embed-
ding of the input sequence ¢ computed as shown
below:

SME(t) x SMY(t) 2)
where ‘X’ is the matrix multiplication operator.
However, this simple approach has two important
shortcomings. First, it requires significant memory
resources as [V is typically larger than 4000. Sec-
ond, as shown in (Tyshchuk et al., 2023), the em-
bedding space of transformer-based models is typi-
cally not isotropic. In other words, not all dimen-
sions are equally important. To alleviate these two
issues, we perform a further step of dimensionality
reduction by applying well known techniques such
as PCA (Jolliffe, 2002), TruncatedSVD (Hansen,
1987), t-SNE (Van der Maaten and Hinton, 2008),
etc. The final embedding e() of the input sequence
t is a K-dimension vector computed as

e(t) = dim_red[KI(SM®(t) x SM™(t)) (3)

where dim_red[K] is a dimensionality reduction
function that reduces the dimension from N to
K. In the remainder of this paper, to simplify the
presentation, we consider only the cases where K
is 2 or 3.

3.3 Identifying sparsity

On visualizing the embeddings (using t-
SNE (Van der Maaten and Hinton, 2008)),
it is seen that the data D that is used to fine-tune
the model SM is not evenly distributed through
the embedding space. Some areas are dense,
containing samples from similar topics, while
others are sparse. On clustering the data, and
extracting topics for each cluster, we can identify
the "topic" of the region which is dense and
sparse. For each model, the embedding space
distribution will be different for the same data.
Each model has its own sparsity, in certain areas
depending on how it embeds the data (using its
embedding function SM€ and its attention weight
function SM™ as shown in expression (2)) . For
example, for math reasoning, Figure 3 shows the
distribution of Meta-Math-QA data for Granite
3 (Granite Team, 2024b), which was used to do
supervised finetuning of Granite 3 8b code instruct.

In the K dimensional space £ of the embeddings
that were produced after dimensionality reduction,
the space that we consider in order to identify spar-
sity is the space &' (£’ C &) of the embeddings
which fall under the “boundaries” of examples in D.
i.e. for K = 2, the space £ of embeddings that we
consider involves the grid where the top and bottom
boundaries fall at the highest and lowest value in
height, and the right and left boundaries are picked
as the lowest and highest values of {e(t)|t € D}
in the width dimension. Given this space £’, in or-
der to identify sparsity, a grid G with width w and
height h is picked, and parses through the space
&' as a sliding window. The selection of w and h
depends on the distribution of the samples in &,
and this distribution varies from model to model,
on the same dataset, depending on the LLM SM’s
embedding function. Given this grid G, a threshold
T is picked depending on the density of the grids
throughout £’. Any regions which fall under this
threshold 7', i.e. any region with number of sam-
ples in grid less than 7" is considered as a candidate
sparse region [, from which seed examples are to
be picked. In order for a region to be considered as
a candidate sparse region /, only non-zero grids are
picked, and “empty” regions are skipped past. For
example, in the embedding space shown in Figure
3, the regions in the corners are typically empty.
These regions are identified by multiple consecu-
tive empty grids, and are not considered as part of
the sparse regions. However, when G falls in an



Sparse
Regions in
Embedding

Extract

Finetune embeddings 1
Data

Model

Interpolation
Sampling

Embedding to
Text

Efficient

Embedding
based SDG data

Candidate
Seeds

Model

Figure 1: Pipeline to perform targeted embedding driven SDG

4000

3000

N
=]
<]
=]

num of grids

1000

0 20 40 60 80 100 12

num points in grid

0

Figure 2: Grid density distribution of embedding space

area where there are samples around the region, but
there are fewer than 7" samples, this is considered
as a candidate sparse region /.

In order to pick 7', we can work backwards from
the density of the grids in the embedding space, for
the chosen w and h. Figure 2 shows the distribution
of grid density for Granite 3, where the X-axis
represents the number of points in grid, and y-axis
represents the number of grids which fall under this
bucket. It can be seen that most grids contain 30-50
samples in the grid, with the distribution waning
on the lower and higher side. Here, for a threshold
T = 10, about 1000 grids will be identified as
sparse regions [, where the number of points in
those grids fall below T' = 10.

3.4 Seed Example Selection in Embedding
Space

Once we have identified a set of sparse regions
(rectangles in 2D or rectangular prisms in 3D), 2
data points from existing training data D are se-

lected from the opposing sides (resp. surfaces) in
2D (resp. 3D) of each sparse region. For example,
in 2D, we randomly select points from opposing
sides: from either top, bottom; or right and left
sides. If a data point does not exist on a side (resp.
surface), we randomly select a data point close to
the side (resp. surface). The hypothesis is that since
there is sparsity in this region, the model is lacking
in knowledge in this specific topic. So, selecting
seeds from this sparse region and generating syn-
thetic data would translate to increasing the density
of this region in the embedding space, making the
model more confident in this region.

3.5 Interpolation of Selected Seed Examples

Let ¢t1 € D and t5 € D be two selected seed ex-
amples that are sequences of m; and my tokens
respectively. Let m = max(mj, ma) . Given ¢;
and to, the interpolation function ¢ first averages
their weighted embedding sequences: SM®(ty) -
SM™(t), where SME(ty,) is the N X my matrix
of the embeddings of the my, tokens of ¢; computed
by the model embedding layer and SM™ (ty) is
the my-dimension vector of the attention weights
as explained in section 3.2 and - is the element-
wise matrix multiplication (with broadcasting of
elements of the mg-dimension vector SM™ (t)
to make it a N x my matrix). This results in the
N x m-dimension matrix avg({t1, t2}) computed
as follows:

Y pad, (SMC(ty) - SMY (1))

avg({t1,t2}) = 5
4

where pad,,, performs up to m zero-padding along
the columns of its input matrix. Since avg({t1,t2})



cluster |

00 X
1 Rl o® o%e . 1129
o [ ] -
2 ?0 ) ® ° o v e 386
Cot od o’ .:‘ o0
. Ll - ® g0 % - 5 ° 478
50 o ~ t S o LRI .s Ce ar., 132
,-.os‘. - o ot e ee Ve, o 8 § . .
> |.' ° . P %° Ld e Y ": bt 3 e 9 &

. AR P R R L ey R
% ..‘. c" :. 5 05.“ .’n ..., ‘.’ ® ..:;0' -® o L X X 2fe 96

£ . o ° b ¥ O " °
S o el LS S e e e WA ey 9
3 «TINATRERII PN ST TL Sael, L - SFeaTE 05
£ o, ¢ SO XA 23 LGk e P o X ° o 18
5 o Sode © T Vs ".o.: SRS . wie ¥V comn o0 o0 K m“ . 186
.:{'o-. ] 05;7 -0}...-. S g'... - 126

[ ]
-50 R I R o 479
L .,_’;":.:s... . 484
- ¢ ° 181
¥ N0 » - . 37
-100 "..3.,‘ 409
460
-100 -50 0 50 100

embeddings_x

Figure 3: Red box represents potential gap (sparsity) in embedding space

type

embeddings_y

-105 100 o5 -90 -85 -80 =75
embeddings_x

Figure 4: Motivation: Correlation between performance
and density in embedding space

has m columns of N elements, where N is the
original embedding dimension of the LLM SM,
it can be passed through the rest of the LLM’s
pipeline to regenerate the natural language from
the embeddings (see the next section 3.6 for more
detail).

The final step is to embed avg({t1,t2}) in the K-
dimension embedding space £ using formula (3),
where all the columns of the matrix have the same
attention weight 1 (as the original attention weights
of t; and ¢9 are already factored in the computation
of avg({t1,t2}) as shown in equation (4)):

i({t1,t2}) = dim_red[K](avg({t1,t2}) x [1]™)
&)
If the dimensionality reduction function
dim_red[K] is linear (e.g., PCA), then i({¢1,t2})
must be the mid-point of the segment [e(t),
e(ta)] (as avg({t1,t2}) x [1]™ is the mid-

o

cluster=451
embeddings_x=-74.33998
embeddings_y=-57.34413
topics=drones, attack,the,hours,
text=Here problem descrip
i=4255

Figure 5: Interpolation: select area in sparsity between
two topics

point of the segment [SM°(t1) x SM™(t1),
SME(ta) x SM™Y(t2)] before dimensionality
reduction), which ensures that i({t1,t2}) is
always in the same rectangular (or rectangular
prism) region as e(¢;) and e(t2). For non-linear
dimensionality reduction function such a guaranty
does not exist in general. However, fort — SNE
(used in our experiments), by construction, there is
a higher likelihood that i({¢1, t2}) ends up closer
to e(t1) and e(t2), and thus in the same rectangular
(or rectangular prism) region as them.

Figure 5 shows a sample sparse region where
interpolation between two edge points in sparsity
leads to a synthetic data example lying close to the
middle of the two in the embedding space.

3.6 Decoding of Interpolated Examples

We now describe the decoding function d that re-
generates text from the embeddings created by the
interpolation function 7. For an input sequence
t of m tokens, the transformation performed by



the LLM SM can be decomposed in two steps:
the embedding step, denoted Emb, that computes
the embedding sequence SM®(t) and the atten-
tion weights SM™(t) as explained in section 3.2
and the generation step, denoted Gen, that gen-
erates the final text from the input embedding:
SM(t) = Gen(Emb(t))

The decoding of the interpolation i({t1,t2}) of
two examples ¢; and ¢y is done by prompting the
LLM SM with the decoding prompt P . Figure 6
shows a simplified version of the prompt Py (the
detailed and complete prompt is in listing 3 in
Appendix A.1).

Figure 6: Simplified Decoding Prompt Py

Please copy or rephrase the input text.
Use the following format:
Input: the input text to copy
Output: the copy of the input text

Your response should only include

the answer.

Do not provide any further explanation.
Here are some examples:

{ Examples }

Input:

The prompt P, instructs the LLLM to simply copy
the provided input. However, the input is provided
in the LLM’s embedding space, and the decoding
is done as follows:

d(i({t1,t2})) = Gen(Emb(Py); avg({t1,t2}))
(6)
where ";" performs the concatenation of two tensors
along their last dimension, and avg is as defined in
section 3.5.

3.7 Final Generation based on Interpolated
and Selected Seed Examples

Given two selected seed examples ¢; and ¢ from
D and the text decoding d(i({t1,t2})) of the
interpolation of ¢; and %o, a teacher LLM 7 M
is prompted with a prompt P, to generate a new
text example with a question and answer in the
required format:

TM(Py; [t1, t2]; [d(i({t1, t2})]) )

where “;” denotes the list concatenation opera-
tor. The prompt P, is provided in listing 2 in
Appendix A.1.

4 Experimental Evaluation

4.1 Datasets and Benchmarks

In order to establish the usefulness of our method,
we focus on one task of Math Reasoning in LLMs.
We pick 3 comparable models in the same param-
eter range, Granite 3 8B Code Instruct (Gran-
ite Team, 2024a), Granite 3.1 8b Instruct (Gran-
ite Team, 2024b) and Mistral 7B (Jiang et al., 2023)
and consider them as the target models in our exper-
iments. We consider MetaMathQA (Yu et al., 2023)
as the base dataset to select seeds from, as it has
been used in supervised finetuning for the 3 models
selected base models. MetaMathQA which is a
publicly available dataset for mathematical prob-
lem solving, containing about 400K examples (as
input and output pairs). The experiments on table 1
show the performance of the 3 models on the test
split of 2 popular benchmark datasets for mathe-
matical reasoning: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). We pick these
models since a prerequisite for our method is that
the pool of seed examples need to have been used
in finetuning the model, and not many other mod-
els disclose this information. The results show that
our method consistently outperforms the random
seed selection in every model for every benchmark
dataset.

4.2 Experimental setup

Table 1 shows the comparison of the accuracy of
the 3 target models : Granite 3 8b code instruct,
Granite 3.1 instruct and Mistral 7B on GSMSK
and MATH, each of which have been finetuned
using the method and sample size denoted in the
columns. The column headers denote the final
number of examples used to finetune the respective
SMs, according to the method of "Random seed
selection" or our pipeline of “Embedding driven
SDG”, denoted as “EmbedSDG”.

For the "random seed selection" case, we pick
the seed examples randomly irrespective of their
location in the embedding distribution, and use the
seed examples to generate synthetic data based on
the seed examples (prompt in Appendix 4). Here, it
is a 1:1 mapping of number of seed examples, and
number of synthetic data examples generated. For
instance, the first column represents 500 seed ex-
amples randomly selected from the finetuning data
D(MetaMathQA), which gave rise to 500 synthetic
data samples generated by prompting a teacher
large language model (Mistral-Large (Mistral Al)),



Table 1: Experimental results comparing accuracy for random vs Embedding-driven seed selection on math

reasoning
Random Seed Selection EmbedSDG
Model 500 | 1000 | 4500 | 500 | 1000 | 4500 | cooc Model
Math - GSMS8k
Granite 3 8b code instruct | 0.761 | 0.761 | 0.773 | 0.782 | 0.79 0.79 0.55
Granite 3.1 8b instruct 0.786 | 0.786 | 0.785 | 0.824 | 0.806 | 0.81 0.74
Mistral 7B 0.354 | 0.558 | 0.723 0.62 | 0.725 | 0.746 0.354
Math - MATH
Granite 3 8b code instruct | 0.225 | 0.23 0.24 0.249 | 0.266 | 0.2822 0.18
Granite 3.1 8b instruct 0.28 | 0.357 | 0.357 | 0.342 | 0.321 | 0.3612 0.2
Mistral 7B 0.214 | 0.225 | 0.229 | 0.244 | 0.244 | 0.248 0.11

and similarly 1000 and 4500 examples generated
by randomly sampling from the finetune data and
generating examples.

The second subdivision of "EmbedSDG" which
has 3 columns underneath: 500, 1000, 4500 refers
to our method of producing synthetic data, and the
number of examples are the final number of ex-
amples generated at the end of our pipeline. Here,
for each synthetic data sample that is generated,
as explained in the Methodology section 3, two
seed samples are picked from a sparse region, in-
terpolated to generate a new sample in the targeted
sparse region, decoded, and the decoded text is fur-
ther solidified into a legitimate example by prompt-
ing a teacher large language model (Mistral-Large)
with the prompt specified in the Appendix 3. So,
the column represents the number of examples that
were generated at the end of the pipeline consid-
ering the appropriate number of seed pairs and
interpolated data. For instance, the 500 column
represents the accuracy of the target model in the
respective rows finetuned with 500 synthetic data
samples generated via our pipeline (embedSDG),
and so on. The final column represents the accu-
racy results of the base model without any further
finetuning.

Finetuning on each of the target models was
done using a single node of 1 A100_80G B GPU
with 80GB of RAM for a total of 5 epochs using
Low Rank Adaptation (LoRA) (Hu et al., 2021).

4.3 Evaluation results (Efficiency of
embedding based SDG)

Table 1 shows the accuracy results of the target
models finetuned on both random seed selection
driven SDG and Embedding based seed selection
driven SDG, with the best accuracy for each tar-

get model on each dataset represented in bold.
The results show that our method EmbedSDG con-
sistently performs the best across all models and
across all benchmarks, over RandomSDG and the
base models. In all cases, the method improves
performance significantly as compared to the base
model, with upto 39% improvement for Mistral7B
on GSMSK, and upto 16% improvement from
base model for Granite 3.1 instruct for the MATH
dataset.

The improvement in performance over Ran-
domSDG is especially noticeable in the case where
the number of examples is low: for instance, Mis-
tral7B on GSMS8K observes almost a 2X improve-
ment (0.62 on EmbedSDG as opposed to 0.35 on
RandomSDG) over the RandomSDG pipeline, with
just 500 examples. As expected, the improvement
over RandomSDG becomes lesser pronounced with
an increase in the number of seed examples: this
is because, as we increase the number of seed ex-
amples that we are sampling, we foray into regions
which becomes less sparse than the previous sam-
ple set. For instance, for EmbedSDG, the first
column would be generated from 500 seed samples
from the least dense (or most sparse) regions in the
embedding space. As we increase this number, the
sparsity is less pronounced.

However, the EmbedSDG method still consistently
leads to the most useful synthetic data since the
highest performance in terms of accuracy are for
the EmbedSDG 4500 pipeline for all target models
for both benchmark datasets GSM8K and MATH,
except for Granite 3.1 for which the best performer
is the target model finetuned with 500 samples gen-
erated via EmbedSDG.



1.00 ssese

T T T v
o] 500 1000 1500 2000
Num. peints in neighborhood

Figure 7: Correlation between density in ES and Model
Accuracy

4.4 Correlation between Density and Model
Accuracy

Our experiments demonstrate a strong correlation
between the number of fine-tuning examples avail-
able for a specific region and the accuracy of the
target model in that region within the embedding
space. As the number of examples increases in a
region, the model’s performance improves, high-
lighting that data sparsity is a significant factor
contributing to accuracy disparities across regions
in the embedding space. This trend is consis-
tently observed across all models for the bench-
mark datasets.

Figure 7 illustrates this linear relationship: the X-
axis represents the number of points within a region
in the embedding space, where the dimensionality
has been reduced to 3 dimensions using PCA. The
Y-axis depicts the average accuracy of the target
model in that region. The positive relationship is
evident from the graph and is further confirmed by
statistical correlation analysis.

4.4.1 Statistical correlation analysis

We computed both Pearson’s and Spearman’s cor-
relation coefficients to validate the strength of the
relationship. Pearson’s correlation coefficient was
found to be 0.813, with a p-value of 1.0946e~!!,
indicating a strong positive linear relationship and
confirming statistical significance. Spearman’s cor-
relation coefficient was 0.806, with a p-value of
2.2910e~ !, confirming a strong monotonic rela-
tionship with an equally significant p-value. These
results highlight the importance of addressing data
sparsity to reduce accuracy disparities.

5 Related Work

Instruction fine-tuning has improved the ability of
large language models (LLMs) to generate accurate

and contextually relevant outputs (Touvron et al.,
2023; Team et al., 2024; Granite Team, 2024a).
However, obtaining large, high-quality instruction
datasets remains a challenge, leading to the explo-
ration of synthetic data generation (SDG) meth-
ods, such as Self-Instruct (Wang et al., 2022a) and
Evol-Instruct (Xu et al., 2023). In past, SDG has
used for a target specific domains like mathematics
(Toshniwal et al., 2024), web development (Puranik
et al., 2023), education (Bulathwela et al., 2023;
Bhat et al., 2022), and machine learning exams
(Drori et al., 2023).

While larger datasets, such as Self-Align’s
300K+ instructions and Self-Instruct’s 50K+, gen-
erally improve model performance, they also intro-
duce issues like neural text degeneration (Holtzman
et al., 2020) and data contamination (Li, 2023). Re-
cent studies advocate for prioritizing content qual-
ity over quantity in fine-tuning (Guo et al., 2023;
Liu et al., 2023). Thus, an effective instruction
generation system must control the quality of the
generated data. Additionally, leveraging the geo-
metric structure of language embeddings for syn-
thetic data generation (Mohanty et al.) has shown
promise, particularly in domains like clinical text,
where expert annotations are costly. For example,
embedding-based techniques (Lopez et al., 2025)
use diversity sampling from real clinical notes to
guide language models, producing synthetic text
that mirrors clinical syntax and vocabulary. Instruc-
tion generation is often tailored to the character-
istics of the target language model, but there is
limited research on generating synthetic instruction
data for fine-tuning smaller models, which aligns
more closely with end-user needs.

6 Conclusion

By carefully navigating the embedding space of a
target model for a given task, this paper introduces
a novel synthetic data generation (SDG) pipeline
that consistently improves performance on different
models and datasets. We empirically demonstrate
that a model’s performance is closely correlated
with the density within the embedding search space.
This observation provides valuable insights for fu-
ture research, offering guidance for optimizing the
synthetic data generation process to improve model
performance. As part of future work, we plan to
develop a multi-task embedding space to generate
more complex instructions.



Limitations

We identify two primary limitations of our work.
The first is experimental in nature: our approach
has been evaluated only on 3 models, on 2 datasets.
All models we used have been trained and fine-
tuned using data from this domain, which may
limit the generalizability of our findings to other
domains. This is because our approach focuses on
improving the performance of a finetuned model,
and most models do not disclose which datasets
were used to train on. This limits the datasets and
models we could experiment on, due to lack of in-
formation, and the need for using a dataset that was
explicitly used in the finetuning of an instruction
tuned model.

The second limitation concerns computational
resources. While larger models such as 70B pa-
rameter variants demonstrate strong performance,
building and deploying solutions with such models
requires substantial hardware resources, making
them less accessible for real-world applications in
resource-constrained environments. However, the
scope of our approach is mainly to improve the per-
formance of smaller models to be more effective
than large models requiring a lot more cycles of
compute and resources.

References

Shravya Bhat, Huy Nguyen, Steven Moore, John Stam-
per, Majd Sakr, and Eric Nyberg. 2022. Towards
automated generation and evaluation of questions in
educational domains. In Proceedings of the 15th In-
ternational Conference on Educational Data Mining,
pages 701-704, Durham, United Kingdom. Interna-
tional Educational Data Mining Society.

Sahan Bulathwela, Hamze Muse, and Emine Yil-
maz. 2023. Scalable educational question gener-
ation with pre-trained language models. Preprint,
arXiv:2305.07871.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and John Schulman. 2021. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Iddo Drori, Sarah J. Zhang, and etc Shuttleworth. 2023.
From human days to machine seconds: Automati-
cally answering and generating machine learning fi-
nal exams. In SIGKDD, KDD ’23, page 3947-3955,
New York, NY, USA.

IBM Granite Team. 2024a. Granite 3.0 language mod-
els.

IBM Granite Team. 2024b. Granite 3.1 language mod-
els.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv preprint arXiv:2305.15717.

Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and
Chloé Clavel. 2023. The curious decline of linguistic
diversity: Training language models on synthetic text.
Preprint, arXiv:2311.09807.

Per Christian Hansen. 1987. The truncated svd as a
method for regularization. BIT Numerical Mathemat-
ics, 27:534-553.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. In Advances in Neural Information
Processing Systems (NeurIPS).

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

IT Jolliffe. 2002.  Principal component analysis
(springer series in statistics), springer.

P. Langley. 2000. Crafting papers on machine learn-
ing. In Proceedings of the 17th International Con-
ference on Machine Learning (ICML 2000), pages
1207-1216, Stanford, CA. Morgan Kaufmann.

Yucheng Li. 2023. An open source data contamina-
tion report for large language models. Preprint,
arXiv:2310.17589.

Wei Liu, Weihao Zeng, Keqing He, Yong lJiang,
and Junxian He. 2023. What makes good data
for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. Preprint,
arXiv:2312.15685.

Ivan Lopez, Fateme Nateghi Haredasht, Kaitlin Caoili,
Jonathan H Chen, and Akshay Chaudhari. 2025.
Embedding-driven diversity sampling to improve
few-shot synthetic data generation.  Preprint,
arXiv:2501.11199.


https://doi.org/10.5281/zenodo.6853085
https://doi.org/10.5281/zenodo.6853085
https://doi.org/10.5281/zenodo.6853085
https://doi.org/10.5281/zenodo.6853085
https://doi.org/10.5281/zenodo.6853085
https://arxiv.org/abs/2305.07871
https://arxiv.org/abs/2305.07871
https://arxiv.org/abs/2305.07871
https://doi.org/10.1145/3580305.3599827
https://doi.org/10.1145/3580305.3599827
https://doi.org/10.1145/3580305.3599827
https://doi.org/10.1145/3580305.3599827
https://doi.org/10.1145/3580305.3599827
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/
https://arxiv.org/abs/2311.09807
https://arxiv.org/abs/2311.09807
https://arxiv.org/abs/2311.09807
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.17589
https://arxiv.org/abs/2310.17589
https://arxiv.org/abs/2310.17589
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2501.11199
https://arxiv.org/abs/2501.11199
https://arxiv.org/abs/2501.11199

Mistral AI.  Mistral large. https://mistral.ai/
news/mistral-large/. Accessed: 2025-01-29.

Shayan Mohanty, Runyan Tan, and David Stanley. Nav-
igating the geometry of language: A new approach
to synthetic text generation.

Vinayak Puranik, Anirban Majumder, and Vineet Chaoji.
2023. PROTEGE: Prompt-based diverse question
generation from web articles. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 5449-5463, Singapore. Association for
Computational Linguistics.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo
Pareja, Kai Xu, David D Cox, and Akash Srivas-
tava. 2024. Lab: Large-scale alignment for chatbots.
arXiv preprint arXiv:2403.01081.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Gemini Team, Rohan Anil, Sebastian Borgeaud, and
etc. 2024. Gemini: A family of highly capable multi-
modal models. Preprint, arXiv:2312.11805.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
OpenMathlnstruct-1: A 1.8 Million Math Instruction
Tuning Dataset. In Advances in Neural Information
Processing Systems.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Kirill Tyshchuk, Polina Karpikova, Andrew Spiri-
donov, Anastasiia Prutianova, Anton Razzhigaev, and
Alexander Panchenko. 2023. On isotropy of multi-
modal embeddings. Information, 14(7):392.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022a. Self-instruct: Aligning language
model with self generated instructions.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022b. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

10

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.


https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://www.watchful.io/blog/navigating-the-geometry-of-language-a-new-approach-to-synthetic-text-generation
https://www.watchful.io/blog/navigating-the-geometry-of-language-a-new-approach-to-synthetic-text-generation
https://www.watchful.io/blog/navigating-the-geometry-of-language-a-new-approach-to-synthetic-text-generation
https://www.watchful.io/blog/navigating-the-geometry-of-language-a-new-approach-to-synthetic-text-generation
https://www.watchful.io/blog/navigating-the-geometry-of-language-a-new-approach-to-synthetic-text-generation
https://doi.org/10.18653/v1/2023.findings-emnlp.362
https://doi.org/10.18653/v1/2023.findings-emnlp.362
https://doi.org/10.18653/v1/2023.findings-emnlp.362
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244

A Appendix
A.1 Prompts

Listing 1: Prompt to decode interpolated example Py

You are a cautious assistant. You carefully follow instructions.
You are helpful and harmless and you follow ethical guidelines and
promote positive behavior.

Please copy or rephrase the input text.

Use the following format:
Input: the input text to copy
Output: the copy of the input text

Your response should only include the answer. Do not provide any
further explanation.

Here are some examples, complete only the last one:

Input: {Example 1}
Output: {Example 1}

Input: {Example 2}
Output: {Example 2}

Input: {Example 3}
Output: {Example 3}

Input: {Example 4}
Output: { Example 4}

Now copy or rephrase the following input text.

Do not try to solve the problem described in the input text.
Just copy or rephrase the following input text.

Input:

Listing 2: Prompt to generate a new synthetic example from seeds P,

You are a data generator for synthetic math reasoning problems.
You will be given two examples of math reasoning problems in a
specific format, along with a partial synthetic example, and
your task is to generate a new problem that creatively combines
elements of the two examples, and solidifies the partial example
into a legitimate math reasoning problem with a legitimate
solution .

Format:

— Start the question with "### Question".
— Start the answer with "### Answer".

11




— Provide the final answer prefixed with "### <final_answer >".

Instructions:

The new problem should conceptually lie in the middle of the two
given examples, and follow the outline of the partial example.
Combine themes or elements from both problems to create a coherent
and challenging math reasoning problem. It has to be related to
the seed examples, and cannot be an unrelated random problem.
Ensure that the problem adheres to the format provided.

Do not use the same names or numbers, only use the concepts,
topics and problem types.

Seed Examples to base the new sample on:

Example 1:
### Question

{ql}
### Answer
{al}

Example 2:
### Question

{q2}
### Answer
{a2}

Partial Example:
{interpolated_decoded_text}

Your Task:

Generate a new math reasoning problem that combines the elements of
Example 1 and Example 2 above, and solidifies the Partial Example
into a real math reasoning problem. The new example HAS to have
elements from the above two seed examples, it cannot be an unrelated
random math problem. Follow the format exactly and ensure the problem
is clear and solvable. Only respond with one new example, and preface
the question with ### Question and the answer with ### Answer.

Generated example:

Listing 3: Prompt to decode interpolated example Py

12




You are a cautious assistant. You carefully follow instructions.
You are helpful and harmless and you follow ethical guidelines and
promote positive behavior.

Please copy or rephrase the input text.

Use the following format:
Input: the input text to copy
Output: the copy of the input text

Your response should only include the answer. Do not provide any
further explanation.

Here are some examples, complete only the last one:

Input: {Example 1}
Output: {Example 1}

Input: {Example 2}
Output: {Example 2}

Input: {Example 3}
Output: {Example 3}

Input: {Example 4}
Output: { Example 4}

Now copy or rephrase the following input text.

Do not try to solve the problem described in the input text.
Just copy or rephrase the following input text.

Input:

Listing 4: Prompt to generate a new synthetic example from baseline seed P

You are a data generator for synthetic math reasoning problems.
You will be given an example math reasoning problem in a specific
format, and your task is to generate a new problem that that is
similar to the example problem, and convert it into a

legitimate math reasoning problem with a legitimate solution.

Format:
— Start the question with "### Question".
— Start the answer with "### Answer".

— Provide the final answer prefixed with "### <final_answer >".

Instructions:

Create a coherent and challenging math problem.
Ensure that the problem adheres to the format provided.

13

The new problem should conceptually be similar to the example problel

m .

Do not use the same names or numbers, only use the concepts, topics

and praobler



Seed Example to base the new sample on:

Example :
### Question

{ql}

### Answer
{al}

Your Task:

Generate a new math reasoning problem similar to the example problem

above. The new example HAS to be similar to the example, it cannot be
an unrelated random math problem. Follow the format exactly and ensure
the problem is clear and solvable. Only respond with one new example,
and preface the question with ### Question and the answer with

### Answer.

Generated example:

A.2 LLM Licenses

Experiments described in section 4 were performed in a manner consistent with the license and intended
use of our three target models: Granite 3 8B Code Instruct (Granite Team, 2024a), Granite 3.1 8b Instruct
(Granite Team, 2024b) and Mistral 7B (Jiang et al., 2023).

14



	Introduction
	Problem Statement
	Embedding-based SDG Method
	Overview
	Embedding Computation
	Identifying sparsity
	Seed Example Selection in Embedding Space
	Interpolation of Selected Seed Examples
	Decoding of Interpolated Examples
	Final Generation based on Interpolated and Selected Seed Examples

	Experimental Evaluation
	Datasets and Benchmarks
	Experimental setup
	Evaluation results (Efficiency of embedding based SDG)
	Correlation between Density and Model Accuracy
	Statistical correlation analysis


	Related Work
	Conclusion
	Appendix
	Prompts
	LLM Licenses


