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Abstract001

Synthetic Data Generation (SDG), leveraging002
Large Language Models (LLMs), has recently003
been recognized and broadly adopted as an ef-004
fective approach to improve the performance005
of smaller but more resource and compute ef-006
ficient LLMs through fine-tuning. A key chal-007
lenge in SDG is ensuring the quality and di-008
versity of the generated data. In this paper,009
we analyze the diversity and distribution of010
generated data in the embedding space, and011
demonstrate a strong correlation between the012
density of examples within a specific neigh-013
borhood and the accuracy of predictions on014
examples drawn from that region. Building015
on this insight, we present a targeted pipeline016
for embedding-based sampling that enhances017
data diversity and consistently improves perfor-018
mance across several benchmarks.019

1 Introduction020

In recent years, Large Language Models (LLMs)021

have dramatically improved machines’s ability to022

understand and generate natural language. The023

rapid growth in size of the most capable LLMs has024

raised serious concerns about their resource con-025

sumption and sustainability. As a result, there have026

been increased research efforts in exploring ap-027

proaches to bring the performance of much smaller028

LLMs (less than 20B parameters) closer to the per-029

formance of larger models (100B+ parameters).030

Synthetic Data Generation (SDG) has recently been031

recognized and broadly adopted as one effective032

approach to improve the performance of smaller,033

more resource and compute efficient LLMs through034

fine-tuning.035

Synthetic Data Generation (SDG) is typically a036

model distillation approach that uses a more capa-037

ble teacher model to generate synthetic training ex-038

amples used to then trained or fine-tuned a smaller039

LLM on a specific set of tasks. A key challenge040

in SDG is ensuring the quality and diversity of041

the generated data. Most SDG techniques generate 042

new synthetic examples by sampling seed examples 043

from an existing set of known training examples 044

(hereafter referred to as the pool of seed examples). 045

Unfortunately, most prior works (e.g., (Taori et al., 046

2023; Wang et al., 2022b)) often rely on random 047

sampling of the pool of seed examples, which, as 048

explained by (Gudibande et al., 2023; Sudalairaj 049

et al., 2024), leads to over-sampling from the dom- 050

inant modes of the teacher model - resulting in 051

limited diversity. (Sudalairaj et al., 2024) tackles 052

this issue by proposing a new approach that first 053

requires manually building a taxonomy and plac- 054

ing all examples in the pool of seed examples in 055

the taxonomy. It then performs stratified sampling 056

through the taxonomy (taxonomy-driven sampling). 057

However, the success of the approach depends on 058

the existence of a well-designed, well balanced and 059

well-organized taxonomy and the proper mapping 060

of examples in the pool of seed examples to the 061

appropriate nodes in the taxonomy. 062

As opposed to prevailing SDG approaches that 063

study, organize and sample the pool of seed exam- 064

ples in the language domain, we propose to study, 065

organize and sample it in an embedding space. Fur- 066

thermore, while prior SDG works have paid limited 067

to no attention to the target (or student) model that 068

will eventually be fine-tuned on the synthetically 069

generated data, in this paper, we design the SDG 070

process to specifically overcome the shortcomings 071

of the student model. In particular, we analyze 072

the diversity and distribution of the pool of seed 073

examples in an embedding space derived from the 074

student model. Our empirical evaluation shows a 075

strong correlation between the density of examples 076

within a specific neighborhood and the accuracy 077

of predictions on examples drawn from that re- 078

gion. Building on this insight, we present a targeted 079

pipeline for embedding-based sampling that sam- 080

ples new points in sparse regions of the embedding 081

space to enhance data diversity. Our experimental 082
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evaluation shows that it consistently improves per-083

formance across LLMs and benchmarks. The key084

contributions of this paper are threefold:085

1. An embedding-based SDG targeted to im-086

prove data diversity and quality of a specific087

student model.088

2. An analysis of data diversity of the pool of089

seed examples in an embedding space derived090

from the student model.091

3. An experimental evaluation that shows how092

our proposed approach consistently improves093

performance on different models and datasets.094

The remainder of the paper is organized as fol-095

lows. After formally describing the problem of096

targeted Synthetic Data Generation in section 2, we097

introduce our embedding based targeted SDG in098

section 3. We then report, in section 4, the results099

of our analysis of data diversity in the embedding100

space and the experimental evaluation of our pro-101

posed approach on two different small LLMs and102

on two different math datasets. After reviewing103

prior works in section 5, we concluded in section 6.104

2 Problem Statement105

Prior works have studied synthetic data generation106

with very limited to no consideration for the target107

model that will eventually be fine-tuned on the108

generated data. In this paper, we study the problem109

of synthetic data generation specifically aimed at110

addressing the shortcomings of a given student or111

target model, denoted SM.112

Definition 2.1 (Generator). We define a targeted113

synthetic data generator as a function F that takes114

as input a pair (D, SM), where115

• D = {(x, y)} is a labeled dataset made of116

pairs consisting of a natural language text in-117

put x and a natural language output label y118

that should be produced as a response to the119

problem or task described by x120

• SM is a Large Language Model (LLM) fine-121

tuned on D from a base LLM BM.122

It returns a new labeled dataset D′ = F(D, SM)123

such that a model SM′ fine-tuned on D′ from the124

same base model BM performs, on average, better125

than SM w.r.t. to some performance metrics (e.g.,126

accuracy) on validation datasets.127

3 Embedding-based SDG Method 128

3.1 Overview 129

As indicated in the problem statement, the two 130

key inputs to our embedding-based Synthetic Data 131

Generation (SDG) method are a labeled training 132

dataset D and a target model SM fine-tuned on 133

D. The main goal is to first identify, in the embed- 134

ding space, regions where the target model SM 135

performs poorly. In the experimental evaluation 136

section 4, we show that regions with a low density 137

of examples from the training dataset D correlate 138

with regions where the model SM performs poorly. 139

Our method targets those sparse regions to gener- 140

ate synthetic examples in order to increase their 141

density. 142

The overview of our approach is depicted in Fig- 143

ure 1. It consists of the following key steps: 144

1. Computation of the embedding of each exam- 145

ple in the labeled dataset D. E denotes the 146

embedding space, and e denotes the function 147

that computes the embedding of an example 148

in D 149
2. Identification of sparse regions of E (i.e., re- 150

gions of E with low density of embeddings of 151

examples in the labeled dataset D). 152
3. For each identified sparse region l, selection 153

of two points in l that correspond to the em- 154

beddings of examples in the labeled dataset 155

D. We refer to those selected examples as 156

seed examples. s denotes the seed selection 157

function. 158
4. Interpolation of the 2 selected seed examples 159

whose embeddings are in the sparse region l 160

to produce a new embedding vector that has 161

a high probability of belonging to the same 162

sparse region l. i denotes a function that per- 163

forms such interpolation and is described in 164

more detail in section 3.5 165
5. Decoding of the new embedding produced 166

in step 4 into a natural language text using a 167

decoding function d. 168
6. Generation of a new synthetic data example 169

using a Teacher LLM T M prompted with a 170

prompt Pg, the 2 selected seed examples from 171

step 3, and the natural language decoding of 172

the new embedding produced at step 4. 173

Let l be a low density area of E , s(l) selects a pair 174

of seed examples of D whose embeddings are in l. 175

Formally, a new synthetic data point is generated 176

by 177

T M(Pg; s(l); [d(i(s(l)))]) (1) 178
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where “;” denotes the list concatenation operator;179

T M is Teacher Model with a prompt Pg; d is the180

decoding function from the embedding space to181

natural language; i is the interpolation function182

that combines 2 examples in D and returns a new183

embedding in E (more on i in section 3.5).184

Given the pair (D, SM), our targeted synthetic185

data generator function F is implemented by re-186

peatedly generating new synthetic data examples187

(i.e., invoking the formula (1) above) on sparse188

regions l of the embedding space E .189

In the remainder of this section, we provide a190

detailed description of the key steps of the proposed191

embedding-based SDG approach.192

3.2 Embedding Computation193

We first need to embed each training example in D194

in an embedding space E . Given an input sequence195

t of m tokens, a transformer-based LLM (Vaswani,196

2017) SM computes, in its embedding layer, m197

embedding vectors of dimension N and an atten-198

tion weight (i.e., a m-dimension vector where each199

component indicates the relative importance of200

each input token). Let SMe(t) denote the N ×m201

matrix representing those m N -dimension embed-202

dings, and SMw(t) denote the m-dimensional at-203

tention weight vector. We could use the weighted204

sum of the token embeddings as the final embed-205

ding of the input sequence t computed as shown206

below:207

SMe(t)× SMw(t) (2)208

where ‘×’ is the matrix multiplication operator.209

However, this simple approach has two important210

shortcomings. First, it requires significant memory211

resources as N is typically larger than 4000. Sec-212

ond, as shown in (Tyshchuk et al., 2023), the em-213

bedding space of transformer-based models is typi-214

cally not isotropic. In other words, not all dimen-215

sions are equally important. To alleviate these two216

issues, we perform a further step of dimensionality217

reduction by applying well known techniques such218

as PCA (Jolliffe, 2002), TruncatedSVD (Hansen,219

1987), t-SNE (Van der Maaten and Hinton, 2008),220

etc. The final embedding e(t) of the input sequence221

t is a K-dimension vector computed as222

e(t) = dim_red[K](SMe(t)× SMw(t)) (3)223

where dim_red[K] is a dimensionality reduction224

function that reduces the dimension from N to225

K. In the remainder of this paper, to simplify the226

presentation, we consider only the cases where K227

is 2 or 3.228

3.3 Identifying sparsity 229

On visualizing the embeddings (using t- 230

SNE (Van der Maaten and Hinton, 2008)), 231

it is seen that the data D that is used to fine-tune 232

the model SM is not evenly distributed through 233

the embedding space. Some areas are dense, 234

containing samples from similar topics, while 235

others are sparse. On clustering the data, and 236

extracting topics for each cluster, we can identify 237

the "topic" of the region which is dense and 238

sparse. For each model, the embedding space 239

distribution will be different for the same data. 240

Each model has its own sparsity, in certain areas 241

depending on how it embeds the data (using its 242

embedding function SMe and its attention weight 243

function SMw as shown in expression (2)) . For 244

example, for math reasoning, Figure 3 shows the 245

distribution of Meta-Math-QA data for Granite 246

3 (Granite Team, 2024b), which was used to do 247

supervised finetuning of Granite 3 8b code instruct. 248

In the K dimensional space E of the embeddings 249

that were produced after dimensionality reduction, 250

the space that we consider in order to identify spar- 251

sity is the space E ′ (E ′ ⊂ E) of the embeddings 252

which fall under the “boundaries” of examples in D. 253

i.e. for K = 2, the space E ′ of embeddings that we 254

consider involves the grid where the top and bottom 255

boundaries fall at the highest and lowest value in 256

height, and the right and left boundaries are picked 257

as the lowest and highest values of {e(t)|t ∈ D} 258

in the width dimension. Given this space E ′, in or- 259

der to identify sparsity, a grid G with width w and 260

height h is picked, and parses through the space 261

E ′ as a sliding window. The selection of w and h 262

depends on the distribution of the samples in E ′, 263

and this distribution varies from model to model, 264

on the same dataset, depending on the LLM SM’s 265

embedding function. Given this grid G, a threshold 266

T is picked depending on the density of the grids 267

throughout E ′. Any regions which fall under this 268

threshold T , i.e. any region with number of sam- 269

ples in grid less than T is considered as a candidate 270

sparse region l, from which seed examples are to 271

be picked. In order for a region to be considered as 272

a candidate sparse region l, only non-zero grids are 273

picked, and “empty” regions are skipped past. For 274

example, in the embedding space shown in Figure 275

3, the regions in the corners are typically empty. 276

These regions are identified by multiple consecu- 277

tive empty grids, and are not considered as part of 278

the sparse regions. However, when G falls in an 279
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Figure 1: Pipeline to perform targeted embedding driven SDG

Figure 2: Grid density distribution of embedding space

area where there are samples around the region, but280

there are fewer than T samples, this is considered281

as a candidate sparse region l.282

In order to pick T , we can work backwards from283

the density of the grids in the embedding space, for284

the chosen w and h. Figure 2 shows the distribution285

of grid density for Granite 3, where the X-axis286

represents the number of points in grid, and y-axis287

represents the number of grids which fall under this288

bucket. It can be seen that most grids contain 30-50289

samples in the grid, with the distribution waning290

on the lower and higher side. Here, for a threshold291

T = 10, about 1000 grids will be identified as292

sparse regions l, where the number of points in293

those grids fall below T = 10.294

3.4 Seed Example Selection in Embedding295

Space296

Once we have identified a set of sparse regions297

(rectangles in 2D or rectangular prisms in 3D), 2298

data points from existing training data D are se-299

lected from the opposing sides (resp. surfaces) in 300

2D (resp. 3D) of each sparse region. For example, 301

in 2D, we randomly select points from opposing 302

sides: from either top, bottom; or right and left 303

sides. If a data point does not exist on a side (resp. 304

surface), we randomly select a data point close to 305

the side (resp. surface). The hypothesis is that since 306

there is sparsity in this region, the model is lacking 307

in knowledge in this specific topic. So, selecting 308

seeds from this sparse region and generating syn- 309

thetic data would translate to increasing the density 310

of this region in the embedding space, making the 311

model more confident in this region. 312

3.5 Interpolation of Selected Seed Examples 313

Let t1 ∈ D and t2 ∈ D be two selected seed ex- 314

amples that are sequences of m1 and m2 tokens 315

respectively. Let m = max(m1,m2) . Given t1 316

and t2, the interpolation function i first averages 317

their weighted embedding sequences: SMe(tk) · 318

SMw(tk), where SMe(tk) is the N ×mk matrix 319

of the embeddings of the mk tokens of tk computed 320

by the model embedding layer and SMw(tk) is 321

the mk-dimension vector of the attention weights 322

as explained in section 3.2 and · is the element- 323

wise matrix multiplication (with broadcasting of 324

elements of the mk-dimension vector SMw(tk) 325

to make it a N ×mk matrix). This results in the 326

N ×m-dimension matrix avg({t1, t2}) computed 327

as follows: 328

avg({t1, t2}) =
∑2

k=1 padm(SMe(tk) · SMw(tk))

2
(4) 329

where padm performs up to m zero-padding along 330

the columns of its input matrix. Since avg({t1, t2}) 331
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Figure 3: Red box represents potential gap (sparsity) in embedding space

Figure 4: Motivation: Correlation between performance
and density in embedding space

has m columns of N elements, where N is the332

original embedding dimension of the LLM SM,333

it can be passed through the rest of the LLM’s334

pipeline to regenerate the natural language from335

the embeddings (see the next section 3.6 for more336

detail).337

The final step is to embed avg({t1, t2}) in the K-338

dimension embedding space E using formula (3),339

where all the columns of the matrix have the same340

attention weight 1 (as the original attention weights341

of t1 and t2 are already factored in the computation342

of avg({t1, t2}) as shown in equation (4)):343

i({t1, t2}) = dim_red[K](avg({t1, t2})× [1]m)
(5)344

If the dimensionality reduction function345

dim_red[K] is linear (e.g., PCA), then i({t1, t2})346

must be the mid-point of the segment [e(t1),347

e(t2)] (as avg({t1, t2}) × [1]m is the mid-348

Figure 5: Interpolation: select area in sparsity between
two topics

point of the segment [SMe(t1) × SMw(t1), 349

SMe(t2) × SMw(t2)] before dimensionality 350

reduction), which ensures that i({t1, t2}) is 351

always in the same rectangular (or rectangular 352

prism) region as e(t1) and e(t2). For non-linear 353

dimensionality reduction function such a guaranty 354

does not exist in general. However, for t− SNE 355

(used in our experiments), by construction, there is 356

a higher likelihood that i({t1, t2}) ends up closer 357

to e(t1) and e(t2), and thus in the same rectangular 358

(or rectangular prism) region as them. 359

Figure 5 shows a sample sparse region where 360

interpolation between two edge points in sparsity 361

leads to a synthetic data example lying close to the 362

middle of the two in the embedding space. 363

3.6 Decoding of Interpolated Examples 364

We now describe the decoding function d that re- 365

generates text from the embeddings created by the 366

interpolation function i. For an input sequence 367

t of m tokens, the transformation performed by 368
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the LLM SM can be decomposed in two steps:369

the embedding step, denoted Emb, that computes370

the embedding sequence SMe(t) and the atten-371

tion weights SMw(t) as explained in section 3.2372

and the generation step, denoted Gen, that gen-373

erates the final text from the input embedding:374

SM(t) = Gen(Emb(t))375

The decoding of the interpolation i({t1, t2}) of376

two examples t1 and t2 is done by prompting the377

LLM SM with the decoding prompt Pd . Figure 6378

shows a simplified version of the prompt Pd (the379

detailed and complete prompt is in listing 3 in380

Appendix A.1).381

Figure 6: Simplified Decoding Prompt Pd

P l e a s e copy or r e p h r a s e t h e i n p u t t e x t .
Use t h e f o l l o w i n g f o r m a t :

I n p u t : t h e i n p u t t e x t t o copy
Outpu t : t h e copy of t h e i n p u t t e x t

Your r e s p o n s e s h o u l d on ly i n c l u d e
t h e answer .
Do n o t p r o v i d e any f u r t h e r e x p l a n a t i o n .
Here a r e some examples :
{ Examples }
I n p u t :

The prompt Pd instructs the LLM to simply copy382

the provided input. However, the input is provided383

in the LLM’s embedding space, and the decoding384

is done as follows:385

d(i({t1, t2})) = Gen(Emb(Pd); avg({t1, t2}))
(6)386

where ";" performs the concatenation of two tensors387

along their last dimension, and avg is as defined in388

section 3.5.389

3.7 Final Generation based on Interpolated390

and Selected Seed Examples391

Given two selected seed examples t1 and t2 from392

D and the text decoding d(i({t1, t2})) of the393

interpolation of t1 and t2, a teacher LLM T M394

is prompted with a prompt Pg to generate a new395

text example with a question and answer in the396

required format:397

398

T M(Pg; [t1, t2]; [d(i({t1, t2})]) (7)399

where “;” denotes the list concatenation opera-400

tor. The prompt Pg is provided in listing 2 in401

Appendix A.1.402

4 Experimental Evaluation 403

4.1 Datasets and Benchmarks 404

In order to establish the usefulness of our method, 405

we focus on one task of Math Reasoning in LLMs. 406

We pick 3 comparable models in the same param- 407

eter range, Granite 3 8B Code Instruct (Gran- 408

ite Team, 2024a), Granite 3.1 8b Instruct (Gran- 409

ite Team, 2024b) and Mistral 7B (Jiang et al., 2023) 410

and consider them as the target models in our exper- 411

iments. We consider MetaMathQA (Yu et al., 2023) 412

as the base dataset to select seeds from, as it has 413

been used in supervised finetuning for the 3 models 414

selected base models. MetaMathQA which is a 415

publicly available dataset for mathematical prob- 416

lem solving, containing about 400K examples (as 417

input and output pairs). The experiments on table 1 418

show the performance of the 3 models on the test 419

split of 2 popular benchmark datasets for mathe- 420

matical reasoning: GSM8K (Cobbe et al., 2021) 421

and MATH (Hendrycks et al., 2021). We pick these 422

models since a prerequisite for our method is that 423

the pool of seed examples need to have been used 424

in finetuning the model, and not many other mod- 425

els disclose this information. The results show that 426

our method consistently outperforms the random 427

seed selection in every model for every benchmark 428

dataset. 429

4.2 Experimental setup 430

Table 1 shows the comparison of the accuracy of 431

the 3 target models : Granite 3 8b code instruct, 432

Granite 3.1 instruct and Mistral 7B on GSM8K 433

and MATH, each of which have been finetuned 434

using the method and sample size denoted in the 435

columns. The column headers denote the final 436

number of examples used to finetune the respective 437

SMs, according to the method of "Random seed 438

selection" or our pipeline of “Embedding driven 439

SDG”, denoted as “EmbedSDG”. 440

For the "random seed selection" case, we pick 441

the seed examples randomly irrespective of their 442

location in the embedding distribution, and use the 443

seed examples to generate synthetic data based on 444

the seed examples (prompt in Appendix 4). Here, it 445

is a 1:1 mapping of number of seed examples, and 446

number of synthetic data examples generated. For 447

instance, the first column represents 500 seed ex- 448

amples randomly selected from the finetuning data 449

D(MetaMathQA), which gave rise to 500 synthetic 450

data samples generated by prompting a teacher 451

large language model (Mistral-Large (Mistral AI)), 452
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Table 1: Experimental results comparing accuracy for random vs Embedding-driven seed selection on math
reasoning

Model Random Seed Selection EmbedSDG Base Model500 1000 4500 500 1000 4500
Math - GSM8k

Granite 3 8b code instruct 0.761 0.761 0.773 0.782 0.79 0.79 0.55
Granite 3.1 8b instruct 0.786 0.786 0.785 0.824 0.806 0.81 0.74
Mistral 7B 0.354 0.558 0.723 0.62 0.725 0.746 0.354

Math - MATH
Granite 3 8b code instruct 0.225 0.23 0.24 0.249 0.266 0.2822 0.18
Granite 3.1 8b instruct 0.28 0.357 0.357 0.342 0.321 0.3612 0.2
Mistral 7B 0.214 0.225 0.229 0.244 0.244 0.248 0.11

and similarly 1000 and 4500 examples generated453

by randomly sampling from the finetune data and454

generating examples.455

The second subdivision of "EmbedSDG" which456

has 3 columns underneath: 500, 1000, 4500 refers457

to our method of producing synthetic data, and the458

number of examples are the final number of ex-459

amples generated at the end of our pipeline. Here,460

for each synthetic data sample that is generated,461

as explained in the Methodology section 3, two462

seed samples are picked from a sparse region, in-463

terpolated to generate a new sample in the targeted464

sparse region, decoded, and the decoded text is fur-465

ther solidified into a legitimate example by prompt-466

ing a teacher large language model (Mistral-Large)467

with the prompt specified in the Appendix 3. So,468

the column represents the number of examples that469

were generated at the end of the pipeline consid-470

ering the appropriate number of seed pairs and471

interpolated data. For instance, the 500 column472

represents the accuracy of the target model in the473

respective rows finetuned with 500 synthetic data474

samples generated via our pipeline (embedSDG),475

and so on. The final column represents the accu-476

racy results of the base model without any further477

finetuning.478

Finetuning on each of the target models was479

done using a single node of 1 A100_80GB GPU480

with 80GB of RAM for a total of 5 epochs using481

Low Rank Adaptation (LoRA) (Hu et al., 2021).482

4.3 Evaluation results (Efficiency of483

embedding based SDG)484

Table 1 shows the accuracy results of the target485

models finetuned on both random seed selection486

driven SDG and Embedding based seed selection487

driven SDG, with the best accuracy for each tar-488

get model on each dataset represented in bold. 489

The results show that our method EmbedSDG con- 490

sistently performs the best across all models and 491

across all benchmarks, over RandomSDG and the 492

base models. In all cases, the method improves 493

performance significantly as compared to the base 494

model, with upto 39% improvement for Mistral7B 495

on GSM8K, and upto 16% improvement from 496

base model for Granite 3.1 instruct for the MATH 497

dataset. 498

The improvement in performance over Ran- 499

domSDG is especially noticeable in the case where 500

the number of examples is low: for instance, Mis- 501

tral7B on GSM8K observes almost a 2X improve- 502

ment (0.62 on EmbedSDG as opposed to 0.35 on 503

RandomSDG) over the RandomSDG pipeline, with 504

just 500 examples. As expected, the improvement 505

over RandomSDG becomes lesser pronounced with 506

an increase in the number of seed examples: this 507

is because, as we increase the number of seed ex- 508

amples that we are sampling, we foray into regions 509

which becomes less sparse than the previous sam- 510

ple set. For instance, for EmbedSDG, the first 511

column would be generated from 500 seed samples 512

from the least dense (or most sparse) regions in the 513

embedding space. As we increase this number, the 514

sparsity is less pronounced. 515

However, the EmbedSDG method still consistently 516

leads to the most useful synthetic data since the 517

highest performance in terms of accuracy are for 518

the EmbedSDG 4500 pipeline for all target models 519

for both benchmark datasets GSM8K and MATH, 520

except for Granite 3.1 for which the best performer 521

is the target model finetuned with 500 samples gen- 522

erated via EmbedSDG. 523
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Figure 7: Correlation between density in ES and Model
Accuracy

4.4 Correlation between Density and Model524

Accuracy525

Our experiments demonstrate a strong correlation526

between the number of fine-tuning examples avail-527

able for a specific region and the accuracy of the528

target model in that region within the embedding529

space. As the number of examples increases in a530

region, the model’s performance improves, high-531

lighting that data sparsity is a significant factor532

contributing to accuracy disparities across regions533

in the embedding space. This trend is consis-534

tently observed across all models for the bench-535

mark datasets.536

Figure 7 illustrates this linear relationship: the X-537

axis represents the number of points within a region538

in the embedding space, where the dimensionality539

has been reduced to 3 dimensions using PCA. The540

Y-axis depicts the average accuracy of the target541

model in that region. The positive relationship is542

evident from the graph and is further confirmed by543

statistical correlation analysis.544

4.4.1 Statistical correlation analysis545

We computed both Pearson’s and Spearman’s cor-546

relation coefficients to validate the strength of the547

relationship. Pearson’s correlation coefficient was548

found to be 0.813, with a p-value of 1.0946e−11,549

indicating a strong positive linear relationship and550

confirming statistical significance. Spearman’s cor-551

relation coefficient was 0.806, with a p-value of552

2.2910e−11, confirming a strong monotonic rela-553

tionship with an equally significant p-value. These554

results highlight the importance of addressing data555

sparsity to reduce accuracy disparities.556

5 Related Work557

Instruction fine-tuning has improved the ability of558

large language models (LLMs) to generate accurate559

and contextually relevant outputs (Touvron et al., 560

2023; Team et al., 2024; Granite Team, 2024a). 561

However, obtaining large, high-quality instruction 562

datasets remains a challenge, leading to the explo- 563

ration of synthetic data generation (SDG) meth- 564

ods, such as Self-Instruct (Wang et al., 2022a) and 565

Evol-Instruct (Xu et al., 2023). In past, SDG has 566

used for a target specific domains like mathematics 567

(Toshniwal et al., 2024), web development (Puranik 568

et al., 2023), education (Bulathwela et al., 2023; 569

Bhat et al., 2022), and machine learning exams 570

(Drori et al., 2023). 571

While larger datasets, such as Self-Align’s 572

300K+ instructions and Self-Instruct’s 50K+, gen- 573

erally improve model performance, they also intro- 574

duce issues like neural text degeneration (Holtzman 575

et al., 2020) and data contamination (Li, 2023). Re- 576

cent studies advocate for prioritizing content qual- 577

ity over quantity in fine-tuning (Guo et al., 2023; 578

Liu et al., 2023). Thus, an effective instruction 579

generation system must control the quality of the 580

generated data. Additionally, leveraging the geo- 581

metric structure of language embeddings for syn- 582

thetic data generation (Mohanty et al.) has shown 583

promise, particularly in domains like clinical text, 584

where expert annotations are costly. For example, 585

embedding-based techniques (Lopez et al., 2025) 586

use diversity sampling from real clinical notes to 587

guide language models, producing synthetic text 588

that mirrors clinical syntax and vocabulary. Instruc- 589

tion generation is often tailored to the character- 590

istics of the target language model, but there is 591

limited research on generating synthetic instruction 592

data for fine-tuning smaller models, which aligns 593

more closely with end-user needs. 594

6 Conclusion 595

By carefully navigating the embedding space of a 596

target model for a given task, this paper introduces 597

a novel synthetic data generation (SDG) pipeline 598

that consistently improves performance on different 599

models and datasets. We empirically demonstrate 600

that a model’s performance is closely correlated 601

with the density within the embedding search space. 602

This observation provides valuable insights for fu- 603

ture research, offering guidance for optimizing the 604

synthetic data generation process to improve model 605

performance. As part of future work, we plan to 606

develop a multi-task embedding space to generate 607

more complex instructions. 608
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Limitations609

We identify two primary limitations of our work.610

The first is experimental in nature: our approach611

has been evaluated only on 3 models, on 2 datasets.612

All models we used have been trained and fine-613

tuned using data from this domain, which may614

limit the generalizability of our findings to other615

domains. This is because our approach focuses on616

improving the performance of a finetuned model,617

and most models do not disclose which datasets618

were used to train on. This limits the datasets and619

models we could experiment on, due to lack of in-620

formation, and the need for using a dataset that was621

explicitly used in the finetuning of an instruction622

tuned model.623

The second limitation concerns computational624

resources. While larger models such as 70B pa-625

rameter variants demonstrate strong performance,626

building and deploying solutions with such models627

requires substantial hardware resources, making628

them less accessible for real-world applications in629

resource-constrained environments. However, the630

scope of our approach is mainly to improve the per-631

formance of smaller models to be more effective632

than large models requiring a lot more cycles of633

compute and resources.634
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A Appendix 778

A.1 Prompts 779

Listing 1: Prompt to decode interpolated example Pd
780

You a r e a c a u t i o u s a s s i s t a n t . You c a r e f u l l y f o l l o w i n s t r u c t i o n s . 781

You a r e h e l p f u l and h a r m l e s s and you f o l l o w e t h i c a l g u i d e l i n e s and 782

promote p o s i t i v e b e h a v i o r . 783

784

P l e a s e copy or r e p h r a s e t h e i n p u t t e x t . 785

786

Use t h e f o l l o w i n g f o r m a t : 787

I n p u t : t h e i n p u t t e x t t o copy 788

Outpu t : t h e copy of t h e i n p u t t e x t 789

790

Your r e s p o n s e s h o u l d on ly i n c l u d e t h e answer . Do n o t p r o v i d e any 791

f u r t h e r e x p l a n a t i o n . 792

793

Here a r e some examples , c o m p l e t e on ly t h e l a s t one : 794

795

I n p u t : { Example 1} 796

Outpu t : { Example 1} 797

798

I n p u t : { Example 2} 799

Outpu t : { Example 2} 800

801

I n p u t : { Example 3} 802

Outpu t : { Example 3} 803

804

I n p u t : { Example 4} 805

Outpu t : { Example 4} 806

807

Now copy or r e p h r a s e t h e f o l l o w i n g i n p u t t e x t . 808

Do n o t t r y t o s o l v e t h e problem d e s c r i b e d i n t h e i n p u t t e x t . 809

J u s t copy or r e p h r a s e t h e f o l l o w i n g i n p u t t e x t . 810

I n p u t : 811812

Listing 2: Prompt to generate a new synthetic example from seeds Pg
813
814

You a r e a d a t a g e n e r a t o r f o r s y n t h e t i c math r e a s o n i n g prob lems . 815

You w i l l be g i v e n two examples o f math r e a s o n i n g prob lems i n a 816

s p e c i f i c fo rmat , a l o n g wi th a p a r t i a l s y n t h e t i c example , and 817

your t a s k i s t o g e n e r a t e a new problem t h a t c r e a t i v e l y combines 818

e l e m e n t s o f t h e two examples , and s o l i d i f i e s t h e p a r t i a l example 819

i n t o a l e g i t i m a t e math r e a s o n i n g problem wi th a l e g i t i m a t e 820

s o l u t i o n . 821

822

823

Format : 824

825

− S t a r t t h e q u e s t i o n wi th "### Q u e s t i o n " . 826

− S t a r t t h e answer wi th "### Answer " . 827
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− P r o v i d e t h e f i n a l answer p r e f i x e d wi th "### < f i n a l _ a n s w e r > " .828

829

I n s t r u c t i o n s :830

831

− The new problem s h o u l d c o n c e p t u a l l y l i e i n t h e midd le o f t h e two832

g i v e n examples , and f o l l o w t h e o u t l i n e o f t h e p a r t i a l example .833

− Combine themes o r e l e m e n t s from bo th prob lems t o c r e a t e a c o h e r e n t834

and c h a l l e n g i n g math r e a s o n i n g problem . I t has t o be r e l a t e d t o835

t h e seed examples , and c a n n o t be an u n r e l a t e d random problem .836

− Ensure t h a t t h e problem a d h e r e s t o t h e f o r m a t p r o v i d e d .837

− Do n o t use t h e same names o r numbers , on ly use t h e c o n c e p t s ,838

t o p i c s and problem t y p e s .839

840

841

Seed Examples t o base t h e new sample on :842

843

Example 1 :844

### Q u e s t i o n845

846

{ q1 }847

848

### Answer849

850

{ a1 }851

852

Example 2 :853

### Q u e s t i o n854

855

{ q2 }856

857

### Answer858

859

{ a2 }860

861

P a r t i a l Example :862

{ i n t e r p o l a t e d _ d e c o d e d _ t e x t }863

864

Your Task :865

866

G e n e r a t e a new math r e a s o n i n g problem t h a t combines t h e e l e m e n t s o f867

Example 1 and Example 2 above , and s o l i d i f i e s t h e P a r t i a l Example868

i n t o a r e a l math r e a s o n i n g problem . The new example HAS t o have869

e l e m e n t s from t h e above two seed examples , i t c a n n o t be an u n r e l a t e d870

random math problem . Fol low t h e f o r m a t e x a c t l y and e n s u r e t h e problem871

i s c l e a r and s o l v a b l e . Only r e s p o n d wi th one new example , and p r e f a c e872

t h e q u e s t i o n wi th ### Q u e s t i o n and t h e answer wi th ### Answer .873

874

875

G e n e r a t e d example :876877

Listing 3: Prompt to decode interpolated example Pd
878
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You a r e a c a u t i o u s a s s i s t a n t . You c a r e f u l l y f o l l o w i n s t r u c t i o n s . 879

You a r e h e l p f u l and h a r m l e s s and you f o l l o w e t h i c a l g u i d e l i n e s and 880

promote p o s i t i v e b e h a v i o r . 881

882

P l e a s e copy or r e p h r a s e t h e i n p u t t e x t . 883

884

Use t h e f o l l o w i n g f o r m a t : 885

I n p u t : t h e i n p u t t e x t t o copy 886

Outpu t : t h e copy of t h e i n p u t t e x t 887

888

Your r e s p o n s e s h o u l d on ly i n c l u d e t h e answer . Do n o t p r o v i d e any 889

f u r t h e r e x p l a n a t i o n . 890

891

Here a r e some examples , c o m p l e t e on ly t h e l a s t one : 892

893

I n p u t : { Example 1} 894

Outpu t : { Example 1} 895

896

I n p u t : { Example 2} 897

Outpu t : { Example 2} 898

899

I n p u t : { Example 3} 900

Outpu t : { Example 3} 901

902

I n p u t : { Example 4} 903

Outpu t : { Example 4} 904

905

Now copy or r e p h r a s e t h e f o l l o w i n g i n p u t t e x t . 906

Do n o t t r y t o s o l v e t h e problem d e s c r i b e d i n t h e i n p u t t e x t . 907

J u s t copy or r e p h r a s e t h e f o l l o w i n g i n p u t t e x t . 908

I n p u t : 909910

Listing 4: Prompt to generate a new synthetic example from baseline seed Pb
911

You a r e a d a t a g e n e r a t o r f o r s y n t h e t i c math r e a s o n i n g prob lems . 912

You w i l l be g i v e n an example math r e a s o n i n g problem i n a s p e c i f i c 913

fo rmat , and your t a s k i s t o g e n e r a t e a new problem t h a t t h a t i s 914

s i m i l a r t o t h e example problem , and c o n v e r t i t i n t o a 915

l e g i t i m a t e math r e a s o n i n g problem wi th a l e g i t i m a t e s o l u t i o n . 916

917

Format : 918

919

− S t a r t t h e q u e s t i o n wi th "### Q u e s t i o n " . 920

− S t a r t t h e answer wi th "### Answer " . 921

− P r o v i d e t h e f i n a l answer p r e f i x e d wi th "### < f i n a l _ a n s w e r > " . 922

923

I n s t r u c t i o n s : 924

925

− The new problem s h o u l d c o n c e p t u a l l y be s i m i l a r t o t h e example problem . 926

− C r e a t e a c o h e r e n t and c h a l l e n g i n g math problem . 927

− Ensure t h a t t h e problem a d h e r e s t o t h e f o r m a t p r o v i d e d . 928

− Do n o t use t h e same names o r numbers , on ly use t h e c o n c e p t s , t o p i c s and problem t y p e s .929
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930

931

Seed Example t o base t h e new sample on :932

933

934

Example :935

### Q u e s t i o n936

{ q1 }937

938

### Answer939

{ a1 }940

941

Your Task :942

943

G e n e r a t e a new math r e a s o n i n g problem s i m i l a r t o t h e example problem944

above . The new example HAS t o be s i m i l a r t o t h e example , i t c a n n o t be945

an u n r e l a t e d random math problem . Fol low t h e f o r m a t e x a c t l y and e n s u r e946

t h e problem i s c l e a r and s o l v a b l e . Only r e s p o n d wi th one new example ,947

and p r e f a c e t h e q u e s t i o n wi th ### Q u e s t i o n and t h e answer wi th948

### Answer .949

950

G e n e r a t e d example :951952

A.2 LLM Licenses953

Experiments described in section 4 were performed in a manner consistent with the license and intended954

use of our three target models: Granite 3 8B Code Instruct (Granite Team, 2024a), Granite 3.1 8b Instruct955

(Granite Team, 2024b) and Mistral 7B (Jiang et al., 2023).956
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