

DECOUPLING BIDIRECTIONAL GEOMETRIC REPRESENTATIONS OF 4D COST VOLUME VIA 2D CONVOLUTION

Anonymous authors

Paper under double-blind review

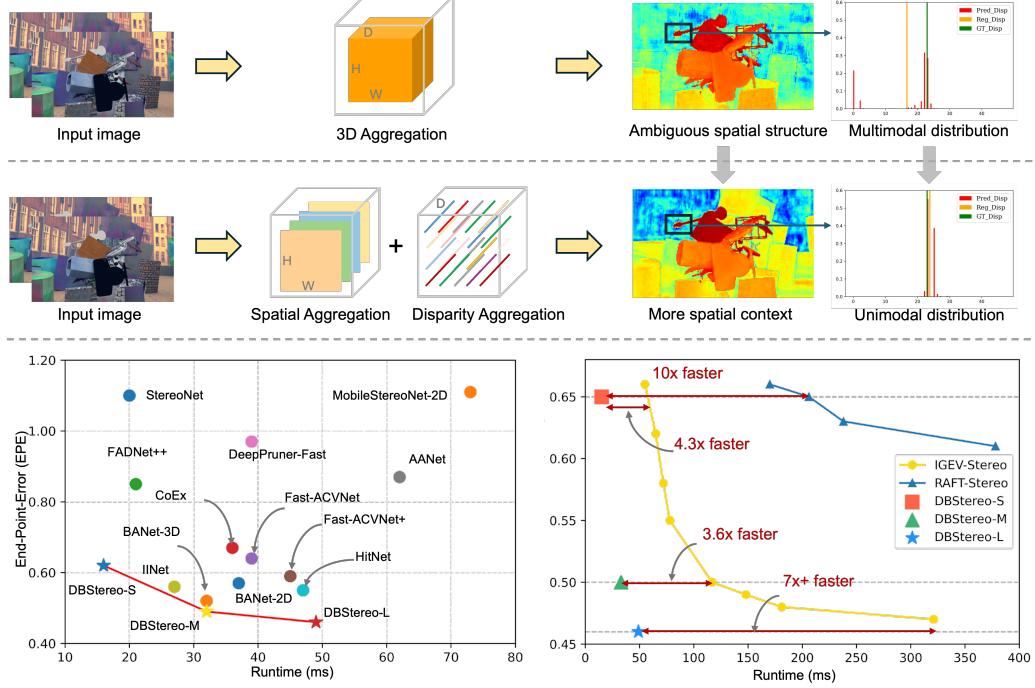


Figure 1: The proposed DBStereo decouple the traditional 3D aggregation into spatial aggregation and disparity aggregation which is merely based on 2D convolutions. The spatial aggregation can incorporate more spatial structure context and the disparity aggregation make the prediction of disparity more concentrated around the ground truth. Our DBStereo outperforms all existing aggregation-based methods (Bangunharanca et al., 2021; Duggal et al., 2019c; Khamis et al., 2018; Li et al., 2024; Shamsafar et al., 2022; Tankovich et al., 2021; Wang et al., 2021; Xu et al., 2022; 2023c; Xu & Zhang, 2020b) in both inference time and accuracy, even surpassing classical iterative-based methods such as RAFT-Stereo (Lipson et al., 2021b) and IGEV-Stereo (Xu et al., 2023b).

ABSTRACT

High-performance real-time stereo matching methods invariably rely on 3D regularization of the 4D cost volume, which is unfriendly to mobile devices. While methods based on 2D regularization of 3D cost volume struggles in ill-posed regions. In this paper, we propose Decoupling Bidirectional Geometric Representations of 4D cost volume and present a deployment-friendly network DBStereo, which is based on pure 2D convolutions. Specifically, we first provide a thorough analysis of the decoupling characteristics of 4D cost volume. And design a lightweight decoupled bidirectional geometry aggregation block to capture spatial and disparity representation respectively. Through decoupled learning, our approach achieves real-time performance and impressive accuracy simultaneously. Extensive experiments demonstrate that our proposed DBStereo outperforms all existing aggregation-based methods in both inference time and accuracy, even surpassing the iterative-based methods such as RAFT-Stereo and IGEV-Stereo.

054 Our study breaks the empirical design of using 3D convolution for 4D cost volume
055 and provides a simple yet strong baseline, i.e., the proposed decoupled aggregation
056 paradigm, to facilitate further study.
057

059 1 INTRODUCTION

061 Stereo matching has remained a core challenge in computer vision over the past decade, continuously
062 advancing critical applications such as autonomous driving (Yang et al., 2019), industrial robotics
063 (Hsieh & Lin, 2020), and augmented reality (Zenati & Zerhouni, 2007). The essence of the technology
064 lies in establishing accurate pixel-level correspondences between left and right images. However,
065 under the resource-constrained conditions of edge computing devices, simultaneously achieving high
066 matching accuracy and real-time inference remains a significant bottleneck.
067

068 With the evolution of deep learning, end-to-end stereo matching frameworks have gradually become
069 mainstream. One of the representative works is PSMNet (Chang & Chen, 2018), which constructs
070 a 4D cost volume and utilizes 3D convolutional network to aggregate it. Such 4D cost aggregation
071 paradigm (Cheng et al., 2024; Duggal et al., 2019a; Liang et al., 2019; Nie et al., 2019; Wu et al.,
072 2019) achieve significant breakthroughs on GPU devices. However, the redundant information
073 inherent in 4D cost volumes force the model to rely on computationally expensive 3D convolutions
074 for regularization, posing substantial difficulties for mobile deployment. In recent years, iterative
075 optimization paradigms (Lipson et al., 2021a; Wang et al., 2024; Xu et al., 2023a; Cheng et al.,
076 2025; Wei et al., 2025), have demonstrated superior performance. Unlike previous aggregation-
077 based methods, these approaches construct 3D correlation cost volumes and progressively refine
078 disparity maps through iterative indexing it, thereby avoiding complex cost aggregation. While
079 reducing computational complexity, the lack of cost aggregation results in cost volumes deficient in
080 global geometric information, leading to disparity discontinuities in occluded regions, mismatches in
081 textureless areas, and artifacts on reflective surfaces. More critically, achieving acceptable accuracy
082 often requires multiple iterations, resulting in inference delays exceeding 100 ms for most methods,
083 which hinders their applicability in real-time scenarios.
084

085 Real-time stereo matching research (Bangunharanca et al., 2021; Duggal et al., 2019c; Khamis
086 et al., 2018; Li et al., 2024; Shamsafar et al., 2022; Tankovich et al., 2021) can be categorized into
087 two types: 2D CNNs based and 3D CNNs based. Both of them made significant compromises:
088 AANet (Xu & Zhang, 2020a) constructs a 3D correlation cost volume and enhances performance in
089 pathological regions by using deformable convolutions, but its specialized operators pose challenges
090 for deployment on edge devices; MobileStereoNet-2D (Shamsafar et al., 2022) attempts a pure
091 2D convolutional architecture but suffers severe performance degradation; DeepPruner (Duggal
092 et al., 2019b) narrows the search space by pruning the 4D cost volumes, ACVNet (Xu et al., 2022)
093 filters redundant information via attention weights, yet both still rely on 3D CNNs for aggregation.
094 Empirically, it appears that the informative 4D cost volume can not escape its dependence on 3D
095 CNNs.
096

097 In fact, these methods overlook inherent limitations of 3D CNNs in stereo matching: spatial and
098 disparity dimensions share the same receptive fields, while disparity aggregation requires a global
099 receptive field, which leading to degradation; the coupled learning of spatial and disparity features
100 increases the training difficulty. Although FoundationStereo (Wen et al., 2025) recognizes the need
101 for different receptive fields of two dimensions and decomposes a 3D convolution into a spatial
102 3D convolution and a disparity 3D convolution, it remains a localized refinement of standard 3D
103 convolution rather than addressing the fundamental issue of coupled learning.
104

105 In this paper, we propose a novel pure 2D CNN-based framework for 4D cost aggregation that
106 simultaneously achieves real-time performance and high accuracy. We first provide an in-depth
107 analysis of the limitations of 3D regularization networks and introduce our spatial-disparity decoupled
108 aggregation paradigm. Specifically, we first use Disp2Channel operator to transform the 4D cost
109 volume to the 3D one. Then, through our designed Bidirectional Geometry Aggregation (BGA)
110 block consisting of Spatial Aggregation module and Disparity Aggregation module, we decouple
111 the geometric representation of the cost volume into spatial and disparity dimensions. By leveraging
112 2D CNN-based bidirectional geometric representation decoupling, our method achieves significant
113 improvement. More importantly, our work pioneers a new technical pathway for high-accuracy
114 real-time stereo matching.
115

108 Our main contributions are summarized as follows:
109

110 • We provide a thorough analysis for the geometric representation of 4D cost volume, breaking
111 away from the traditional coupled aggregation paradigm based on 3D convolutions, and
112 establish a simple yet strong baseline for efficient 4D cost aggregation.
113

114 • We design a pure 2D convolutional Bidirectional Geometry Aggregation block to indepen-
115 dently capture spatial and disparity representation of the 4D cost volume.
116

117 • We demonstrate the effectiveness of our approach, achieving state-of-the-art performance
118 on multiple benchmarks. The proposed decouple aggregation paradigm opens up a new
119 research direction for the community.
120

121 **2 RELATED WORK**
122

123 Cost aggregation paradigm stereo matching methods (Duggal et al., 2019b; Guo et al., 2019; Kendall
124 et al., 2017; Xu et al., 2022; Xu & Zhang, 2020a) typically follow a four-stage pipeline: feature
125 extraction, cost volume construction, cost aggregation, and disparity regression. Among these, the
126 cost volume serves as the core basis for matching decisions, and its construction quality directly
127 affects final performance.
128

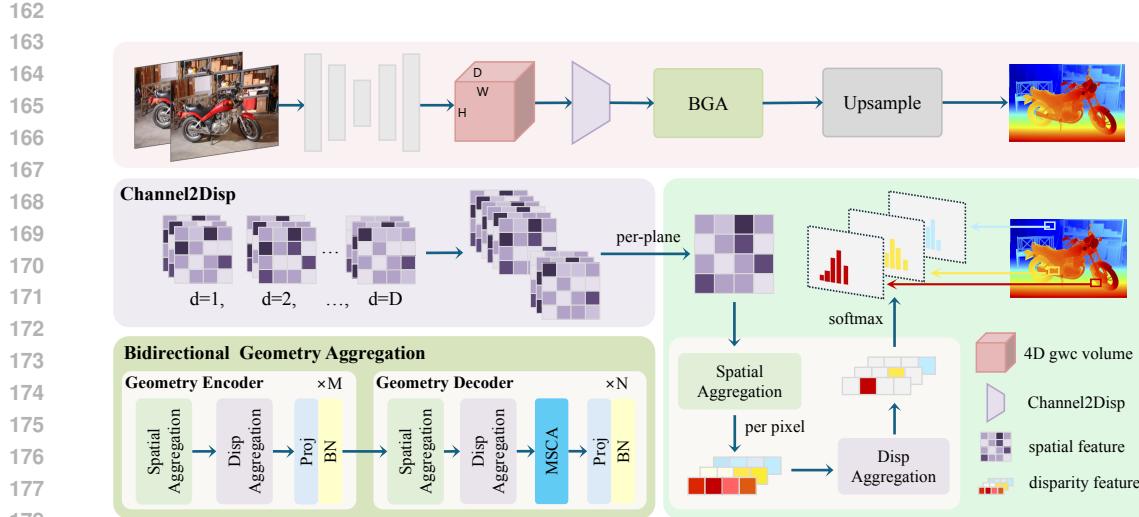
129 **Cost volume construction:** Existing cost volume representation can be divided into two categories:
130 the concatenation volume and the correlation volume. GC-Net (Kendall et al., 2017) directly
131 concatenate the features maps of left and right images to construct a 4D concatenation cost volume
132 for all disparities. This dense 4D concatenation volume retains comprehensive information from
133 all channels, and thus exhibit enhanced performance. However, excessive redundant information
134 forces the model to rely on a large amount of 3D convolutions to aggregate and regularize the 4D
135 cost volume, which means high computational and memory cost. RAFT-Stereo (Lipson et al., 2021b)
136 employs the all-pairs correlation constructed based on a similarity matrix derived from left and right
137 image features. However just calculates the feature correlation matrix lacks non-local information
138 and struggling in ill-posed regions. GwcNet (Guo et al., 2019) designed a group-wise correlation
139 cost volume that combines the advantage of these two cost volumes. IGEV-Stereo (Xu et al., 2023b)
140 constructs a geometry encoding volume incorporating context information and local matching clues.
141

142 **Cost aggregation:** In order to filter the redundant noise on cost volume, cost aggregation consumes a
143 significant amount of computational resources. DiffuVolume (Zheng et al., 2025) design an effective
144 diffusion-based framework which casts the information filtering as the denoising process of the
145 diffusion model. ACVNet (Xu et al., 2022) proposed the attention mechanism to filter the cost volume
146 and significantly alleviated the burden of cost aggregation. BANet (Xu et al., 2025) utlized spatial
147 attention to separate high-frequency edge regions and low-frequency smooth regions of cost volume.
148 However, these methods still require stacked 3D convolutions to regularize the 4D cost volumes.
149 **Empirically, it seems that high-dimensional cost volume inevitably require dimension-matched**
150 **convolution to capture the internal correspondences.**

151 **3 IS 3D CONVOLUTION NECESSARY FOR 4D COST AGGREGATION?**
152

153 In learning-based stereo matching, constructing a 4D cost volume ($D \times C \times W \times H$) and applying
154 regularization form the foundation of state-of-the-art paradigms (Chang & Chen, 2018; Guo et al.,
155 2019; Kendall et al., 2017; Xu et al., 2022). A widely adopted convention is to directly employ
156 3D CNNs to process this 4D tensor. The underlying intuition is powerful and seemingly natural: a
157 high-dimensional tensor appears to inherently require dimension-matched convolution to capture the
158 complex, intertwined relationships across all its dimensions.
159

160 However, this empirical design prompts a critical reflection: Is this dimension-matched design truly
161 necessary or optimal? Could it potentially introduce redundancy or even noise? This section delves
162 into the inherent limitations of 3D regularization networks for stereo matching, thereby motivating
163 our novel spatial-disparity decoupled aggregation paradigm based on pure 2D convolutions.
164



179
180 Figure 2: The framework of our proposed DBStereo. The Bidirectional Geometry Aggregation (BGA)
181 block is stacked with multiple Spatial Aggregation modules and Disparity Aggregation modules.
182 The Spatial Aggregation module extracts spatial context for each plane of the cost volume and the
183 Disparity Aggregation modules performs global receptive field disparity filtering on each pixel.
184

185 3.1 LIMITATIONS OF TRADITIONAL 3D REGULARIZATION NETWORK

186 In stereo matching based on 4D cost volumes, traditional aggregation paradigms commonly employ
187 3D convolutions for cost aggregation. Yet, this paradigm suffers from two inherent flaws:

188 **Coupled Aggregation Pattern:** The traditional paradigm enforces the use of 3D convolution kernels
189 (e.g., $3 \times 3 \times 3$) to extract features from both spatial and disparity dimensions simultaneously. It
190 implies that the model must capture spatial context and disparity context simultaneously within a
191 local region through a single convolution operation. However, this coupled learning approach is
192 susceptible to overfitting due to noise in the training data.

193 **Slow Receptive Field Expansion in Disparity Dimension:** Due to the coupled aggregation pattern,
194 the expansion of the receptive field in the disparity dimension is inherently tied to that in the spatial
195 dimensions. Constrained by the kernel size, each 3D convolution operation can only increase the
196 receptive field in the disparity direction marginally (e.g., a $3 \times 3 \times 3$ kernel increases it by only 2).
197 To capture sufficient disparity context, a deep stack of 3D CNNs layers is required, directly leading
198 to a dramatic increase in computational cost and memory consumption.

201 3.2 SPATIAL-DISPARITY DECOUPLED AGGREGATION PARADIGM

202 Based on the above shortcomings, we conducted a thorough analysis of the inherent properties of
203 stereo matching tasks and summarized the following task-specific priors.

204 **Spatial Local Smoothness Prior:** Adjacent pixels at the same depth possess similar disparity values.
205 This prior is particularly beneficial in low-frequency, textureless regions.

206 **Disparity Unimodality Prior:** For each single pixel, the correct disparity value should be unique,
207 meaning the disparity probability distribution should be a sharp unimodal distribution.

208 We propose a novel spatial-disparity decoupled aggregation paradigm that explicitly encodes these
209 two inherent prior into our network architecture, thereby introducing a powerful inductive bias.
210 Specifically, we reshape the high-dimensional 4D cost volume ($D \times C \times W \times H$) into a 3D tensor
211 ($D \cdot C \times W \times H$), decoupling the traditional 4D cost aggregation into two successive pure 2D
212 convolution steps:

213 **Spatial Aggregation:** A 2D convolution (e.g., 3×3 kernel) is applied to the spatial dimension of
214 reshaped cost volume ($D \cdot C \times W \times H$). This step focuses on aggregating spatial context within the

216 same disparity level, effectively smoothing image noise and resolving matching ambiguities in areas
217 like textureless regions.

218 **Disparity Aggregation:** Traditional 3D CNNs with their limited local receptive field in disparity
219 dimension struggle to capture long-range dependencies, often resulting in a blurred distribution
220 or a multi-modal distribution at edges or a flat distribution in textureless areas. We aim for each
221 aggregation along the disparity dimension to possess a global receptive field and apply 2D CNNs with
222 a 1×1 kernel to the features after spatial aggregation. It is noteworthy that this 1×1 convolution
223 essentially performs a global, fully-connected interaction across the entire disparity dimension (D),
224 achieving highly efficient optimization of the disparity context. Through this design, our disparity
225 aggregation module enables comparison and competition across the global disparity range, effectively
226 suppressing incorrect disparity responses and facilitating the formation of a more reasonable, sharper
227 unimodal probability distribution, leading to clearer object boundaries.

228 3.3 CONCLUSION

229 In summary, compared to coupled 3D CNNs, our decoupled structure imposes highly precise inductive
230 biases: spatial aggregation enforces *spatial local smoothness prior*, while disparity aggregation
231 enforces *disparity unimodality prior*. By incorporating these inductive biases into the network
232 architecture, we have significantly reduced the model’s search space. The model no longer needs to
233 implicitly learn these fundamental rules from vast amounts of data but instead learns higher level
234 feature representations directly under these inductive biases. This significantly mitigates the risk of
235 the model overfitting to noisy data, thereby achieving a regularization effect far surpassing that of
236 traditional 3D CNNs.

237 4 METHODS

238 In this section, we introduce the detailed structure of our proposed DBStereo. As shown in Figure 2,
239 unlike previous approaches utilizing 3D CNNs, we decouple the 3D regularization network into a
240 bidirectional geometry aggregation module based on purely 2D CNNs: disparity aggregation module
241 and spatial aggregation module.

242 4.1 FEATURE EXTRACTOR

243 We employ EfficientnetV2 (Tan & Le, 2021) pretrained on ImageNet (Deng et al., 2009) as our
244 backbone to extract multi-scale feature maps $\{\mathbf{f}_{l,i}, \mathbf{f}_{r,i} \in \mathbb{R}^{C_i \times \frac{H}{i} \times \frac{W}{i}}\}, i = 4, 8, 16, 32$. And a
245 cascade of upsampling blocks are utilized to restore the feature maps to 1/4 resolution of input
246 image. Finally, we obtain multi-scale feature maps $F_{l,i}, F_{r,i} \in \mathbb{R}^{C_i \times \frac{H}{i} \times \frac{W}{i}} i = 4, 8, 16$. Among
247 them, $F_{l,4}, F_{r,4}$ are used to construct the 4D cost volume for subsequent disparity prediction, while
248 $F_{l,4}, F_{l,8}, F_{l,16}$ are utilized to generate spatial attention, further enhancing the robustness of disparity
249 estimation.

250 4.2 COST VOLUME CONSTRUCTION

251 We construct a 4D group-wise correlation volume (Guo et al., 2019) with features extracted from the
252 left and right images. The left and right features are split into groups and computing correlation maps
253 group by group.

$$254 \mathbf{C}_{gwc}(d, x, y, g) = \frac{1}{N_c/N_g} \langle \mathbf{f}_l^g(x, y), \mathbf{f}_r^g(x - d, y) \rangle, \quad (1)$$

255 where N_c denotes the number of feature channels, N_g denotes the number of groups and d denotes
256 the all disparity candidates.

257 4.3 COST AGGREGATION

258 Given the 4D group-wise cost volume, we first use the Disp2Channel operator to fuse the feature
259 dimension and the disparity dimension of the original cost volume. The core idea of our Disp2Channel
260 transformation is to concatentat the feature maps from all disparity levels, converting the 4D geometric

270 Table 1: Comparison with the state-of-the-art methods on SceneFlow. Runtime is measured on an
 271 RTX 3090 GPU. The **best** and **second best** are marked with colors.
 272

273 Paradigm	274 Method	275 EPE (px)	276 D1 (%)	277 Runtime (ms)
278 Cost aggregation	PSMNet (Chang & Chen, 2018)	1.09	12.1	317
	StereoNet (Khamis et al., 2018)	1.10	-	20
	AANet (Xu & Zhang, 2020a)	0.87	9.3	93
	AANet+ (Xu & Zhang, 2020a)	0.72	7.4	87
	MobileStereoNet-2D (Shamsafar et al., 2022)	1.11	-	73
	FADNet++ (Wang et al., 2021)	0.85	-	21
	CoEx (Bangunharcana et al., 2021)	0.67	4.02	36
	Fast-ACVNet (Xu et al., 2023c)	0.64	2.31	39
	Fast-ACVNet+ (Xu et al., 2023c)	0.59	2.08	45
	IINet (Li et al., 2024)	0.54	2.18	26
	BANet-2D (Xu et al., 2025)	0.57	2.50	37
	BANet-3D (Xu et al., 2025)	0.51	2.21	33
286 Iterative 287 optimization	RAFT-Stereo (Lipson et al., 2021b)	0.61	2.85	380
	IGEV-Stereo (Xu et al., 2023b)	0.47	2.47	340
289 Decoupled 290 aggregation	DBStereo-S (Ours)	0.63	2.36	15
	DBStereo-M (Ours)	0.50	1.80	33
	DBStereo-L (Ours)	0.46	1.57	49

294 representation into a dense 3D representation without altering spatial structure. Specifically, we
 295 reshape the volume as follows:

$$C_{3D} = \text{Reshape}(C_{gwc}) \in \mathbb{R}^{(G \cdot D) \times H \times W} \quad (2)$$

298 This operation explicitly encodes the disparity context into a unified dimension and allows our
 299 network to leverage the power of standard 2D convolutions to reason about complex 4D geometric
 300 representations without the overhead of 3D operations.

301 The reconstructed 3D cost volume C_{3D} is coupled complex spatial information and disparity in-
 302 formation. To efficiently extract required geometric representation, we propose the Bidirectional
 303 Geometry Aggregation (BGA) block with encoder-decoder architecture. The proposal of the BGA is
 304 based on the theoretical analysis in Section 3. We construct the BGA by repeatedly stacking Spatial
 305 Aggregation modules and Disparity Aggregation modules.

306 4.4 DISPARITY PREDICTION

308 After obtaining the aggregated cost volume, we apply the softmax operation to it to regress the
 309 disparity map d_0 :

$$P = \text{Softmax}(\mathbf{C}_{agg}(d)), \quad (3)$$

$$\mathbf{d}_0 = \sum_{d=0}^{D_{max}/4-1} d \times P \quad (4)$$

315 where D_{max} denotes the predefined maximum disparity. The disparity map d_0 is at 1/4 resolution of
 316 input images. We utilize interpolation and learnable parameters respectively to upsample the disparity
 317 map d_0 to full resolution for supervision.

319 4.5 LOSS FUNCTION

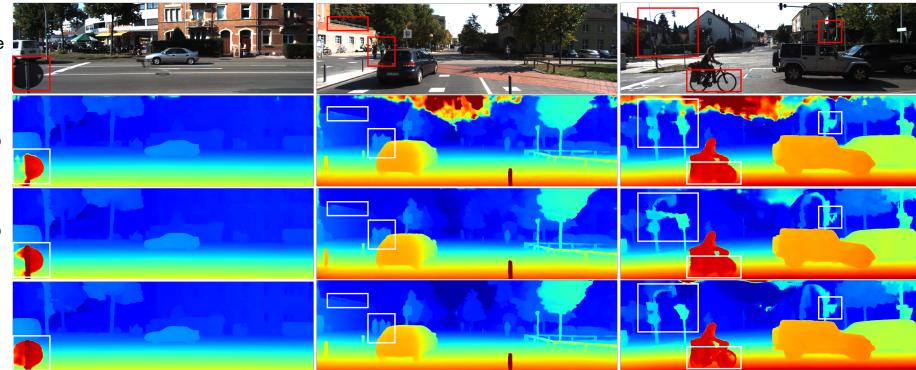
321 We employ the smooth L_1 loss to supervise our network. The loss is defined as follow:

$$\mathcal{L} = \lambda_0 \text{Smooth}_{L_1}(\mathbf{d}_{init} - \mathbf{d}_{gt}) + \lambda_1 \text{Smooth}_{L_1}(\mathbf{d}_{final} - \mathbf{d}_{gt}) \quad (5)$$

322 where d_{gt} is the ground truth of disparity and $\lambda_0 = 0.3, \lambda_1 = 1$.

324 Table 2: Results KITTI 2012 and KITTI 2015 online benchmarks. All results are taken from the
 325 official leaderboards or the original papers. The **best** and **second best** are marked with colors.
 326

327 328 329 330 331 332 333 334 335 336 337 338 339	Method	329 330 331 332 333 334 335 336 337 338 339				329 330 331 332 333 334 335 336 337 338 339		
		3-noc	3-all	4-noc	4-all	D1-bg	D1-fg	D1-all
DispNetC (Mayer et al., 2016b)		4.11	4.65	2.77	3.20	4.32	4.41	4.34
AANet (Xu & Zhang, 2020a)		1.91	2.42	1.46	1.87	1.99	5.39	2.55
DecNet (Yao et al., 2021)		-	-	-	-	2.07	3.87	2.37
CoEx (Bangunharcana et al., 2021)		1.55	1.93	1.15	1.42	1.79	3.82	2.13
DeepPruner-Fast (Xu et al., 2022)		-	-	-	-	2.32	3.91	2.59
HITNet (Tankovich et al., 2021)		1.41	1.89	1.14	1.53	1.74	3.20	1.98
Fast-ACVNet+ (Xu et al., 2023c)		1.45	1.85	1.06	1.36	1.70	3.53	2.01
Fast-ACVNet (Xu et al., 2023c)		1.68	2.13	1.23	1.56	1.82	3.93	2.17
MobileStereoNet-2D (Shamsafar et al., 2022)		-	-	-	-	2.49	4.53	2.83
MobileStereoNet-3D (Shamsafar et al., 2022)		-	-	-	-	2.75	3.87	2.10
BANet-2D (Xu et al., 2025)		1.38	1.79	1.01	1.32	1.59	3.03	1.83
BANet-3D (Xu et al., 2025)		1.27	1.72	0.95	1.27	1.52	3.02	1.77
DBStereo-S(Ours)		1.81	2.29	1.24	1.62	1.92	3.73	2.24
DBStereo-M(Ours)		1.36	1.70	0.97	1.25	1.57	3.12	1.91
DBStereo-L(Ours)		1.25	1.60	0.91	1.14	1.50	2.98	1.77



344
 345 Left image
 346
 347
 348
 349 BANet-2D
 350
 351
 352 BANet-3D
 353
 354 DBStereo
 355
 356
 357 Figure 3: Qualitative results on KITTI test set. By employing the spatial-disparity decoupled
 358 aggregation, our method achieves outstanding performance in both texture-less and edge regions.
 359

360 5 EXPERIMENTS

362 5.1 DATASETS AND EVALUATION METRICS

364 **Scene Flow** (Mayer et al., 2016a) is a large-scale synthetic stereo dataset containing 35,454 training
 365 and 4,370 testing stereo image pairs at 960×540 resolution. This dataset provides dense disparity map
 366 as ground truth. We utilize the End Point Error (EPE) and the D1 outlier as the evaluation metrics,
 367 where EPE is the average l_1 distance between the prediction and ground truth disparity. And D1
 368 denotes the percentage of outliers with an absolute error greater than 1 pixels.

369 **KITTI** is a real-world dataset consisting of KITTI 2012 (Geiger et al., 2012) and KITTI 2015 (Menze
 370 & Geiger, 2015). KITTI 2012 provides 194 training pairs and 195 testing pairs, and KITTI 2015
 371 provides 200 training pairs and 200 testing pairs. Both datasets provide sparse ground-truth disparities
 372 obtained with LiDAR.

374 5.2 IMPLEMENTATION DETAILS

376 We have implemented our methods using PyTorch and conducted experiments on 8 NVIDIA RTX
 377 3090 GPUs. We randomly crop images to 320×736 and use the same data augmentation as (Guo
 et al., 2025). We train our pretrained model on Scene Flow dataset for 90 epochs. For the KITTI

378 Table 3: Effectiveness of proposed modules on Scene Flow test set. SA denotes Spatial Aggregation,
 379 DA denotes Disparity Aggregation, 2D denotes 2D cost aggregation and 3D denotes 3D cost aggregation.
 380

Model	Cost volume		Cost Aggregation			EPE	D1
	3D	4D	SA	DA	2D		
3D Aggregation		✓				✓	0.66
2D Aggregation	✓				✓		0.68
DBStereo(w/o DA)		✓	✓				0.70
DBStereo(w/o SA)		✓		✓			0.73
DBStereo(full model)	✓		✓	✓	✓		0.63
							2.36

389
 390
 391 online leaderboards, we fine-tuned the pre-trained model for 500 epochs using a mixed training set
 392 comprising KITTI 2012 and KITTI 2015 training datasets.

393
 394 **5.3 BENCHMARK DATASETS AND PERFORMANCE**
 395

396 We evaluated our DBStereo on the widely used Scene Flow benchmark. Additionally, to facilitate
 397 public comparison, we submitted our results to the official KITTI 2012 and KITTI 2015 online
 398 leaderboards.

400 **Scene Flow:** As shown in Table 1, we compare our proposed DBStereo variants with several state-of-
 401 the-art approaches on the Scene Flow dataset. Our DBStereo-L achieves the highest accuracy among
 402 all the published real-time methods and even surpass many high-performance iterative-based methods
 403 in both accuracy and inference time such as RAFT-Stereo and IGEV-Stereo, reducing the runtime
 404 by more than 85%. In addition, our DBStereo-S takes only 15ms while maintaining competitive
 405 performance. To more clearly demonstrate the advantage of DBStereo in the trade-off between
 406 efficiency and performance, we visualize the results from Table 1 in the bottom row of Figure 1,
 407 distinguishing between comparisons with aggregation-based methods and classical iterative-based
 408 methods. It can be observed that DBStereo achieves the optimal efficiency–accuracy curve.

409 **KITTI:** We fine-tuned the pre-trained model on the mixed dataset of KITTI 2012 and KITTI 2015 for
 410 best performance. As shown in the Table 2, our DBStereo-L achieved state-of-the-art performance for
 411 almost all metrics on KITTI 2012 and KITTI 2015 online leaderboards. Figure 3 shows qualitative
 412 results on KITTI 2012 and KITTI 2015 test sets, where our DBStereo significantly outperforms both
 413 2D cost aggregation and 3D cost aggregation in the difficult scenarios.

414
 415 **5.4 ABLATION STUDY**

416 We conducted comprehensive ablation studies to validate the contribution of each component in our
 417 framework. Due to the simplified training settings, the quantitative results of ablation experiments
 418 differ from the comparison results described above.

419 **Effectiveness of proposed modules** To demonstrate the effectiveness of the proposed Spatial-
 420 Disparity Decoupled Aggregation Paradigm compared to previous aggregation paradigms, we com-
 421 pared our DBStereo against corresponding variants that employ 3D convolutions to aggregate 4D
 422 cost volumes and 2D convolutions to aggregate 3D cost volumes. Specifically, for the variant corre-
 423 sponding to 3D aggregation, we removed the Disp2Channel operator and replaced both the Disparity
 424 Aggregation and Spatial Aggregation modules within the BGA block with a single 3D convolution.
 425 For the 2D aggregation variant, we substituted the 4D cost volume in DBStereo with a 3D correlation
 426 cost volume, while also removing the Disp2Channel operator and replacing the BGA block with stan-
 427 dard 2D convolutions. The results presented in Table 3 indicate that DBStereo not only constructs a
 428 4D cost volume enriched with geometric information but also achieves superior performance through
 429 the proposed decoupled 2D aggregation strategy. Furthermore, ablations involving the separate
 430 removal of Spatial Aggregation (SA) and Disparity Aggregation (DA) within DBStereo both led
 431 to significant performance degradation, underscoring the necessity of combining both aggregation
 mechanisms for optimal results.

432 **Sharper Unimodal Distribution from Disparity Aggregation** In Sec 3, we posited that for an individual pixel, the true disparity value should be unique—that is, the disparity probability distribution
 433 should manifest as a sharp unimodal distribution. The disparity aggregation with global receptive field
 434 suppresses mismatches across the entire field of disparity, inherently introducing the inductive bias
 435 of this unimodal prior. To more intuitively demonstrate the advantage of our method, we visualize
 436 the disparity distributions corresponding to edge pixels, as shown in the upper right corner of Figure.
 437 1. The visualized disparity probability distribution of our method is unimodal, whereas that of the
 438 original 3D convolution-based aggregation method exhibits a multimodal distribution.
 439

440 **Runtime Analysis.** As quantitatively shown in Table 4, we provide a detailed comparison of inference
 441 latency across different model variants. All timing evaluations were conducted on a single RTX 3090
 442 GPU with a batch size of 1. Although the computational demand naturally increases with model
 443 size and complexity, our approach maintains competitive inference speeds that satisfy real-time
 444 application requirements. Specifically, our DBStereo-S processes stereo image pairs at approximately
 445 67 FPS, while the largest variant DBStereo-L still achieves a notable 21 FPS. These highlight the
 446 effectiveness of our design in optimizing the trade-off between real-time performance and prediction
 447 accuracy, demonstrating the scalability of our architecture and its practical usability in deployment.
 448

449 Table 4: Runtime Analysis of DBStereo’s different modules

450 Module	451 Feature Extraction	452 Cost	453 Cost Aggregation	454 Disparity Regression	455 Total Time
452 DBStereo-S	453 10.11	454 2.01	455 2.03	456 1.27	457 15.42
453 DBStereo-M	454 24.25	455 2.01	456 6.29	457 1.27	458 33.81
454 DBStereo-L	455 24.25	456 2.01	457 22.14	458 1.27	459 49.67

460 Figure 4: Visualization of results on DTU test set

461 6 EXTENSION TO MVS

462 We extend our DBStereo to multi-view stereo based on IterMVS. Following the training setting of
 463 IterMVS, we train our DBMVS on DTU dataset (Aanæs et al., 2016) for 32 epochs. As shown
 464 in Tab. 5, compared to IterMVS and its derivative IGEV-MVS, our approach achieves state-of-the-
 465 art performance in both accuracy and inference speed, which demonstrates the universality of our
 466 decoupled aggregation paradigm.

467 Table 5: Quantitative evaluation on DTU.

468 Method	469 $\text{AbsRel} \downarrow$	470 $\text{SqRel} \downarrow$	471 $\text{RMSE} \downarrow$	472 $\text{Runtime (ms)} \downarrow$
473 IterMVS (Wang et al., 2022)	474 0.007	475 0.712	476 16.84	477 260
476 IGEV-MVS (Xu et al., 2023b)	477 0.012	478 1.71	479 26.58	480 215
480 DBMVS (Ours)	481 0.006	482 0.522	483 13.30	484 62

485 7 CONCLUSION

486 In this paper, we provide a thorough analysis of the limitations of traditional aggregation paradigm
 487 methods, breaking the empirical approach of using dimension-matched convolutions for a high-
 488 dimensional cost volume. We propose the DBStereo which is based on pure 2D convolutions but
 489 achieve impressive performance both in accuracy and inference time. DBStereo is a simple yet strong
 490 baseline of our proposed decouple aggregation paradigm. We hope our research will provide some
 491 insightful directions for future community studies.

486 REFERENCES
487

488 Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
489 Large-scale data for multiple-view stereopsis. *International Journal of Computer Vision*, 120(2):
490 153–168, 2016.

491 Antyanta Bangunharcana, Jae Won Cho, Seokju Lee, In So Kweon, Kyung-Soo Kim, and Soohyun
492 Kim. Correlate-and-excite: Real-time stereo matching via guided cost volume excitation. In *2021*
493 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 3542–3548.
494 IEEE, 2021.

495 Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In *Proceedings of the*
496 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.

497 Junda Cheng, Wei Yin, Kaixuan Wang, Xiaozhi Chen, Shijie Wang, and Xin Yang. Adaptive fusion
498 of single-view and multi-view depth for autonomous driving. In *Proceedings of the IEEE/CVF*
499 *Conference on Computer Vision and Pattern Recognition*, pp. 10138–10147, 2024.

500 Junda Cheng, Longliang Liu, Gangwei Xu, Xianqi Wang, Zhaoxing Zhang, Yong Deng, Jinliang
501 Zang, Yurui Chen, Zhipeng Cai, and Xin Yang. Monster: Marry monodepth to stereo unleashes
502 power. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 6273–6282,
503 2025.

504 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
505 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
506 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

507 Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. Deeppruner: Learn-
508 ing efficient stereo matching via differentiable patchmatch. In *Proceedings of the IEEE/CVF*
509 *International Conference on Computer Vision*, pp. 4384–4393, 2019a.

510 Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. Deeppruner: Learn-
511 ing efficient stereo matching via differentiable patchmatch. In *Proceedings of the IEEE/CVF*
512 *International Conference on Computer Vision (ICCV)*, October 2019b.

513 Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. Deeppruner: Learn-
514 ing efficient stereo matching via differentiable patchmatch. In *Proceedings of the IEEE/CVF*
515 *international conference on computer vision*, pp. 4384–4393, 2019c.

516 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
517 vision benchmark suite. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*,
518 pp. 3354–3361. IEEE, 2012.

519 Xianda Guo, Chenming Zhang, Youmin Zhang, Wenzhao Zheng, Dujun Nie, Matteo Poggi, and Long
520 Chen. Lightstereo: Channel boost is all you need for efficient 2d cost aggregation. In *2025 IEEE*
521 *International Conference on Robotics and Automation (ICRA)*, pp. 8738–8744. IEEE, 2025.

522 Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. Group-wise correlation
523 stereo network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
524 *Recognition (CVPR)*, June 2019.

525 Yi-Zeng Hsieh and Shih-Syun Lin. Robotic arm assistance system based on simple stereo matching
526 and q-learning optimization. *IEEE Sensors Journal*, 20(18):10945–10954, 2020.

527 Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
528 Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo re-
529 gression. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct
530 2017.

531 Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien Valentin, and Shahram
532 Izadi. Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction. In
533 *Proceedings of the European conference on computer vision (ECCV)*, pp. 573–590, 2018.

540 Ximeng Li, Chen Zhang, Wanjuan Su, and Wenbing Tao. Inet: Implicit intra-inter information fusion
541 for real-time stereo matching. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
542 volume 38, pp. 3225–3233, 2024.

543

544 Zhengfa Liang, Yulan Guo, Yiliu Feng, Wei Chen, Linbo Qiao, Li Zhou, Jianfeng Zhang, and
545 Hengzhu Liu. Stereo matching using multi-level cost volume and multi-scale feature constancy.
546 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(1):300–315, 2019.

547

548 Lahav Lipson, Zachary Teed, and Jia Deng. Raft-stereo: Multilevel recurrent field transforms for
549 stereo matching. In *2021 International Conference on 3D Vision (3DV)*, pp. 218–227. IEEE, 2021a.

550

551 Lahav Lipson, Zachary Teed, and Jia Deng. Raft-stereo: Multilevel recurrent field transforms for
552 stereo matching. In *2021 International Conference on 3D Vision (3DV)*, pp. 218–227, 2021b. doi:
553 10.1109/3DV53792.2021.00032.

554

555 Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
556 and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
557 scene flow estimation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition*, pp. 4040–4048, 2016a.

558

559 Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
560 and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
561 scene flow estimation. In *Proceedings of the IEEE conference on computer vision and pattern
recognition*, pp. 4040–4048, 2016b.

562

563 Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In *Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3061–3070, 2015.

564

565 Guang-Yu Nie, Ming-Ming Cheng, Yun Liu, Zhengfa Liang, Deng-Ping Fan, Yue Liu, and Yongtian
566 Wang. Multi-level context ultra-aggregation for stereo matching. In *Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition*, pp. 3283–3291, 2019.

567

568 Faranak Shamsafar, Samuel Woerz, Rafia Rahim, and Andreas Zell. Mobilestereonet: Towards
569 lightweight deep networks for stereo matching. In *Proceedings of the IEEE/CVF Winter Conference
570 on Applications of Computer Vision (WACV)*, pp. 2417–2426, January 2022.

571

572 Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In *International
conference on machine learning*, pp. 10096–10106. PMLR, 2021.

573

574 Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh Kowdle, Sean Fanello, and Sofien Bouaziz.
575 Hitnet: Hierarchical iterative tile refinement network for real-time stereo matching. In *Proceedings
576 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14362–14372, 2021.

577

578 Fangjinhua Wang, Silvano Galliani, Christoph Vogel, and Marc Pollefeys. Itermv: Iterative proba-
579 bility estimation for efficient multi-view stereo. In *Proceedings of the IEEE/CVF conference on
580 computer vision and pattern recognition*, pp. 8606–8615, 2022.

581

582 Qiang Wang, Shaohuai Shi, Shizhen Zheng, Kaiyong Zhao, and Xiaowen Chu. Fadnet++: Real-time
583 and accurate disparity estimation with configurable networks. *arXiv preprint arXiv:2110.02582*,
584 2021.

585

586 Xianqi Wang, Gangwei Xu, Hao Jia, and Xin Yang. Selective-stereo: Adaptive frequency information
587 selection for stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, pp. 19701–19710, 2024.

588

589 Xiaobao Wei, Jiawei Liu, Dongbo Yang, Junda Cheng, Changyong Shu, and Wei Wang. A wavelet-
590 based stereo matching framework for solving frequency convergence inconsistency. *arXiv preprint
591 arXiv:2505.18024*, 2025.

592

593 Bowen Wen, Matthew Trepte, Joseph Aribido, Jan Kautz, Orazio Gallo, and Stan Birchfield. Founda-
594 tionstereo: Zero-shot stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)*, pp. 5249–5260, June 2025.

594 Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Song Wang, and Lili Ju. Semantic stereo matching with
595 pyramid cost volumes. In *Proceedings of the IEEE/CVF International Conference on Computer*
596 *Vision*, pp. 7484–7493, 2019.

597 Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for accurate
598 and efficient stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
599 *and Pattern Recognition (CVPR)*, pp. 12981–12990, June 2022.

600 Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume for
601 stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
602 *Recognition*, pp. 21919–21928, 2023a.

603 Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume for
604 stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
605 *Recognition (CVPR)*, pp. 21919–21928, June 2023b.

606 Gangwei Xu, Yun Wang, Junda Cheng, Jinhui Tang, and Xin Yang. Accurate and efficient stereo
607 matching via attention concatenation volume. *IEEE Transactions on Pattern Analysis and Machine*
608 *Intelligence*, 46(4):2461–2474, 2023c.

609 Gangwei Xu, Jiaxin Liu, Xianqi Wang, Junda Cheng, Yong Deng, Jinliang Zang, Yurui Chen, and
610 Xin Yang. Banet: Bilateral aggregation network for mobile stereo matching. *arXiv preprint*
611 *arXiv:2503.03259*, 2025.

612 Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching. In
613 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
614 June 2020a.

615 Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching.
616 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
617 1959–1968, 2020b.

618 Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei Zhou. Driving-
619 stereo: A large-scale dataset for stereo matching in autonomous driving scenarios. In *Proceedings*
620 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 899–908, 2019.

621 Chengtang Yao, Yunde Jia, Huijun Di, Pengxiang Li, and Yuwei Wu. A decomposition model for
622 stereo matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
623 *recognition*, pp. 6091–6100, 2021.

624 Nadia Zenati and Noureddine Zerhouni. Dense stereo matching with application to augmented
625 reality. In *2007 IEEE International Conference on Signal Processing and Communications*, pp.
626 1503–1506. IEEE, 2007.

627 Dian Zheng, Xiao-Ming Wu, Zuhao Liu, Jingke Meng, and Wei-shi Zheng. Diffuvolume: Diffusion
628 model for volume based stereo matching. *International Journal of Computer Vision*, 133(7):
629 3807–3821, 2025.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

The authors confirm their full accountability for the scholarly validity and originality of this manuscript. We attest that artificial intelligence was in no way used to generate or falsify research data. The only application of Large Language Models was to aid in wording and phrasing, with the goal of improving the prose's idiomatic flow and making the presentation more accessible to an international academic audience. The final responsibility for the intellectual content and its expression remains entirely with the authors.