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Abstract
Conditional independence testing (CIT) is a common task in machine learning, e.g., for variable
selection, and a main component of constraint-based causal discovery. While most current CIT
approaches assume that all variables in a dataset are of the same type, either numerical or categorical,
many real-world applications involve mixed-type datasets that include both numerical and categorical
variables. Non-parametric CIT can be conducted using conditional mutual information (CMI) estima-
tors combined with a local permutation scheme. Recently, two novel CMI estimators for mixed-type
datasets based on k-nearest-neighbors (k-NN) have been proposed. As with any k-NN method, these
estimators rely on the definition of a distance metric. One approach computes distances by a one-hot
encoding of the categorical variables, essentially treating categorical variables as discrete-numerical,
while the other expresses CMI by entropy terms where the categorical variables appear as conditions
only. In this work, we study these estimators and propose a variation of the former approach that
does not treat categorical variables as numeric. Extensive numerical experiments show that our
variant detects dependencies more robustly across different data distributions and preprocessing
types.
Keywords: conditional independence testing, conditional mutual information, mixed-type data

1. Introduction

Conditional independence tests (CITs) are a central component of constraint-based causal discovery
(CD) frameworks, e.g., in algorithms such as PC and FCI (Spirtes et al., 2000), and are used to
infer causal relations from purely observational data. A good CIT is robust toward different types,
distributions, and sample sizes of the data and achieves high statistical power to detect conditional
dependence while simultaneously controlling false positives at the desired level. Many real-world
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applications involve mixed-type datasets, for example, weather regimes and continuous temperatures
in Earth science, or sensor data in telemetry. Both parametric and non-parametric CITs for mixed-type
variables have been proposed. One type of non-parametric CIT for mixed variables uses conditional
mutual information (CMI) as a non-parametric measure for conditional independence, since the
conditional independence X ⊥⊥ Y | Z holds if and only if I(X;Y |Z) = 0 (Gray, 2011). A CIT
can be formulated by combining CMI estimators with a local permutation scheme to test the null
hypothesis H0 : X ⊥⊥ Y | Z (Runge, 2018; Kim et al., 2022; Berrett et al., 2020).

In this work, we first empirically study two recent k-NN estimators of CMI for mixed-type data
that have been used for CIT. The estimator of Mesner and Shalizi (2021), recently used in Huegle
et al. (2023) for a CIT, transforms categorical variables by one-hot encoding and then measures
distances on the resulting product space of mixed continuous-discrete variables. Zan et al. (2022)
propose a CIT with a CMI estimator that only requires distance notions on the quantitative subspaces
by framing mixed-type datasets as consisting of quantitative and qualitative variables, and rewriting
the CMI as a linear combination of entropies where qualitative variables appear as conditions only.
We discuss the disadvantages of these estimators, such as increased bias or variance, and how they
can affect the performance of the CITs. We investigate how the two estimators and their CITs perform
under different choices of hyperparameters, data distributions, and combinations of variable types
and dimensionalities. To address the challenges faced by the estimators in the context of CIT, we
propose a variant of the Mesner and Shalizi (2021) estimator that does not rely on one-hot encoding
of categorical variables. Through extensive numerical experiments, we show that our variant detects
dependencies more robustly across different data distributions and preprocessing types.

In summary, our main contributions are (1) a new k-NN estimator for the CMI of mixed-type
data that is a variant of the estimator of Mesner and Shalizi (2021), (2) an empirical evaluation of the
three CMI estimators, and (3) an extensive and systematic numerical evaluation of CIT performance
based on the three CMI estimators in combination with a local permutation scheme.

2. Background and related work

We first introduce foundational concepts and discuss current advances in CIT for continuous and
mixed variables. Then, we introduce the two CMI estimation approaches most relevant to our work.

Preliminaries Let X : Ω → X , Y : Ω → Y and Z : Ω → Z be (vectors of) random variables
with dim(X ) = mX , dim(Y) = mY , and dim(Z) = mZ . We demand that X = X1 × . . .XmX

where Xa with 1 ≤ a ≤ mX is R or a discrete set; similarly for Y and Z . Let PXY Z be the
probability measure on X × Y × Z induced by the joint vector (X,Y, Z). We assume that the
conditional probability measure PXY |Z exists and is absolutely continuous with respect to the
product measure PX|Z × PY |Z . These assumptions are fulfilled if every component of (X,Y, Z)
is either discrete (i.e., absolutely continuous with respect to the counting measure) or non-singular
continuous (i.e., absolutely continuous with respect to the Lebesgue measure) or a mixture of these
two cases (for simplicity, we refer to “non-singular continuous” as “continuous”). We categorize
discrete random variables V as: “discrete numeric”, where the values of V can be a discrete subset
of R such that distance notions on R other than the discrete metric are semantically meaningful, and
“non-numeric” if the values are on an ordinal or nominal/categorical scale. For mixed continuous-
categorical variables, we distinguish the following cases: (1) all of X , Y , Z are either fully discrete
or fully continuous, (2) contain both discrete and continuous components (but no dimension of
(X,Y, Z) is a mixture variable) and (3) at least one component of (X,Y, Z) is a mixture variable,
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with both discrete and continuous values. For case 2, we denote the discrete component of variable
W as W d and the continuous components as W c, such that W = (W c,W d) (see concrete examples
of cases 2 and 3 in App. A.1). We focus on cases 1 and 2, but our approach works for case 3 as well.

2.1. Conditional independence testing

A one-sided CIT assesses whether two random variables X,Y are independent given the values of
an additional variable Z, using a test statistic T : X × Y × Z → R to reject the null hypothesis
H0 : X ⊥⊥ Y | Z if the test statistic value T ≥ c, with threshold c chosen to control the type I error
(false positives). The p-value indicates the probability of obtaining a test statistic at least as extreme
as the observed test value. Under H0, the p-value follows a uniform distribution over [0, 1]. The
significance level α defines the threshold for rejecting H0, bounding the probability of making a Type
I error (false positives) by α. Type II errors (false negatives) occur when the false null hypothesis is
not rejected. The power of a test is defined as 1 − β, where β is the probability of a type II error.
Parametric tests need further assumptions about the underlying data distributions and have higher
power when these assumptions hold. Non-parametric tests do not assume specific distributions and
are thus more robust and flexible. Shah and Peters (2020) show that conditional independence testing
is fundamentally hard: Without assumptions to restrict the null hypothesis, no CIT controls type I
error while maintaining non-trivial power. In practice, for high-dimensional settings, the null and
alternative become indistinguishable, are hard to estimate, or dependencies are difficult to detect.

CIT for the continuous case A widely used parametric test for fully continuous X,Y, Z is the
partial correlation test, which assumes that the variables are linearly dependent with additive Gaussian
errors. Non-parametric kernel-based tests (Zhang et al., 2011) relax these assumptions but can be
computationally expensive. Other non-parametric CITs, such as the generalized covariance measure
(GCM) CIT of Shah and Peters (2020), rely on regression. Non-parametric CIT using CMI has
been introduced in Runge (2018) and uses the CMI, estimated using the k-nearest neighbor (k-NN)
estimator of Frenzel and Pompe (2007) (FP, see App. A), as a statistic in a local permutation-based
test. Li and Fan (2020) provides an overview of further non-parametric tests for continuous variables.
Further approaches use deep learning, e.g., to approximate the null distribution (Bellot and van der
Schaar, 2019; Shi et al., 2021), or pose CIT as a classification problem (Sen et al., 2017).

CI testing for the mixed case Tsagris et al. (2018) propose a likelihood-ratio test by fitting re-
gression models forX using Z and Z∪Y , but these models make implicit distributional assumptions.
Cui et al. (2016) develop a CIT under the assumption that data is drawn from a Gaussian copula,
but are limited to binary and ordinal discrete variables. Handhayani and Cussens (2020) transform
continuous and discrete components using kernel methods and then generate an alignment matrix
used to compute partial correlation, which can be computationally expensive and is not suitable for
mixture data. Another non-parametric approach uses normalizing flows (Duong and Nguyen, 2023),
but mapping categorical variables to a continuous space may lead to information loss and overfitting,
and can become prohibitively expensive in the context of repeated CIT, e.g. for causal discovery.
Other works from the CD community deal with mixed data using score-based CD algorithms, e.g.
Huang et al. (2018), but these methods do not directly compare to our approach. The approach of
combining k-NN-based CMI estimation methods with a permutation-based statistical test has been
adapted to the mixed-type case in Huegle et al. (2023) and Zan et al. (2022). In this work, we focus
on this approach because of its flexibility, simplicity, few hyperparameters, and lower computational
requirements.

3



POPESCU GERHARDUS RABEL RUNGE

2.2. k-NN CMI estimation in the mixed variables case

We now introduce the CMI and the two CMI estimation approaches most related to our work. These
build upon previous entropy, MI and CMI estimators for continuous and mixed variables, which we
describe in App. A.2. The CMI I(X;Y |Z) of X and Y given Z can be defined as below, where the
argument of the log is the Radon-Nikodym derivative of PXY |Z with respect to PX|Z × PY |Z (see
Gray (2011)):

I(X;Y |Z) =
∫

log

(
dPXY |Z

d(PX|Z × PY |Z)

)
dPXY |Z . (1)

If all components of (X,Y, Z) are discrete, the rhs of eq. (1) reduces to the form in eq. (2) in terms
of the probability mass functions (pmfs) p·. If all components are continuous, integrals replace sums
and probability density functions (pdfs) f· replace pmfs in eq. (2).∑

x,y,z

pXY Z(x, y, z) log
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)
(2)

MS estimator The CMI estimator of Mesner and Shalizi (2021) is motivated by two observations:
(1) the observation of Gao et al. (2017) that, in the mixed case, it is possible that the distance ρi
of point wi = (xi, yi, zi) to its k-NN in X × Y × Z is ρi = 0 if wi is fully discrete and (2) the
observation that for fully discrete points, there is also a non-zero probability that different pairs of
points have the same distance. Thus, the k-NN of wi is non-unique with non-zero probability. A
non-unique k-NN is equivalent to k < k̃XY Z,i with k̃XY Z,i as defined by eq. (3)

k̃W,i = |{wj | ∥wj − wi∥ ≤ ρi, j ̸= i}| (3)

for W = XY Z and where ρi is the distance of wi to its k-th nearest neighbor. Thus, instead of
ρi = 0, MS consider the event k < k̃XY Z,i to indicate that wi is fully discrete. Specifically, their
estimator takes the form

ÎMS(X;Y |Z) = 1

n
·

n∑
i=1

[
g(k̃XY Z,i) + g(k̃Z,i)− g(k̃XZ,i)− g(k̃Y Z,i)

]
︸ ︷︷ ︸

≡ ξ̂MS
i (X;Y |Z)

(4)

where g(·) = ψ(·), with ψ the Digamma function if k̃XY Z,i = k and g(·) = log(·) if k̃XY Z,i > k.1

The authors prove consistency of their estimator, and also show that it suffers from the curse of
dimensionality: For fixedmX andmY , if the dimensionmZ of Z increases to infinity andH(Z)/mZ

is non-zero in this limit, then ÎMS(X;Y |Z) converges to 0 in probability as mZ → ∞. The MS
estimator equips the discrete components of X , Y , Z with the discrete metric, which is equivalent
to a one-hot encoding of the components and raises the conceptual problem that the corresponding
distance notions might not be semantically meaningful. The MS estimator outperforms the FP
estimator (see App. A.2) and the estimator of Frenzel and Pompe (2007) for continuous variables
(FP estimator, see App. A.2) which MS apply by treating discrete variables as continuous. We thus
do not include RAVK and FP in our experiments. In their experiments, the authors heuristically set
k = n · 0.1 with n the sample size.

1. Mesner and Shalizi (2021) define their estimator by additionally computing a maximum of the estimate with 0,
since I(X;Y |Z) ≥ 0. However, their implementation does not seem to apply this maximum, and our preliminary
experiments show that it can be detrimental to CIT. We do not apply the maximum with 0 in any experiments.
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ZMADG estimator Zan et al. (2022) exclude mixture variables and propose a CMI estimator
that avoids defining a distance between qualitative components. They split X , Y , and Z in their
respective quantitative (discrete) components Xd, Y d, Zd and qualitative (continuous) components
Xc, Y c, Zc and express the CMI as

I(X;Y |Z) = H(Xc, Zc|Xd, Zd) +H(Y c, Zc|Y d, Zd)−H(Xc, Y c, Zc|Xd, Y d, Zd)

−H(Zc|Zd) +H(Xc, Zd) +H(Y d, Zd)−H(Xd, Y d, Zd)−H(Zd) , (5)

where the first four terms on the rhs are (conditional) differential entropies and the last four are
(conditional) entropies. The entropies are estimated with the standard plug-in estimator using
empirical frequencies. The differential entropies are computed using the estimator of Kozachenko
and Leonenko (1987) (App. A.2) on the sample subsets defined by fixed qualitative component
values. The entropies are then averaged based on the empirical frequencies of the qualitative values.
The parameter k of the KL estimates is set to k = max {⌊ncluster/10⌋, 1} with ncluster the number
of samples in the respective subsets determined by the values of the qualitative components (i.e., k
is separately chosen for each subset of samples). As a sum of consistent estimators, the estimator
is consistent. The ZMADG estimator does not seem to suffer from the curse of dimensionality as
strongly as the MS estimator, but, as discussed below, we believe it incurs higher variance.

2.3. Non-parametric CIT using CMI and a local permutation scheme

To statistically test the null hypothesis H0 : X ⊥⊥ Y | Z of conditional independence, the null
distribution of the estimate Î(X;Y |Z) under H0 or an approximation thereof is needed. If X ⊥⊥
Y | Z, then the component values xi and yi within the subset of samples determined by the value zi
can be permuted arbitrarily without changing the distribution of the estimated CMI. Thus, setting
x̃i = xπ(i) with a permutation π such that for all i both xi and xπ(i) are in the subset of samples
determined by zi, the estimators Î(X;Y |Z) and Î(X̃;Y |Z) have the same distribution. A null
distribution can be obtained since this equality holds for any such permutation. For fully discrete Z,
the subset of samples determined by zi are all samples (xj , yj , zj) with zj = zi. For fully continuous
Z, Runge (2018) uses a k-NN approach to determine the subsets of samples for which zj ≈ zi
according to the L∞-distance by taking the kperm nearest neighbors of the i-th sample point in the Z
subspace. Zan et al. (2022) and Huegle et al. (2023) adapt this method to the mixed data case: The
sample (xj , yj , zj) with zj = (zcj , z

c
j), where zcj is the continuous and zdj the discrete component,

is part of the subset of samples determined by zi if and only if zdj = zdi and zcj ≈ zci . App. A.3
describes how p-values are obtained. As discussed in Kim et al. (2022), for discrete or mixed-type Z,
CIT remains a difficult problem for high-dimensional Z, as the probability of repeatedly observing
the same value of Z decreases.

3. Proposed novel estimator

3.1. Motivation: Problems of the MS and ZMADG estimators

The MS and ZMADG estimators suffer from a few problems that motivate us to introduce a novel
estimator. We first highlight three issues of the MS estimator: (1) MS suffers from the conceptual
problem that—because the k-NNs can come from different clusters (defined as the subsets of
samples points with equal values of the discrete variable)—it implicitly assumes local constancy (see
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App. A.2) across different clusters. However, different clusters might be entirely unrelated to each
other. For example, it could be that dependence exists in only one of the clusters, e.g., dependencies
that change with seasonal regimes. Yet, the MS estimator might estimate the local contribution of a
point by combining neighbours from both clusters. Besides the conceptual complications, this can
also negatively affect statistical power. (2) Due to the one-hot encoding of discrete non-numeric
variables, the MS estimator is not invariant under scaling all variables with a common factor, as
opposed to CMI. (3) As discussed in Mesner and Shalizi (2021), the MS estimator is biased towards
0 in high-dimensional settings. To exemplify, say the continuous and discrete numeric variables are
scaled to [0, 1] in preprocessing. Then, due to one-hot encoding and the L∞-metric, the maximum
distance between any two sample points is 1. If the cluster of the i-th sample point contains at
most k points, then ρi = 1 (as there are not enough points in the cluster), which in turn implies
ki,XZ = ki,Y Z = ki,XY Z = ki,Z = n, with n the number of samples, and hence ξMS

i (X;Y |Z) = 0.
Zan et al. (2022) discuss further cases in which the MS estimators suffer from local zero estimates. A
bias towards zero can affect CI test performance as it can lead to false conclusions of independence.

The ZMADG estimator reduces these problems by considering each discrete cluster individually
and adaptively reducing k (in the estimation of entropies). However, this approach can lead to
another issue that has not yet been discussed in detail. The ZMADG estimator is a sum of up to eight
individual estimated terms, where each term is derived from a subset of the data that is smaller than
the total sample size. The smaller sample size of the individual terms can lead to increased variance
for these terms. Consequently, aggregating these terms can increase the overall variance, compared
to the variance obtained when a single estimator would be used.

3.2. Definition and intuition of the MS0−∞ estimator

To address these problems, we introduce a novel CMI estimator MS0−∞ that combines ideas from
the MS and ZMADG estimators. MS0−∞ can be understood as a variant of MS with the following
two modifications. (1) Instead of one-hot encoding non-numeric variables, we keep the original
space X × Y × Z and equip it with the following 0−∞ “metric”2

||wi − wj ||0−∞ =

{
||wc

i − wc
j ||L∞ if wd

i = wd
j

∞ otherwise
, (6)

where we split the point wk = (xk, yk, zk) into its continuous components wc
k = (xck, y

c
k, z

c
k)

and its discrete components wd
k = (xdk, y

d
k, z

d
k); similarly for the subspaces X × Z , Y × Z , and

Z . Thus, if wi and wj are in the same cluster (i.e., wd
i = wd

j ), then their distance is finite and
measured by the L∞-distance, else their distance is ∞. (2) We adopt a heuristic (named the
"local" heuristic) to adaptively set k = ⌊kc · ncl,min⌋, where 0 < kc < 1 is a hyperparameter and
ncl,min = mini∈[[1,n]] |{wj : ||wi − wj ||L∞ ̸= ∞}| is the number of points in the “smallest” cluster.
The necessity of such a heuristic stems from the fact that, unlike in the infinite sample case, in
practice some clusters might contain less than k + 1 points. We choose the "local" heuristic after a
comparison of performance on the CMI estimation models from Sec. 4, as described in App. E.

To formally specify our estimator, we first define the counts

k̃0−∞
W,i = |{wj | ∥wj − wi∥0−∞ ≤ ρi, j ̸= i}| , (7)

2. Formally, the 0−∞ “metric” is not a metric due to the value +∞. We use this terminology to highlight the similarity
with MS.
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where ρi <∞ is the 0−∞ distance of wi to its k-NN (here, the distance equals the L∞-distance as
ρi is finite) and W stands for the vector of variables XY Z, XZ, Y Z or Z. Our estimator then reads

Î0−∞(X;Y |Z) = 1

n
·

n∑
i=1

[
g(k̃0−∞

XY Z,i) + g(k̃0−∞
Z,i )− g(k̃0−∞

XZ,i )− g(k̃0−∞
Y Z,i )

]
︸ ︷︷ ︸

≡ ξ̂0−∞
i (X;Y |Z)

, (8)

where g(·) = ψ(·) if k̃0−∞
XY Z,i = k and g(·) = log(·) if k̃0−∞

XY Z,i > k.
Despite possibly appearing minor, the modifications introduced by our estimator specifically

address the above explained issues of the MS and ZMADG estimators: First, our estimator restricts
all nearest neighbours of a point to the cluster of that point by construction, and thus does not assume
local constancy across different clusters. Second, our estimator is invariant under a common scaling
of all variables and chooses k adaptively, which reduces bias towards zero compared to the MS
estimator. For example, in the case presented in Sec. 3.1, our estimator would not generically have
ξ0−∞
i (X;Y |Z) = 0. A discussion of all cases in which MS and MS0−∞ have local zero estimates

is, however, out of scope. Thus, an empirical evaluation of the bias towards zero is called for. Fourth,
unlike the ZMADG estimator, our estimator is not the sum of up to 8 entropy terms but retains
the same general form as the MS estimator. Thus, our estimator is not expected to incur increased
variance, which is another hypothesis subject to empirical evaluation.

3.3. Theoretical guarantees

We provide theoretical guarantees for our estimator under the assumptions (asm.) presented in
App. B.1. Besides Asm. 1 to 3, also assumed in Mesner and Shalizi (2021), we make two additional
assumptions. Asm. 4 assumes that there are at most finitely many clusters as defined by the non-
numeric components of XY Z. We do not see a solution for discrete variables with infinitely many
values in a cluster-based approach. Asm. 5 states that all numeric components of XY Z have a finite
range. We are confident that the theoretical guarantees also hold without Asm. 5, and that, to prove
them, only mild adaptations of the corresponding proofs in Mesner and Shalizi (2021) are needed.
Especially since this assumption is met with many types of data preprocessing (e.g., normalization),
we leave an adaption to future work. 3 Due to space limitations, we provide all proofs in App. B.

Lemma 1. Let q be a positive integer, and let X ′Y ′Z ′ be obtained by applying a common non-
constant affine function h : R → R to all numeric components of XY Z such that the ranges of all
numeric components of X ′Y ′Z ′ are contained within the open interval (0, 1).4 Then, the difference
Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′) converges to the constant 0 in Lq-norm, that is,

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)

∣∣∣q] = 0 . (9)

Writing the difference Î0−∞(X;Y |Z)− I(X;Y |Z) as [Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)] +
[ÎMS(X ′;Y ′|Z ′) − I(X;Y |Z)] and using I(X;Y |Z) = I(X ′;Y ′|Z ′), Lemma 1 transfers the
convergence results of the MS estimator to our estimator. Specifically, we get the following.

3. Note that our above heuristic choice of k, which is only intended for finite sample size n, does not lead to k/n → 0 as
n → ∞. For the infinite sample case n → ∞ (and thus for the theoretical results), we require that k/n → 0.

4. Such a function h exists due to the Asm. 5.
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Theorem 2. Our CMI estimator Î0−∞(X;Y |Z) is L1-consistent in the k-NN limit, that is

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− I(X;Y |Z)

∣∣∣] = 0 . (10)

Theorem 3. Assume that, in addition to the requirements of the k-NN limit, [k·ln(n)]2
n → 0 as n→ ∞.

Then, our CMI estimator is L2-consistent, that is,

lim
n→∞

V ar
[
Î0−∞(X;Y |Z)

]
= 0 . (11)

In particular, our estimator is asymptotically unbiased and converges in probability to the true
CMI. We prove that the CIT0−∞ defined in Definition 1, which uses our estimator combined with a
local permutation scheme (as in Zan et al. (2022) and Huegle et al. (2023)), can control type I error
(Thm. 4) while still maintaining power (Thm. 5), under the assm. of the k-NN estimators and Asm. 6.

Definition 1 (CI test CIT0−∞). We define the conditional independence test using the MS0−∞
estimator together with the k-NN local permutation scheme described in Sec. 2.3 as:

CIT0−∞ := 1{p ≤ α} (12)

where α is the selected significance level and p is the p-value.

Theorem 4. Under Asm. 1, 2, 4 and 6, when H0 is true, the following holds for the CIT0−∞ from
Def. 1 for any nominal value α ∈ (0, 1]

EPXY Z
[CIT0−∞] ≤ α. (13)

Theorem 5. Under Asm. 1, 2, 4 and 6, when the alternative H1 is true, CIT0−∞ controls type II
error, i.e., for a sufficiently high number of permutations B:

lim
n→∞

EPXY Z
[1− CIT0−∞] = 0. (14)

The full proofs, which closely follow the proofs of Huegle et al. (2023), can be found in App. B.4.

4. Numerical evaluation of the CMI estimators

Experimental setup We compare the bias and variance of the MS, ZMADG and MS0−∞ estimators
on four synthetic models, some of which are taken from Mesner and Shalizi (2021) and Zan et al.
(2022) for reproducibility. Similar to Mesner and Shalizi (2021) and Zan et al. (2022), we do not
apply any preprocessing to the continuous variables. We evaluate the mean and variances of the
estimates on 100 realizations qualitatively using violin plots, and quantitatively using statistical tests.
As follows, we present and study one model. Further models, results and an evaluation of runtimes
are presented in App. C.

"Independent Z" (Mesner and Shalizi, 2021): X is discrete uniform X ∼ U({0, . . . , c}) with
1 ≤ c ∈ N, Y ∼ U ([X,X + 2]) is continuous uniform, and Z = (Z1, . . . , Zd) is discrete with
Zi ∼ Ber (0.5) for 1 ≤ i ≤ d. The ground truth is I(X;Y |Z) = ln c− c−1

c · ln 2.
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Figure 1: Distribution of the CMI estimates for the "Inde-
pendent Z" model. Each row shows the results for
different kc.

We set c = 5, vary the sample
size n ∈ {300, 600, 1000, 2000} and
d ∈ {1, 3}. We compute k as k =
kc · n for MS; k = ⌊kc · ncl,min⌋ for
MS0−∞; k = nsubset ·kc for ZMADG,
using kc ∈ {0.01, 0.1, 0.2, 0.3} to
vary k. In their experiments, MS and
ZMADG set kc = 0.1, but we expect
better performance for MS0−∞ with
larger kc, especially for small kcl,min.

Results For the "Independent Z"
model (Fig. 1), we observe that for
both d = 1 and d = 3 dimensions of
the discrete variable Z, all estimators
perform well only for kc = 0.01. For
kc > 0.01, MS estimates are biased
toward zero, unlike the MS0−∞ esti-
mates. The ZMADG estimator performs well but has the highest variance, especially for small kc
and n, with a small bias for kc > 0.1. Our approach shows slight bias and higher variance for smaller
n or kc, but it has lower bias than MS and lower variance than ZMADG. Across all models, the
ZMADG estimator has low bias but high variance, especially for small k and n, while MS has low
variance but biases towards zero for larger k and more discrete variables. A statistical comparison
(see App. C) confirms that MS0−∞ strikes a balance between the strengths and weaknesses of the
MS and ZMADG estimator, reducing bias towards zero at the cost of slightly higher bias for small n
and kc. MS0−∞ also handles mixture variables more robustly across kc values, as shown in App. D.

5. Evaluation of the CITs

We study whether the CIT using MS0−∞ controls the false positive rate (FPR) and retains statistical
power, measured by the true positive rate (TPR) at a fixed significance level α = 0.05. We
systematically compare our MS0−∞ with the MS and ZMADG CITs in various synthetic mixed-type
data setups with known ground truth. For a broader comparison, we also compare against the kernel-
based CIT for mixed-type data (Handhayani and Cussens, 2020) and the generalized covariance
measure CIT (GCM, Shah and Peters (2020)). To showcase the applicability of our MS0−∞ CIT, we
also compare CIT performances on a real-world dataset as done in Zan et al. (2022).

5.1. Synthetic data

Experimental setup To recreate a scenario close to the real world, where difficulties such as weak
dependence occur, we design four data-generating models with different causal structures inspired
by the post-nonlinear model of Zhang and Hyvärinen (2009). Here, we present two models where
Z is a confounder. Two further models where Z is part of a chain structure or is independent
of X and Y are presented in App. G. In all models, the coefficients β· are randomly drawn as
β· ∼ U([−1, 1]). We control the conditional dependence of X and Y given Z using an additional
noise term ηw that influences both X and Y , where ηw ∼ N (0, 1). The coupling factor w defines
the dependence strength: For independence, w = 0, and for dependence w > 0. The random
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variable Z = (Z1, . . . , Zm) is mixed-type with dimc continuous and dimd = m − dimc discrete
components, each with nc categories. The noise terms ηx, ηy of X and Y follow N (0, 1). Motivated
by the fact that Zan et al. (2022) use rank transformations on the continuous variables, which can
put the MS estimator at a disadvantage due to scaling, we evaluate the CITs using standardization,
re-scaling to (0, 1), and rank transformation of the continuous variables.

"Confounder" model: The discrete components Z1, . . . , Zdimd
follow Zi ∼ Bin(nc − 1, 0.5)

and the continuous components Zdimd+1, . . . , Zm follow Zj ∼ N (0, 1). The continuous variable
V ∈ {X,Y } is computed using the following formula, where l−1(x) = ex

1+ex is the inverse logit
function:

V =
∑

j∈1,...,dimd

βi · l−1(Zj) +
∑

j∈dimc+1,...,m

βj · Zj + ηv + w · ηw (15)

Figure 2: False positive rate (FPR, ideally under 0.05, log-scale) and true positive rate (TPR, higher
is better, with 1 best) with standard error bars as the 95% confidence interval (see App. G)
for the "Confounder" (left) and "Cluster-dependent confounder" (right) models with
standardization (upper two rows) and scaling to (0, 1) (bottom two rows) for the continuous
variables and coupling factor w as depicted. The yellow areas indicate an advantage of the
MS estimator. The red areas indicate an advantage of the MS0−∞ estimator.

"Cluster-dependent confounder" model: Here, Z is discrete univariate Z ∼ Bin(nc − 1, 0.5),
and X and Y are continuous univariate. For Z = 0, X and Y follow the "Confounder" model with
coupling factor w > 0. For Z ̸= 0, the "Confounder" model with w = 0 is used, thus, X and Y are
conditionally dependent only in the cluster where Z = 0.

Results We present results for sample size n = 1000. The coupling factor for all models is
w = 0.5, except for "Cluster-dependent confounder" where w = 0.75. The number of classes is
nc ∈ {3, 4} for the "Confounder" model, and nc ∈ {2, 3, 4} for "Cluster-dependent confounder".

10
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We set k as in Sec. 4 using kc ∈ {0.01, 0.1, 0.2, 0.3, 0.5}. For "Confounder" we vary dimd ∈ {1, 2}.
We generate p-values with 300 permuted surrogates using kperm = 5 and repeat each experiment
100 times. Here, we present results with standardization and scaling to (0, 1) for the configurations
displayed in Fig. 2, and postpone the results with rank transformation, and further results to App. G.

"Confounder" model: For the model where Z has one continuous component (dimc = 1) and
one discrete component (dimc = 1), and standardized continuous variables, MS and MS0−∞ perform
best (Fig. 2, upper left). When continuous variables are scaled to (0, 1), the scaling-related issue of
MS leads to a decrease in TPR as kc increases (Fig. 2, bottom left). We observe another effect of
this problem for nc = 4 and kc = 0.5: concurrently with the low TPR, the FPR of MS suddenly
drops to 0 due to the observed and permutation statistics both being equal to 0, which results in a
p-value equal to or close to 1. Our MS0−∞ CIT performs robustly even in this case. ZMADG gives
satisfying results yet has lower TPR than MS and MS0−∞ and does not control FPR for kc = 0.01.

"Cluster-dependent confounder" model: The results for this model (Fig. 2, right-most plots)
show how the performance of MS suffers if data distributions differ between clusters. In this case,
MS0−∞ consistently identifies dependence more accurately than MS while controlling the FPR
(with some exceptions), especially for nc = 3. ZMADG again suffers from either high FPR or low
TPR. For comparison, in the models with dependence in each cluster, MS and MS0−∞ show similar
performance for the standardized and rank transformation case, even as kc increases.

In summary, MS and MS0−∞ perform best among the three estimators. However, MS0−∞ proves
to be the most robust across the different models and preprocessing types. MS slightly outperforms
MS0−∞ when dependence holds in all clusters. Yet when the continuous variables are scaled to
(0, 1) or data distributions differ between the clusters, the scaling-related problems and violation
of local constancy of MS lead to underperformance. Surprisingly, the ZMADG CIT test obtains
satisfying results only for the "Confounder" model, and does not control false positives for the other
data models, possibly due to observed negative bias which might be specific to weaker dependencies.

Hyperparameter k In our numerical experiments, each estimator seems to have an optimal kc.
We consider kc = 0.1 optimal for MS and ZMADG, as this value has been used in their experiments.
We observe that these estimators are sensitive to higher kc values, which lead to lower TPR or higher
FPR. Our approach benefits from higher kc, and thus higher k, since the "local" heuristic computes k
by multiplying kc with the number of samples in the smallest cluster. Thus, higher kc can lead to a
reduction in variance. With the "local" heuristic, we recommend kc > 0.2, and our numerical results
indicate that kc = 0.3 typically works best. See App. F for further discussions on the choice of kc.

Impact of increasing discrete dimensionality We study the impact of increasing dimd = 2
for the "Confounder" model, and present results in App. G.7. For sample size n = 1000, MS0−∞
outperforms ZMADG but suffers from the curse of dimensionality, and performs slightly worse
than MS. It also needs a higher kc due to the heuristic for setting k. However, a higher sample size
n = 2000 brings our estimator’s performance on par with MS.

5.2. Comparison with other CITs

We also evaluate the kernel-based (Handhayani and Cussens, 2020) and GCM (Shah and Peters,
2020) CITs on the synthetic datasets described in Sec. 5.1. Due to space limitations, we present the
details and the results of the comparison in App. I, and only shortly discuss them here. We observe
that the GCM CIT consistently obtains a TPR of 1.0 for most of the models, however, the FPR
is sometimes slightly higher than 0.05. However, for the "Cluster-dependent model", we observe

11



POPESCU GERHARDUS RABEL RUNGE

one disadvantage of the GCM CIT: there is high variability in the results depending on the used
regressor. The kernel-based CIT does not obtain satisfying results, and most probably needs a broader
hyperparameter search, which we consider out of scope here.

5.3. Real-world data

Experimental setup We evaluate whether the CITs find two CI relations on a dataset containing
phenotypic data from children with attention deficit disorder (Bellec et al., 2016). The original dataset
contains 23 variables. We focus here on the four variables used in Zan et al. (2022): gender (binary),
attention deficit level (continuous), hyperactivity level (continuous) and medication status (binary).
The two known CI relations are: (Case 1) gender is independent of the hyperactivity level given the
attention deficit level (Bauermeister et al., 2007; Willcutt et al., 2000), and (Case 2) the hyperactivity
level is independent of the medication status given the attention deficit level (Cui et al., 2016). We
run each CIT 50 times using the three different preprocessing types for continuous variables. We
present the accuracy of each CIT to find the CI relation, computed as the number of times that the
respective CIT correctly accepts the null hypothesis over the total number of runs. Ideally, each CIT
would have an accuracy of 1.0, independent of the preprocessing type.

Results The results in Table 4 of App. H indicate that MS0−∞ performs most robustly across
the two CI cases for kc = 0.3, where it delivers high accuracy for all three preprocessing types.
However, performance drops for kc = 0.1 and kc = 0.2. For MS, we observe the best accuracy for
kc = 0.3 as well. For its optimal kc = 0.1, MS fails to find the CI relation in Case 1 when rank
preprocessing is applied. For kc ≥ 0.2, MS results vary widely, and the fact that accuracy decreases
with kc = 0.2, then increases again for kc = 0.3, might indicate bias-related problems. ZMADG
performs consistently well across preprocessing types only in Case 1, while for Case 2 it does not
consistently find the CI relations across preprocessing types independent of the kc value.

6. Discussion and conclusion

Understanding the performance of CIT on heterogeneous data is pivotal for causal discovery and
machine learning, and is relevant across many applications, such as telemetry or Earth Sciences. In
this work, we evaluated the k-NN CMI estimators of Mesner and Shalizi (2021) (MS) and Zan et al.
(2022) (ZMADG) for mixed-type data. We discussed and evaluated the effect of their challenges on
the bias/variance of the CMI estimation. As a sum of up to 8 estimators computed on subsets of the
samples, the ZMADG estimator has low bias but suffers from high variance, particularly for small k
and n. The MS estimator treats categorical variables as numeric via one-hot encoding, leading to the
conceptual problem of mixing categories. Thus, the MS estimator is not invariant to scaling, and
suffers from bias towards zero for larger k and more discrete variables. For CIT, high variance can
lead to increased error rates, while bias towards zero can lead to false conclusions of independence.

We propose the novel estimator MS0−∞, a modification of the MS estimator which combines
the advantages of the MS and ZMADG estimators: lower bias and reduced variance without the
conceptual problem of mixing categories. The CIT using our estimator has the most robust perfor-
mance for mixed-type data across various data distributions and preprocessing types. Surprisingly,
in our experiments the ZMADG CIT obtains satisfying results only for the "Confounder" model,
and does not control false positives for other models. The MS CIT slightly outperforms our CIT
when dependence holds in all clusters, but the scaling-related problems and bias towards zero of MS
can lead to false claims of conditional independence. When data distributions differ between the
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clusters, our method has superior performance compared to MS and ZMADG. This is highly relevant
in the context of mixed-type data, where distributions can vary across categories, e.g., across weather
regimes in Earth science.

Thus, from a theoretical and an empirical perspective, we recommend MS0−∞ as the most
robust estimator and CIT for mixed-type data when no parametric assumptions about the underlying
data distributions can be met. However, we advise users to choose parametric over non-parametric
methods whenever possible.

Limitations Our assumptions of a locally constant distribution in the k-neighborhoods can
be violated if not enough samples per cluster are available, especially when k becomes small, as
experiments in App. G.8 demonstrate. While we cannot ensure that Assumptions 4 and 5 always
hold in practice, we have looked at models where these assumptions are violated (e.g. Poisson
distribution for the discrete variables, App. C), and still observe good results. We thus only consider
these assumptions necessary for the theoretical guarantees. k-NN methods rely on an appropriate
k value that ensures local constancy. Furthermore, using the maximum norm can lead to focus on
only one dimension of the data. This limitation is inherent to the distance metric used and thus can
affect all estimators, i.e., MS and ZMADG as well, as all estimators rely on the maximum norm.
To account for this problem, we apply standardization as a transformation in our synthetic data
experiments. We observe that each method has an optimal k, and none of the methods consistently
has good performance across all kc values. We discuss optimal kc values in Sec. 5 and App. F, but an
extensive analysis of optimal k values is out of scope. The advantages of our estimator come with a
higher runtime than MS and ZMADG for the "local" heuristic (see App. E), yet the "global" heuristic
has a computational runtime close to MS and numerical experiments indicate that the performance
decrease is minimal. Experiments with a higher number of discrete variables (see App. G.7) show
that MS0−∞ also suffers from the curse of dimensionality. Users must also consider that CIT results
additionally depend on the chosen number of permutations. While our analysis covers a range of
scenarios, an evaluation of causal discovery is beyond our scope and is left for future work.

Reproducibility All code for the evaluation of the CITs is available at https://github.
com/oanaipopescu/cmiknnmixed. The details necessary for replicating our experiments,
such as random seeds, can be found in the code as well. Furthermore, the implementation of
the estimators and the associated CITs are now also part of the Tigramite package at https:
//github.com/jakobrunge/tigramite. Further remarks on reproducibility can be read in
App. K.
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Appendix A. Further background and related work

A.1. Example of mixed and mixture-type variables

We exemplify cases 2 and 3 presented in the Preliminaries of Sec. 2 to highlight the difference between
mixed and mixture-type variables and show how they can be split into discrete and continuous
components. First, given (possibly multivariate) variables X , Y , and Z, we denote with (X,Y, Z)
the combined variable. A component of (X,Y, Z) is a component of the joint variable, which is a
component of X , Y , or Z.

An example of the second case is: X = (X1, X2) with discrete component X1 and continuous
component X2, continuous Y = (Y1, Y2) and Z = ∅. Here, the continuous component of the joint
vector is (Xd, Y d, Zd) = (X2, Y1, Y2) and the discrete component is (Xc, Y c, Zc) = (X1).

An example of the third case is: X = (X1) with X1 a mixture, Y = (Y1) with discrete Y1 and
Z = ∅.

An example of a mixture is V ∈ A ∪B, with A,B ⊂ R, where V takes continuous values on A
and discrete values on B. A more concrete numerical example can be found in App. D.

A.2. Further entropy, MI and CMI estimators

A.2.1. ESTIMATION IN THE FULLY CONTINUOUS CASE

Due to space limitations in the main paper, we introduce the entropy, MI, and CMI k-NN estimators
for the fully continuous case, which lay the foundation of the MS and ZMADG CMI estimators here.

KL estimator for differential entropy Let W : Ω → W be a (vector of) continuous random
variables with W = RmW and let w1, . . . , wn be iid observations of W . The Kozachenko and
Leonenko (1987) (KL) estimator of the differential entropy H(W ) is the sample average

ĤKL(W ) = − 1

n

n∑
i=1

log f̂W (wi). (16)

The local density estimates f̂W (wi) are calculated under the assumption that fW is locally constant
within an Lp-ball B(wi, ρi) of radius ρi around wi where ρi is the Lp-distance of wi to its k-th
nearest neighbor (not counting wi itself) for some positive integer k. Since W is continuous, this
k-nearest neighbor (k-NN) is unique with probability one. The local constancy assumption implies
that the probability Pi of the event w ∈ B(wi, ρi) is Pi ≡ pw(wi) · VmW ,p · ρmW

i , where VmW ,p is
the volume of the unit-ball in the Lp-metric. Using that E[logPi] = ψ(k)−ψ(n) with the Digamma
function ψ(x), see Kraskov et al. (2004), and approximating E[log ρi] by a sample average, eq. (16)
then takes the form

ĤKL(W ) = ψ(n)− ψ(k) + log VmW ,p +
mW

n

n∑
i=1

log ρi . (17)

KSG estimator for mutual information Kraskov et al. (2004) estimate the MI I(X;Y ) =
H(X) +H(Y )−H(X,Y ) by estimating the three individual entropies with the KL estimator (17).
The authors heuristically argue that the errors incurred by the local constancy assumptions approxi-
mately cancel out in the combined estimator if all entropy estimates use the same local length scales
ρi. Thus, they equip X × Y with the maximum metric dX×Y(·, ·) = max{dX (·, ·), dY(·, ·)} and
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define ρi as in the KL estimate (17) of H(X,Y ), and use the same radii ρi for estimating H(X) and
H(Y ). The estimator takes the form

ÎKSG(X;Y ) =
1

n

n∑
i=1

[ψ(k) + ψ(n)− ψ(kX,i + 1)− ψ(kY,i + 1)] , (18)

where kX,i and kY,i are defined by (W is placeholder for X and Y and w is placeholder for x and y)

kW,i = |{wj | ∥wj − wi∥ < ρi, j ̸= i}| , (19)

that is, as the number of points xj ̸= xi (resp. yj ̸= yi) within the open ballB(xi, ρi) (resp.B(yi, ρi))
in X (resp. Y). The terms with log ρi cancel out due to using the same radii ρi in all three entropy
estimates. Since X × Y is equipped with the maximum metric, the volume terms cancel out too.

FP estimator of conditional mutual information Using the same rationale, Frenzel and Pompe
(2007) extend the KSG estimator to CMI, with kZ,i, kXZ,i, kY Z,i as in eq. (19) and ρi as in the KL
estimate of H(X,Y, Z):

ÎFP (X;Y |Z) = 1

n

n∑
i=1

[ψ(k) + ψ(kZ,i + 1)− ψ(kX,i + 1)− ψ(kY,i + 1)] . (20)

A.2.2. ESTIMATION IN THE MIXED VARIABLES CASE

GKOV estimator of mutual information Gao et al. (2017) propose an estimator for mixed MI
I(X;Y ) under the assumption that both X and Y are Euclidean spaces, thus implicitly requiring
that the discrete variables are either numerical with a semantically meaningful notion of distance
or have been mapped to a real space (that is, ignoring the conceptual problem of a semantically
non-meaningful Lp-distance). The GKOV estimator builds on KSG and the observation that, in the
mixed case, the distance ρi of (xi, yi) to its k-th nearest neighbor in X × Y can be ρi = 0 with
non-zero probability. Gao et al. (2017) consider the event ρi = 0 to indicate that point (xi, yi) is
discrete. Their estimator takes the form

ÎGKOV (X;Y ) =
1

n

n∑
i=1

[ψ(k̃′i) + log(n)− log(k̃X,i + 1)− log(k̃Y,i + 1)] , (21)

where k̃′i = k if ρi > 0 and k̃′i = k̃XY,i if ρi = 0 with

k̃W,i = |{wj | ∥wj − wi∥ ≤ ρi, j ̸= i}| . (22)

As opposed to eq. (19), eq. (22) uses the non-strict inequality ∥wj − wi∥ ≤ ρi. The combination of
ψ(·) and log(·) terms is ad-hoc and ultimately justified by their consistency proof.

RAVK estimator Rahimzamani et al. (2018) propose a generalization of multiple information
theoretic measures as the Kullback-Leibler divergence between the joint distribution of X,Y and
Z and their factorization according to a directed acyclic graph. The CMI is a special case of this
measure. Further building on the observation from Gao et al. (2017) that, in the mixed case, it is
possible that the distance ρi of point wi = (xi, yi, zi) to its k-th NN in X × Y × Z can be ρi = 0 if

18
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wi is fully discrete, the event ρi = 0 is considered to indicate that wi is discrete. The estimator is
defined as:

ÎRAVK(X;Y |Z) = 1

n
·

n∑
i=1

[
ψ(k̃′XY Z,i) + log(k̃Z,i + 1)− log(k̃XZ,i + 1)− log(k̃Y Z,i + 1)

]
(23)

where the number of neighbors k̃W,i are defined as the number of points wj ̸= wi within the open ball
B(wi, ρi) in subspace W (i.e., XY Z, XZ, XY and Z, respectively), including boundary points:

k̃W,i = |{wj | ∥wj − wi∥ ≤ ρi, j ̸= i}| , (24)

and k̃′i = k if ρi > 0 and k̃′i = k̃XY Z,i if ρi = 0.

A.3. Nearest-neighbor permutation test

Algorithm 1, adapted from Kim et al. (2022) (see also Wasserman (2010)), describes the procedure
for generating a p-value from a set of B permutations Π = {πj |j = 1, ..., B} of n elements. As
described in Sec. 2.3, in our case, each permutation is generated using the nearest-neighbor scheme.
For the permutation-based CITs discussed in this paper, the test statistic is the conditional mutual
information (CMI), which can be estimated using one of the estimators: MS, MS0−∞, or ZMADG.
We denote the value of the test statistic computed using the chosen estimator estim as TCMI,estim.
The p-value of the conditional independence test (CIT) of the respective estimator estim as follows:

Algorithm 1 Local Permutation Test
Input: samples {(xi, yi, zi)|i = 1, ..., n}, permutation set Π = {πj |j = 1, ..., B}, test statistic

TCMI,estim, nominal level α
Output: p-value

1 For each permutation πj ∈ Π, j = 1, ..., B: compute the statistic T πj

CMI,estim on the permuted
samples

2 Compare the test statistic on the observed samples, TCMI,estim with the permuted test statistics and
calculate the p-value as

p =

∑
πj∈Π 1{T πj

CMI,estim ≥ TCMI,estim}+ 1

B + 1
(25)

Appendix B. Proofs

Here, we formally prove the theoretical claims made in Sec. 3 of the main paper.

B.1. Assumptions

As the proof of Mesner and Shalizi (2021) relies on the following assumptions, we make them here
too:

Assumption 1. PXY |Z is non-singular such that f ≡ dPXY |Z
d(PX|Z×PY |Z) is well defined, and, for some

C > 0, f(x, y, z) < C for all (x, y, z) ∈ X × Y × Z .
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Assumption 2. {(x, y, z) ∈ X × Y × Z} : PXY Z((x, y, z)) > 0 is countable and nowhere dense
in X × Y × Z .

Assumption 3. k → ∞ and k
n → 0 as n→ ∞.

Furthermore, our proofs rely on two additional assumptions:

Assumption 4. There are at most finitely many clusters as defined by the non-numeric components
of XY Z.

Assumption 5. All numeric components of XY Z have a finite range.

Note that Mesner and Shalizi (2021) also implicitly make Assumption 4 by assuming finite-
dimensional random vectors in combination with one-hot encoding of the non-numeric components.
As mentioned in the main text, we are confident that the theoretical guarantees of our estimator
also hold without Assumption 5 and that, to prove them in this case, only mild adaptions of the
corresponding proofs in Mesner and Shalizi (2021) are needed. However, we leave such an adaption
of the proofs to future work and here do adopt Assumption 5.

For the proof of Theorem 4, we must make the additional assumption 6 about the number of
neighbors kp used in the permutation scheme described in Sec. 2.3.

Assumption 6. kp → ∞ and kp
n → 0 as n→ ∞.

B.2. Proof of Lemma 1

We start by using the triangle inequality to get

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)

∣∣∣q]
= lim

n→∞
E

[∣∣∣∣∣ 1n
n∑

i=1

ξ̂0−∞
i (X;Y |Z)− 1

n

n∑
i=1

ξ̂MS
i (X ′;Y ′|Z ′)

∣∣∣∣∣
q]

≤ lim
n→∞

1

nq
E

[(
n∑

i=1

∣∣∣ξ̂0−∞
i (X;Y |Z)− ξ̂MS

i (X ′;Y ′|Z ′)
∣∣∣)q ]

= lim
n→∞

1

nq

n∑
i1 =1

n∑
i2 =1

n∑
iq =1

E

[
q∏

α=1

∣∣∣ ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣] .
(26)

Next, let Nn(Ci) be the number of points other than the i-th point that are in the cluster Ci of the
i-th point. This random variable Nn(Ci) follows the distribution Bin(n− 1, pi), where pi = P(Ci)
is the probability that an arbitrary point belongs to the cluster Ci. We have pi > 0 because else
the i-th point would not have been in the cluster Ci. The Chernoff bound for the lower tail of the
Binomial distribution then gives

P(Nn(Ci) ≤ k − 1) ≤ e
− (n−1)·pi

2 ·
[
1− k−1

(n−1)·pi

]2
. (27)
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Now let Aiα be the event that Nn(Ciα) ≤ k − 1 and let Ai1, ...,iq = ∪q
α=1Aiα . The probability of

Ai1, ...,iq is upper bounded according to

P(Ai1, ...,iq) ≤
q∑

α=1

P(Nn(Ciα) ≤ k − 1)

≤
q∑

α=1

e
−
(n−1)·piα

2 ·
[
1− k−1

(n−1)·piα

]2
.

(28)

Next, we use the law of total expectation to condition the expectation value on the right-hand-side of
the last line of ineq. (26) on the events Ai1, ...,iq and Ac

i1, ...,iq
, which gives

E

[
q∏

α=1

∣∣∣ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣]

= E

[
q∏

α=1

∣∣∣ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣ ∣∣∣∣∣ Ai1, ...,iq

]
︸ ︷︷ ︸

≥0

· P(Ai1, ...,iq)︸ ︷︷ ︸
≤

∑q
α=1 exp

{
−
(n−1)·piα

2 ·
[
1− k−1

(n−1)·piα

]2}

+ E

[
q∏

α=1

∣∣∣ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣ ∣∣∣∣∣ Ac
i1, ...,iq︸ ︷︷ ︸

=0

]
· P(Ac

i1, ...,iq)︸ ︷︷ ︸
≤ 1

≤ E

[
q∏

α=1

∣∣∣ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣ ∣∣∣∣∣ Ai1, ...,iq

]
·

q∑
α=1

e
−
(n−1)·piα

2 ·
[
1− k−1

(n−1)·piα

]2

(29)
Here, we have used ξ̂0−∞

iα
(X;Y |Z) = ξ̂MS

iα
(X ′;Y ′|Z ′) conditioned on the event Ac

i1, ...,iq
. This

equality holds for the following reason: Given Ac
i1, ...,iq

, for all 1 ≤ α ≤ q at least k points other than
the iα-point are in the cluster Ciα of iα. Now fix some α with 1 ≤ α ≤ q and let v0, v1, . . . , vm be
the points in cluster Ciα , ordered such that v0 is the iα-th point and that ∥va−v0∥L∞ ≤ ∥vb−v0∥L∞

if a < b. Then, m ≥ k and the distance ρiα used by the estimate ξ̂0−∞
iα

(X;Y |Z), here denoted as
ρ0−∞
iα

, equals ∥vk−v0∥L∞ <∞. Let h(w) = λ·w+cwith λ ̸= 0 be the non-constant affine function
that transforms the numeric components of XY Z to X ′Y ′Z ′, and for all 0 ≤ a ≤ m let v′a denote
the transformed version of va. Since the same transformation h is applied to all numeric components
of XY Z, we get that ∥v′a − v′0∥L∞ ≤ ∥v′b − v′0∥L∞ if a < b. Moreover, since the ranges of numeric
components of X ′Y ′Z ′ are contained within (0, 1), we get that ∥v′m − v′0∥L∞ < 1. Consequently,
for the purpose of ξ̂MS

iα
(X ′;Y ′|Z ′) the k-nearest neighbors of v′0 are v′1, . . . , v

′
k and the distance ρiα

used by the estimate ξ̂MS
iα

(X ′;Y ′|Z ′), here denoted as ρMS
iα

, equals ∥v′k − v0∥L∞ = λ · ρ0−∞
iα

< 1.
We thus see that also ξ̂MS

iα
(X ′;Y ′|Z ′) uses only points within the cluster Ciα of the iα-th point. Let

W be a wildcard for XY Z, XZ, Y Z and Z and consider the count k̃0−∞
W,iα

used by the estimate

ξ̂0−∞
iα

(X;Y |Z) as defined in eq. (8) in the main text. By definition, see eqs. (7) in the main text, this
count is the number of points other than the iα-th point v0 that in W -space have a 0−∞ “distance”
of at most ρ0−∞

iα
to v0. Since ρMS

iα
= λ · ρ0−∞

iα
< 1 and the L∞-distance in W ′-space (where, for

example, W ′ = X ′Y ′Z ′ if W = XY Z) is λ times the L∞-distance in W -space, the corresponding
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count k̃W ′,iα used by ξ̂MS
iα

(X ′;Y ′|Z ′), see eq. (2) in the main text, equals k̃0−∞
W,iα

. From the equality

k̃0−∞
W,iα

= k̃W ′,iα we conclude that, as claimed, ξ̂0−∞
iα

(X;Y |Z) = ξ̂MS
iα

(X ′;Y ′|Z ′) conditioned on
the event Ac

i1, ...,iq
.

To upper bound the remaining conditional expectation, we use the triangle inequality and the fact
that ln(a) ≥ ψ(a) ≥ 0 for a ≥ 0 to get∣∣∣ξ̂0−∞

i (X;Y |Z)
∣∣∣ ≤ 2 ln(n) and∣∣∣ξ̂MS

i (X ′;Y ′|Z ′)
∣∣∣ ≤ 2 ln(n) ,

(30)

which implies ∣∣∣ξ̂0−∞
i (X;Y |Z)− ξ̂MS

i (X ′;Y ′|Z ′)
∣∣∣ ≤ 4 ln(n) . (31)

We thus find

E

[
q∏

α=1

∣∣∣ξ̂0−∞
iα

(X;Y |Z)− ξ̂MS
iα (X ′;Y ′|Z ′)

∣∣∣ ∣∣∣∣∣ Ai1, ...,iq

]
≤ 4q ln(n)q . (32)

By combining the above results, we get

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)

∣∣∣q] ≤ lim
n→∞

4q · ln(n)q

nq
· n∑

i1 =1

n∑
i2 =1

· · ·
n∑

iq =1

 q∑
α=1

e
−
(n−1)·piα

2 ·
[
1− k−1

(n−1)·piα

]2
.

(33)

Let C(1), . . . , C(m) be the list of all clusters with positive probability, where m <∞ because ac-
cording to Assumption 4 there are at most finitely many clusters. Then pmin = minγ∈[[1,m]] P(C(γ)),
which is independent of k and n, exists and pmin > 0. Noting that piα = P(Ciα) > 0 for all iα
because else the iα-th point would not have been in the cluster Ciα , we get that 1 ≥ piα ≥ pmin > 0
for all iα and hence

k − 1

(n− 1) · piα
≤ k − 1

(n− 1) · pmin
(34)

for all iα. Since k
n → 0 and k → ∞ in the k-NN limit and since piα is independent of k and n, we

find that k−1
(n−1)·piα

→ 0+ for all iα and k−1
(n−1)·pmin

→ 0+. Thus, there is a positive integer n0 such
that for all n ≥ n0 and for all iα the bound[

1− k − 1

(n− 1) · piα

]2
≥
[
1− k − 1

(n− 1) · pmin

]2
(35)

holds. We then get

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)

∣∣∣q] ≤ lim
n→∞

4q · ln(n)q

nq
· n∑

i1 =1

n∑
i2 =1

· · ·
n∑

iq =1

 q∑
α=1

e
− (n−1)·pmin

2 ·
[
1− k−1

(n−1)·pmin

]2
.

(36)
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We can now pull the sum of exponentials (that is, the sum over α) out of the product-sum (that is,
the sums over i1, . . . , iq) and get

lim
n→∞

E
[∣∣∣Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′)

∣∣∣q] ≤ lim
n→∞

4q · ln(n)q

nq
·

 n∑
i1 =1

n∑
i2 =1

· · ·
n∑

iq =1


q∑

α=1

e
− (n−1)·pmin

2 ·
[
1− k−1

(n−1)·pmin

]2

= lim
n→∞

4q · ln(n)q

nq
·

q∑
α=1

e
− (n−1)·pmin

2 ·
[
1− k−1

(n−1)·pmin

]2
︸ ︷︷ ︸

= q·exp
{
− (n−1)·pmin

2 ·
[
1− k−1

(n−1)·pmin

]2}

 n∑
i1 =1

n∑
i2 =1

· · ·
n∑

iq =1


︸ ︷︷ ︸

nq

= lim
n→∞

4q · ln(n)q · q · e−
(n−1)·pmin

2 ·
[
1− k−1

(n−1)·pmin

]2
=0

(37)
The last equality follows because the argument of the exponential goes to −∞ in the k-NN limit.

B.3. Proofs of Theorems 2 and 3

Proof of Theorem 2. The sequence Xn = Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′) converges to X = 0
in L1 according to Lemma 1 with q = 1, and the sequence Yn = ÎMS(X ′;Y ′|Z ′)− I(X ′;Y ′|Z ′)
converges to Y = 0 in L1 according to the proof of Theorem 3.1 in (Mesner and Shalizi, 2021) 5.
Therefore, the sequence Zn = Xn+Yn = Î0−∞(X;Y |Z)− I(X ′;Y ′|Z ′) converges to X +Y = 0
in L1. We conclude the proof by noting the equality I(X ′;Y ′|Z ′) = I(X;Y |Z), which follows
because CMI is invariant under componentwise non-constant affine transformations.
Proof of Theorem 3. The sequence Xn = Î0−∞(X;Y |Z)− ÎMS(X ′;Y ′|Z ′) converges to X = 0
in L2 according to Lemma 1 with q = 2, and the sequence Yn = ÎMS(X ′;Y ′|Z ′)− I(X ′;Y ′|Z ′)
converges to Y = 0 in L2 according to Theorem 3.2 in Mesner and Shalizi (2021) in combination
with Theorem 3.1 in Mesner and Shalizi (2021). Therefore, the sequence Zn = Xn + Yn =
Î0−∞(X;Y |Z)− I(X ′;Y ′|Z ′) converges to X+Y = 0 in L2. We conclude the proof by noting the
equality I(X ′;Y ′|Z ′) = I(X;Y |Z), which follows because CMI is invariant under componentwise
non-constant affine transformations.

B.4. Type I and II error

We follow the same approach as Huegle et al. (2023) to prove that our estimator can control type I
and II error.

5. That theorem itself only claims asymptotic unbiasedness, which is strictly weaker than L1-convergence, but the proof
actually shows L1-convergence.
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B.4.1. PROOF OF THEOREM 4 (TYPE I ERROR RATE)

We start by bounding the type I error rate as in Huegle et al. (2023), using the total variation
distance of PX|Z and the simulated P̃X|Z using the permutation scheme. Given Asm. 1, PXY Z ≪
PX|Z × PY |Z × PZ , such that, under the null hypothesis H0: PXY Z ≡ PX|Z × PY |Z × PZ . Define
the simulated product measure P̃XY Z = P̃X|Z × P̃Y |Z × P̃Z . As in Huegle et al. (2023), we
define the finite sample distribution Pn over a sequence w = (x, y, z) of n observed samples, with
x = (x1, ..., xn), analogously for y and z. More specifically, we will work with the conditional
distribution Pn

X|Z .
As in Algorithm 1, we define the set ofB permutations Π = {πb|b = 1, ..., B}. The finite sample

distribution P̃n
X|Z,b is the conditional distribution of X given Z after the samples of X have been

permuted according to πb. Finding Π requires an estimate of P (X|Z). We find this estimate using
the k-NN approach as described in Sec. 2.3 and also used in Huegle et al. (2023); Zan et al. (2022).
However, we use the 0−∞ distance to compare samples instead of the L∞ norm, since we are in the
mixed case, and thus only allows neighbors which have the same values for the discrete components
and a distance smaller than the ρp given by the kp-NN. After the permutation, for the i-th sample
point wi = (xi, yi, zi), the new value xπb(i) has been assigned to xi. We denote the assignment after
the permutation for all n points of the sample as xπb = (xπb(i))

n
i=1, with (xπb(i))

n
i=1 ∼ P̃n

X|Z=zi
.

The tuples (x̃, y, z), ..., (x̃πB , y, z) are i.i.d sampled and thus are exchangeable. As in Huegle et al.
(2023); Berrett et al. (2020), we define the rejection region

Aα = {(x, y, z), (xπ1 , y, z), ..., (xπB , y, z) : p ≤ α} (38)

with p =

∑
πj∈Π 1{Î0−∞,n

πj
≥I0−∞,n}+1

B+1 , where Î0−∞,n
πj is the CMI estimated using our MS0−∞

estimator on the sample set of n points to which the permutation πj has been applied, and I0−∞,n is
the value of the CMI estimation using our MS0−∞ estimator on the original samples. By definition
of the rejection region Aα, it holds that

EPXY Z
[CIT0−∞,n] = PPXY Z

((x, y, z), (xπ1 , y, z), ..., (xπB , y, z) ∈ Aα)

≤ PPXY Z
((x̃, y, z), (x̃π1 , y, z), ..., (x̃πB , y, z) ∈ Aα) +DTV (P

n
XY Z , P̃

n
XY Z)

As shown in Huegle et al. (2023), it holds that

EPXY Z
[CIT0−∞,n] ≤ α+DTV (P

n
XY Z , P̃

n
XY Z) (39)

where the total variation distance DTV (P
n
XY Z , P̃

n
XY Z) = supA∈B |Pn

XY Z(A) − P̃n
XY Z(A)|.

We note that for any (U, V ) and (U ′, V ′), if (V |U = u) ≡ (V ′|U ′ = u) for any u, then
DTV ((U, V ), (U ′, V ′)) = DTV (U,U

′). Given this fact, and since P̃XY Z ≡ P̃X|Z × PY |Z × PZ ,
then we have that

DTV (P
n
XY Z , P̃

n
XY Z) = DTV (P

n
X|Z , P̃

n
X|Z) (40)

Now we must show that DTV (P
n
X|Z , P̃

n
X|Z) → 0 under the assumptions we made. First, as in

Huegle et al. (2023), we relate the total variation distance to the Kullback-Leibler divergence using
Pinsker’s inequality:
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(Pn
X|Z , P̃

n
X|Z) ≤

√
1

2
DKL(Pn

X|Z ||P̃
n
X|Z) (41)

We assume that Pn
X|Z = Pn

X|Z=z1
×Pn

X|Z=z2
×...×Pn

X|Z=zn
and P̃n

X|Z = P̃n
X|Z=z1

×P̃n
X|Z=z2

×
...× P̃n

X|Z=zn
. As kp

n → ∞ as n→ ∞, we can assume that there are enough samples to approximate
the KL divergence well enough, and thus the following holds:

DKL(P
n
X|Z ||P̃

n
X|Z) =

n∑
i=1

DKL(P
n
X|Z=zi

||P̃n
X|Z=zi

) (42)

Therefore, it is enough to show that, for Z = zi , DKL(P
n
X|Z=zi

||P̃n
X|Z=zi

) → 0 under the
assumptions made and increasing sample size n→ ∞. As in Huegle et al. (2023) we define

Pn
X|Z=zi

(x, zi, ρ) = Pn
X|Z=zi

({x′ ∈ X : ||(x, zi)− (x′, zi)||0−∞ ≤ ρ}) (43)

P̃n
X|Z=zi

(x, zi, ρ) = P̃n
X|Z=zi

({x′ ∈ X : ||(x, zi)− (x′, zi)||0−∞ ≤ ρ}) (44)

Let f(x, z) denote the density f(x, z) =
dPn

X|Z
dP̃n

X|Z
. As also done in Huegle et al. (2023); Mesner and

Shalizi (2021), we partition X × Z into three disjoint sets corresponding to the discrete, continuous
and mixed-type cases, as follows:

1. Ω1 = {(x, zi) ∈ X × Z : f(x, zi) = 0}

2. Ω2 = {(x, zi) ∈ X × Z : f(x, zi) > 0, Pn
X|Z=zi

(x, zi, 0) > 0}. For ρ = 0, P (x, zi, 0) > 0
is the probability mass of one point, and thus this is the discrete case.

3. Ω3 = {(x, zi) ∈ X × Z : f(x, zi) > 0, Pn
X|Z=zi

(x, zi, 0) = 0}. For ρ = 0, P (x, zi, 0) = 0
is the probability mass of one point, and thus this is the continuous or mixed-type case.

Then we can write the KL divergence for each Z = zi as:

DKL(P
n
X|Z=zi

||P̃n
X|Z=zi

) =

∫
log(f(x, zi)dP

n
X|Z=zi

(x, zi) (45)

=

∫
Ω1

log(f(x, zi)dP
n
X|Z=zi

(x, zi) (46)

+

∫
Ω2

log(f(x, zi)dP
n
X|Z=zi

(x, zi) (47)

+

∫
Ω3

log(f(x, zi)dP
n
X|Z=zi

(x, zi) (48)

We now proceed to show that, for each case, we obtain DKL(P
n
X|Z=zi

||P̃n
X|Z=zi

) → 0 for
n→ ∞ ∀Z = zi using our 0−∞ distance.
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Case 1 Let (x, zi) ∈ Ω1 and ω(Ω1) = {(x) : (x, zi) ∈ Ω1} be the projection of the first coordinate.
Using the definition of f as the Radon-Nikodym derivative, we have

Pn
X|Z=zi

(ωX(Ω1)) =

∫
ωX(Ω1)

fdPn
X|Z=zi

=

∫
ωX(Ω1)

0dPn
X|Z=zi

= 0. (49)

We use the fact that f(x, zi) is the density with respect to the measure dPn
X|Z=zi

(x, zi). Therefore,
we can rewrite the integral as:

∫
Ω1

log f(x, zi)f(x, zi) dµ(x), (50)

where µ is the underlying measure. Now, using the limit limx→0 f(x, zi) log f(x, zi) = 0, we
obtain ∫

Ω1

log f(x, zi)dP
n
X|Z=zi

(x, zi) = 0. (51)

Case 2: Let (x, zi) ∈ Ω2, which is the partition of discrete points. By Lemma E.8 of Mesner and
Shalizi (2021),

f(x, zi) =
Pn
X|Z=zi

(x, zi, 0)

P̃n
X|Z=zi

(x, zi, 0)
(52)

We must show that Pn
X|Z=zi

(x, zi, 0) ≡ P̃n
X|Z=zi

(x, zi, 0). We define ρi the distance from zi
to its kp-nearest neighbors using the 0 − ∞ metric. Recall that the 0 − ∞ distance returns 0 is
two discrete values are equal, and ∞ otherwise. Therefore, we can distinguish two cases: ρi = 0,
meaning that there are at least kp points which fall within the ball with radius ρi = 0 (as we are in
the discrete case), or ρi = ∞, which indicates that there less than kp points in the ball with radius ρi.

If ρi = 0, then there are at least kp neighbors. By our definition of the local permutation, we
can permute the x values of all neighboring points without changing the bin, i.e., the points with
indices {k : ||zk − zi||0−∞ = 0, k ̸= i}. Since all Z = zi values are equal, we can write that
||(xπb(i), zi)− (xi, zi)||0−∞ = ||xπb(i) − xi||. According to the definition of Pn

X|Z=zi
and P̃n

X|Z=zi

these only differ by such permutations, therefore, Pn
X|Z=zi

(x, zi, 0) ≡ P̃n
X|Z=zi

(x, zi, 0). Thus, for
n→ ∞, f = 1, and

lim
n→∞

∫
Ω2

log f(x, zi)dP
n
X|Z=zi

= lim
n→∞

∫
Ω2

log 1dPn
X|Z=zi

= 0 (53)

The second case, ρi = ∞, occurs when there are less than kp points available. However, under
the premise that n→ ∞, and under Asm. 4, we can show that this happens with probability close to
0.

The number of points |zi| ∼ Binomial(n, Pn(Z = zi)), and, by the law of large numbers,
|zi| = m as n→ ∞. Now we want to show that the probability that P(|zi| < kp) → 0 as n→ ∞.
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P(ρi = ∞) =P(|zi| < kp) =

= P(Binomial(n, Pn(Z = zi))

=

kp−1∑
0

(
n

k

)
(Pn(Z = zi))

k(1− Pn(Z = zi)))
n−k

Let m = n ·Pn(Z = zi) be the expected number of points with Z = zi. For n→ ∞, we can ap-
proximate the binomial distribution using the normal distribution as N (m,

√
m(1− Pn(Z = zi))).

By standardization, we obtain the variable NZ = |zi|−m
m(1−P (Z=zi))

∼ N (0, 1). Then we obtain that the
probability that |zi| < kp can be written as

P(|zi| < kp) = P(
||zi| −m|

m(1− Pn(Z = zi)
<

kp −m

m(1− Pn(Z = zi)
) =

P(NZ <
kp − n · Pn(Z = zi))

n · Pn(Z = zi)(1− Pn(Z = zi))
)

Taking the limit as n→ ∞, we obtain:

lim
n→∞

kp − n · Pn(Z = zi)√
n · Pn(Z = zi) · (1− Pn(Z = zi))

=

= lim
n→∞

−n(kpn + Pn(Z = zi))
√
n
√
Pn(Z = zi) · (1− Pn(Z = zi))

=

= −
√
n · const

Thus, we obtain that

P(ρi = ∞) → lim
C→∞

P(NZ < −C) = 0 as n→ ∞. (54)

Case 3: Let (x, zi) ∈ Ω3, i.e., the partition with continuous or mixed-type points. Recall that, for
the permutation scheme described in Sec. 2.3, we are only considering neighbors in the Z subspace.

Therefore, we first have to ensure that there are enough samples such that |{(x, zi) : ||zi −
zj ||0−∞ ≤ ρ}| → kp almost surely. As we have shown in the proof of Lemma 1, as n → ∞, the
k-nearest neighbors are the same when using the L∞ and 0 − ∞ distance. Therefore, using our
0−∞ distance, we are in the second case of Lemma E.5 in Mesner and Shalizi (2021) and thus for
n → ∞ there are enough samples such that |{(x′, zi)||(x, zi) − (x′, zi)||0−∞ ≤ ρ}| → kp almost
surely.

According to Lemma E.7 in Mesner and Shalizi (2021), for ϵ > 0, we can write

lim
ρi→0

P(|
Pn
X|Z=zi

(x, zi, ρi)

P̃n
X|Z=zi

(x, zi, ρi)
− f(x, zi)| ≤ ϵ) = 1 (55)
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Using our 0−∞ distance, it holds that |(zcj , zdj )− (zci , z
d
i )|0−∞ = |zcj − zci |∞ if zdi = zdj , and

|zj − zi|0−∞ = ∞ otherwise.
The case |zj − zi|0−∞ = ∞ happens whenever there are less available points than kp in the ball

defined by ρi. However, as also shown for case 2, the probability P(|zi| < kp) → 0 as n→ ∞.
We are therefore only left with the case |zj − zi|0−∞ ̸= ∞, which means that there are exactly

kp points in the radius defined by ρi. We now want to show that, by construction of the permutations
to be local in Z, for Xi := {x ∈ X : ||zi− z||0−∞ ≤ ρi}, i.e., all neighbors in the Z subspace within
radius ρi, it holds that Pn

X|Z=zi
(x, zi, ρi) = Pn

X|Z=zi
(X ) = P̃n,b

X|Z=zi
(X ) = P̃n

X|Z=zi
(x, zi, ρi), for

all permutation indices b = 1, . . . , B.
By construction of the permutations to be local in Z, for Xi,Z := {x : ||zi − z||0−∞ ≤

ρi}, we have πb(Xi,Z) = Xi,Z . For the 0 − ∞ distance, it holds that for any xi, xj ∈ Xi,Z

if ||(xi, zi) − (xj , zj)||0−∞ ̸= ∞, then ||(xi) − (xj)||0−∞ ≤ σi, with 0 < σi < ∞. Since
πb(Xi,Z) = Xi,Z , for any pair (xj , xπb(j)) of values for X at index j and the index after applying
the permutation π, given that xj ∈ πb(Xi,Z) = Xi,Z , it holds that ||(xi)− (xj)||0−∞ ≤ σi. By the
definitions of Pn

X|Z=zi
and P̃n

X|Z=zi
in Eq. 43 and 44, we can conclude that Pn

X|Z=zi
≡ P̃n

X|Z=zi
.

Thus,
∫
Ω3

log(f(x, zi)dP
n
X|Z=zi

(x, zi) → 0 as n→ ∞.

B.4.2. PROOF OF THEOREM 5 (TYPE II ERROR RATE)

Here, we follow the proof of Huegle et al. (2023) and use the results from Theorem 2 which prove
the consistency of our MS0−∞ estimator.

Let (x, y, z) with x = (x1, ..., xn) be drawn from PXY Z , and (xπb , y, z) with xπb = (xπb(1), ...,

xπb(n)) be drawn from P̃XY Z using the local permutation scheme described in Sec. 2.3. Under
H1 : X ̸⊥⊥ Y |Z, I(X;Y |Z) > 0 (see Sec. 1 and Gray (2011)). As Theorem 2 shows, our
Î0−∞(X;Y |Z) is L1 consistent,

lim
n→∞

E[|Î0−∞(X;Y |Z)− I(X;Y |Z)|] = 0. (56)

For the approximated null distribution obtained using the local permutation approach presented
in Sec. 2.3, i.e., obtained by applying πb ∈ Π, it also holds that

E[|Î0−∞(Xπb
;Y |Z)|] → 0. (57)

Since convergence inL1 implies convergence in probability, Eq. 56 and 57 converge in probability
for the absolute values, thus for the signed values x = Î0−∞(X;Y |Z) − I(X;Y |Z) and y =
Î0−∞(Xπb

;Y |Z). We can thus apply the continuous mapping theorem with these x, y and the
function g(x, y) = |x− y|, and obtain that ∀ϵ > 0

lim
n→∞

P(|Î0−∞(X;Y |Z)− Î0−∞(Xπb
;Y |Z)− I(X;Y |Z)| > ϵ) = 0. (58)

Let β > 0 arbitrary. Define the falsely accepted region where CIT0−∞ = 1, i.e., the set where
p ≤ β although H1 is true for a nominal value β, as follows

Aβ = {(x, y, z), (xπ1 , y, z), ..., (xπB , y, z) : p ≤ β} (59)

with p =
∑

πj
1{Î0−∞,n

πj
≥I0−∞,n}+1

B+1 . Then, by the definition of Aβ , it holds that
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EPXY Z
[1− CIT0−∞] = 1− PPXY Z

((x, y, z), (xπ1 , y, z), ..., (xπB , y, z) ∈ Aβ). (60)

However, for (x, y, z), (xπ1 , y, z), ..., (xπB , y, z) ∈ Aβ , as shown in Eq. 57, E[|Î0−∞(Xπb
;Y |Z)|]

→ 0 , while limn→∞ E[|Î0−∞(X;Y |Z)− I(X;Y |Z)|] = 0, as shown in Eq. 58, and thus we obtain
∀ϵ > 0,

lim
n→∞

P({
∑B

b=1 1{Î0−∞,n
πb ≥ I0−∞,n}+ 1

B + 1
} ≤ β) = P({ 1

B + 1
≤ β}). (61)

Therefore, for B > 1
β + 1, we obtain

lim
n→∞

EPXY Z
[1− CIT0−∞] = 1− 1 = 0. (62)

Appendix C. Further results of the numerical evaluation of the CMI estimators

Experimental setup We keep the experimental setup as described in Sec. 4 of the main paper and
generate the remaining three synthetic datasets according to the following models:

"Chain structure” (Mesner and Shalizi (2021)): Here, X ∼ exp (10), Z = (Z1, . . . , Zd) is mul-
tivariate with Z1 ∼ Poisson (X) and Zi ∼ N (0, 1) for 2 ≤ i ≤ d, and Y ∼ Bin (Z1, 0.5). The
ground truth is I(X;Y |Z) = 0.

"Confounder with Gaussian X and Y " (Zan et al. (2022)): This model describes a confounder
structure with normally distributed X and Y , where X ∼ N (Z, 1), Y ∼ N (Z, 1), and Z ∼
U ({0, . . . ,m}). The ground truth is I(X,Y |Z) = 0. As in Zan et al. (2022), m = 9.

"Confounder with uniform X and Y ": This model describes a confounder structure with uni-
formly distributed X and Y , where X ∼ U (0, Z), Y ∼ U (Z,Z + 1), and Z ∼ U ({0, 1}). The
ground truth is I(X,Y |Z) = 0.

Figure 3: Distribution of the CMI estimates for the "Chain structure" model with d = 1 (left) and
d = 3 (right). Each row shows results for a different kc value.

Results "Chain structure": For this model (Fig. 3, left) with d = 1 the MS, MS0−∞ and
ZMADG estimators perform comparably well. The ZMADG estimator has slightly higher variance
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than MS0−∞ and MS, especially for smaller n. However, for the model with d = 3 (Fig. 3, right),
ZMADG suffers from significant variance compared to the MS and our estimator. Notably, although
this data model violates Assumption 4, our estimator still obtains good results in practice.

"Confounder with Gaussian X and Y ": For this model (Fig. 4, left), we observe that MS0−∞
performs best, while the MS estimator overestimates for kc ≥ 0.1. The ZMADG estimator again
suffers from higher variance compared to our estimator.

"Confounder with uniform X and Y ": For this model (Fig. 4, right), both MS and our estimator
perform well. Besides having high variance, ZMADG wrongly finds a strong conditional dependency
between X and Y . This observation seems specific to the uniform distribution, as estimates are
correct for the same model using normally distributed data.

Figure 4: Distribution of the CMI estimates for the "Confounder with Gaussian X and Y " model
(left) and "Confounder with uniform X and Y " model (right). Each row shows results for
a different kc value.

C.1. Comparison of the mean and variances of the CMI

As outlined in Sec. 3 of the main paper, our estimator addresses the challenges of the MS and
ZMADG estimators. Consequently, we expect that, for most of the models, there will likely be
significant differences between the bias of the MS and MS0−∞ estimators due to our estimator’s
capacity to reduce the bias towards 0. We also expect significant differences between the variance
of the MS0−∞ estimator and the variance of the ZMADG estimator, as our estimator is not an
aggregation of multiple estimators.

Since bias and variance are not scaled metrics, we perform statistical tests to investigate whether
there are statistically significant differences among the CMI estimators using the models in Sec. 4
and App. C. Because the MS and ZMADG estimators perform very differently across kc values,
for each model, we identify the kc value with optimal performance regarding bias and variance
across all sample sizes for each model. To compare bias of the MS estimator with the bias of the
MS0−∞ estimator, we compute the mean absolute error (MAE) MAEestim,j for each estimator in
estim ∈ {MS,MS0−∞} and each repetition of the experiment j ∈ {1, . . . , 100} as the absolute
difference between the estimated CMI using estimator estim and the ground truth CMI value
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I(X;Y |Z) of the data model:

MAEestim,j = |Îestimj (X;Y |Z)− Ij(X;Y |Z)|. (63)

Then, we compare bias between the estimators using the Wilcoxon-Signed-Rank Test (Wilcoxon,
1992). We perform one-sided tests, as we expect that the MAE of the MS estimator is higher than the
MAE of our MS0−∞ estimator. For each model and each sample size, we formulate the hypothesis
as follows:

H0: The median of the difference between the MAEMS and MAEMS0−∞ is negative. vs.

H1: The median of the difference between the MAEMS and MAEMS0−∞ is non-negative.

To compare the variance of the estimates Îestimj (X;Y |Z) obtained with the MS0−∞ and ZMADG
estimators, we test the following hypothesis of equality of variance using Levene’s Test (Levene,
1960) for each model and each sample size:

H0: The variance of the MS0−∞ estimator and the variance of the ZMADG estimator are equal.
vs.

H1: The variance of the MS0−∞ estimator and the variance of the ZMADG estimator are not
equal.

To account for repeated testing, we apply the Bonferroni correction (Bonferroni, 1935) by
dividing the significance level by the number of hypotheses, in our case 48, and thus reject the null
hypothesis for p-values under 0.05

48 = 0.001.

The Tables below report the p-values of the statistical tests for each model, measurement, and
sample size. We observe that the MAE of the MS estimator is significantly greater than the MAE of
our MS0−∞ estimator for the "Independent Z" with d = 3 and the "Confounder with uniform X
and Y " models. This aligns with the expectations stated in Sec. 3, namely that our estimator should
suffer from less bias towards 0. Furthermore, as expected, for almost all models and all sample sizes,
the hypothesis of equality of variances of our estimator and the ZMADG estimator can be rejected.
An inspection of the values for the variance shows that, indeed, the variance of ZMADG is higher
than that of our estimator, and thus, we can confirm our expectation that our estimator has a lower
variance compared to ZMADG.

Table 1: Results of the statistical tests for the "Independent Z" model with d = 1 (left table) and
d = 3 (right table). We select kc for the individual estimators as follows: kc,MS = 0.01,
kc,MS0−∞ = 0.2 and kc,ZMADG = 0.1.

p-values for the "Independent Z" Model with d = 1
n Bias MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 0.9993 0.0000
600 1.0000 0.0000
1000 1.0000 0.0000
2000 1.0000 0.0000

p-values for the "Independent Z" Model with d = 3
n Bias MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 0.0146 0.0000
600 0.0000 0.0000

1000 0.0000 0.0000
2000 0.0000 0.0000
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Table 2: Results of the statistical tests for the "Chain structure" model with d = 1 (left table) and
d = 3 (right table). We select kc for the individual estimators as follows: kc,MS = 0.01,
kc,MS0−∞ = 0.2 and kc,ZMADG = 0.2.

p-values for the "Chain structure" Model with d = 1
n Bias MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 1.0000 0.0000
600 1.0000 0.0000
1000 1.0000 0.0000
2000 1.0000 0.0000

p-values for the "Chain structure" Model with d = 3
n Bias MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 0.9996 0.0000
600 1.0000 0.0000
1000 1.0000 0.0000
2000 1.0000 0.0000

Table 3: Left table: Results of the statistical tests for the "Confounder with uniform X and Y "
model. We select kc for the individual estimators as follows: kc,MS = 0.1, kc,MS0−∞ = 0.1
and kc,ZMADG = 0.3. Right table: Results of the statistical tests for the "Confounder
with Gaussian X and Y " model. We select kc for the individual estimators as follows:
kc,MS = 0.01, kc,MS0−∞ = 0.3 and kc,ZMADG = 0.1.

p-values for the "Confounder with uniform X , Y " Model
n Mean MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 0.0000 0.0000
600 0.0000 0.0000

1000 0.0000 0.0000
2000 0.0000 0.0000

p-values for the "Confounder with Gaussian X,Y " Model
n Bias MS vs. MS0−∞ Var MS0−∞ vs. ZMADG

300 0.5000 0.0000
600 0.5000 0.0000

1000 0.5000 0.0000
2000 0.5000 0.0000

Appendix D. Results of the numerical evaluation of the estimators for the
mixture-type variable case

Figure 5: Distribution of CMI estimates
for the "Mixture" model.
Each row shows the results
for different kc.

As mentioned in the main paper, our study did not focus
on the mixture-type variable case. However, the MS0−∞
estimator can be used with mixture-type variables. We
present a preliminary evaluation of the CMI estimation for
this use case. We do not evaluate the ZMADG estimator,
since this method was not designed for use with mixture-
type variables. Keeping the experimental setup as for the
previous experiments, we evaluate the MS and MS0−∞
estimators on data generated from a model inspired by
Mesner and Shalizi (2021), defined as follows:

"Mixture" (adapted from Mesner and Shalizi (2021)):
Here, Z is discrete with Z ∼ Bin(1, p = 0.3). With prob-
ability 1−p,X and Y are drawn from a multivariate Gaus-
sian with correlation coefficient of 0.6, and with probabil-
ity p, X ∼ U({0, ..., 4}) and Y ∼ U ([X,X + 2]). The
ground truth is I(X;Y |Z) = −(1 − p) · ln (1− 0.36) ·
0.5 + p · (ln 5− 4

5 · ln 2) = 0.472.
Results As Fig. 5 shows, our approach performs best

across all kc values. Both MS and MS0−∞ suffer from
bias towards 0 for kc ≥ 0.2, however, our estimator is

considerably less affected than the MS estimator.

32



CONDITIONAL INDEPENDENCE TESTING FOR MIXED CONTINUOUS-CATEGORICAL VARIABLES

Appendix E. Choice of heuristic for k

In contrast to the theoretical setting where we assume infinite samples are available, we only have
access to a finite number of samples in practice. Thus, for large enough k with fixed n, it is probable
that some of the k-nearest neighbors in the dataset are at ∞ distance, i.e., originate from a different
cluster. Because our estimator does not allow neighbors from different clusters, a heuristic was
necessary for setting an adaptive k such that only neighbors from the same cluster are considered.
We defined and tested three different heuristics. Here, we describe the other two heuristics besides
the "local" heuristic described in Sec. 3. We also motivate our choice for the "local" heuristic, which
we based on an empirical comparison of the MS0−∞ estimator’s performance using the different
heuristics.

E.1. Two alternative heuristics

Additional to the "local" heuristic presented in Sec. 3, we also developed and investigated two
additional heuristics for setting k: the "global" and "cluster-size" heuristics, which we present below.

E.1.1. "GLOBAL" HEURISTIC

The "global" heuristic defines a "global" k as a fraction of the number of samples n. If the distance to
the k-nearest neighbor is ∞, then, instead of enforcing k nearest neighbours for all sample points, we
allow for the following adaptiveness: If the k-th NN of wi is at distance ∞ from wi (that is, if nicl ≤ k
with nicl the number of points in the cluster of wi), then for this i we replace k by ki = ⌊kc · nicl⌋.
Explicitly: For all i let k0−∞

i = k if k + 1 ≤ nicl and k0−∞
i = ⌊kc · nicl⌋ else. Thus, in effect, all

considered nearest neighbours of wi come from the same cluster as wi.

E.1.2. "CLUSTER-SIZE" HEURISTIC

This heuristic still uses a "global" k as a fraction of the number of samples n. However, if the
distance to the k-th nearest neighbor is ∞, the "cluster-size" heuristic deals with this case by simply
setting ki = nicl, where nicl is the number of samples in the cluster of point i, defined as previously
described.

E.2. Numerical evaluation of the heuristics

Experimental setup We run numerical experiments to compare the bias and variance of our MS0−∞
estimator using the three different heuristics. Alongside, we also compare with the MS and ZMADG
estimators, using the same rules for setting k as described in Sec. 4. We keep the same experimental
setting as in the experiments described in Sec. 4 and App. C and evaluate results on the "Independent
Z" and "Chain structure" models.

Results The violin plots in Figure 6 show the results of the CMI estimation using the "local",
"global" and "cluster-size" heuristics presented above. We observe that the "cluster-size" heuristic
suffers from bias towards zero. This is expected because, when k = nicl, the distance to the k-th
nearest neighbor is equal to the distance from point i to the farthest point in its respective cluster.
Thus, for the subspaces XY,XZ and Z, the number of counted neighbors is equal to nicl with high
probability, which results in a local estimate equal to or close to 0. The "global" heuristic has the
highest variance across the different heuristics, yet still has lower variance compared to the ZMADG
estimator. The "global" approach also slightly suffers from bias for higher dimesionality, for example,
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for the "Chain structure" model with d = 3. The best bias-variance trade-off is obtained using the
"local" heuristic, with a slightly higher bias compared to the "global" heuristic, but lower variance.
This motivates our choice to use this heuristic for the experiments in the main paper.

Figure 6: CMI estimation results for the "Independent Z" model with d = 1 and "Chain structure"
model with d = 1 and d = 3 using the three different heuristics for setting the hyperparam-
eter k: the "local" heuristic (used in the main paper, MS0−∞ local), the "global" heuristic
(MS0−∞ global), and the "cluster-size" heuristic (MS0−∞ cluster). The ground truth CMI
values are indicated by the dashed line. The rows show results for different kc values.

Appendix F. Discussion on the choice of kc

Generally, for k-NN methods, a small k leads to lower bias at the cost of increased variance, while
larger k values lead to low variance but increased bias (Kraskov et al., 2004), and we refer to Berrett
et al. (2019) for a comprehensive theoretical discussion. We highlight that the bias scales as O( kn),
which explains why smaller values decrease the bias, and the variance scales as O( 1

kn), which
explains why larger values decrease the variance. Additionally, there is a connection to the local
constancy assumption: as k increases, this assumption is more likely to be violated, leading to
higher bias. We are not aware of theoretical methods to choose k, and it is unclear how to apply
cross-validation or other data-driven approaches for selecting k in practice, where ground-truth is
not available. In the machine learning community, a common heuristic for setting k when applying
k-NN methods depends on the dataset size, e.g. Chaudhuri and Dasgupta (2014). Our heuristics for
setting k, described in detail in Sec. 3 and App. E, depend on the dataset size as well.

As mentioned in Sec. 5.1, we considered kc = 0.1 "optimal" for the MS and ZMADG estimators,
as these are the only values that the authors of both estimator methods use for their corresponding
numerical experiments. For our estimator, we observe from the CMI estimation and the CIT results
that a larger kc, e.g., kc > 0.2, is beneficial for our method, especially for the case of weak
dependence and smaller sample size. This is to be expected due to the "local" heuristic. To exemplify,
consider the case where n = 1000 and dimd = 2: There are approximate 1000/(2 · 3) ≈ 166
samples per cluster for nc = 3 and approximately 1000/(2 · 4) = 125 samples for nc = 4. Thus,
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with kc = 0.1, we would select at most k = 13 samples. Thus, kc should be high enough such that k
is large enough, and this explains why our method performs better for kc > 0.2. As the sample size
increases, e.g. n = 2000, we observe that a smaller kc, e.g., kc = 0.2 performs better. Generally,
we recommend users to consider both the number of samples and the dimensionality and choose
a higher kc > 0.1 when the number of samples in the cluster is small. Alternatively, users could
consider the "global" kc heuristic, especially if the cluster imbalance is high.

Appendix G. Further results of the numerical evaluation of the CIT

Due to space limitations for the main paper, we present further results of the CIT evaluation here.
Before presenting the results, we describe how we compute true positive and false positive rates, and
the error bars of the CIT plots. Then, we continue with the results with rank preprocessing for the
models presented in Sec. 5, and the results for two other synthetic data models. Lastly, we presents
results when the dimension of the discrete variables increases.

G.1. Computation of the TPR / FPR

To compute the true positive rates (TPR) and the false positive rates (FPR), we first calculated the
proportion of tests that rejected the null hypothesis H0 given a significance level α. Specifically, for
a given set of tests, we define the positive rate pp as:

pp =
#tests with p ≤ α

nrep
(64)

The pp metric, when computed over a set of tests where the alternative hypothesis is true (i.e.,
when the coupling factor w > 0.), reflects the TPR. When evaluated on tests under the null condition
(i.e., when the coupling factor w = 0), the same metric represents the FPR.

G.2. Computation of the confidence intervals for the TPR/FPR plots

The error bars of the CIT plots represent the 95% confidence interval of the FPR and TPR. The
confidence intervals are obtained by modeling the false and true positives as distributed according to
the binomial distribution. We describe the computation of the confidence interval for the FPR, and
obtain the confidence interval for the TPR analogously.

For a given model and a set of values of the CIT parameters, the probability of obtaining a false
positive in the nrep = 100 repetitions of our experiments is pFP (ideally, pFP = α). Under the
assumption that the repetitions are independent, the random variable that describes the number of
false positives, FP , is distributed according to the binomial distribution:

FP ∼ Bin(nrep, pFP ). (65)

We can estimate pFP as the empirical fraction of false positives that we have obtained in our
repetitions: p̂FP = #FP

nrep
= FPR. We now wish to obtain a confidence interval for p̂FP , i.e.,

find the lower and upper bounds pL, pU of the confidence interval such that P (pL(FP ) < p̂FP <
pU (FP )) = 1− α. Since FP ∼ Bin(nrep, pFP ), we obtain pL and pU by numerically solving the
following two equations:

1− CDF (p̂FP , nrep, pL) =
1− α

2
(66)
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CDF (p̂FP , nrep, pU ) =
1− α

2
(67)

Here, CDF is the cumulative distribution function of the binomial distribution.

G.3. Results with rank preprocessing for the models presented in Sec. 5

We now present the results for the models presented in Sec. 5 using rank preprocessing for the
continuous variables. For the "Confounder" model with dimc = 1 and dimd = 1 and sample
size n = 1000, the CITs with rank preprocessing (Fig. 7, left) behave similarly to the CITs with
standardization. Considering their optimal kc values, the CIT using our estimator performs similarly
to the CIT using the MS estimator. For the "Cluster-dependent confounder" model (Fig. 7, right) the
CITs with rank preprocessing also behave similarly to the CITs using standardization, but there is a
slightly more significant performance gap between MS and our MS0−∞, with our method showcasing
superior performance, especially for nc = 2 and nc = 3.

Figure 7: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is better,
with 1 best) for the "Confounder" model where Z has dimc = 1, dimd = 1 (left) and the
"Cluster-dependent confounder" model where Z has dimd = 1 (right). The "Confounder"
model has coupling factor in the dependent case w = 0.5. The coupling factor in the
dependent case for the "Cluster-dependent confounder" model is w = 0.75. All models
have rank preprocessing for the continuous variables and sample size n = 1000.

G.4. Distribution of CMI values for the "Confounder" model

To better understand the outcome of the CIT evaluation, we inspected the distribution of the estimated
CMI values for each estimator individually. We present here plots of the true null and the permuted
CMI distributions for the different kc values for the "Confounder" model. For clarity reasons, we
refrain from presenting all plots here.

The true null and the permuted CMI distribution plots allow us to investigate whether the
FPR/TPR reflects the desired behavior of the tests: The true null and the permuted distributions
should have CMI values distributed around 0 and should be similar to each other. In contrast, in the
dependent case, estimated CMI values should be larger than 0, and their distribution should have
minimal overlap if the null hypothesis does not hold. A closer look at the distributions of the CMI
values in Fig. 8 for nc = 3 and Fig. 9 for nc = 4, reveals that the MS and MS0−∞ estimators behave
similarly for kc > 0.1, while ZMADG suffers from slight negative bias.
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Figure 8: The true null and permuted distributions of the CMI estimated with the MS, MS0−∞ and
ZMADG estimators for the "Confounder" model with n = 1000 where Z has dimc =
1, dimd = 1 and nc = 3 with standardization (left column), scaling to (0, 1) (center
column) and rank preprocessing (right column). The left figure of each plot pair shows
the true null distribution under H0 as the orange line with the red dot indicating the 95%
quantile, and the permuted null distribution is shown as the black line with the black dot
indicating the 95% quantile. The right figure of the plot pair shows the true distribution
under H1 as the grey line, and the permuted distributions as the black line with the black
dot indicating the 95% quantile.
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Figure 9: The true null and permuted distributions of CMI estimated with the MS, MS0−∞ and
ZMADG estimators for the "Confounder" model with n = 1000 where Z has dimc =
1, dimd = 1 and nc = 4 with standardization (left column), scaling to (0, 1) (center
column) and rank preprocessing (right column). The distributions are depicted as described
in Fig. 8.

G.5. Results for the "Independent Z" model

"Independent Z": For this model, Z has discrete components Z1, . . . , Zdimd=m where Zj ∼
Bin(nc − 1, 0.5). Both X and Y are continous univariate and computed as:

X = ηx+ w · ηw, Y = ηy+ w · ηw. (68)

Figure 10: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is better,
with 1 best) for the "Independent Z" model, with standardization (left), scaling to (0, 1)
(center) and rank preprocessing (right) for the continuous variables and coupling factor
in the dependent case w = 0.5.
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Here, we present results for sample size n = 1000, with coupling factor w = 0.5. The number
of classes is nc ∈ {3, 4}. We set k as in Sec. 4 using kc ∈ {0.01, 0.1, 0.2, 0.3, 0.5}. We vary
dimd ∈ {1, 2}. As for the experiments in Sec. 4, we generate p-values with 300 permuted surrogates
using kperm = 5 and repeat each experiment 100 times. As we can observe in Fig. 10, ZMADG
has either low TPR or high FPR. MS and MS0−∞ perform better for both preprocessing types,
occasionally having higher FPR. The scaling-related issues of MS persist for this model with scaling
to (0, 1) and kc > 0.1. MS0−∞ performs well, except for kc = 0.01, where FPR is not controlled.
The FPR of MS0−∞ drops to 0 for kc = 0.2 and kc = 0.5, yet the error bars and the high TPR values
indicate that these drops do not stem from bias towards 0.

G.6. Results for the "Chain" model

"Chain": X and Y are continuous, and Z is discrete, and all variables are univariate. The model is
defined as follows:

X = ηx + w · ηw,
Z = [σ∼(βx ·X, (nc − 1)) + ηz] mod (nc − 1),

Y = βy · l−1(Z) + ηy + w · ηw

(69)

Here, σ∼(βx ·X,nc − 1) denotes sampling from the multinomial distribution with nc − 1 categories
where the a-th category (starting the count at 0) has probability ea·x∑nc−2

a′=0
ea′·x

. The noise ηz follows

ηz ∼ Bin(2, 0.7).
We present results for sample size n = 1000, with coupling factor w = 0.5. As for the

"Independent Z" model, the number of classes is nc ∈ {3, 4}. We set k as in Sec. 4 using kc ∈
{0.01, 0.1, 0.2, 0.3, 0.5}. We generate p-values with 300 permuted surrogates using kperm = 5
and repeat each experiment 100 times. For the "Chain" model (Fig. 11), ZMADG consistently
suffers from high FPR. In contrast, MS and MS0−∞ demonstrate good performance across varying
kc values and dimensionalities regarding TPR. The MS and MS0−∞ CITs perform similarly with
standardization and rank preprocessing. In cases where nc = 4, our approach has slightly lower
TPR. Nonetheless, both CITs control FPR effectively, except when kc = 0.01. The scaling-related
problems of MS lead to performance issues when variables are scaled to (0, 1) and kc > 0.1:
an increase in kc leads to elevated FPR and decreased TPR. Our approach demonstrates robust
performance across varying kc values.

Figure 11: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is better,
with 1 best) for the "Chain" model, with standardization (left), scaling to (0, 1) (center)
and rank preprocessing (right) for the continuous variables and coupling factor in the
dependent case w = 0.5.
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G.7. Results with increased dimensionality of the discrete variable

Figure 12: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is better,
with 1 best) for the "Confounder" model with n = 1000 where Z has dimc = 1, dimd =
2, with standardization (left), scaling to (0, 1) (center) and rank preprocessing (right) for
the continuous variables and coupling factor in the dependent case w = 0.5.

Figure 13: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is better,
with 1 best) for the "Confounder" model with n = 2000, where Z has dimc = 1, dimd =
2, with standardization (left), scaling to (0, 1) (center) and rank preprocessing (right) for
the continuous variables and coupling factor in the dependent case w = 0.5. We note

that for these results, the p-value was computed as p =
∑

πj∈Π 1{T
πj
CMI,estim≥TCMI,estim}

B
(see App. A.3 for the difference to the other results). This different computation stems
from a previous version of the paper and we refrained from redoing the time-consuming
computations.

We inspect how the CIT performance changes as the dimensionality of the discrete variable increases
to dimd = 2 for the "Confounder" model under the different preprocessing types. The results,
presented in Fig. 12, indicate that our approach needs higher kc, e.g., kc ≥ 0.3 for good performance.
This is most likely due to the "local" heuristic, where k is computed as the product between kc and the
smallest cluster size in the data (see also App. F). As the dimensionality increases, clusters become
smaller, and k decreases as well. The distribution of CMI values indicates that this leads to positive
bias. Considering both FPR and TPR for nc = 3 with standardization and rank preprocessing,
our approach performs slightly worse than MS but slightly better than ZMADG. For nc = 4, our
approach performs worse than MS and slightly worse than ZMADG. The MS estimator performs well
in the standardized and rank preprocessing cases despite points from other clusters being considered
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neighbors because, for this model, dependence holds in every cluster. When continuous variables
are scaled to (0, 1), the scaling-related problems of MS lead to a rapid decline in performance as kc
increases, and our estimator slightly outperforms MS.

However, results for the same model with a larger sample size of n = 2000 (see Fig. 13)
indicate that the performance of our approach considerably increases given enough samples, and its
performance becomes on-par with MS for nc = 3, and only slightly worse for nc = 4. Notably, in
the case of a larger sample size, a smaller kc = 0.2 gives the optimal results.

G.8. Results for smaller sample sizes

To inspect the effect of varying sample size n, we evaluate the performance of the CITs when
n ∈ {400, 600, 800} and present these in Fig. 14. We observe that the MS estimator performs
best with lower sample sizes with all preprocessing types, except for scaling to (0, 1). The lower
performance of our MS0−∞ CIT compared to the MS CIT can be due to the "local" heuristic, which
sets k as the fraction kc of the size of the smallest cluster in the data. Especially as the number of
classes for the discrete dimensions increases, this can lead to setting a smaller k even for clusters
where more data is available.

Figure 14: False positive rate (FPR, ideally under 0.05) and true positive rate (TPR, higher is
better, with 1 best) for the "Confounder" model with n ∈ {400, 600, 800} where Z has
dimc = 1, dimd = 1, with standardization (left), scaling to (0, 1) (center) and rank
preprocessing (right) for the continuous variables and coupling factor in the dependent
case w = 0.5.
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Appendix H. Results on real-world data

Here, we present the numerical results for the experiments described in Sec. 5.3 on the ADHD dataset
Bellec et al. (2016). We report the accuracies in Table 4, and refer the reader to a discussion on the
results to Sec. 5.3.

Table 4: The accuracy of the MS0−∞, MS and ZMADG CITs on finding two CI relations (Case 1
and 2) from the ADHD dataset (higher is better, with 1.0 best). Highlighted in bold are the
accuracy values for what we consider the optimal kc. Transformations abbreviated as "rk"
(rank), "std" (standardization), "sc" (scale).

Case 1 Case 2

kc Trsf. MS0−∞ MS ZMADG MS0−∞ MS ZMADG

0.1 rk 0.22 0.0 1.0 0.94 0.92 1.0
0.1 std 0.74 1.0 0.96 0.0 1.0 1.0
0.1 sc 0.98 1.0 0.98 0.0 1.0 0.0
0.2 rk 1.0 0.0 1.0 0.8 0.94 1.0
0.2 std 0.4 0.0 1.0 0.22 0.0 0.0
0.2 sc 0.94 0.12 0.94 0.44 0.0 0.0
0.3 rk 1.0 0.6 1.0 1.0 1.0 1.0
0.3 std 1.0 1.0 1.0 0.96 1.0 0.0
0.3 sc 1.0 1.0 1.0 0.94 1.0 0.0

Appendix I. Comparison with two other CITs

Experimental setup As mentioned in Sec. 5, we also compare against two others CITs, namely the
GCM CIT of Shah and Peters (2020) and the kernel-based CIT of Zhang et al. (2011). We use the
same synthetic models and hyperparameters described in Sec. 5 and App. G.

For the GCM CIT, we use two different regressors: a k-NN regressor (we use the scikit-learn
implementation, Pedregosa et al. (2011)) and a random forest regressor (Breiman, 2001) (using
the scikit-learn implementation as well, Pedregosa et al. (2011)). To accommodate for mixed-type
data, we apply one-hot encoding to the data. For the k-NN regressor, we set k = kc · n with
kc = 0.1. For the random forest, we set the number of trees to 100. For the kernel-based CIT, we set
σ = {0.001, 0.01, 0.1, 1} and θ = 0.5, following the recommendations of Zhang et al. (2011). We
repeat each experiment 100 times.

Results We present the results for the GCM CIT in Table 5. We observe that GCM obtains the
best results with the k-NN regressor, and consistently obtains a TPR of 1.0. However, for some
of the models, for example for the "Confounder" and "Independent Z" models, the FPR is higher
than the desired 0.05 level. The results for the "Cluster-dependent confounder" show one possible
disadvantage of the GCM CIT: the wrong choice of regressor can lead to high variability in the results.
While the k-NN regressor obtains good results, especially for nc = 2 and nc = 3, the random forest
has very high FPR. This is only specific to this model, as for the other models, where dependency
holds across clusters, this behaviour cannot be observed.

We do not present any results for the kernel-based CIT as this CIT has either both an FPR
and TPR equal to 0.0 or equal to 1.0. Most probably, a further hyperparameter search would be
beneficial. However, we see this as out of scope for this work, and leave a comprehensive comparison
of different CITs for future work.
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Table 5: The false positive rate (FPR, the lower the better, ideally under 0.05) and true positive rate
(TPR, the higher the better, ideally 1) of the GCM CIT on the four models described in
Sec. 5 and App. G.

Model Confounder Independent Z Chain Cluster-dep. confounder
Regression type k-NN Random forest k-NN Random forest k-NN Random forest k-NN Random forest
Measure FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR
nc = 2 - - - - - - - - - - - -
nc = 3 0.08 1.0 1.0 1.0 0.06 1.0 0.07 1.0 0.05 1.0 0.03 1.0 0.03 0.95 0.63 0.84
nc = 4 0.07 1.0 1.0 1.0 0.07 1.0 0.06 1.0 0.07 1.0 0.04 1.0 0.023 0.66 0.63 0.84

Appendix J. Comparison of computational runtimes

We report the computational runtimes for each model in the CMI estimation experiments. The
experiments were performed on an Intel(R) Core(TM) i7-6600U CPU. We recorded the runtimes
for each run of the 100 repetitions of the CMI experiments described in Sec. 4 using the different
kc values and sample sizes n. In the Tables 6 to 8, we present the average runtime for each sample
size n in seconds, averaged over the 100 runs and all kc values. We also include the average runtime
of the different heuristics for our approach: "local", "global", and "cluster" described in App. E.
We note that in the tables below, MS0−∞ stands for the MS0−∞ in combination with the "MS0−∞
local" heuristic, and "MS0−∞ cluster" stands for our estimator in combination with the "cluster-size"
heuristic.

Across all estimators, we can observe an increase in runtime with larger sample sizes. MS0−∞
with the "local" heuristic consistently shows the highest runtimes, indicating that it is the most
computationally intensive method among the estimators. This is due to the additional computational
steps for the heuristic, as, in comparison, the "global" heuristic has a computational runtime close
to the runtime of MS. Thus, users might consider switching to the "global" heuristic for larger
experiments, since the numerical results in App. E indicate that the decrease in performance is
minimal. ZMADG is the fastest among the three estimators, since conditioning on the discrete
variables considerably decreases sample size.

Table 6: Computational runtimes (in seconds) for the "Independent Z" model with d = 1 and d = 3.

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
300 0.013 0.016 0.013 0.029 0.036
600 0.033 0.023 0.034 0.03 0.046
1000 0.069 0.046 0.076 0.05 0.046
2000 0.249 0.142 0.271 0.143 0.05

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
300 0.021 0.018 0.02 0.025 0.059
600 0.052 0.043 0.051 0.037 0.087
1000 0.107 0.081 0.111 0.061 0.118
2000 0.327 0.215 0.333 0.165 0.164

Table 7: Computational runtimes (in seconds) for the "Chain structure" model with d = 1 and d = 3.

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
300 0.012 0.015 0.012 0.029 0.014
600 0.036 0.023 0.035 0.033 0.021

1000 0.082 0.05 0.08 0.053 0.027
2000 0.332 0.171 0.306 0.136 0.039

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
0 300 0.019 0.011 0.019 0.024 0.027
1 600 0.057 0.024 0.055 0.035 0.041
2 1000 0.116 0.041 0.113 0.052 0.054
3 2000 0.433 0.097 0.399 0.131 0.079
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Table 8: Computational runtimes (in seconds) for the "Confounder with uniform X and Y " model
and "Confounder with Gaussian X and Y " model.

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
300 0.01 0.012 0.01 0.025 0.023
600 0.03 0.023 0.029 0.027 0.023
1000 0.068 0.051 0.068 0.042 0.026
2000 0.253 0.183 0.252 0.115 0.037

n MS0−∞ MS0−∞ global MS0−∞ cluster MS ZMADG
300 0.009 0.013 0.009 0.027 0.022
600 0.027 0.021 0.026 0.029 0.023
1000 0.06 0.046 0.059 0.043 0.028
2000 0.221 0.156 0.216 0.098 0.04

Appendix K. Remarks on reproducibility

We intentionally reduced the number of plots and tables in this appendix for length reasons. However,
the CMI distribution plots, all code to obtain the CIT plots, the measurements for the statistical
significance tests, the results for the other two CITs, and the computational time reports can be found
in the repository.
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