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Abstract

Named Entity Recognition (NER) seeks to ex-
tract entity mentions from texts with predefined
categories such as Person, Location. General
domain NER datasets like CoNLL-2003 mostly
annotate Location coarse-grained entities (e.g.,
a country or a city). However, many appli-
cations require to identify fine-grained loca-
tions from texts and map them precisely to
geographic sites (e.g., a crossroad or a store).
Therefore, we propose a new NER dataset Har-
veyNER with fine-grained locations annotated
in tweets. This dataset presents unique chal-
lenges and characterizes many complex and
long location mentions in informal descriptions.
Considering Curriculum Learning can help a
system better learn the hard samples, we adopt
it and first design two heuristic curricula based
on the characteristic difficulties of HarveyNER,
and then propose a novel curriculum that takes
the commonness of sample difficulty into con-
sideration. Our curricula are simple yet ef-
fective and experimental results show that our
methods can improve both the hard case and
overall performance in HarveyNER over strong
baselines without extra cost.

1 Introduction

Named Entity Recognition (NER) task aims to lo-
cate and classify textual phrases as entity mentions
that belong to predefined entity categories. Loca-
tion is one of the general entity categories and has
been included in many NER datasets, including
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003) and OntoNotes 5.0 (Pradhan et al., 2013).
However, the scope of the location defined in these
datasets is vague, and they contain coarse-grained
entities such as a continent (e.g., Europe), a country
(e.g., the U.S.), or a city (e.g., London). In practi-
cal applications, many systems require identifying
fine-grained location entities such as an apartment
(e.g., Bayou Oaks ) or a specific store (e.g., the
HEB on Montrose) from texts to locate the geo-
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Figure 1: An example of a disaster response system.

graphic places on a map, which is vital to iden-
tify actionable information from situational aware-
ness (Khanal and Caragea, 2021). For example, in
Figure 1, a flood disaster happened in the Hous-
ton area and then someone tweeted the shortage of
necessities in two locations. If a disaster response
system can detect the disaster-related tweets, iden-
tify the two location mentions from the text, and
link them to location entities on the map, necessary
help can be directly delivered to the people living
in disaster-affected places. Accurately identifying
the fine-grained location mentions plays a critical
role in such a system.

Considering the necessity of suitable datasets,
some previous work tried to either automati-
cally (Middleton et al., 2013) or manually (Khanal
et al., 2021) annotated crisis-related location ex-
traction datasets. However, they ignore that these
location mentions are meant to precisely map to
geo-coordinates and their annotation quality is lim-
ited for such applications. We closely obey the
practical needs and propose a dataset HarveyNER
that annotates such coordinate-oriented location
mentions from tweets. Specifically, we select the
tweets about Hurricane Harvey affecting the Hous-
ton metropolitan area in 2017 and then annotate
the location mentions located in this city from the



tweets. During the annotation, we carefully con-
struct the guidelines and train annotators to control
the quality. Compared with the location mentions
in previous NER datasets, HarveyNER focuses on
the location mentions that can link to specific sites
on a map. For example, "the corner of Richey St
and W Harris Ave in Pasadena" is an intersection
of two roads and we annotate it as a Point, but pre-
vious work regard it as two Road mentions "Richey
St" and "W Harris Ave in Pasadena" that are not
as helpful in applications. This is the first dataset
that contains such coordinate-oriented location an-
notations meriting applicational values. We use
the Harvey disaster in Houston as an example to
demonstrate how to annotate such location men-
tions and how to improve the NER performance
on such datasets. We do not expect the dataset can
generalize to other applications.

However, the unique characteristics of Har-
veyNER bring challenges for existing systems. For
one thing, many entities are long and complex to
precisely point to a place. E.g., the previous Point
entity contains up to 11 words, and it could be
wrongly recognized as two roads entities by a NER
system; for another, as an instant social medium,
tweets contain many informal contents, local con-
ventions, and even grammatical errors, making the
HarveyNER even more ambiguous. For example,
the abbreviations in the previously mentioned loca-
tion ("UH", "St", "Ave", etc.) bring many out-of-
vocabulary (OOV) words that cannot fully utilize
pre-trained word embedding such as Glove (Pen-
nington et al., 2014) or BERT (Devlin et al., 2019).

In order to improve the performance on these
hard location mentions, we propose to adopt Cur-
riculum Learning (CL) (Bengio et al., 2009) that
can learn difficulty samples better when ordering
examples during training based on their difficulty.
One big precondition to utilize CL for training
is to distinguish between easy and hard samples.
Considering that there are many long and complex
entities in HarveyNER that are naturally difficult
(as in Figure 3, the performance of baselines are
saliently worse on these hard cases), we directly
design two corresponding heuristic curricula. We
further assume that easy cases are not necessarily
the shortest or least complex entities, but could be
the most common ones with abundant training ex-
amples. Then we propose a novel curriculum with
a difficulty scoring function that comprehensively
considers the commonness of the two heuristic diffi-

culty metrics. Empirical results show that all of the
heuristic curricula can improve both the hard case
and overall NER performance over strong baselines
and our novel curriculum performs best.

We also find that different NER systems may
need different curriculum scheduling strategies,
and the normal curriculum (training easier samples
first) is better for the neural network-based model
and the anti-curriculum (training harder samples
first) performs better for the language model-based
system.

2 Related Work

NER research has a long history and many NER
datasets have been proposed based on different
applications with different entity categories. Gen-
eral domain datasets such as CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) and OntoNotes
5.0 (Pradhan et al., 2013) attend to certain com-
mon entity types including Location. The loca-
tion mentions in these datasets such as a country
(e.g., the U.S.) or a city (e.g., London) are coarse-
grained. Li and Sun (2014); Ji et al. (2016) focus
on identifying fine-grained points-of-interest for
location-based services, and their dataset is auto-
matically constructed by mapping location inven-
tory to tweets. Khanal and Caragea (2021); Khanal
et al. (2021) try to identify crisis-related location
mentions but their dataset quality is limited for a
disaster response system. Our proposed dataset
HarveyNER closely follows applicational needs
and focuses on fine-grained locations that can map
to coordinates on a map.

Recent approaches (Yang and Zhang, 2018;
Li et al., 2020; Chen et al., 2021) using Neural
Network models like BiLSTM-CNN-CRF (Ma
and Hovy, 2016) and contextual embeddings like
BERT (Devlin et al., 2019) have greatly improved
the NER performance. However, none of these ap-
proaches consider the difficulty of different NER
cases in their model training. Bengio et al. (2009)
pointed out that using a curriculum strategy en-
ables the model to learn from easy examples to
complex ones and leads to generalization improve-
ment. Many Natural Language Processing tasks
such as machine translation (Platanios et al., 2019;
Liu et al., 2020; Zhang et al., 2021), natural lan-
guage understanding (Xu et al., 2020), text gen-
eration (Liu et al., 2018, 2021) and dialogue sys-
tems (Su et al., 2021) benefit from such curriculum
learning strategies. Considering the characteristics



Data Split Train Valid Test Total Al & A2 Al & A3 A2 & A3 Average
All Tweets 3,967 1,301 1,303 6,571 Kk (%)  85.64 82.17 83.12 83.64
Tweets w/ Entlt.y 1,087 366 353 1,806 Table 2: Inter-Annotator Agreement. A# represents
Tweets w/o Entity 2,880 935 950 4,765 No.# annotator.

All Entity Type 1,581 523 500 2,604

Point 591 206 202 999 * Points: denote an exact location that a geo-
Area 715 236 212 1,163 coordinate can be assigned. E.g., a uniquely
Road 158 51 57 266 named building, intersections of roads or rivers;
River 117 30 29 176 * Areas: denote geographical entities such as city

Table 1: Statistics of HarveyNER.

of HarveyNER containing many complex cases, we
design corresponding curricula to learn them.

3 The HarveyNER Dataset

3.1 Data Preparation

Data Collection Considering the immediacy re-
quirement of a disaster response system, we choose
texts from instant social media Twitter. Specifically,
we used the Twitter PowerTrack API to retrieve
the tweets posted between 5:00 a.m., August 25,
and 4:59 a.m., August 31, 2017. This was the
time range of peak disruption caused by Hurricane
Harvey in the Houston area. In total, we collect
1,121,363 tweets, excluding retweets and replies.
Data Cleaning In order to filter irrelevant tweets,
we apply several strategies. First, we only keep the
tweets that are related to the Houston area, i.e., the
geo-coordinates of the tweets or the profile loca-
tion of the authors within the bounding of Houston.
Second, we adopt a weakly supervised event detec-
tion algorithm (Yao et al., 2020) to identify tweets
on disaster-related topics; these tweets have a high
probability relating to Hurricane Harvey at this
time range. We also manually filter the remaining
irrelevant tweets (like non-English and repeated
ones) during the annotation process. In total, 6,571
tweets are selected for this study, as in Table 1.

3.2 Location Entity Annotation

Annotation Types HarveyNER focuses on the
coordinate-oriented locations so we mainly anno-
tate Point that can be precisely pinned to a map
and Area that occupies a small polygon of a map.
Considering that some disasters can affect line-like
objects (e.g., a flood can affect the neighbors of a
whole river), we also include Road and River types.

subdivisions, neighborhoods, etc;
¢ Roads: denote a road or a section of a road;
¢ Rivers: denote a river or a section of a river.

Quality Control In order to guide the annotators
to correctly annotate the fine-grained location men-
tions, especially to distinguish the Point locations,
we take several measurements to control data qual-
ity. We make some initial annotation exercises and
receptively update annotation guidelines to reduce
ambiguity and subjectivity. The detailed guidelines
can be found in Appendix A.1.

With the guidelines, we train 3 annotators and
test their Inter-Annotator Agreement (IAA) on 500
randomly selected tweets. We pairwise calculate
the Cohen’s kappa (x ) scores based on the token-
level BIO (Beginning, Inside and Outside a en-
tity) annotations from each pair of annotators. As
in Table 2, we observe a high average x score of
83.64%. After that, the 3 annotators start annotat-
ing the remaining tweets independently. Exampels
of the annotation disagreement can be found in
Appendix A.2.

3.3 Dataset Analysis

Datasets HarveyNER (C]j)ONC{‘OI;l_é())O?’
Avg. Ent. Len. (word) 2.68 1.15
Avg. Ent. Len. (char) 1391 7.24
Complex Ent. Rate (%) 11.8 0.19
OOV Rate (%) 14.47 2.33
Avg. Sent. Len. (word) 20.07 14.53
Avg. Sent. Len. (char) 117.03 76.89
Avg. Ent. Count 0.40 0.51
— non-empty 1.44 1.38
Avg. Ent. Ratio (%) 5.33 7.23
—non-empty (%) 19.39 19.43

Table 3: HarveyNER v.s. CoNLL-2003. "non-empty"
excludes the sentences without location mentions.

General Statistics We quantitatively analyze the
HarveyNER dataset, and the resulting statistics are
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Figure 2: Distributions of the difficult examples.

shown in Table 1. Among the 6,571 annotated
tweets, we can see that about 27.48% of them con-
tain at least one location entity and the remaining
do not mention any target location. We randomly
split the annotated tweets into training (3,967), vali-
dation (1,301), and test(1,303) sets for experiments
with a ratio of 6:2:2. As for location types, Point
and Area entities occupy the majority as 38.36%
and 44.66% respectively, while Road and River
only make up 70.22% and 6.76% respectively.
Comparison with CoNLL-2003 Different from
general NER datasets that annotate coarse-grained
locations from news articles, our HarveyNER
dataset is characterized with fine-grained annota-
tions from informal Twitter texts. As presented in
Table 3, we compare our HarveyNER dataset with
CoNLL-2003 on a range of aspects to demonstrate
its characteristics.

First comes the entity length comparison. It is
salient that entities in HarveyNER are longer on
average (133.04% longer at word-level and 92.13%
longer at character-level). This is in line with our
intuition because HarveyNER contains many pre-
cisely described locations in order to locate them
on a map. The entity length distribution is shown
in Figure 2.

To better analyze these long entities in detail,
we use some heuristic rules to probe what types of
complex entities and how many of them exist in the
dataset. Specifically, after our manual analysis on
the validation set, we selected 9 tokens ("and","&",
"at", "@", "in", "on", "near", "between", "of") as
complex entity clues. If an entity contains any of
these tokens, we regard it as a complex one. As
in Table 3, the HarveyNER contains about /4.47%
complex entities, while such entities barely exist
in the CoNLL-2003 (0.19%). The detailed dis-
tribution of these complex entities with different
indicators can be found in Figure 2. We also list

Indicators Examples
"and" |the corner of Richey St and W Harris Ave in Pasadena
"&" Beltway 8 & Tidwell
"at" Brazos River at Richmond
"@" Copperfield Church @ 8350 hwy 6 north
"in" Constellation Field in Sugar Land
"on" Chimney Rock on I-10 East
"near" IH 10 near Monmouth.
"between" 249 between Cypresswood / Louetta
"of" University of Houston

Table 4: Examples of complex entity.

some examples of these complex entities in Table 4
with these indicators. We can see that these entities
are indeed complex, and even we human beings
need to make efforts to resolve them.

As we mentioned before, the language used in
tweets is informal and contains many abbrevia-
tions and even grammatical errors. In order to
quantitatively analyze the informal texts, we cal-
culate the out-of-vocabulary (OOV) rates for the
datasets by counting words that are absent from the
pretrained Glove! (Pennington et al., 2014) word
lists. We can see that the HarveyNER has a much
higher OOV rate than CoNLL-2003 (/4.47% vs.
2.33%). The high OOV rate could degrade the per-
formance of NER systems relying on pre-trained
word embeddings like Glove or language models
like BERT (Devlin et al., 2019).

Apart from the difficult aspects of HarveyNER,
we also compare some other metrics of interest. To
our surprise, the average sentence length of the Har-
veyNER is about 38.713% and 52.20% longer than
that of CoNLL-2003 at word-level and character-
level, respectively. This phenomenon is counter-
intuitive since the tweet content is strictly con-
strained to be no more than 140 characters each.
One possible reason could be that the short tweets
are usually irrelevant to the Hurricane and have
been filtered by the disaster detection system we
used (Yao et al., 2020).

As for the average location entity count for each
sentence of the two datasets, the results show that
there is no big difference between the HarveyNER
and CoNLL-2003, either for all the texts (0.40 vs.
0.51) or for those sentences containing at least one
entity (1.44 vs. 1.38). A similar phenomenon also
exists in the average entity ratios of the two datasets.
The entity ratio is the proportion of entity words
in a sentence and we calculate the average across

"For fair comparison, we use glove.twitter.27B for Har-
veyNER and glove.6B for CoONLL-2003.



sentences. It turns out that the two datasets have
similar entity ratios (5.33% vs. 7.23% for all sen-
tences and 19.39% vs. 19.43% for all non-empty
ones). The reason may be that even though Har-
veyNER has longer entities, it also has larger sen-
tence lengths. From these aspects, HarveyNER
shares the same level of difficulty with CoNLL-
2003.

4 Curriculum Arrangement

In consideration of the characteristic difficulties of

HarveyNER, we employ curriculum arrangements

to help learn these hard cases. There are many dif-

ferent approaches to implementing a curriculum.

We follow the curriculum designing approach in-

troduced by Bengio et al. (2009), which mainly

requires to specify two functions:

* Difficulty Scoring Function: Given an input
sample x;, this function map it to a numerical
score, d(x;) € R. The score is used to represent
the difficulty level of the corresponding sample
and usually the higher the score, the more diffi-
cult the sample is.

* Pacing Function: The pacing function p(t) €
(0,1] specifies the input training data size at
time or step ¢. Normally we use p(t) the low-
est difficulty-scored samples for training at time
t, but in the anti-curriculum setting, we use p(t)
the highest difficulty-scored samples. Given such
a subset of the dataset containing the easiest or
hardest ones, we sample training batches uni-
formly from it for training.

The curriculum learning procedure using the two

functions is described in Algorithm 1.

4.1 Three Difficulty Scoring Functions

We first design two dataset-specific heuristic cur-
ricula, based on maximum entity length and entity
complexity?, inspired by the dataset analysis in
Section 3.3. Then, we introduce a new metric that
integrates the two heuristic metrics.

Maximum Entity Length (Max): As men-
tioned before, our HarveyNER dataset has longer
entity length than CoNLL-2003 on average, and
this brings many long and difficult entities that are
hard to identify. Intuitively, we can design a cor-
responding curriculum based on such entity-level
difficulty. Specifically, given an input sample x;
contains n words: x; = {wy,ws,...,w,}, the

*We tried using the OOV rate as the difficulty score in our
experiment, but the performance is not as good.

Algorithm 1 Curriculum Learning with Scoring
and Pacing Functions
Input:
e The training Data, D" = {x;} ¥ includ-
ing N samples;
* A model M that takes batches of data for
training at each step t¢;
* A difficulty scoring function d;
* A pacing function p(t).
Output: A model M trained with the
curriculum.

1: Compute the difficulty score d(x;) for each
sample;
2: Sort D" ascendingly or descendingly based
on d(z;) and obtain D1 ;
3: Initialize the pacing function p(0);
4: Generate the initial curriculum Dy using the
top p(0) samples in DIAn -
5: for training epocht =1,2,... do
6: Uniformly sample batches from the current
curriculum D;_; for model training;
7: Update the pacing function p(t) based on
equation Eq. (6);
8: Generate the next curriculum Dy using the
top p(t) samples in D" -

sorted?

sample can have k > 0 entities, { £, Fa, ..., Ex}.
Each Ejisasubsetof x; (V0 < j < k: E; C x;).
| E;| represents the number of words that j-h entity
contains or the length of j-th entity. Now, we can
assign each sample that has entity or entities in it
x; a score using the longest entity length? it has:

dmax(mi) = maX(Li) (D

L; is the set of entity length for the i-th sample
x;, l.e. L; = {‘El‘, |E2’, - ‘Ek’} With such
a scoring function, we need to pay attention to
the samples without any entity mentioned (about
72.52% as in Table 1) since their difficulty scores
will all be 0. In this case, the algorithm will put all
these samples in one step to the curriculum, which
will mislead the model to a local minimum and
learn that no entity exists in the data. We propose
a remedy to this issue by randomly feeding the
empty samples. When we order our dataset by the
difficulty scores, those non-entity samples will be
randomly interspersed among the ordered samples

3We also tried using the average entity length as the dif-
ficulty score in our experiment but the performance is not as
good.



which have entities.

Complex Entity Rate (Complex): Correspond-
ing to the analysis about the complex entity rate
in HarveyNER, we define another difficulty scor-
ing function. Specifically, we define the complex-
ity of entity ¢(E) as whether the entity contains
words or symbols such as "and", "&", "at", etc
and what symbols the entity contains. We set
up a complexity dictionary based on the heuristic
analysis with these complex entities, i.e., { "and" :
3, "&" 3, "at" : 2, "@" : 2, "in" : 2, "on" :
2, "near" : 2, "between" : 2, "of" : 1}. The
larger value implies the more complex the entity
is. Because each entity E can contains many "com-
plexity" indicators, we choose the largest one. For
example, a aforementioned entity E "the corner
of Richey St and W Harris Ave in Pasadena" con-
tains "of", "and" and "in" indicators, we say the
complexity value of this entity is ¢(F) = 3, be-
cause of 3 > 2 > 1. Besides, one sample x; may
have multiple entities with different complex rates
C; = {c(Eh),c(E2),...,c(Ey)}, we also choose
the maximum complexity value to determine the
complexity value for the sample, i.e.,

dcomplex(wi) = maX(Ci) 2

However, if the sample’s entities do not have
those complex clues at all, the complex entity rate
for that sample will be simply 0, which we regard as
a simple data point. Such a scoring function based
on the entity mentioned will encounter the same
issue as with the Max scoring function because if
a sentence does not contain any entity, calculating
the complexity value of that sample will be mean-
ingless and unreasonable. We use the same remedy
as well and randomly interspersed these non-scored
samples among the ordered samples.

Commonness of Difficulty (Commonness): In
addition to these heuristic-based scoring functions,
we propose a comprehensive metric that incorpo-
rates both of these two difficulties. We assume that
easy cases are not necessarily to be the samples
with shortest entities or lowest complex entity rates
but should be the most common cases with abun-
dant training examples. Thus, we need to answer
a question: what are the most common cases? We
use the previously mentioned two metrics (the Max-
imum Entity Length and the Complex Entity Rate)
as the two dimensions for representing the com-
monness, i.e., the commonness of difficulty level
evaluated by the two metrics. This means that if

a sample has the most common maximum entity
length and the most common complex entity rate,
it should be the easiest.

We propose a new difficulty score to represent
the commonness. As in Eq. (3), we first count the
number of training samples have the same difficulty
score with the sample x;, and then divide it by the
total number of instances N. Because we expect
the smaller values indicating more commonness
or easiness, we take the reciprocal of it and get
Smetric. Here dmeyic are the difficulty metrics diax
or dcomplex-

1
count(dmetic(x)) /N

fmetric ($z) = (3)

After having commonness values for maximum
entity length fin.x and complex entity rate feomplex.
we re-scale them to the same range of of [0, 1] as
in Eq. (4).

. N fmetric(wz‘) - min(.fmetric)
fmetnc (wz) - max(fmetric) _ min(fmetric)

“

Then we integrate the two metrics and take the
L2-norm of the to generate the final difficulty score
as in Eq. (5). As a result, the more common for
a sample, the smaller the L2-norm value, and the
easier it is. Besides, we add a hyperparameter A to
balance the influence of the two metrics.

deommon (€i) = H< Jmax (@), )‘fcompleX(wi) >H2 ®)

Similar to the previous single difficulty-based
curricula, the commonness difficulty score only
exists when there are some entities mentioned in
the sample. We adopt the same remedy and ran-
domly intersperse those non-entity samples among
the ordered ones which contain entities.

4.2 Pacing Function

As for the pacing function, we use the root-based
pacing function introduced by Platanios et al.
(2019) in all our experiments, as in Eq. (6).

sy = e 2 e @

Here p(0) defines the proportion of samples we
feed our model at the very beginning; 7" is the num-
ber of epochs that we apply curriculum learning to
our model.



Models Entity Type in HarveyNER
Point Area Road River Micro-Average
NCRF++ 71.43/72.26/71.85(66.00/61.68 / 63.77\77.39 / 77.93 / 77.66/61.40 / 44.56 / 51.64|68.69 / 65.16 / 66.88
+ Max 72.55/71.51/72.03/65.90 / 65.54 / 65.72|75.30 / 77.93 / 76.59|62.42 / 44.56 / 52.00|69.06 / 66.40 / 67.70
+ Complex 70.47/72.08 /71.26/66.07 / 64.16 / 65.10(74.67 / 75.17 / 74.92|63.50 / 44.56 / 52.37|68.34 / 65.92 / 67.11
+ Commonness|71.40 / 72.64 / 72.02|68.27 / 65.84 / 67.03|77.23 / 77.24 / 77.24/66.68 / 45.96 / 54.42|70.09 / 67.12 / 68.57
BERT 71.55/73.11/72.32162.04 / 72.87 / 67.02|76.42 / 82.07 / 79.15|62.11 / 55.09 / 58.39|66.62 / 71.48 / 68.97
+ Max 72.14/72.74 1 72.44162.49 / 72.67 / 67.20|77.83 / 80.69 / 79.23|57.92 / 56.14 / 57.02|66.73 / 71.28 / 68.93
+ Complex 70.41/75.47/72.85/62.32/72.87/67.19(76.12/ 82.76 / 79.30(59.92 / 55.09 / 57.40(66.13 / 72.52 / 69.18
+ Commonness|72.98 / 73.87 / 73.42(62.53 / 71.98 / 66.92|79.20 / 78.62 / 78.91|63.55 / 60.00 / 61.72|67.66 / 71.80 / 69.67

Table 5: Evaluation on the test set, P/ R / F1 (Precision / Recall / F1-Score,%)*. Since we use the same pacing
function, we use the scoring function names as the curriculum names. We apply the normal curriculum setting to
the NCRF++ model and the anti-curriculum setting to BERT model.

5 Experiments

In our experiments, we use two state-of-the-art
NER systems as baselines and evaluate their per-
formance on the HarveyNER dataset. And then we
test the effectiveness of the designed curricula by
adding them to the baseline systems.

5.1 Baselines

NCRF++ (Yang and Zhang, 2018) is an open-
source Neural Sequence Labelling Toolkit. We use
the BiILSTM-CNN-CRF structrue as a baseline.
BERT (Devlin et al., 2019) is a pretrained lan-
guage model based on Transformer (Vaswani et al.,
2017), which has largely improved many NLP tasks
including NER. We fine-tune the base-uncased ver-
sion for experiments.

5.2 Training Setup

For the NCRF++ model, we use the tweet-based
version Glove as word embeddings and keep all
other hyper-parameters as default. For the BERT
model, we test with some recommended hyper-
parameters and use the set-up (learning rate as Se-5
and batch size as 32) that performs best with the
baseline model. As for the A hyperparameter in
Eq. (5), we choose 1 for the NCRF++ model and
0.6 for the BERT model after some searching. We
train all the NCRF++ models 100 epochs and all
the BERT model 50 epochs.

For a fair comparison, we keep all the training
parameters the same when adding the curriculum
arrangements. For the NCRF++ model, we use
the normal curriculum setting and feed easier cases
first and for the BERT model, we use the anti-
curriculum setting (more explanations can be found
in 5.5). Besides, we train all the experiments five
times using different random seeds to alleviate ran-
dom turbulence.

5.3 Results

The experimental results are shown in Table 5. We
can see that the best performed baseline BERT
achieves 69.67% F1 score, which is much lower
than the BERT-base performance on CoNLL-2003
(92.4% (Devlin et al., 2019)). This illustrates the
difficulty of the dataset.

Regarding the effectiveness of the curricula, we
can easily see that almost all three curriculum ar-
rangements (except Max with BERT) bring perfor-
mance gains on both of the baselines. Our proposed
Common curriculum added to both of the models
performs the best across all the settings.

Specifically, for the NCRF++ model, the Com-
mon curriculum performs best and increases the
baseline about 1.69% (68.57% vs. 66.88%) on
average. Other proposed Max curriculum also per-
forms well and improves the baseline by 0.82%
(67.70% vs. 66.88%). The Complex curriculum
marginally improves the baseline by 0.23%.

As for the BERT model, our proposed Com-
mon curriculum is the most effective one and in-
creases the baseline about 0.7% F1 score (69.67%
vs. 68.97%) on average. Besides, the Complex
curriculum also improves the baseline by 0.21%.

5.4 How are the Difficult Samples Learned?

In order to analyze how the models have learned
the difficult samples from the curricula, we divide
the test set into "easy" and "hard" subsets based on
their characteristic difficulties. First, we only keep
those entity-contained samples in the test set since
the difficulty scores are determined by the entities.
For the difficulty caused by entity length, we set
threshold values to partition them into the "short"
test set and "long" test set; the "short" test set has
an entity length range from 1 to 4, and the "long"

*All results are the average of 5 system runs.
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Figure 3: Test results on "easy" and "hard" subsets, F1-score,%.
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Figure 4: Curriculum v.s. Anti-curriculum, F1-score,%.

test set only contains samples with maximum entity
length larger than 4.

As for the difficulty caused by complex entities,
we just simply throw the samples into our "com-
plex" entity set if there exists a complex indicator in
its entities. The rest of the entity-contained samples
are viewed as the "simple" entity set.

We test all our settings on the four subsets. As
illustrated in Figure 3, in most cases, adding cur-
ricula achieve better performance than the baseline
on both the "easy" sets and the "hard" sets for both
the NCRF++ and BERT models.

5.5 Curriculum v.s Anti-curriculum

Apart from the different difficulty metrics, we find
that applying different curriculum settings (normal
curriculum that exposes easier examples early or
anti-learning showing the most difficult examples
first) will also result in a huge performance differ-
ence between the NCRF++ and the BERT models.
As shown in Figure 4, for the neural network-based
NCRF++ model, the normal curriculum setting has
saliently better F-1 scores on average across all the
three curriculum scoring functions in comparison
with the anti-curriculum setting. But for the pre-
trained language model based on BERT, the results

are the opposite; here using anti-curriculum learn-
ing will consistently give better performance than
using normal curriculum learning.

One possible reason is that the volatile gradi-
ents from the anti-curriculum can lead to better
local minima for a well pretrained model. As we
know, the anti-curriculum learning will feed those
"hard" samples to the model first, and the gradients
from those long-tailed hard cases will have a rel-
atively larger degree of fluctuations compared to
that of easy instances. BERT is a pretrained lan-
guage model and the pretrained parameters might
constrain the model to some local regions. The
fluctuations provided by the "hard" samples from
the anti-curriculum learning can enable the BERT
model to reach other better local minimal regions.

6 Conclusion

In this work, we propose a fine-grained location
extraction dataset HarveyNER for facilitating lo-
cal disaster response systems. This dataset con-
tains many long and complex location mentions
and state-of-the-art NER systems are far from ad-
dressing these hard cases. Based on the charac-
teristic difficulty of the dataset, we propose two
heuristic curriculum learning strategies and a novel
commonness-based curriculum strategy to address
the difficult cases. Empirical results demonstrate
the effectiveness of our approaches. However,
these hard cases are still far from being solved. Fu-
ture work may consider using external knowledge
to better identify the long and complex entities.
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A Appendix

A.1 Annotation Guidelines

* 1. Location types can be "Area", "Point",
"Road", and "River."

— “Area” refers to all the named entities
of cities, neighborhoods, super neighbor-
hoods, geographic divisions etc.

— “Point” refers to a location that is a build-
ing, a landmark, an intersection of two
roads, an intersection of a river with
a lake/reservoir/ocean, or a specific ad-
dress.

— "Road" refers to a road/avenue/street or a
section of a road/avenue/street when the
tweet does not provide an exact location
among that road.

— "River" refers to a river or a section of a
river when the tweet does not imply there
is an intersection between the river and
other places.
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* 2. A section of a road/river between two de-
tailed/precise locations should be considered
as a point. However, if the distance between
the two points is very large, it might be con-
sidered as a stretch of a road/river.

* 3. A road passing through a small area can
be designated as a point. A road intersecting
a very large area cannot be a point and must
be denoted as a stretch of a road. In some
peculiar cases, the road takes a small detour
and tangentially brushes off an area — in such
specific cases, roads can be annotated as a
point.

* 4. For the following locations, Lake Hous-
ton, Barker Reservoir, and Addick’s Reser-
voir are annotated as areas while all other
lakes/reservoirs are considered as points.

* 5. Ignore generic company/franchise names
like HEB, Kroger etc. unless it is accompa-
nied with a precise location, for example, HEB
at Kirkwood Drive. However, non-franchised
small businesses with only one unique loca-
tion are considered as a point.

* 6. Ignore any locations in the Twitter user-
name, like @HoustonABC. However, if the
@ does not refer to a Twitter account name,
please recognize the location. For example, /
am @ XXX High School, “XXX High School”
will be considered as a point.

* 7. For abbreviations or vague location names,
always look up the tweet’s context (or even
other tweets’ context) to decide if it is a loca-
tion or not. We will use search engine if it is
necessary.

— Eg: Coke Ck; Here, "Ck" refers to a
creek. This is understood when multi-
ple such tweets point towards a creek.

* 8. Similarly, for names that can refer to dif-
ferent or multiple locations, like “Bellaire”
can either refer to Bellaire St or the Bellaire
area, we always look up the tweet’s context to
decide their location types.

* 9. We annotate the mentioned location as the
complete set of phrases that describes the de-
tail of the location including the core noun
and all defining relative clauses. If a tweet
mentioned the same location multiple times,
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they will be annotated as multiple location
mentions.

* 10. Ignore the location that only contains
“Houston”, “Harris County”, or “Texas”

e 11. Ignore any tweet outside Houston (like
London, Dallas, etc) and all non-English
tweets.

* 12. We keep the exact words in tweet con-
text as the location name after extracting the
entities.

A.2 Examples of Annotation Disagreement

Examples are showed in Table 6.
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No. Tweets Body
Tropical Storm Warning for  Liberty 5 Harris s Chambers 5 Jackson s Matagorda 5 Brazoria and  Galveston County
[}) [0) [0) [}) [§) [0) [¢) [}) [} [0 @) [} [¢) [0 [} [} o [}
1 [¢] o) o) [¢] B-area o) B-area [¢] B-area o B-area [¢) B-area o B-area [¢] B-area l-area |
0 0 0 0 0 0 0 0 o BEe o
[¢] [0} 9} [¢] B-area 9} B-area [¢] B-area o B-area [¢] B-area o B-area [¢] [0) o
RT  @nyuudle : Buffalo Bayou ( 1-45 and Memorial Drive ) progression in Houston
(¢] O O B-point 1 I-point [] I-point [] I-point [] I-point [ I-point [] I-point 1 I-point o O o
2 [¢] o o B-river  I-river o B-point 1 I-point 0 I-point B I-point o [¢] o o
[} o o o o [} o o
[¢] o o B-river  I-river o B-area I-area I-area  I-area o [¢] o o
If you need to evacuate from  Conroe R take  FM1097 between 1-45 to 149 . FM2854 is closed
[ 0 0 9 0 O |Bara O O B-point I-point I-point I-point Ipoint O  Beroad O [
3 [e] o o [¢] [¢] o B-area [¢] [¢] B-road o B-road o B-road [¢] B-road o [¢]
[¢] 9} O [¢] [¢] O B-area [¢] [¢] B-road o) B-road o) B-road [¢] B-road o [¢)
Our GF N FRWY  &amp H GF Grand Parkway locations —are open for those in need .
9 O  Broad Itoad O 0 O  Beroad I-road 9 0 0 0 9 o 9 9]
4]0  Bioad Itoad Itoad O O  Boad Itoad Irtoad O 0 o 0 o o o o
o o [¢] o o o o 0] (¢}
[¢] B-point I-point I-point [¢] o B-point I-point I-point [e] o [¢] o [e] [¢] [¢] o
Fire Event - E031 - Sikes - Sikes St - 00:52 - https://t.co/twmyivTj5Q
[¢] o o [¢] [¢] B-road o B-road  I-road [e] o [¢] o
5 [} (0] (0] [} [0} (©) (©) B-road  I-road ¢} [©) [} (0]
[} o (0] [} [} o (0] O o
o (¢] [¢] o o [¢] [¢] B-road I-road o [¢] o (¢]

Table 6: BIO in | is from annotator 1, BIO in . is from annotator 2, BIO in gg is from annotator 3, and BIO in
is the final annotation. The error analysis between each annotator shows that annotators are more likely to have a
disagreement when the location entities may indicate a point.



