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Abstract

Named Entity Recognition (NER) seeks to ex-001
tract entity mentions from texts with predefined002
categories such as Person, Location. General003
domain NER datasets like CoNLL-2003 mostly004
annotate Location coarse-grained entities (e.g.,005
a country or a city). However, many appli-006
cations require to identify fine-grained loca-007
tions from texts and map them precisely to008
geographic sites (e.g., a crossroad or a store).009
Therefore, we propose a new NER dataset Har-010
veyNER with fine-grained locations annotated011
in tweets. This dataset presents unique chal-012
lenges and characterizes many complex and013
long location mentions in informal descriptions.014
Considering Curriculum Learning can help a015
system better learn the hard samples, we adopt016
it and first design two heuristic curricula based017
on the characteristic difficulties of HarveyNER,018
and then propose a novel curriculum that takes019
the commonness of sample difficulty into con-020
sideration. Our curricula are simple yet ef-021
fective and experimental results show that our022
methods can improve both the hard case and023
overall performance in HarveyNER over strong024
baselines without extra cost.025

1 Introduction026

Named Entity Recognition (NER) task aims to lo-027

cate and classify textual phrases as entity mentions028

that belong to predefined entity categories. Loca-029

tion is one of the general entity categories and has030

been included in many NER datasets, including031

CoNLL-2003 (Tjong Kim Sang and De Meulder,032

2003) and OntoNotes 5.0 (Pradhan et al., 2013).033

However, the scope of the location defined in these034

datasets is vague, and they contain coarse-grained035

entities such as a continent (e.g., Europe), a country036

(e.g., the U.S.), or a city (e.g., London). In practi-037

cal applications, many systems require identifying038

fine-grained location entities such as an apartment039

(e.g., Bayou Oaks ) or a specific store (e.g., the040

HEB on Montrose) from texts to locate the geo-041
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Figure 1: An example of a disaster response system.

graphic places on a map, which is vital to iden- 042

tify actionable information from situational aware- 043

ness (Khanal and Caragea, 2021). For example, in 044

Figure 1, a flood disaster happened in the Hous- 045

ton area and then someone tweeted the shortage of 046

necessities in two locations. If a disaster response 047

system can detect the disaster-related tweets, iden- 048

tify the two location mentions from the text, and 049

link them to location entities on the map, necessary 050

help can be directly delivered to the people living 051

in disaster-affected places. Accurately identifying 052

the fine-grained location mentions plays a critical 053

role in such a system. 054

Considering the necessity of suitable datasets, 055

some previous work tried to either automati- 056

cally (Middleton et al., 2013) or manually (Khanal 057

et al., 2021) annotated crisis-related location ex- 058

traction datasets. However, they ignore that these 059

location mentions are meant to precisely map to 060

geo-coordinates and their annotation quality is lim- 061

ited for such applications. We closely obey the 062

practical needs and propose a dataset HarveyNER 063

that annotates such coordinate-oriented location 064

mentions from tweets. Specifically, we select the 065

tweets about Hurricane Harvey affecting the Hous- 066

ton metropolitan area in 2017 and then annotate 067

the location mentions located in this city from the 068
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tweets. During the annotation, we carefully con-069

struct the guidelines and train annotators to control070

the quality. Compared with the location mentions071

in previous NER datasets, HarveyNER focuses on072

the location mentions that can link to specific sites073

on a map. For example, "the corner of Richey St074

and W Harris Ave in Pasadena" is an intersection075

of two roads and we annotate it as a Point, but pre-076

vious work regard it as two Road mentions "Richey077

St" and "W Harris Ave in Pasadena" that are not078

as helpful in applications. This is the first dataset079

that contains such coordinate-oriented location an-080

notations meriting applicational values. We use081

the Harvey disaster in Houston as an example to082

demonstrate how to annotate such location men-083

tions and how to improve the NER performance084

on such datasets. We do not expect the dataset can085

generalize to other applications.086

However, the unique characteristics of Har-087

veyNER bring challenges for existing systems. For088

one thing, many entities are long and complex to089

precisely point to a place. E.g., the previous Point090

entity contains up to 11 words, and it could be091

wrongly recognized as two roads entities by a NER092

system; for another, as an instant social medium,093

tweets contain many informal contents, local con-094

ventions, and even grammatical errors, making the095

HarveyNER even more ambiguous. For example,096

the abbreviations in the previously mentioned loca-097

tion ("UH", "St", "Ave", etc.) bring many out-of-098

vocabulary (OOV) words that cannot fully utilize099

pre-trained word embedding such as Glove (Pen-100

nington et al., 2014) or BERT (Devlin et al., 2019).101

In order to improve the performance on these102

hard location mentions, we propose to adopt Cur-103

riculum Learning (CL) (Bengio et al., 2009) that104

can learn difficulty samples better when ordering105

examples during training based on their difficulty.106

One big precondition to utilize CL for training107

is to distinguish between easy and hard samples.108

Considering that there are many long and complex109

entities in HarveyNER that are naturally difficult110

(as in Figure 3, the performance of baselines are111

saliently worse on these hard cases), we directly112

design two corresponding heuristic curricula. We113

further assume that easy cases are not necessarily114

the shortest or least complex entities, but could be115

the most common ones with abundant training ex-116

amples. Then we propose a novel curriculum with117

a difficulty scoring function that comprehensively118

considers the commonness of the two heuristic diffi-119

culty metrics. Empirical results show that all of the 120

heuristic curricula can improve both the hard case 121

and overall NER performance over strong baselines 122

and our novel curriculum performs best. 123

We also find that different NER systems may 124

need different curriculum scheduling strategies, 125

and the normal curriculum (training easier samples 126

first) is better for the neural network-based model 127

and the anti-curriculum (training harder samples 128

first) performs better for the language model-based 129

system. 130

2 Related Work 131

NER research has a long history and many NER 132

datasets have been proposed based on different 133

applications with different entity categories. Gen- 134

eral domain datasets such as CoNLL-2003 (Tjong 135

Kim Sang and De Meulder, 2003) and OntoNotes 136

5.0 (Pradhan et al., 2013) attend to certain com- 137

mon entity types including Location. The loca- 138

tion mentions in these datasets such as a country 139

(e.g., the U.S.) or a city (e.g., London) are coarse- 140

grained. Li and Sun (2014); Ji et al. (2016) focus 141

on identifying fine-grained points-of-interest for 142

location-based services, and their dataset is auto- 143

matically constructed by mapping location inven- 144

tory to tweets. Khanal and Caragea (2021); Khanal 145

et al. (2021) try to identify crisis-related location 146

mentions but their dataset quality is limited for a 147

disaster response system. Our proposed dataset 148

HarveyNER closely follows applicational needs 149

and focuses on fine-grained locations that can map 150

to coordinates on a map. 151

Recent approaches (Yang and Zhang, 2018; 152

Li et al., 2020; Chen et al., 2021) using Neural 153

Network models like BiLSTM-CNN-CRF (Ma 154

and Hovy, 2016) and contextual embeddings like 155

BERT (Devlin et al., 2019) have greatly improved 156

the NER performance. However, none of these ap- 157

proaches consider the difficulty of different NER 158

cases in their model training. Bengio et al. (2009) 159

pointed out that using a curriculum strategy en- 160

ables the model to learn from easy examples to 161

complex ones and leads to generalization improve- 162

ment. Many Natural Language Processing tasks 163

such as machine translation (Platanios et al., 2019; 164

Liu et al., 2020; Zhang et al., 2021), natural lan- 165

guage understanding (Xu et al., 2020), text gen- 166

eration (Liu et al., 2018, 2021) and dialogue sys- 167

tems (Su et al., 2021) benefit from such curriculum 168

learning strategies. Considering the characteristics 169
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Data Split Train Valid Test Total

All Tweets 3,967 1,301 1,303 6,571

Tweets w/ Entity 1,087 366 353 1,806
Tweets w/o Entity 2,880 935 950 4,765

All Entity Type 1,581 523 500 2,604

Point 591 206 202 999
Area 715 236 212 1,163
Road 158 51 57 266
River 117 30 29 176

Table 1: Statistics of HarveyNER.

of HarveyNER containing many complex cases, we170

design corresponding curricula to learn them.171

3 The HarveyNER Dataset172

3.1 Data Preparation173

Data Collection Considering the immediacy re-174

quirement of a disaster response system, we choose175

texts from instant social media Twitter. Specifically,176

we used the Twitter PowerTrack API to retrieve177

the tweets posted between 5:00 a.m., August 25,178

and 4:59 a.m., August 31, 2017. This was the179

time range of peak disruption caused by Hurricane180

Harvey in the Houston area. In total, we collect181

1,121,363 tweets, excluding retweets and replies.182

Data Cleaning In order to filter irrelevant tweets,183

we apply several strategies. First, we only keep the184

tweets that are related to the Houston area, i.e., the185

geo-coordinates of the tweets or the profile loca-186

tion of the authors within the bounding of Houston.187

Second, we adopt a weakly supervised event detec-188

tion algorithm (Yao et al., 2020) to identify tweets189

on disaster-related topics; these tweets have a high190

probability relating to Hurricane Harvey at this191

time range. We also manually filter the remaining192

irrelevant tweets (like non-English and repeated193

ones) during the annotation process. In total, 6,571194

tweets are selected for this study, as in Table 1.195

3.2 Location Entity Annotation196

Annotation Types HarveyNER focuses on the197

coordinate-oriented locations so we mainly anno-198

tate Point that can be precisely pinned to a map199

and Area that occupies a small polygon of a map.200

Considering that some disasters can affect line-like201

objects (e.g., a flood can affect the neighbors of a202

whole river), we also include Road and River types.203

A1 & A2 A1 & A3 A2 & A3 Average

κ (%) 85.64 82.17 83.12 83.64

Table 2: Inter-Annotator Agreement. A# represents
No.# annotator.

• Points: denote an exact location that a geo- 204

coordinate can be assigned. E.g., a uniquely 205

named building, intersections of roads or rivers; 206

• Areas: denote geographical entities such as city 207

subdivisions, neighborhoods, etc; 208

• Roads: denote a road or a section of a road; 209

• Rivers: denote a river or a section of a river. 210

Quality Control In order to guide the annotators 211

to correctly annotate the fine-grained location men- 212

tions, especially to distinguish the Point locations, 213

we take several measurements to control data qual- 214

ity. We make some initial annotation exercises and 215

receptively update annotation guidelines to reduce 216

ambiguity and subjectivity. The detailed guidelines 217

can be found in Appendix A.1. 218

With the guidelines, we train 3 annotators and 219

test their Inter-Annotator Agreement (IAA) on 500 220

randomly selected tweets. We pairwise calculate 221

the Cohen’s kappa (κ ) scores based on the token- 222

level BIO (Beginning, Inside and Outside a en- 223

tity) annotations from each pair of annotators. As 224

in Table 2, we observe a high average κ score of 225

83.64%. After that, the 3 annotators start annotat- 226

ing the remaining tweets independently. Exampels 227

of the annotation disagreement can be found in 228

Appendix A.2. 229

3.3 Dataset Analysis 230

Datasets HarveyNER CoNLL-2003
(Loc-only)

Avg. Ent. Len. (word) 2.68 1.15
Avg. Ent. Len. (char) 13.91 7.24
Complex Ent. Rate (%) 11.8 0.19
OOV Rate (%) 14.47 2.33

Avg. Sent. Len. (word) 20.07 14.53
Avg. Sent. Len. (char) 117.03 76.89
Avg. Ent. Count 0.40 0.51
– non-empty 1.44 1.38
Avg. Ent. Ratio (%) 5.33 7.23
– non-empty (%) 19.39 19.43

Table 3: HarveyNER v.s. CoNLL-2003. "non-empty"
excludes the sentences without location mentions.

General Statistics We quantitatively analyze the 231

HarveyNER dataset, and the resulting statistics are 232
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Figure 2: Distributions of the difficult examples.

shown in Table 1. Among the 6,571 annotated233

tweets, we can see that about 27.48% of them con-234

tain at least one location entity and the remaining235

do not mention any target location. We randomly236

split the annotated tweets into training (3,967), vali-237

dation (1,301), and test(1,303) sets for experiments238

with a ratio of 6:2:2. As for location types, Point239

and Area entities occupy the majority as 38.36%240

and 44.66% respectively, while Road and River241

only make up 10.22% and 6.76% respectively.242

Comparison with CoNLL-2003 Different from243

general NER datasets that annotate coarse-grained244

locations from news articles, our HarveyNER245

dataset is characterized with fine-grained annota-246

tions from informal Twitter texts. As presented in247

Table 3, we compare our HarveyNER dataset with248

CoNLL-2003 on a range of aspects to demonstrate249

its characteristics.250

First comes the entity length comparison. It is251

salient that entities in HarveyNER are longer on252

average (133.04% longer at word-level and 92.13%253

longer at character-level). This is in line with our254

intuition because HarveyNER contains many pre-255

cisely described locations in order to locate them256

on a map. The entity length distribution is shown257

in Figure 2.258

To better analyze these long entities in detail,259

we use some heuristic rules to probe what types of260

complex entities and how many of them exist in the261

dataset. Specifically, after our manual analysis on262

the validation set, we selected 9 tokens ("and","&",263

"at", "@", "in", "on", "near", "between", "of") as264

complex entity clues. If an entity contains any of265

these tokens, we regard it as a complex one. As266

in Table 3, the HarveyNER contains about 14.47%267

complex entities, while such entities barely exist268

in the CoNLL-2003 (0.19%). The detailed dis-269

tribution of these complex entities with different270

indicators can be found in Figure 2. We also list271

Indicators Examples
"and" the corner of Richey St and W Harris Ave in Pasadena

"&" Beltway 8 & Tidwell

"at" Brazos River at Richmond

"@" Copperfield Church @@@ 8350 hwy 6 north

"in" Constellation Field in Sugar Land

"on" Chimney Rock on I-10 East

"near" IH 10 near Monmouth.

"between" 249 between Cypresswood / Louetta

"of" University of Houston

Table 4: Examples of complex entity.

some examples of these complex entities in Table 4 272

with these indicators. We can see that these entities 273

are indeed complex, and even we human beings 274

need to make efforts to resolve them. 275

As we mentioned before, the language used in 276

tweets is informal and contains many abbrevia- 277

tions and even grammatical errors. In order to 278

quantitatively analyze the informal texts, we cal- 279

culate the out-of-vocabulary (OOV) rates for the 280

datasets by counting words that are absent from the 281

pretrained Glove1 (Pennington et al., 2014) word 282

lists. We can see that the HarveyNER has a much 283

higher OOV rate than CoNLL-2003 (14.47% vs. 284

2.33%). The high OOV rate could degrade the per- 285

formance of NER systems relying on pre-trained 286

word embeddings like Glove or language models 287

like BERT (Devlin et al., 2019). 288

Apart from the difficult aspects of HarveyNER, 289

we also compare some other metrics of interest. To 290

our surprise, the average sentence length of the Har- 291

veyNER is about 38.13% and 52.20% longer than 292

that of CoNLL-2003 at word-level and character- 293

level, respectively. This phenomenon is counter- 294

intuitive since the tweet content is strictly con- 295

strained to be no more than 140 characters each. 296

One possible reason could be that the short tweets 297

are usually irrelevant to the Hurricane and have 298

been filtered by the disaster detection system we 299

used (Yao et al., 2020). 300

As for the average location entity count for each 301

sentence of the two datasets, the results show that 302

there is no big difference between the HarveyNER 303

and CoNLL-2003, either for all the texts (0.40 vs. 304

0.51) or for those sentences containing at least one 305

entity (1.44 vs. 1.38). A similar phenomenon also 306

exists in the average entity ratios of the two datasets. 307

The entity ratio is the proportion of entity words 308

in a sentence and we calculate the average across 309

1For fair comparison, we use glove.twitter.27B for Har-
veyNER and glove.6B for CoNLL-2003.
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sentences. It turns out that the two datasets have310

similar entity ratios (5.33% vs. 7.23% for all sen-311

tences and 19.39% vs. 19.43% for all non-empty312

ones). The reason may be that even though Har-313

veyNER has longer entities, it also has larger sen-314

tence lengths. From these aspects, HarveyNER315

shares the same level of difficulty with CoNLL-316

2003.317

4 Curriculum Arrangement318

In consideration of the characteristic difficulties of319

HarveyNER, we employ curriculum arrangements320

to help learn these hard cases. There are many dif-321

ferent approaches to implementing a curriculum.322

We follow the curriculum designing approach in-323

troduced by Bengio et al. (2009), which mainly324

requires to specify two functions:325

• Difficulty Scoring Function: Given an input326

sample xi, this function map it to a numerical327

score, d(xi) ∈ R. The score is used to represent328

the difficulty level of the corresponding sample329

and usually the higher the score, the more diffi-330

cult the sample is.331

• Pacing Function: The pacing function p(t) ∈332

(0, 1] specifies the input training data size at333

time or step t. Normally we use p(t) the low-334

est difficulty-scored samples for training at time335

t, but in the anti-curriculum setting, we use p(t)336

the highest difficulty-scored samples. Given such337

a subset of the dataset containing the easiest or338

hardest ones, we sample training batches uni-339

formly from it for training.340

The curriculum learning procedure using the two341

functions is described in Algorithm 1.342

4.1 Three Difficulty Scoring Functions343

We first design two dataset-specific heuristic cur-344

ricula, based on maximum entity length and entity345

complexity2, inspired by the dataset analysis in346

Section 3.3. Then, we introduce a new metric that347

integrates the two heuristic metrics.348

Maximum Entity Length (Max): As men-349

tioned before, our HarveyNER dataset has longer350

entity length than CoNLL-2003 on average, and351

this brings many long and difficult entities that are352

hard to identify. Intuitively, we can design a cor-353

responding curriculum based on such entity-level354

difficulty. Specifically, given an input sample xi355

contains n words: xi = {w1, w2, . . . , wn}, the356

2We tried using the OOV rate as the difficulty score in our
experiment, but the performance is not as good.

Algorithm 1 Curriculum Learning with Scoring
and Pacing Functions

Input:
• The training Data, Dtrain = {xi}Ni=1, includ-

ing N samples;
• A model M that takes batches of data for

training at each step t;
• A difficulty scoring function d;
• A pacing function p(t).
Output: A model Mtrained trained with the

curriculum.
1: Compute the difficulty score d(xi) for each

sample;
2: Sort Dtrain ascendingly or descendingly based

on d(xi) and obtain Dtrain
sorted;

3: Initialize the pacing function p(0);
4: Generate the initial curriculum D0 using the

top p(0) samples in Dtrain
sorted;

5: for training epoch t = 1, 2, . . . do
6: Uniformly sample batches from the current

curriculum Dt−1 for model training;
7: Update the pacing function p(t) based on

equation Eq. (6);
8: Generate the next curriculum Dt using the

top p(t) samples in Dtrain
sorted;

sample can have k ≥ 0 entities, {E1, E2, . . . , Ek}. 357

Each Ej is a subset of xi (∀ 0 < j ≤ k : Ej ⊆ xi). 358

|Ej | represents the number of words that j-th entity 359

contains or the length of j-th entity. Now, we can 360

assign each sample that has entity or entities in it 361

xi a score using the longest entity length3 it has: 362

dmax(xi) = max(Li) (1) 363

Li is the set of entity length for the i-th sample 364

xi, i.e. Li = {|E1|, |E2|, . . . |Ek|}. With such 365

a scoring function, we need to pay attention to 366

the samples without any entity mentioned (about 367

72.52% as in Table 1) since their difficulty scores 368

will all be 0. In this case, the algorithm will put all 369

these samples in one step to the curriculum, which 370

will mislead the model to a local minimum and 371

learn that no entity exists in the data. We propose 372

a remedy to this issue by randomly feeding the 373

empty samples. When we order our dataset by the 374

difficulty scores, those non-entity samples will be 375

randomly interspersed among the ordered samples 376

3We also tried using the average entity length as the dif-
ficulty score in our experiment but the performance is not as
good.
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which have entities.377

Complex Entity Rate (Complex): Correspond-378

ing to the analysis about the complex entity rate379

in HarveyNER, we define another difficulty scor-380

ing function. Specifically, we define the complex-381

ity of entity c(E) as whether the entity contains382

words or symbols such as "and", "&", "at", etc383

and what symbols the entity contains. We set384

up a complexity dictionary based on the heuristic385

analysis with these complex entities, i.e., {"and" :386

3, "&" : 3, "at" : 2, "@" : 2, "in" : 2, "on" :387

2, "near" : 2, "between" : 2, "of" : 1}. The388

larger value implies the more complex the entity389

is. Because each entity E can contains many "com-390

plexity" indicators, we choose the largest one. For391

example, a aforementioned entity E "the corner392

of Richey St and W Harris Ave in Pasadena" con-393

tains "of", "and" and "in" indicators, we say the394

complexity value of this entity is c(E) = 3, be-395

cause of 3 > 2 > 1. Besides, one sample xi may396

have multiple entities with different complex rates397

Ci = {c(E1), c(E2), . . . , c(Ek)}, we also choose398

the maximum complexity value to determine the399

complexity value for the sample, i.e.,400

dcomplex(xi) = max(Ci) (2)401

However, if the sample’s entities do not have402

those complex clues at all, the complex entity rate403

for that sample will be simply 0, which we regard as404

a simple data point. Such a scoring function based405

on the entity mentioned will encounter the same406

issue as with the Max scoring function because if407

a sentence does not contain any entity, calculating408

the complexity value of that sample will be mean-409

ingless and unreasonable. We use the same remedy410

as well and randomly interspersed these non-scored411

samples among the ordered samples.412

Commonness of Difficulty (Commonness): In413

addition to these heuristic-based scoring functions,414

we propose a comprehensive metric that incorpo-415

rates both of these two difficulties. We assume that416

easy cases are not necessarily to be the samples417

with shortest entities or lowest complex entity rates418

but should be the most common cases with abun-419

dant training examples. Thus, we need to answer420

a question: what are the most common cases? We421

use the previously mentioned two metrics (the Max-422

imum Entity Length and the Complex Entity Rate)423

as the two dimensions for representing the com-424

monness, i.e., the commonness of difficulty level425

evaluated by the two metrics. This means that if426

a sample has the most common maximum entity 427

length and the most common complex entity rate, 428

it should be the easiest. 429

We propose a new difficulty score to represent 430

the commonness. As in Eq. (3), we first count the 431

number of training samples have the same difficulty 432

score with the sample xi, and then divide it by the 433

total number of instances N . Because we expect 434

the smaller values indicating more commonness 435

or easiness, we take the reciprocal of it and get 436

fmetric. Here dmetric are the difficulty metrics dmax 437

or dcomplex. 438

fmetric(xi) =
1

count(dmetric(xi))/N
(3) 439

After having commonness values for maximum 440

entity length fmax and complex entity rate fcomplex, 441

we re-scale them to the same range of of [0, 1] as 442

in Eq. (4). 443

fmetric(xi) =
fmetric(xi)− min(fmetric)

max(fmetric)− min(fmetric)
(4) 444

Then we integrate the two metrics and take the 445

L2-norm of the to generate the final difficulty score 446

as in Eq. (5). As a result, the more common for 447

a sample, the smaller the L2-norm value, and the 448

easier it is. Besides, we add a hyperparameter λ to 449

balance the influence of the two metrics. 450

dcommon(xi) =
∥∥∥< fmax(xi), λfcomplex(xi) >

∥∥∥
2

(5) 451

Similar to the previous single difficulty-based 452

curricula, the commonness difficulty score only 453

exists when there are some entities mentioned in 454

the sample. We adopt the same remedy and ran- 455

domly intersperse those non-entity samples among 456

the ordered ones which contain entities. 457

4.2 Pacing Function 458

As for the pacing function, we use the root-based 459

pacing function introduced by Platanios et al. 460

(2019) in all our experiments, as in Eq. (6). 461

p(t) =

√
t · 1− p(0)2

T
+ p(0)2 (6) 462

Here p(0) defines the proportion of samples we 463

feed our model at the very beginning; T is the num- 464

ber of epochs that we apply curriculum learning to 465

our model. 466
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Models
Entity Type in HarveyNER

Point Area Road River Micro-Average
NCRF++ 71.43 / 72.26 / 71.85 66.00 / 61.68 / 63.77 77.39 / 77.93 / 77.66 61.40 / 44.56 / 51.64 68.69 / 65.16 / 66.88
+ Max 72.55 / 71.51 / 72.03 65.90 / 65.54 / 65.72 75.30 / 77.93 / 76.59 62.42 / 44.56 / 52.00 69.06 / 66.40 / 67.70
+ Complex 70.47 / 72.08 / 71.26 66.07 / 64.16 / 65.10 74.67 / 75.17 / 74.92 63.50 / 44.56 / 52.37 68.34 / 65.92 / 67.11
+ Commonness 71.40 / 72.64 / 72.02 68.27 / 65.84 / 67.03 77.23 / 77.24 / 77.24 66.68 / 45.96 / 54.42 70.09 / 67.12 / 68.57

BERT 71.55 / 73.11 / 72.32 62.04 / 72.87 / 67.02 76.42 / 82.07 / 79.15 62.11 / 55.09 / 58.39 66.62 / 71.48 / 68.97
+ Max 72.14 / 72.74 / 72.44 62.49 / 72.67 / 67.20 77.83 / 80.69 / 79.23 57.92 / 56.14 / 57.02 66.73 / 71.28 / 68.93
+ Complex 70.41 / 75.47 / 72.85 62.32 / 72.87 / 67.19 76.12 / 82.76 / 79.30 59.92 / 55.09 / 57.40 66.13 / 72.52 / 69.18
+ Commonness 72.98 / 73.87 / 73.42 62.53 / 71.98 / 66.92 79.20 / 78.62 / 78.91 63.55 / 60.00 / 61.72 67.66 / 71.80 / 69.67

Table 5: Evaluation on the test set, P / R / F1 (Precision / Recall / F1-Score,%)4. Since we use the same pacing
function, we use the scoring function names as the curriculum names. We apply the normal curriculum setting to
the NCRF++ model and the anti-curriculum setting to BERT model.

5 Experiments467

In our experiments, we use two state-of-the-art468

NER systems as baselines and evaluate their per-469

formance on the HarveyNER dataset. And then we470

test the effectiveness of the designed curricula by471

adding them to the baseline systems.472

5.1 Baselines473

NCRF++ (Yang and Zhang, 2018) is an open-474

source Neural Sequence Labelling Toolkit. We use475

the BiLSTM-CNN-CRF structrue as a baseline.476

BERT (Devlin et al., 2019) is a pretrained lan-477

guage model based on Transformer (Vaswani et al.,478

2017), which has largely improved many NLP tasks479

including NER. We fine-tune the base-uncased ver-480

sion for experiments.481

5.2 Training Setup482

For the NCRF++ model, we use the tweet-based483

version Glove as word embeddings and keep all484

other hyper-parameters as default. For the BERT485

model, we test with some recommended hyper-486

parameters and use the set-up (learning rate as 5e-5487

and batch size as 32) that performs best with the488

baseline model. As for the λ hyperparameter in489

Eq. (5), we choose 1 for the NCRF++ model and490

0.6 for the BERT model after some searching. We491

train all the NCRF++ models 100 epochs and all492

the BERT model 50 epochs.493

For a fair comparison, we keep all the training494

parameters the same when adding the curriculum495

arrangements. For the NCRF++ model, we use496

the normal curriculum setting and feed easier cases497

first and for the BERT model, we use the anti-498

curriculum setting (more explanations can be found499

in 5.5). Besides, we train all the experiments five500

times using different random seeds to alleviate ran-501

dom turbulence.502

5.3 Results 503

The experimental results are shown in Table 5. We 504

can see that the best performed baseline BERT 505

achieves 69.67% F1 score, which is much lower 506

than the BERT-base performance on CoNLL-2003 507

(92.4% (Devlin et al., 2019)). This illustrates the 508

difficulty of the dataset. 509

Regarding the effectiveness of the curricula, we 510

can easily see that almost all three curriculum ar- 511

rangements (except Max with BERT) bring perfor- 512

mance gains on both of the baselines. Our proposed 513

Common curriculum added to both of the models 514

performs the best across all the settings. 515

Specifically, for the NCRF++ model, the Com- 516

mon curriculum performs best and increases the 517

baseline about 1.69% (68.57% vs. 66.88%) on 518

average. Other proposed Max curriculum also per- 519

forms well and improves the baseline by 0.82% 520

(67.70% vs. 66.88%). The Complex curriculum 521

marginally improves the baseline by 0.23%. 522

As for the BERT model, our proposed Com- 523

mon curriculum is the most effective one and in- 524

creases the baseline about 0.7% F1 score (69.67% 525

vs. 68.97%) on average. Besides, the Complex 526

curriculum also improves the baseline by 0.21%. 527

5.4 How are the Difficult Samples Learned? 528

In order to analyze how the models have learned 529

the difficult samples from the curricula, we divide 530

the test set into "easy" and "hard" subsets based on 531

their characteristic difficulties. First, we only keep 532

those entity-contained samples in the test set since 533

the difficulty scores are determined by the entities. 534

For the difficulty caused by entity length, we set 535

threshold values to partition them into the "short" 536

test set and "long" test set; the "short" test set has 537

an entity length range from 1 to 4, and the "long" 538

4All results are the average of 5 system runs.
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Figure 3: Test results on "easy" and "hard" subsets, F1-score,%.
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Figure 4: Curriculum v.s. Anti-curriculum, F1-score,%.

test set only contains samples with maximum entity539

length larger than 4.540

As for the difficulty caused by complex entities,541

we just simply throw the samples into our "com-542

plex" entity set if there exists a complex indicator in543

its entities. The rest of the entity-contained samples544

are viewed as the "simple" entity set.545

We test all our settings on the four subsets. As546

illustrated in Figure 3, in most cases, adding cur-547

ricula achieve better performance than the baseline548

on both the "easy" sets and the "hard" sets for both549

the NCRF++ and BERT models.550

5.5 Curriculum v.s Anti-curriculum551

Apart from the different difficulty metrics, we find552

that applying different curriculum settings (normal553

curriculum that exposes easier examples early or554

anti-learning showing the most difficult examples555

first) will also result in a huge performance differ-556

ence between the NCRF++ and the BERT models.557

As shown in Figure 4, for the neural network-based558

NCRF++ model, the normal curriculum setting has559

saliently better F-1 scores on average across all the560

three curriculum scoring functions in comparison561

with the anti-curriculum setting. But for the pre-562

trained language model based on BERT, the results563

are the opposite; here using anti-curriculum learn- 564

ing will consistently give better performance than 565

using normal curriculum learning. 566

One possible reason is that the volatile gradi- 567

ents from the anti-curriculum can lead to better 568

local minima for a well pretrained model. As we 569

know, the anti-curriculum learning will feed those 570

"hard" samples to the model first, and the gradients 571

from those long-tailed hard cases will have a rel- 572

atively larger degree of fluctuations compared to 573

that of easy instances. BERT is a pretrained lan- 574

guage model and the pretrained parameters might 575

constrain the model to some local regions. The 576

fluctuations provided by the "hard" samples from 577

the anti-curriculum learning can enable the BERT 578

model to reach other better local minimal regions. 579

6 Conclusion 580

In this work, we propose a fine-grained location 581

extraction dataset HarveyNER for facilitating lo- 582

cal disaster response systems. This dataset con- 583

tains many long and complex location mentions 584

and state-of-the-art NER systems are far from ad- 585

dressing these hard cases. Based on the charac- 586

teristic difficulty of the dataset, we propose two 587

heuristic curriculum learning strategies and a novel 588

commonness-based curriculum strategy to address 589

the difficult cases. Empirical results demonstrate 590

the effectiveness of our approaches. However, 591

these hard cases are still far from being solved. Fu- 592

ture work may consider using external knowledge 593

to better identify the long and complex entities. 594
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A Appendix742

A.1 Annotation Guidelines743

• 1. Location types can be "Area", "Point",744

"Road", and "River."745

– “Area” refers to all the named entities746

of cities, neighborhoods, super neighbor-747

hoods, geographic divisions etc.748

– “Point” refers to a location that is a build-749

ing, a landmark, an intersection of two750

roads, an intersection of a river with751

a lake/reservoir/ocean, or a specific ad-752

dress.753

– "Road" refers to a road/avenue/street or a754

section of a road/avenue/street when the755

tweet does not provide an exact location756

among that road.757

– "River" refers to a river or a section of a758

river when the tweet does not imply there759

is an intersection between the river and760

other places.761

• 2. A section of a road/river between two de- 762

tailed/precise locations should be considered 763

as a point. However, if the distance between 764

the two points is very large, it might be con- 765

sidered as a stretch of a road/river. 766

• 3. A road passing through a small area can 767

be designated as a point. A road intersecting 768

a very large area cannot be a point and must 769

be denoted as a stretch of a road. In some 770

peculiar cases, the road takes a small detour 771

and tangentially brushes off an area – in such 772

specific cases, roads can be annotated as a 773

point. 774

• 4. For the following locations, Lake Hous- 775

ton, Barker Reservoir, and Addick’s Reser- 776

voir are annotated as areas while all other 777

lakes/reservoirs are considered as points. 778

• 5. Ignore generic company/franchise names 779

like HEB, Kroger etc. unless it is accompa- 780

nied with a precise location, for example, HEB 781

at Kirkwood Drive. However, non-franchised 782

small businesses with only one unique loca- 783

tion are considered as a point. 784

• 6. Ignore any locations in the Twitter user- 785

name, like @HoustonABC. However, if the 786

@ does not refer to a Twitter account name, 787

please recognize the location. For example, I 788

am @ XXX High School, “XXX High School” 789

will be considered as a point. 790

• 7. For abbreviations or vague location names, 791

always look up the tweet’s context (or even 792

other tweets’ context) to decide if it is a loca- 793

tion or not. We will use search engine if it is 794

necessary. 795

– Eg: Coke Ck; Here, "Ck" refers to a 796

creek. This is understood when multi- 797

ple such tweets point towards a creek. 798

• 8. Similarly, for names that can refer to dif- 799

ferent or multiple locations, like “Bellaire” 800

can either refer to Bellaire St or the Bellaire 801

area, we always look up the tweet’s context to 802

decide their location types. 803

• 9. We annotate the mentioned location as the 804

complete set of phrases that describes the de- 805

tail of the location including the core noun 806

and all defining relative clauses. If a tweet 807

mentioned the same location multiple times, 808
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they will be annotated as multiple location809

mentions.810

• 10. Ignore the location that only contains811

“Houston”, “Harris County”, or “Texas”812

• 11. Ignore any tweet outside Houston (like813

London, Dallas, etc) and all non-English814

tweets.815

• 12. We keep the exact words in tweet con-816

text as the location name after extracting the817

entities.818

A.2 Examples of Annotation Disagreement819

Examples are showed in Table 6.820
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No. Tweets Body

1

Tropical Storm Warning for Liberty , Harris , Chambers , Jackson , Matagorda , Brazoria and Galveston County
O O O O O O O O O O O O O O O O O O
O O O O B-area O B-area O B-area O B-area O B-area O B-area O B-area I-area
O O O O B-area O B-area O B-area O B-area O B-area O B-area O B-area I-area
O O O O B-area O B-area O B-area O B-area O B-area O B-area O O O

2

RT @nyuudle : Buffalo Bayou ( I-45 and Memorial Drive ) progression in Houston
O O O B-point I-point I-point I-point I-point I-point I-point I-point O O O
O O O B-river I-river O B-point I-point I-point I-point O O O O
O O O B-river I-river O B-point I-point I-point I-point O O O O
O O O B-river I-river O B-area I-area I-area I-area O O O O

3

If you need to evacuate from Conroe , take FM1097 between I-45 to 149 . FM2854 is closed
O O O O O O B-area O O B-point I-point I-point I-point I-point O B-road O O
O O O O O O B-area O O B-road O B-road O B-road O B-road O O
O O O O O O B-area O O B-point I-point I-point I-point I-point O B-road O O
O O O O O O B-area O O B-road O B-road O B-road O B-road O O

4

Our GF N FRWY &amp ; GF Grand Parkway locations are open for those in need .
O O B-road I-road O O O B-road I-road O O O O O O O O
O B-road I-road I-road O O B-road I-road I-road O O O O O O O O
O B-point I-point I-point I-point I-point I-point I-point I-point O O O O O O O O
O B-point I-point I-point O O B-point I-point I-point O O O O O O O O

5

Fire Event - E031 - Sikes - Sikes St - 00:52 - https://t.co/twmyivTj5Q
O O O O O B-road O B-road I-road O O O O
O O O O O O O B-road I-road O O O O
O O O O O B-point I-point I-point I-point O O O O
O O O O O O O B-road I-road O O O O

Table 6: BIO in is from annotator 1, BIO in is from annotator 2, BIO in is from annotator 3, and BIO in
is the final annotation. The error analysis between each annotator shows that annotators are more likely to have a
disagreement when the location entities may indicate a point.
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