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DECOUPLING BIDIRECTIONAL GEOMETRIC REPRESEN-
TATIONS OF 4D COST VOLUME VIA 2D CONVOLUTION

Anonymous authors
Paper under double-blind review

Figure 1: The proposed DBStereo decouple the traditional 3D aggregation into spatial aggregation
and disparity aggregation which is merely based on 2D convolutions. The spatial aggregation
can incorporate more spatial structure context and the disparity aggregation make the prediction
of disparity more concentrated around the ground truth. Our DBStereo outperforms all existing
aggregation-based methods (Bangunharcana et al., 2021; Duggal et al., 2019c; Khamis et al., 2018; Li
et al., 2024; Shamsafar et al., 2022; Tankovich et al., 2021; Wang et al., 2021; Xu et al., 2022; 2023c;
Xu & Zhang, 2020b) in both inference time and accuracy, even surpassing classical iterative-based
methods such as RAFT-Stereo (Lipson et al., 2021b) and IGEV-Stereo (Xu et al., 2023b).

ABSTRACT

High-performance real-time stereo matching methods invariably rely on 3D reg-
ularization of the 4D cost volume, which is unfriendly to mobile devices. While
methods based on 2D regularization of 3D cost volume struggles in ill-posed
regions. In this paper, we propose Decoupling Bidirectional Geometric Represen-
tations of 4D cost volume and present a deployment-friendly network DBStereo,
which is based on pure 2D convolutions. Specifically, we first provide a thor-
ough analysis of the decoupling characteristics of 4D cost volume. And design a
lightweight decoupled bidirectional geometry aggregation block to capture spa-
tial and disparity representation respectively. Through decoupled learning, our
approach achieves real-time performance and impressive accuracy simultaneously.
Extensive experiments demonstrate that our proposed DBStereo outperforms all
existing aggregation-based methods in both inference time and accuracy, even
surpassing the iterative-based methods such as RAFT-Stereo and IGEV-Stereo.
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Our study breaks the empirical design of using 3D convolution for 4D cost volume
and provides a simple yet strong baseline, i.e., the proposed decoupled aggregation
paradigm, to facilitate further study.

1 INTRODUCTION

Stereo matching has remained a core challenge in computer vision over the past decade, continuously
advancing critical applications such as autonomous driving (Yang et al., 2019), industrial robotics
(Hsieh & Lin, 2020), and augmented reality (Zenati & Zerhouni, 2007). The essence of the technology
lies in establishing accurate pixel-level correspondences between left and right images. However,
under the resource-constrained conditions of edge computing devices, simultaneously achieving high
matching accuracy and real-time inference remains a significant bottleneck.

With the evolution of deep learning, end-to-end stereo matching frameworks have gradually become
mainstream. One of the representative works is PSMNet (Chang & Chen, 2018), which constructs
a 4D cost volume and utilizes 3D convolutional network to aggregate it. Such 4D cost aggregation
paradigm (Cheng et al., 2024; Duggal et al., 2019a; Liang et al., 2019; Nie et al., 2019; Wu et al.,
2019) achieve significant breakthroughs on GPU devices. However, the redundant information
inherent in 4D cost volumes force the model to rely on computationally expensive 3D convolutions
for regularization, posing substantial difficulties for mobile deployment. In recent years, iterative
optimization paradigms (Lipson et al., 2021a; Wang et al., 2024; Xu et al., 2023a; Cheng et al.,
2025; Wei et al., 2025), have demonstrated superior performance. Unlike previous aggregation-
based methods, these approaches construct 3D correlation cost volumes and progressively refine
disparity maps through iterative indexing it, thereby avoiding complex cost aggregation. While
reducing computational complexity, the lack of cost aggregation results in cost volumes deficient in
global geometric information, leading to disparity discontinuities in occluded regions, mismatches in
textureless areas, and artifacts on reflective surfaces. More critically, achieving acceptable accuracy
often requires multiple iterations, resulting in inference delays exceeding 100 ms for most methods,
which hinders their applicability in real-time scenarios.

Real-time stereo mathcing research (Bangunharcana et al., 2021; Duggal et al., 2019c; Khamis
et al., 2018; Li et al., 2024; Shamsafar et al., 2022; Tankovich et al., 2021) can be categorized into
two types: 2D CNNs based and 3D CNNs based. Both of them made significant compromises:
AANet (Xu & Zhang, 2020a) constructs a 3D correlation cost volume and enhances performance in
pathological regions by using deformable convolutions, but its specialized operators pose challenges
for deployment on edge devices; MobileStereoNet-2D (Shamsafar et al., 2022) attempts a pure
2D convolutional architecture but suffers severe performance degradation; DeepPruner (Duggal
et al., 2019b) narrows the search space by pruning the 4D cost volumes, ACVNet (Xu et al., 2022)
filters redundant information via attention weights, yet both still rely on 3D CNNs for aggregation.
Empirically, it appears that the informative 4D cost volume can not escape its dependence on 3D
CNNs.

In fact, these methods overlook inherent limitations of 3D CNNs in stereo matching: spatial and
disparity dimensions share the same receptive fields, while disparity aggregation requires a global
receptive field, which leading to degradation; the coupled learning of spatial and disparity features
increases the training difficulty. Although FoundationStereo (Wen et al., 2025) recognizes the need
for different receptive fields of two dimensions and decomposes a 3D convolution into a spatial
3D convolution and a disparity 3D convolution, it remains a localized refinement of standard 3D
convolution rather than addressing the fundamental issue of coupled learning.

In this paper, we propose a novel pure 2D CNN-based framework for 4D cost aggregation that
simultaneously achieves real-time performance and high accuracy. We first provide an in-depth
analysis of the limitations of 3D regularization networks and introduce our spatial-disparity decoupled
aggregation paradigm. Specifically, we first use Disp2Channel operator to transform the 4D cost
volume to the 3D one. Then, through our designed Bidirectional Geometry Aggregation (BGA)
block consisting of Spatial Aggregation module and Disparity Aggregation module, we decouple
the geometric representation of the cost volume into spatial and disparity dimensions. By leveraging
2D CNN-based bidirectional geometric representation decoupling, our method achieves significant
improvement. More importantly, our work pioneers a new technical pathway for high-accuracy
real-time stereo matching.
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Our main contributions are summarized as follows:

• We provide a thorough analysis for the geometric representation of 4D cost volume, breaking
away from the traditional coupled aggregation paradigm based on 3D convolutions, and
establish a simple yet strong baseline for efficient 4D cost aggregation.

• We design a pure 2D convolutional Bidirectional Geometry Aggregation block to indepen-
dently capture spatial and disparity representation of the 4D cost volume.

• We demonstrate the effectiveness of our approach, achieving state-of-the-art performance
on multiple benchmarks. The proposed decouple aggregation paradigm opens up a new
research direction for the community.

2 RELATED WORK

Cost aggregation paradigm stereo matching methods (Duggal et al., 2019b; Guo et al., 2019; Kendall
et al., 2017; Xu et al., 2022; Xu & Zhang, 2020a) typically follow a four-stage pipeline: feature
extraction, cost volume construction, cost aggregation, and disparity regression. Among these, the
cost volume serves as the core basis for matching decisions, and its construction quality directly
affects final performance.

Cost volume construction: Existing cost volume representation can be divided into two categories:
the concatenation volume and the correlation volume. GC-Net (Kendall et al., 2017) directly
concatenate the features maps of left and right images to construct a 4D concatenation cost volume
for all disparities. This dense 4D concatenation volume retains comprehensive information from
all channels, and thus exhibit enhanced performance. However, excessive redundant information
forces the model to rely on a large amount of 3D convolutions to aggregate and regularize the 4D
cost volume, which means high computational and memory cost. RAFT-Stereo (Lipson et al., 2021b)
employs the all-pairs correlation constructed based on a similarity matrix derived from left and right
image features. However just calculates the feature correlation matrix lacks non-local information
and struggling in ill-posed regions. GwcNet (Guo et al., 2019) designed a group-wise correlation
cost volume that combines the advantage of these two cost volumes. IGEV-Stereo (Xu et al., 2023b)
constructs a geometry encoding volume incorporating context information and local matching clues.

Cost aggregation: In order to filter the redundant noise on cost volume, cost aggregation consumes a
significant amount of computational resources. DiffuVolume (Zheng et al., 2025) design an effective
diffusion-based framework which casts the information filtering as the denoising process of the
diffusion model. ACVNet (Xu et al., 2022) proposed the attention mechanism to filter the cost volume
and significantly alleviated the burden of cost aggregation. BANet (Xu et al., 2025) utlized spatial
attention to separate high-frequency edge regions and low-frequency smooth regions of cost volume.
However, these methods still require stacked 3D convolutions to regularize the 4D cost volumes.
Empirically, it seems that high-dimensional cost volume inevitably require dimension-matched
convolution to capture the internal correspondences.

3 IS 3D CONVOLUTION NECESSARY FOR 4D COST AGGREGATION?

In learning-based stereo matching, constructing a 4D cost volume (D × C ×W ×H) and applying
regularization form the foundation of state-of-the-art paradigms (Chang & Chen, 2018; Guo et al.,
2019; Kendall et al., 2017; Xu et al., 2022). A widely adopted convention is to directly employ
3D CNNs to process this 4D tensor. The underlying intuition is powerful and seemingly natural: a
high-dimensional tensor appears to inherently require dimension-matched convolution to capture the
complex, intertwined relationships across all its dimensions.

However, this empirical design prompts a critical reflection: Is this dimension-matched design truly
necessary or optimal? Could it potentially introduce redundancy or even noise? This section delves
into the inherent limitations of 3D regularization networks for stereo matching, thereby motivating
our novel spatial-disparity decoupled aggregation paradigm based on pure 2D convolutions.
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Figure 2: The framework of our proposed DBStereo. The Bidirectional Geometry Aggregation (BGA)
block is stacked with multiple Spatial Aggregation modules and Disparity Aggregation modules.
The Spatial Aggregation module extracts spatial context for each plane of the cost volume and the
Disparity Aggregation modules performs global receptive field disparity filtering on each pixel.

3.1 LIMITATIONS OF TRADITIONAL 3D REGULARIZATION NETWORK

In stereo matching based on 4D cost volumes, traditional aggregation paradigms commonly employ
3D convolutions for cost aggregation. Yet, this paradigm suffers from two inherent flaws:

Coupled Aggregation Pattern: The traditional paradigm enforces the use of 3D convolution kernels
(e.g., 3 × 3 × 3) to extract features from both spatial and disparity dimensions simultaneously. It
implies that the model must capture spatial context and disparity context simultaneously within a
local region through a single convolution operation. However, this coupled learning approach is
susceptible to overfitting due to noise in the training data.

Slow Receptive Field Expansion in Disparity Dimension: Due to the coupled aggregation pattern,
the expansion of the receptive field in the disparity dimension is inherently tied to that in the spatial
dimensions. Constrained by the kernel size, each 3D convolution operation can only increase the
receptive field in the disparity direction marginally (e.g., a 3× 3× 3 kernel increases it by only 2).
To capture sufficient disparity context, a deep stack of 3D CNNs layers is required, directly leading
to a dramatic increase in computational cost and memory consumption.

3.2 SPATIAL-DISPARITY DECOUPLED AGGREGATION PARADIGM

Based on the above shortcomings, we conducted a thorough analysis of the inherent properties of
stereo matching tasks and summarized the following task-specific priors.

Spatial Local Smoothness Prior: Adjacent pixels at the same depth possess similar disparity values.
This prior is particularly beneficial in low-frequency, textureless regions.

Disparity Unimodality Prior: For each single pixel, the correct disparity value should be unique,
meaning the disparity probability distribution should be a sharp unimodal distribution.

We propose a novel spatial-disparity decoupled aggregation paradigm that explicitly encodes these
two inherent prior into our network architecture, thereby introducing a powerful inductive bias.
Specifically, we reshape the high-dimensional 4D cost volume (D × C ×W ×H) into a 3D tensor
(D · C × W × H), decoupling the traditional 4D cost aggregation into two successive pure 2D
convolution steps:

Spatial Aggregation: A 2D convolution (e.g., 3× 3 kernel) is applied to the spatial dimension of
reshaped cost volume (D ·C ×W ×H). This step focuses on aggregating spatial context within the
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same disparity level, effectively smoothing image noise and resolving matching ambiguities in areas
like textureless regions.

Disparity Aggregation: Traditional 3D CNNs with their limited local receptive field in disparity
dimension struggle to capture long-range dependencies, often resulting in a blurred distribution
or a multi-modal distribution at edges or a flat distribution in textureless areas. We aim for each
aggregation along the disparity dimension to possess a global receptive field and apply 2D CNNs with
a 1× 1 kernel to the features after spatial aggregation. It is noteworthy that this 1× 1 convolution
essentially performs a global, fully-connected interaction across the entire disparity dimension (D),
achieving highly efficient optimization of the disparity context. Through this design, our disparity
aggregation module enables comparison and competition across the global disparity range, effectively
suppressing incorrect disparity responses and facilitating the formation of a more reasonable, sharper
unimodal probability distribution, leading to clearer object boundaries.

3.3 CONCLUSION

In summary, compared to coupled 3D CNNs, our decoupled structure imposes highly precise inductive
biases: spatial aggregation enforces spatial local smoothness prior, while disparity aggregation
enforces disparity unimodality prior. By incorporating these inductive biases into the network
architecture, we have significantly reduced the model’s search space. The model no longer needs to
implicitly learn these fundamental rules from vast amounts of data but instead learns higher level
feature representations directly under these inductive biases. This significantly mitigates the risk of
the model overfitting to noisy data, thereby achieving a regularization effect far surpassing that of
traditional 3D CNNs.

4 METHODS

In this section, we introduce the detailed structure of our proposed DBStereo. As shown in Figure 2,
unlike previous approaches utilizing 3D CNNs, we decouple the 3D regularization network into a
bidirectional geometry aggregation module based on purely 2D CNNs: disparity aggregation module
and spatial aggregation module.

4.1 FEATURE EXTRACTOR

We employ EfficientnetV2 (Tan & Le, 2021) pretrained on ImageNet (Deng et al., 2009) as our
backbone to extract multi-scale feature maps {fl,i, fr,i ∈ RCi×H

i ×W
i }, i = 4, 8, 16, 32. And a

cascade of upsampling blocks are utilized to restore the feature maps to 1/4 resolution of input
image. Finally, we obtain multi-scale feature maps Fl,i, Fr,i ∈ RCi×H

i ×W
i i = 4, 8, 16. Among

them, Fl,4, Fr,4 are used to construct the 4D cost volume for subsequent disparity prediction, while
Fl,4, Fl,8, Fl,16 are utilized to generate spatial attention, further enhancing the robustness of disparity
estimation.

4.2 COST VOLUME CONSTRUCTION

We construct a 4D group-wise correlation volume (Guo et al., 2019) with features extracted from the
left and right images. The left and right features are split into groups and computing correlation maps
group by group.

Cgwc(d, x, y, g) =
1

Nc/Ng
⟨fgl (x, y), f

g
r (x− d, y)⟩, (1)

where Nc denotes the number of feature channels, Ng denotes the number of groups and d denotes
the all disparity candidates.

4.3 COST AGGREGATION

Given the 4D group-wise cost volume, we first use the Disp2Channel operator to fuse the feature
dimension and the disparity dimension of the original cost volume. The core idea of our Disp2Channel
transformation is to concatenat the feature maps from all disparity levels, converting the 4D geometric
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Table 1: Comparison with the state-of-the-art methods on SceneFlow. Runtime is measured on an
RTX 3090 GPU. The best and second best are marked with colors.

Paradigm Method EPE (px) D1 (%) Runtime (ms)

Cost aggregation

PSMNet (Chang & Chen, 2018) 1.09 12.1 317
StereoNet (Khamis et al., 2018) 1.10 - 20
AANet (Xu & Zhang, 2020a) 0.87 9.3 93

AANet+ (Xu & Zhang, 2020a) 0.72 7.4 87
MobileStereoNet-2D (Shamsafar et al., 2022) 1.11 - 73

FADNet++ (Wang et al., 2021) 0.85 - 21
CoEx (Bangunharcana et al., 2021) 0.67 4.02 36

Fast-ACVNet (Xu et al., 2023c) 0.64 2.31 39
Fast-ACVNet+ (Xu et al., 2023c) 0.59 2.08 45

IINet (Li et al., 2024) 0.54 2.18 26
BANet-2D (Xu et al., 2025) 0.57 2.50 37
BANet-3D (Xu et al., 2025) 0.51 2.21 33

Iterative
optimization

RAFT-Stereo (Lipson et al., 2021b) 0.61 2.85 380

IGEV-Stereo (Xu et al., 2023b) 0.47 2.47 340

Decoupled
aggregation

DBStereo-S (Ours) 0.63 2.36 15
DBStereo-M (Ours) 0.50 1.80 33
DBStereo-L (Ours) 0.46 1.57 49

representation into a dense 3D representation without altering spatial structure. Specifically, we
reshape the volume as follows:

C3D = Reshape(Cgwc) ∈ R(G·D)×H×W (2)

This operation explicitly encodes the disparity context into a unified dimension and allows our
network to leverage the power of standard 2D convolutions to reason about complex 4D geometric
representations without the overhead of 3D operations.

The reconstructed 3D cost volume C3D is coupled complex spatial information and disparity in-
formation. To efficiently extract required geometric representation, we propose the Bidirectional
Geometry Aggregation (BGA) block with encoder-decoder architecture. The proposal of the BGA is
based on the theoretical analysis in Section 3. We construct the BGA by repeatedly stacking Spatial
Aggregation modules and Disparity Aggregation modules.

4.4 DISPARITY PREDICTION

After obtaining the aggregated cost volume, we apply the softmax operation to it to regress the
disparity map d0:

P = Softmax(Cagg(d)), (3)

d0 =

Dmax/4−1∑
d=0

d× P (4)

where Dmax denotes the predefined maximum disparity. The disparity map d0 is at 1/4 resolution of
input images. We utilize interpolation and learnable parameters respectively to upsample the disparity
map d0 to full resolution for supervision.

4.5 LOSS FUNCTION

We employ the smooth L1 loss to supervise our network. The loss is defined as follow:

L = λ0SmoothL1
(dinit − dgt) + λ1SmoothL1

(dfinal − dgt) (5)

where dgt is the ground truth of disparity and λ0 = 0.3, λ1 = 1.
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Table 2: Results KITTI 2012 and KITTI 2015 online benchmarks. All results are taken from the
official leaderboards or the original papers. The best and second best are marked with colors.

Method KITTI 2012 KITTI 2015

3-noc 3-all 4-noc 4-all D1-bg D1-fg D1-all
DispNetC (Mayer et al., 2016b) 4.11 4.65 2.77 3.20 4.32 4.41 4.34
AANet (Xu & Zhang, 2020a) 1.91 2.42 1.46 1.87 1.99 5.39 2.55

DecNet (Yao et al., 2021) - - - - 2.07 3.87 2.37
CoEx (Bangunharcana et al., 2021) 1.55 1.93 1.15 1.42 1.79 3.82 2.13
DeepPruner-Fast (Xu et al., 2022) - - - - 2.32 3.91 2.59
HITNet (Tankovich et al., 2021) 1.41 1.89 1.14 1.53 1.74 3.20 1.98
Fast-ACVNet+ (Xu et al., 2023c) 1.45 1.85 1.06 1.36 1.70 3.53 2.01
Fast-ACVNet (Xu et al., 2023c) 1.68 2.13 1.23 1.56 1.82 3.93 2.17

MobileStereoNet-2D (Shamsafar et al., 2022) - - - - 2.49 4.53 2.83
MobileStereoNet-3D (Shamsafar et al., 2022) - - - - 2.75 3.87 2.10

BANet-2D (Xu et al., 2025) 1.38 1.79 1.01 1.32 1.59 3.03 1.83
BANet-3D (Xu et al., 2025) 1.27 1.72 0.95 1.27 1.52 3.02 1.77

DBStereo-S(Ours) 1.81 2.29 1.24 1.62 1.92 3.73 2.24
DBStereo-M(Ours) 1.36 1.70 0.97 1.25 1.57 3.12 1.91
DBStereo-L(Ours) 1.25 1.60 0.91 1.14 1.50 2.98 1.77

Figure 3: Qualitative results on KITTI test set. By employing the spatial-disparity decoupled
aggregation, our method achieves outstanding performance in both texture-less and edge regions.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

Scene Flow (Mayer et al., 2016a) is a large-scale synthetic stereo dataset containing 35,454 training
and 4,370 testing stereo image pairs at 960×540 resolution. This dataset provides dense disparity map
as ground truth. We utilize the End Point Error (EPE) and the D1 outlier as the evaluation metrics,
where EPE is the average l1 distance between the prediction and ground truth disparity. And D1
denotes the percentage of outliers with an absolute error greater than 1 pixels.

KITTI is a real-world dataset consisting of KITTI 2012 (Geiger et al., 2012) and KITTI 2015 (Menze
& Geiger, 2015). KITTI 2012 provides 194 training pairs and 195 testing pairs, and KITTI 2015
provides 200 training pairs and 200 testing pairs. Both datasets provide sparse ground-truth disparities
obtained with LiDAR.

5.2 IMPLEMENTION DETAILS

We have implemented our methods using PyTorch and conducted experiments on 8 NVIDIA RTX
3090 GPUs. We randomly crop images to 320 × 736 and use the same data augmentation as (Guo
et al., 2025). We train our pretrained model on Scene Flow dataset for 90 epochs. For the KITTI
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Table 3: Effectiveness of proposed modules on Scene Flow test set. SA denotes Spatial Aggregation,
DA denotes Disparity Aggregation, 2D denotes 2D cost aggregation and 3D denotes 3D cost aggrega-
tion.

Model Cost volume Cost Aggregation EPE D1
3D 4D SA DA 2D 3D

3D Aggregation ✓ ✓ 0.66 2.43
2D Aggregation ✓ ✓ 0.68 2.57
DBStereo(w/o DA) ✓ ✓ 0.70 2.93
DBStereo(w/o SA) ✓ ✓ 0.73 3.19
DBStereo(full model) ✓ ✓ ✓ 0.63 2.36

online leaderboards, we fine-tuned the pre-trained model for 500 epochs using a mixed training set
comprising KITTI 2012 and KITTI 2015 training datasets.

5.3 BENCHMARK DATASETS AND PERFORMANCE

We evaluated our DBStereo on the widely used Scene Flow benchmark. Additionally, to facilitate
public comparison, we submitted our results to the official KITTI 2012 and KITTI 2015 online
leaderboards.

Scene Flow: As shown in Table 1, we compare our proposed DBStereo variants with several state-of-
the-art approaches on the Scene Flow dataset. Our DBStereo-L achieves the highest accuracy among
all the published real-time methods and even surpass many high-performance iterative-based methods
in both accuracy and inference time such as RAFT-Stereo and IGEV-Sterero, reducing the runtime
by more than 85%. In addition, our DBStereo-S takes only 15ms while maintaining competitive
performance. To more clearly demonstrate the advantage of DBStereo in the trade-off between
efficiency and performance, we visualize the results from Table 1 in the bottom row of Figure 1,
distinguishing between comparisons with aggregation-based methods and classical iterative-based
methods. It can be observed that DBStereo achieves the optimal efficiency–accuracy curve.

KITTI: We fine-tuned the pre-trained model on the mixed dataset of KITTI 2012 and KITTI 2015 for
best performance. As shown in the Table 2, our DBStereo-L achieved state-of-the-art performance for
almost all metrics on KITTI 2012 and KITTI 2015 online leaderboards. Figure 3 shows qualitative
results on KITTI 2012 and KITTI 2015 test sets, where our DBStereo significantly outperforms both
2D cost aggregation and 3D cost aggregation in the difficult scenarios.

5.4 ABLATION STUDY

We conducted comprehensive ablation studies to validate the contribution of each component in our
framework. Due to the simplified training settings, the quantitative results of ablation experiments
differ from the comparison results described above.

Effectiveness of proposed modules To demonstrate the effectiveness of the proposed Spatial-
Disparity Decoupled Aggregation Paradigm compared to previous aggregation paradigms, we com-
pared our DBStereo against corresponding variants that employ 3D convolutions to aggregate 4D
cost volumes and 2D convolutions to aggregate 3D cost volumes. Specifically, for the variant corre-
sponding to 3D aggregation, we removed the Disp2Channel operator and replaced both the Disparity
Aggregation and Spatial Aggregation modules within the BGA block with a single 3D convolution.
For the 2D aggregation variant, we substituted the 4D cost volume in DBStereo with a 3D correlation
cost volume, while also removing the Disp2Channel operator and replacing the BGA block with stan-
dard 2D convolutions. The results presented in Table 3 indicate that DBStereo not only constructs a
4D cost volume enriched with geometric information but also achieves superior performance through
the proposed decoupled 2D aggregation strategy. Furthermore, ablations involving the separate
removal of Spatial Aggregation (SA) and Disparity Aggregation (DA) within DBStereo both led
to significant performance degradation, underscoring the necessity of combining both aggregation
mechanisms for optimal results.
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Sharper Unimodal Distribution from Disparity Aggregatio In Sec 3, we posited that for an indi-
vidual pixel, the true disparity value should be unique—that is, the disparity probability distribution
should manifest as a sharp unimodal distribution. The disparity aggregation with global receptive field
suppresses mismatches across the entire field of disparity, inherently introducing the inductive bias
of this unimodal prior. To more intuitively demonstrate the advantage of our method, we visualize
the disparity distributions corresponding to edge pixels, as shown in the upper right corner of Figure.
1. The visualized disparity probability distribution of our method is unimodal, whereas that of the
original 3D convolution-based aggregation method exhibits a multimodal distribution.

Runtime Analysis. As quantitatively shown in Table 4, we provide a detailed comparison of inference
latency across different model variants. All timing evaluations were conducted on a single RTX 3090
GPU with a batch size of 1. Although the computational demand naturally increases with model
size and complexity, our approach maintains competitive inference speeds that satisfy real-time
application requirements. Specifically, our DBStereo-S processes stereo image pairs at approximately
67 FPS, while the largest variant DBStereo-L still achieves a notable 21 FPS. These highlight the
effectiveness of our design in optimizing the trade-off between real-time performance and prediction
accuracy, demonstrating the scalability of our architecture and its practical usability in deployment.

Table 4: Runtime Analysis of DBStereo’s different modules

Module Feature Extraction Cost Cost Aggregation Disparity Regression Total Time

DBStereo-S 10.11 2.01 2.03 1.27 15.42
DBStereo-M 24.25 2.01 6.29 1.27 33.81
DBStereo-L 24.25 2.01 22.14 1.27 49.67

Figure 4: Visualization of results on DTU test set

6 EXTENSION TO MVS
We extend our DBStereo to multi-view stereo based on IterMVS. Following the training setting of
IterMVS, we train our DBMVS on DTU dataset (Aanæs et al., 2016) for 32 epochs. As shown
in Tab. 5, compared to IterMVS and its derivative IGEV-MVS, our approach achieves state-of-the-
art performance in both accuracy and inference speed, which demonstrates the universality of our
decoupled aggregation paradigm.

Table 5: Quantitative evaluation on DTU.

Method AbsRel ↓ SqRel ↓ RMSE ↓ Runtime (ms) ↓
IterMVS (Wang et al., 2022) 0.007 0.712 16.84 260
IGEV-MVS (Xu et al., 2023b) 0.012 1.71 26.58 215
DBMVS (Ours) 0.006 0.522 13.30 62

7 CONCLUSION

In this paper, we provide a thorough analysis of the limitations of traditional aggregation paradigm
methods, breaking the empirical approach of using dimension-matched convolutions for a high-
dimensional cost volume. We propose the DBStereo which is based on pure 2D convolutions but
achieve impressive performance both in accuracy and inferenc time. DBStereo is a simple yet strong
baseline of our proposed decouple aggregation paradigm. We hope our research will provide some
insightful directions for future community studies.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

The authors confirm their full accountability for the scholarly validity and originality of this
manuscript. We attest that artificial intelligence was in no way used to generate or falsify re-
search data. The only application of Large Language Models was to aid in wording and phrasing,
with the goal of improving the prose’s idiomatic flow and making the presentation more accessible
to an international academic audience. The final responsibility for the intellectual content and its
expression remains entirely with the authors.
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