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Figure 1: High-resolution results by our method.

Abstract

Text-to-image diffusion models have achieved
remarkable progress in recent years. However,
training models for high-resolution image genera-
tion remains challenging, particularly when train-
ing data and computational resources are limited.
In this paper, we explore this practical problem
from two key perspectives: data and parameter
efficiency, and propose a set of key guidelines
for ultra-resolution adaptation termed URAE. For
data efficiency, we theoretically and empirically
demonstrate that synthetic data generated by some
teacher models can significantly promote training
convergence. For parameter efficiency, we find
that tuning minor components of the weight ma-
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trices outperforms widely-used low-rank adapters
when synthetic data are unavailable, offering sub-
stantial performance gains while maintaining effi-
ciency. Additionally, for models leveraging guid-
ance distillation, such as FLUX, we show that
disabling classifier-free guidance, i.e., setting the
guidance scale to 1 during adaptation, is crucial
for satisfactory performance. Extensive exper-
iments validate that URAE achieves compara-
ble 2K-generation performance to state-of-the-art
closed-source models like FLUX1.1 [Pro] Ultra
with only 3K samples and 2K iterations, while
setting new benchmarks for 4K-resolution gener-
ation. Codes are available here.

1. Introduction
Recent years have witnessed remarkable progress in text-to-
image generation with diffusion models (Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021; Rombach et al., 2022; Ho
et al., 2020). From UNet-based architectures (Ronneberger
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et al., 2015; Rombach et al., 2022) to latest state-of-the-
art Diffusion Transformers (DiTs) (Peebles & Xie, 2023;
Bao et al., 2023; Chen et al., 2023; Esser et al., 2024; Li
et al., 2024; Gao et al., 2024; Chen et al., 2024), these mod-
els leverage powerful backbones and multistep denoising
schemes to generate high-quality and diverse images from
textual prompts effectively, solidifying their leading position
in this field (Croitoru et al., 2023; Yang et al., 2023a).

Nevertheless, extending current diffusion models to ultra-
resolution generation, such as 4K, remains a significant
challenge. The process typically demands massive amounts
of high-quality data and substantial computational resources,
making training at such resolutions daunting and accessi-
ble only to industry-scale efforts. Although recent attempts
have been made to train 4K-resolution text-to-image mod-
els (Chen et al., 2024; Xie et al., 2024), they rely on in-
ternal datasets containing millions of high-resolution im-
ages to fine-tune base low-resolution models. In practice,
collecting such large-scale datasets for training is highly
cumbersome if not infeasible at all. Meanwhile, tuning
the entire diffusion backbone introduces an intensive GPU
memory footprint, especially for state-of-the-art models
like FLUX (Black Forest Labs, 2023) and Stable Diffusion
3.5 (Esser et al., 2024).

Focusing on these drawbacks, we are curious about one prac-
tical question: Can this ultra-resolution adaptation process
be made easier? In this paper, we answer the question pos-
itively by proposing URAE, a set of key guidelines, under
which ultra-resolution adaptation is achievable with merely
thousands of training samples and iterations.

Specifically, we initiate our exploration from two key as-
pects: data and parameter efficiency. On the one hand, we
provide theoretical and empirical evidence that synthetic
data produced by some teacher models can largely enhance
training convergence. However, despite recent advance-
ments in text-to-image generation, state-of-the-art models
still face significant challenges in acquiring high-quality
synthetic training data for ultra-resolution adaptation, such
as 4K. We thus, on the other hand, investigate such scenar-
ios where synthetic data are unavailable and identify that
tuning minor components of the pre-trained weight matrices
is more effective than commonly used parameter-efficient
adaptation strategies like LoRA (Hu et al., 2022).

Furthermore, we delve into the principles of fine-tuning
guidance-distilled models like FLUX and discover that dis-
abling classifier-free guidance—by setting the guidance
scale to 1—is essential, regardless of the availability of
synthetic data. Backed up by the above guidelines, we
conduct extensive experiments to demonstrate that URAE
achieves performance comparable to state-of-the-art closed-
source models like FLUX1.1 [Pro] Ultra with merely 3K
training samples and 2K adaptation iterations. Meanwhile,

it surpasses previous models in 4K generation performance
and remains highly compatible with existing training-free
high-resolution generation pipelines (Du et al., 2024b; Meng
et al., 2021), enabling further performance improvements.
In summary, the contributions of this paper are:

• We are the first to delve into the problem of ultra-
resolution adaption to the best of our knowledge;

• We propose URAE, a set of key guidelines focusing
on data efficiency, parameter efficiency, and classifier-
free guidance, to facilitate the adaptation of existing
text-to-image models to higher resolutions;

• We validate that URAE achieves comparable perfor-
mance in 2K generation, superior capabilities in 4K
generation, and strong compatibility with existing
training-free high-resolution generation pipelines.

2. Related Works
2.1. Text-to-Image Diffusion Models

The diffusion model (Ho et al., 2020) has emerged as a
powerful class of generative models. Unlike traditional ap-
proaches such as GANs (Goodfellow et al., 2014), diffusion
models iteratively refine noisy maps with a UNet back-
bone (Ronneberger et al., 2015) to produce high-quality
and detailed images (Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021), which fuels significant advancements in
large-scale text-to-image diffusion models (Rombach et al.,
2022; Podell et al., 2023; Balaji et al., 2022; Ding et al.,
2022; Nichol et al., 2021; Ramesh et al., 2022; Razzhigaev
et al., 2023; Xu et al., 2023; Saharia et al., 2022). Leveraging
billions of image-text pairs, they demonstrate remarkable
semantic understanding and the ability to generate diverse
and photorealistic images aligning with text prompts.

Most recently, Transformer (Vaswani et al., 2017) has been
introduced as an alternative backbone to UNet (Peebles &
Xie, 2022) in diffusion models, known as Diffusion Trans-
former (DiT). Then, text-to-image models based on it have
progressively demonstrated dominant performance (Chen
et al., 2024; Esser et al., 2024; Gao et al., 2024; Li et al.,
2024; Zheng et al., 2024). We thus focus on DiT-based
models and conduct experiments mainly on FLUX, which
yields state-of-the-art text-to-image performance, in sake
for superior ultra-resolution adaption results.

2.2. High-Resolution Generation

Training models at high resolutions demands substantial
computational resources. To address this, a series of works
propose training-free solutions, developing inference stage
strategies that allow diffusion models trained at their native
resolutions to operate effectively at higher scales (Bar-Tal

2



Ultra-Resolution Adaptation with Ease

et al., 2023; Meng et al., 2021; Du et al., 2024b; He et al.,
2024; Du et al., 2024a; Huang et al., 2024; Wu et al., 2024;
Zhang et al., 2023). While effective, without looking at
any high-resolution images during training, in fact, they
still fall short in accurately handling detailed structures and
textures inherent in ultra-resolution images. By contrast,
ultra-resolution adaptation focused in this paper dedicates
on addressing this drawback through training, which is tech-
nically orthogonal to training-free approaches and can work
as a plug-and-play component to enhance their performance.

There are indeed some works training for high-resolution
generation like 4K (Chen et al., 2024; Xie et al., 2024;
Zheng et al., 2024; Ren et al., 2024). However, millions
of high-quality training data and industrial-scale computa-
tional resources are required to train the whole transformer
backbone. In this paper, we focus on the challenges of
data and parameter efficiency and demonstrate that compa-
rable or even superior performance can be achieved with
significantly less data and fewer trainable parameters.

Another line of research has concentrated on enhancing
inference efficiency through the development of efficient
and scalable diffusion backbones (Chen et al., 2024; Liu
et al., 2024b;a). These designs and insights are orthogonal
to our work, and it is promising to combine their strengths
with our approach to achieve the best of both training and
inference efficiency, which lies beyond the scope of this
paper and is left for future exploration.

2.3. Parameter-Efficient Fine-Tuning

In many real-world scenarios, fine-tuning existing models
for specific applications is often necessary. However, fine-
tuning all parameters can lead to substantial computational
overhead, particularly in terms of memory footprint. To
address this limitation, a series of works propose parameter-
efficient fine-tuning strategies (Hu et al., 2022; Hyeon-Woo
et al., 2021; Meng et al., 2024; Yeh et al., 2023; Wang
et al., 2024a). In this paper, we aim at an effective method
specifically tailored for ultra-resolution adaptation.

3. Methodology
In this section, we delve into the motivations and technical
details of URAE, our proposed strategy for ultra-resolution
adaptation. We begin with some preliminary concepts, fol-
lowed by three key components including training with syn-
thetic data, parameter-efficient fine-tuning strategies, and
classifier-free guidance.

3.1. Preliminary

State-of-the-art text-to-image diffusion models commonly
adopt the flow matching training scheme (Esser et al., 2024;
Lipman et al., 2022). Specifically, in each iteration, a batch

of images x and their corresponding textual descriptions y is
sampled. These images are then encoded into a latent map
z0 using a pre-trained VAE encoder, and a noise map ϵ is
drawn from a Gaussian distribution. Let zt denote the noisy
version of z0 after applying ϵ at the t-th diffusion timestep.
The flow matching loss is then formulated as:

Lfm(z0, y, t, ϵ) = ∥(ϵ− z0)− ϵθ(zt, t, y)∥22, (1)

where ϵθ(·) is the denoising backbone with parameters θ.

The inference process begins with a text prompt y and a ran-
dom Gaussian noise ϵ, also denoted zT , which is iteratively
denoised using the trained backbone. After T steps, the re-
sulting z0 represents a clean sample in the latent space and
is then decoded to a generated image x using a pre-trained
VAE decoder. Such training and inference paradigms are
also employed in our URAE framework.

3.2. Synthetic Data or Real Data?

Previous works train 4K-generation models using millions
of high-quality training images (Chen et al., 2024; Xie et al.,
2024), leading to significant challenges in collecting, trans-
mitting, storing, and processing such large volumes of data.
To alleviate these inconveniences, we target a data-efficient
approach for ultra-resolution adaptation.

Building on recent advances in the distillation of diffusion
models (Yang et al., 2023b; Kim et al., 2023; Liu et al.,
2024b;a), we recognize that incorporating a teacher model
for reference and a loss term for knowledge distillation (Hin-
ton, 2015) can enhance training:

Ldistill(z0, y, t, ϵ) = ∥ϵθ(zt, t, y)− ϵθref (zt, t, y)∥22, (2)

where θref represents the parameters of the teacher model.
However, this approach relies on access to the diffusion
backbone of the teacher model to compute the step-wise
distillation loss, which is impractical for closed-weight mod-
els such as FLUX1.1 [Pro] Ultra. We therefore experiment
with an alternative approach that optimizes the vanilla flow
matching loss defined in Eq. 1 using data synthesized by
the teacher model. We expect this to yield similar training
benefits, as validated by the following theoretical analysis.

Before presenting our main results, we first set up some nec-
essary assumptions. From the model perspective:

Assumption 3.1. Let u denote the input data pair
(ϵ, y). The process from u to the output x can be char-
acterized by a neural network f(u;W ) with infinite
width, where W denotes the network’s parameters.

It has been demonstrated that neural networks with a sin-
gle hidden layer and sufficient width can approximate any
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complex functions (Cybenko, 1989; Hornik, 1991), and that
infinite-width neural networks trained with gradient descent
are equivalent to training linear models in the space of Neu-
ral Tangent Kernel (NTK) (Jacot et al., 2018). From the
data perspective:

Assumption 3.2. The dataset contains both real and
synthetic data, with the synthetic portion denoted as
p ∈ [0, 1]. The total number of data is N . Given an
input u, the corresponding target x in the real data
distribution is characterized by xreal = f(u;W ∗) + ξ,
where ξ ∼ N (0, σ2) is a scaler from a noise distribu-
tion and W ∗ denotes the optimal parameters, serving
as an unknown oracle. For synthetic data, the target is
given by xsyn = f(u;Wref ), where Wref denotes the
parameters of a pre-trained teacher model for reference.
Without loss of generality, we restrict our discussion
to the one-dimensional target case.

And from the training perspective:

Assumption 3.3. The model’s parameters are initial-
ized as W0. The training is conducted through SGD
using the square error as the loss function: L =
1

2N ∥f(u;W )− x∥22. The learning rate is η.

Our main results are summarized in Theorem 3.4:

Theorem 3.4. Under the setting defined in Assump-
tions 3.1, 3.2, and 3.3, the error between WT , the
parameters after T training iterations, and the optimal
W ∗ is bounded by:

E[∥WT −W ∗∥22] ≤ E[∥(I − ηM)T∆0∥22]+

η2(p(1− p)E[δ2] + (1− p)σ2)

N∑
i=1

(1− (1− ηλi)
T )2

λi

+ p2∥Wref −W ∗∥22.
(3)

where ∆0 = W0−(pWref+(1−p)W ∗), M is defined
as ∇W f(U ;W0)

⊤∇W f(U ;W0), δ = f(u;Wref ) −
f(u;W ∗), and λi is the i-th eigenvalue of M .

The proof can be found in Appendix A. Intuitively, Theo-
rem 3.4 indicates that, when training data are drawn from
a mixture of real and synthetic data points, the distance
to the optimal parameters at convergence reflects a trade-
off—governed by the synthetic portion p—between two fac-
tors: the error introduced by label noise in the real data dis-
tribution and the discrepancy between the reference model
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Figure 2: A toy linear regression case. There are real data
with noisy labels and synthetic data generated by a reference
model Wref . The proportion of synthetic data is p.

used for generating synthetic data and the optimal model,
shown in the 2nd and 3rd terms of Eq. 3.4 separately. Fig. 2
provides an illustrative example to visualize this effect.

Closely examining Eq.3.4, we can discover that, by dimin-
ishing label noise, synthetic data would be helpful if the
reference model providing these data is accurate. Although
some works reveal that synthetic data can result in model
collapse (Dohmatob et al., 2024b;a) by amplifying the gap
between real and synthetic distributions, we demonstrate
that they are useful particularly for ultra-resolution adap-
tion. On one hand, large-scale real datasets such as LAION-
5B (Schuhmann et al., 2022) tend to be noisy, containing
numerous low-quality images and mismatched text-image
pairs. On the other hand, at 2K resolution, models like
FLUX-1.1 [Pro] Ultra—although closed-weight—are avail-
able to produce high-quality synthetic data. Building on this
analysis, we train our 2K-generation model using only syn-
thetic data in this work, demonstrating superior performance
across various scenarios.

3.3. Tune Major or Minor Components?

Parameter-efficient fine-tuning strategies enable adapting
a pre-trained model from its original domain to a target
domain by integrating lightweight adapters. For instance,
in personalized text-to-image generation such as Dream-
Booth (Ruiz et al., 2023), attaching low-rank, e.g., rank
r = 4, adapters, i.e., LoRA, to the original model’s weights
can achieve satisfactory performance (Hu et al., 2022).
Specifically, this is achieved by:

Y = XW +XAB, (4)

where X , Y , and W are input, output, and original weight
matrices respectively, A ∈ Rcin×r and B ∈ Rr×cout are
low-rank matrices for adaptation, and cin and cout are input
and output dimensions, output dimension separately. In prac-
tice, A is initialized using a normal distribution, whereas B
is set to all zeros, which makes the adapter branch output
zero initially and allows tuning to begin from the original
parameters. After tuning, A and B can be merged into the
original weight matrix via W ′ = W + AB, ensuring that
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the total number of model parameters remains unchanged.
These low-rank adapters employ a small number of param-
eters that focus on the major components with the largest
singular values, enabling efficient adaptation to the target
domain (Meng et al., 2024).

However, different from DreamBooth modifying the styles
and appearances of output images, ultra-resolution adap-
tation focuses on learning the arrangements of details and
local textures, which may not correspond to the major com-
ponents in weight matrices. Under this hypothesis, we intro-
duce a method to tune the components associated with the
smallest singular values instead.

Specifically, given a weight matrix W ∈ Rcin×cout and
c = min(cin, cout), we first conduct Singular Value Decom-
position (SVD) and derive W = UΣV , where U ∈ Rcin×c

and V ∈ Rc×cout are orthogonal matrices, and Σ ∈ Rc×c

is a diagonal matrix with the singular values arranged from
large to small. Then, r components with the smallest singu-
lar values and the rest c− r ones are extracted via:

W small = U [:,−r :]Σ[−r :,−r :]V [−r :, :],

W res = U [:, : −r]Σ[: −r, : −r]V [: −r, :],
(5)

where the indexing syntax in Numpy (Harris et al., 2020)
and PyTorch (Paszke et al., 2019) are used to represent the
operations for extracting multiple rows/columns. Analyzing
from Eq. 5, W small is a low-rank matrix. Therefore, for pa-
rameter efficiency, we formulate the training time behavior
similar to Eq. 4:

Y = XW res +XAB,

A = U [:,−r :]
√
Σ[−r :,−r :],

B =
√

Σ[−r :,−r :]V [−r :, :].

(6)

A and B are initialized using Eq. 6 and updated during
fine-tuning. In terms of formulation, the approach is similar
to PISSA (Meng et al., 2024); however, it fundamentally
differs by tuning the components with the smallest singular
values instead of the largest. Although (Wang et al., 2024a)
introduce a similar approach in the field of large language
model finetuning, they fail to analyze its applicability in
various scenarios.

Empirically, we observe that this approach is particularly
effective when no synthetic data are available to serve as a
reliable reference, e.g., in 4K generation. We speculate that
the effectiveness stems from preserving the major compo-
nents in the original weight matrices, thereby safeguarding
the model’s capacity to handle semantics, layouts, and ap-
pearances from label noise in the real data distribution.

3.4. Enable or Disable Classifier-Free Guidance?

Classifier-free guidance (CFG) (Ho & Salimans, 2022) aims
to enhance the quality of the generated samples by introduc-
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Distilled Model
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Already Matched

Proper Matching

Improper Matching

Figure 3: For CFG-distilled models, classifier-free guidance
should be disabled in the training time. zt and t are omitted
from the inputs of ϵθ and ϵθ′ here for simplicity.

ing an additional “null-condition” branch. Specifically, at
each denoising step in the inference time, the current latent
map is processed by both the main branch and the null-
condition branch, and the final output is then guided, with a
certain strength, in the direction opposing the null-condition
branch’s prediction:

ϵθ(zt, t, ∅) + g · (ϵθ(zt, t, y)− ϵθ(zt, t, ∅)), (7)

where ∅ denotes the null condition, e.g., an empty prompt,
and g is a hyper-parameter controlling the strength.

Although effective, the additional null-condition branch
doubles the inference cost. To address this issue, models
like FLUX.1-dev use guidance distillation to train a dis-
tilled model that takes the CFG scale embedding as an ad-
ditional input, encouraging its output aligns with the result
in Eq. 7. Since g is typically larger than 1 in inference, in
training, many works also set g to the same value used at
inference time during fine-tuning (XLabs-AI, 2024; Ten-
centARC, 2024). However, according to the experiments, it
results in inferior performance, especially in the problem of
ultra-resolution adaptation.

Specifically, during the distillation stage, the distilled model
is trained with g > 1 as input Eq. 7, which involves the
null condition. In contrast, during the adaptation stage, the
target is ϵ− z0 defined in Eq. 1, which is irrelevant to the
null condition. If g remains larger than 1, a mismatch arises
between the training targets in these two stages, making the
training process more challenging.

To address this issue, we note that incorporating the null-
condition branch during adaptation is unnecessary; simply
disabling CFG at training time by setting g = 1 works well
and yields a consistent target across the two stages. Fig. 3
illustrates the mismatch triggered by g > 1 and how g = 1
addresses the problem.

During inference, CFG is still necessary by using g > 1.
Although the model does not encounter g > 1 during adapta-
tion, we find that it generalizes sufficiently well in practice.
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Table 1: Quantitative results of the baseline methods and our proposed guidelines. The prompts are from HPD and DPG
datasets. All images are at a resolution of 2048 × 2048. Here, FLUX.1-dev∗ is FLUX.1-dev with scaled RoPE, proportional
attention, and removing dynamic shifting strategies.

Method/Setting HPD Prompt DPG Prompt

FID (↓) LPIPS (↓) MAN-IQA (↑) QualiCLIP (↑) HPSv2.1 (↑) PickScore (↑) DPG Bench (↑)

FLUX1.1 [Pro] Ultra - - 0.4129 0.6424 29.61 22.99 84.76

Real-ESRGAN 36.25 0.6593 0.4653 0.6392 30.70 22.91 83.50
SinSR 35.09 0.6566 0.4194 0.5556 30.95 22.96 83.79

SDEdit 35.59 0.6456 0.3736 0.4480 30.92 22.86 83.56
w/ URAE 34.07 0.6419 0.3872 0.5800 32.26 23.02 84.61

I-Max 33.66 0.6394 0.3670 0.4797 31.12 23.02 83.92
w/ URAE 32.24 0.6357 0.3833 0.5736 32.37 23.18 87.88

PixArt-Sigma-XL 36.58 0.6801 0.2949 0.4438 30.66 22.92 80.60
Sana-1.6B 33.17 0.6792 0.3695 0.6718 30.92 22.83 85.14

FLUX.1-dev 43.78 0.6530 0.3821 0.3800 26.22 21.54 80.64
FLUX.1-dev∗ 34.86 0.6036 0.4110 0.5468 28.73 22.68 80.15

w/ URAE 29.44 0.5965 0.4730 0.7191 31.15 23.15 83.83
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Figure 4: GPT-4o preferred evaluation against current SOTA
T2I models. We request GPT-4o to select a better image
regarding overall quality, prompt alignment, and visual aes-
thetics. Our proposed method are preferred against others.

4. Experiments
4.1. Settings and Implementation Details

In this paper, we adopt the open-source text-to-image
FLUX.1-dev model (Black Forest Labs, 2023) as the base
model to demonstrate the effectiveness of our proposed
URAE guidelines, thanks to its superior performance. For
our 2K-generation model, we collect 3K synthetic sam-
ples with various aspect ratios generated by the FLUX1.1
[Pro] Ultra model as the training dataset, and fine-tune the
FLUX.1-dev on it for merely 2K iterations with a batch size
of 8, which takes only ∼ 1 day on 2 H100 GPUs. For our

4K model, we utilize 30K images with at least 4K resolution
from the LAION-5B dataset (Schuhmann et al., 2022) and
fine-tune the base model FLUX.1-dev for 2K iterations on
8 H100 GPUs, which takes ∼ 1 days. In terms of training
convergence, our method requires significantly fewer itera-
tions compared with state-of-the-art methods, such as 10K
for SANA (Xie et al., 2024).

For baseline, we apply URAE on the FLUX.1-dev model
and compare the performance with PixArt-Sigma-XL (Chen
et al., 2024), Sana-1.6B (Xie et al., 2024), and FLUX series
models. In order to further demonstrate the effectiveness of
URAE, we also apply URAE to the existing training-free
high-resolution generation pipelines, i.e., SDEdit (Meng
et al., 2021) and I-Max (Du et al., 2024b). These pipelines
require the base text-to-image model, e.g., FLUX.1-dev, to
generate low-resolution, e.g., 1024 × 1024, images as the
guidance, and upscale these images to higher resolutions
through image-to-image pipelines. For comparison, we also
include the super-resolution methods Real-ESRGAN (Wang
et al., 2021) and SinSR (Wang et al., 2024b), based on GAN
and diffusion, respectively. We conduct quantitative exper-
iments on 2048 × 2048 samples generated with prompts
from the HPD (Wu et al., 2023) and DPG (Hu et al., 2024)
datasets. We evaluate FID and STLPIPS (Ghildyal & Liu,
2022) with the reference dataset generated by the FLUX1.1
[Pro] Ultra model. Furthermore, the quality of the generated
images is assessed using metrics MAN-IQA (Yang et al.,
2022) and QualiCLIP (Agnolucci et al., 2024). We adopt
DPG Bench to measure the semantic consistency and coher-
ence between the generated image and the corresponding
prompt. Additionally, we use the HPSv2.1 (Wu et al., 2023)
and PickScore (Kirstain et al., 2023) as human preference
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Real-ESRGAN SinSR SDEdit SDEdit (w/ URAE) I-Max I-Max (w/ URAE)

Figure 5: Visualizations of our proposed method apply to training-free high-resolution generation pipelines. The prompt is
A giraffe stands beneath a tree beside a marina.

FLUX.1-dev*FLUX.1-devPixArt-Sigma-XL Sana-1.6B w/ URAEFLUX1.1 [Pro] Ultra

Figure 6: Qualitative comparisons with baseline methods. All the images are of 2048 × 2048 size.

metrics to further evaluate the quality and aesthetic appeal
of the generated images. Following prior works like PixArt-
Sigma and I-Max, we also utilize the GPT-4o to assess the
generated images from prompt alignment, visual aesthetics,
and overall quality key perspectives, at both 2K and 4K
resolutions. These AI preference scores are derived from
300 randomly selected prompts in the COCO30K (Lin et al.,
2014; Chen et al., 2024) dataset.

4.2. 2K Resolution

Here, we evaluate the performance of the proposed methods
on 2K images generated with prompts from HPD and DPG
datasets. The results are shown in Table 1. The quantita-
tive results indicate that our proposed method is capable
of significantly enhancing the ability of models to generate
high-resolution images and demonstrates its versatility and
adaptability across different methods. Our method surpasses

the state-of-the-art model FLUX1.1 [Pro] Ultra in terms of
image quality, demonstrating its superiority in generating
visually refined images. Moreover, the remarkable improve-
ments in image quality further underscore the strength of
our method in achieving state-of-the-art visual results for
all quality metrics, making it a highly effective solution for
high-resolution image generation tasks. In addition, our
method also achieves a substantial improvement in the per-
formance of the base model in terms of prompt alignment,
improving the original FLUX.1-dev by 3.19 in DPG Bench
score, and 3.96 for I-Max pipeline.

For human preference study, we adopt HPSv2.1 and
PickScore to benchmark the human preference score. The
samples are generated with prompts from the HPD dataset
and the resolution is 2048 × 2048. The results are shown
in Table 1. The results show that our method improves the
human preference score of the base model, indicating that
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Syn – Major – w/o CFG Syn – Major – w/ CFG Real – Major – w/o CFG Real – Major – w/ CFG Syn – Minor – w/o CFG Syn – Minor – w/ CFG Real – Minor – w/o CFG Real – Minor – w/ CFG

Figure 7: Visualization results of ablation studies. The prompt is Imogen Poots portrayed as a D&D Paladin in a fantasy
concept art by Tomer Hanuka.

URAE (Minor-4K)Sana-1.6BPixArt-Sigma-XL URAE (Major-4K)FLUX.1-dev*

Figure 8: Visualization results for ultra-resolution image generation task. All the images are of 4096 × 4096 size.

our proposed guidelines are capable of generating images
that better align with human preferences.

We also conduct AI preference studies with GPT-4o for pair
comparison regarding overall quality, prompt alignment,
and visual aesthetics aspects. The results are shown in
Fig. 4. For the prompts for GPT-4o to assess the quality,
prompt alignment, and visual aesthetics, please refer to
Appendix B.1. The results demonstrate that our proposed
method excels and is preferred in all three aspects. Please
refer to Appendix C.1 for more quantitative results.

4.3. 4K Resolution

Here, we evaluate the performance of our proposed method
in 4K-ultra-resolution image generation. The results are
shown in Table 3. From the experimental results, fine-tuning

minor components achieves outstanding performance when
no synthetic data are available to serve as a reliable refer-
ence for the ultra-resolution image generation task, while the
commonly adopted LoRA may fail on the overall semantics.
Moreover, our proposed method also demonstrates excep-
tional performance compared with other methods, further
validating its competitiveness to existing approaches.

Given that there is no well-defined benchmark specifically
for 4K-ultra-resolution generation, we conduct a user study
using randomly generated prompts listed in Appendix B.2.
For each prompt, we present results generated by the can-
didates to users and let them select the best one from three
aspects including overall quality, prompt alignment, and
visual aesthetic aspects. We collect 1, 020 votes altogether.
The results in Table 3 are coherent with the above analysis.
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Table 2: Ablation studies on three key guidelines, using real (Real) or synthetic (Syn) data, whether to adopt CFG in training,
and tuning of major or minor components. Evaluations are on the 2048 × 2048 images generated from HPD prompts.

Method/Setting FID (↓) LPIPS (↓) MAN-IQA (↑) QualiCLIP (↑) HPSv2.1 (↑) PickScore (↑)

Major

Syn w/o CFG 29.44 0.5965 0.4730 0.7191 31.15 23.15
Syn w/ CFG 76.07 0.6388 0.3992 0.5890 24.80 21.87
Real w/o CFG 31.39 0.6076 0.4262 0.5953 29.33 22.86
Real w/ CFG 133.68 0.5978 0.3254 0.3645 16.55 19.92

Minor

Syn w/o CFG 27.90 0.5779 0.4558 0.6616 30.40 22.87
Syn w/ CFG 65.34 0.5858 0.3852 0.5312 23.77 21.64
Real w/o CFG 32.09 0.6000 0.4485 0.6098 28.71 22.61
Real w/ CFG 133.32 0.6026 0.3387 0.3672 16.36 19.68

Table 3: Evaluation on ultra resolution image generation task. The images are of 4096 × 4096, and generated with prompts
randomly selected from COCO30K. For user study, the prompts are randomly generated as listed in Appendix B.2.

Method/Setting COCO30K Prompt User Study

MAN-IQA (↑) Rank QualiCLIP (↑) Rank Overall Quality Rank Prompt Alignment Rank Visual Aesthetic Rank

PixArt-Sigma-XL 0.2935 5 0.2308 5 31.18% 2 30.88% 2 30.00% 2
Sana-1.6B 0.3288 3 0.4979 2 10.29% 3 10.00% 3 12.06% 3

FLUX.1-dev∗ 0.3673 2 0.2564 4 3.24% 4 3.24% 4 3.24% 4
w/ URAE (Major-4K) 0.3280 4 0.2700 3 2.06% 5 1.76% 5 1.76% 5
w/ URAE (Minor-4K) 0.3999 1 0.5118 1 53.24% 1 54.12% 1 52.94% 1

4.4. Ablation Study

To evaluate the effectiveness of our proposed method, we
carry out ablation studies on three key guidelines that we
proposed in URAE, the source of training data, tuning major
or minor components, and the adoption of CFG in training.
The experiments are conducted on the 2048 × 2048 images
generated from HPD prompts. The results are shown in
Table 2, and the visualization examples are shown in Fig. 7.
For the source of training data, the results demonstrate that
high-quality synthetic data can provide better performance
than noisy real data. When the model is fine-tuned with real
data, tuning minor components can bring more vivid details
as shown in Fig. 7. As for CFG, although it is necessary in
the inference stage, it can lead to significant performance
degradation in the training stage. According to these results,
we by default use synthetic data and tune major components,
i.e. adopt LoRA, at 2K resolution, while use real data and
tune minor components at 4K resolution. In both cases,
CFG is disabled in training and enabled during inference.

5. Conclusions and Limitations
In this paper, we focus on the challenge of adapting text-
to-image diffusion models from their native scales to ultra-
resolution settings with limited training data and computa-
tional resources. Our proposed framework, URAE, tackles
the problem from two complementary perspectives, i.e.,

data and parameter efficiency, and provides a set of useful
guidelines. First, by incorporating synthetic data generated
by some teacher models, we demonstrate the potential to
promote training convergence and achieve high-quality out-
comes even under data-scarce conditions. Second, for the
cases where synthetic data are unavailable, we introduce a
parameter-efficient fine-tuning approach to tune the minor
components of weight matrices, which outperforms stan-
dard low-rank adapters. Additionally, for models employing
guidance distillation, e.g., FLUX, setting the guidance scale
to 1 during adaptation proves crucial for achieving favorable
results. Extensive experiments reveal that URAE matches
the 2K-generation performance of leading closed-source
solutions such as FLUX1.1 [Pro] Ultra using only 3K sam-
ples and 2K iterations, and further sets new milestones for
4K-resolution generation.

Nevertheless, the models presented in this work fall short of
matching the inference-time efficiency exhibited by recent
high-resolution text-to-image generation methods (Xie et al.,
2024; Liu et al., 2024b;a; Chen et al., 2024), as we have not
introduced architectural optimizations specifically targeting
this aspect. In the future, we envision research aimed at
streamlining the ultra-resolution generation process to bal-
ance quality and efficiency requirements in practice. It is
also meaningful to integrate our methods into multi-modal
large language models to unlock even broader and more
versatile capabilities.
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A. Theoretical Proof
We supplement the proof of our main theoretical results in Theorem 3.4 here.

Theorem A.1. Under the setting defined in Assumptions 3.1, 3.2, and 3.3, the error between WT , the parameters after
T training iterations, and the optimal W ∗ is bounded by:

E[∥WT −W ∗∥22] ≤E[∥(I − ηM)T∆0∥22] + η2(p(1− p)E[δ2] + (1− p)σ2)

N∑
i=1

(1− (1− ηλi)
T )2

λi

+ p2∥Wref −W ∗∥22.

(8)

where ∆0 = W0−(pWref+(1−p)W ∗), M is defined as ∇W f(U ;W0)
⊤∇W f(U ;W0), δ = f(u;Wref )−f(u;W ∗),

and λi is the i-th eigenvalue of M .

Proof. Under the assumption of infinite-width neural networks, the network output f(u;W ) can be viewed as the following
linear form with respect to the parameter W :

f(u;W ) ≈ f(u;W0) +∇W f(u;W0)(W −W0). (9)

We denote ∇W f(W0;u) as Φ for simplicity. According to the loss function L = 1
2N ∥f(u;W )−x∥22 and Eq. 9, the gradient

of L with respect to W is:

∇WL =
1

N

∑
N

{Φ⊤(f(u;W )− x)} =
1

N

∑
N

{Φ⊤[Φ(W −W0) + f(u;W0)− x)]}. (10)

Training is conducted using SGD:

Wt+1 = Wt − η∇WLt = Wt − η
1

N

∑
N

{Φ⊤[Φ(Wt −W0) + f(u;W0)− x)]}. (11)

Due to the linearity, the optimal parameter W ∗′
when training on a mixture of real and synthetic data is given by:

W ∗′
= pWref + (1− p)W ∗. (12)

The target x can be viewed as the output of f(u;W ∗′
) with a noise term ξ′:

x = f(u;W ∗′
) + ξ′. (13)

Then we analyze the mean and variance of Σξ′ . According to Eq. 13, ξ′ satisfies:

ξ′ =

{
f(u;Wref )− f(u;W ∗′

), with probability p,

f(u;W ∗) + ξ − f(u;W ∗′
), with probability 1− p.

(14)

Given the linearity and Eq. 12,
f(u;W ∗′

) = pf(u;Wref ) + (1− p)f(u;W ∗). (15)

Denote f(u;Wref )− f(u;W ∗) as δ. Then,

ξ′ =

{
(1− p)δ, with probability p,

−pδ + ξ, with probability 1− p.
(16)

Since ξ ∼ N (0, σ2), the expectation of ξ′ is:

E[ξ′] = p(1− p)δ + (1− p)(−pδ) = 0. (17)
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And the variance, denoted as Σξ′ , is computed as:

Σξ′ = E[ξ′2] = p(1− p)2E[δ2] + (1− p)E[(−pδ + ξ)2] = p(1− p)E[δ2] + (1− p)σ2. (18)

Let M denote Φ⊤Φ ∈ RD×D, where D is the number of parameters in the network, and ∆t denote Wt −W ∗′
. Combining

with Eqs. 11 and 13, we obtain:

Wt+1 = (W ∗′
+∆t)− η

1

N

∑
N

{Φ⊤[Φ(∆t + (W ∗ −W0)) + f(u;W0)− (f(u;W ∗′
) + ξ′)]}. (19)

Note that:
f(u;W ∗′

)− f(u;W0) ≈ Φ(W ∗′
−W0). (20)

We then have:
Wt+1 = (W ∗′

+∆t)− ηΦ⊤[Φ∆t + ξ′] = W ∗′
+ [(I − ηΦ⊤Φ)∆t + ηΦξ′]. (21)

Thus,
∆t+1 = (I − ηM)∆t + ηΦξ′. (22)

Starting from ∆0, after T iterations, according to Eq. 22, we can obtain the explicit expression of ∆T :

∆T = (I − ηM)T∆0︸ ︷︷ ︸
Initial error decay

+ η

T−1∑
k=0

(I − ηM)kΦ⊤ξ′︸ ︷︷ ︸
Label noise accumulation

. (23)

Now, we are interested in E[∥∆T ∥22], which contains quadratic terms of initial error decay and label noise accumulation as
well as their cross term. Since label noise is independent of error caused by initializing model parameters and E[ξ′] = 0, the
cross term is 0. Thus,

E[∥WT −W ∗′
∥22] = E[∥(I − ηM)T∆0∥22] + η2E

[∥∥∥T−1∑
k=0

(I − ηM)kΦ⊤ξ′
∥∥∥2
2

]
. (24)

The first term is related to the initial error. For the noise term, let AT be the cumulative sum of the updates:

AT =

T−1∑
k=0

(I − ηM)k. (25)

Then:
T−1∑
k=0

T−1∑
j=0

(I − ηM)kΦ⊤ξξ′⊤Φ(I − ηM)j = ATΦ
⊤Σξ′ΦA

⊤
T . (26)

Since the noise covariance Σξ′ is a scalar, using M = Φ⊤Φ, we get:

E[∥ATΦ
⊤ξ′∥22] = Σξ′Tr

(
ATMA⊤

T

)
. (27)

Using the matrix geometric series sum formula:

AT = M†(I − (I − ηM)T ), (28)

where † denotes the Moore-Penrose pseudoinverse. Substituting,

ATMA⊤
T = M†(I − (I − ηM)T )M(I − (I − ηM)T )M†. (29)

Taking the trace:
Tr

(
ATMA⊤

T

)
= Tr

(
M†(I − (I − ηM)T )2

)
. (30)
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Let M have eigenvalue decomposition:

M = V ΛV ⊤, Λ = diag(λ1, ..., λD). (31)

Note that for infinite-width network, D ≫ N . Thus, λi = 0 for N < i ≤ D. Then:

(I − ηM)2T = V (I − ηΛ)2TV ⊤. (32)

Therefore:

Tr
[
(I − ηM)2T

]
=

N∑
i=1

(1− ηλi)
2T . (33)

Similarly,

Tr
[
M†(I − (I − ηM)T )2

]
=

N∑
i=1

(1− (1− ηλi)
T )2

λi
. (34)

Thus, using Eq. 18, the result of E[∥∆T ∥22] is:

E[∥WT −W ∗′
∥22] = E[∥(I − ηM)T∆0∥22] + η2(p(1− p)E[δ2] + (1− p)σ2)

N∑
i=1

(1− (1− ηλi)
T )2

λi
. (35)

By triangle inequality, we have:

E[∥WT −W ∗∥22] ≤E[∥WT −W ∗′
∥22] + ∥W ∗′

−W ∗∥22
=E[∥WT −W ∗′

∥22] + ∥pWref + (1− p)W ∗ −W ∗∥22

=E[∥(I − ηM)T∆0∥22] + η2(p(1− p)E[δ2] + (1− p)σ2)

N∑
i=1

(1− (1− ηλi)
T )2

λi

+ p2∥Wref −W ∗∥22.

(36)

B. More Experimental Details
B.1. Prompts for AI Preference Study

To better compare the quality of generated images, we employ GPT-4o as the evaluator, assessing methods from three aspects:
overall quality, visual aesthetics, and prompt alignment. The evaluation involved both pairwise comparisons and quantitative
analysis. During the evaluation, for pairwise comparison, GPT-4o compares our method with the baseline methods, selecting
the more preferred image. For quantitative analysis, GPT-4o assigns scores (0-100) to each image generated by each method.
The prompts used in our testing are listed below, designed following the previous work PixArt-Sigma (Chen et al., 2024).
For pairwise comparison, the designed prompt to evaluate the overall quality of images is as follows:

As an AI visual assistant, you are an evaluator specialized in image quality analysis for high-resolution text-to-image
generation models. Given a specific caption, please evaluate the overall quality of the image by considering both
content alignment and technical excellence. For content alignment, assess the key information including object
identities, properties, spatial relationships, object numbers and caption-specified style. For technical quality, evaluate
the image’s photorealism and aesthetics, focusing on clarity, richness of detail, artistic quality, and overall visual
appeal. Please analyze how well the image performs in both aspects to determine its comprehensive quality, the
prompt is “your prompt”. Please output [Image 1] if the first image is better, [Image 2] if the second image is better,
and give me the reason.

The designed prompt to evaluate visual aesthetics of images is as follows:
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As an AI visual assistant, you are an evaluator specialized in image quality analysis for high-resolution text-to-image
generation models. When presented with a specific caption, it is required to evaluate and determine which image
exhibits greater photorealism and aesthetical, in terms of clarity, richness of detail, and overall quality. Please pay
attention to the key factors, including image style, the artistic quality of the image, realism, etc., the prompt is “your
prompt”. Please output [Image 1] if the first image is better, [Image 2] if the second image is better, and give me the
reason.

The designed prompt to evaluate the prompt alignment of images is as follows:

As an AI visual assistant, you are an evaluator specialized in image quality analysis for high-resolution text-to-image
generation models. Given a specific caption, you need to judge which image aligns with the caption more closely.
Please pay attention to the key information, including object identities, properties, spatial relationships, object
numbers and image style, etc., the prompt is “your prompt”. Please output [Image 1] if the first image is better,
[Image 2] if the second image is better, and give me the reason.

For quantitative analysis, the designed prompt to evaluate the overall quality is as follows:

As an AI visual assistant, you specialize in evaluating image quality for high-resolution text-to-image generation
models. Given a specific caption, please evaluate the overall quality of the image by considering both content
alignment and technical excellence. For content alignment, assess the key information including object identities,
properties, spatial relationships, object numbers and caption-specified style. For technical quality, evaluate the
image’s photorealism and aesthetics, focusing on clarity, richness of detail, artistic quality, and overall visual appeal.
Please analyze how well the image performs in both aspects to determine its comprehensive quality. The prompt
is: “your prompt”. Please output strictly the score from 0 to 100. Do not provide any explanation or additional text
beyond this numeric score.

The designed prompt to evaluate the visual aesthetics of images is as follows:

As an AI visual assistant, you specialize in evaluating image quality for high-resolution text-to-image generation
models. When given a specific caption, you are required to assess the image and assign a 0-100 score, reflecting its
photorealism, aesthetic appeal, clarity, richness of detail, and overall quality. Key factors to consider include image
style, artistic quality, and realism. The prompt is: “your prompt”. Please output strictly the score from 0 to 100. Do
not provide any explanation or additional text beyond this numeric score.

The designed prompt to evaluate the prompt alignment of images is as follows:

As an AI visual assistant, you are an evaluator specialized in image quality analysis for high-resolution text-to-image
generation models. Given a specific caption, you need to determine the score 0-100 that the image aligns with the
caption. Please pay attention to the key information, including object identities, properties, spatial relationships,
object numbers and image style, etc., the prompt is “your prompt”. Please output strictly the score from 0 to 100,
reflecting how accurately the image aligns with the caption. Do not provide any explanation or additional text
beyond this numeric score.

B.2. Prompts Used in User Study

1. Craft an image depicting a surreal dreamscape with a majestic unicorn floating amidst tumultuous waves, viewed from an
aerial perspective akin to observing through a bird’s eyes soaring above the sea. This scene captures both serene beauty
and chaotic turbulence in one fantastical landscape. Utilize vibrant, contrasting colors, featuring deep blues for the stormy
sea and fiery oranges and purples for the swirling clouds overhead, creating an emotional gradient that evokes wonder,
danger, and ethereal grace simultaneously.
2. A captivating Art Nouveau-inspired image showcases a celestial enchantress gracefully dancing amidst a swirling vortex
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of shimmering stardust, her ethereal gown intricately woven with delicate silver threads reminiscent of cosmic nebulae.
Captured from an elevated perspective that accentuates the vastness and grandeur of the cosmos, this scene radiates a sense
of wonder, enchantment, and serenity as it invites viewers to marvel at the luminous beauty of the muse against the backdrop
of the infinite expanse.
3. A surreal digital artwork depicting an enigmatic floating cityscape composed of inverted ziggurats suspended in midair.
From an aerial perspective, the city appears to hover over an endless expanse of rippling water. As one draws closer to the
water’s surface, the reflection reveals a mirrored image of the city, but with its architecture twisted and distorted by the
shifting tides. The vibrant colors and intricate details evoke a sense of wonder mixed with unease, inviting the viewer to
contemplate the relationship between reality and illusion.
4. A surreal digital artwork depicting a bustling futuristic cityscape at night, with towering skyscrapers adorned in vibrant,
abstract shapes. The scene transitions from sharp clarity to a soft, dreamlike atmosphere as it approaches the horizon,
evoking both awe and uncertainty in the viewer. Neon lights pulse within the city, seemingly melting and warping in the air,
creating mesmerizing patterns and reflections on the wet streets below. From a high-altitude perspective, this enigmatic
metropolis is captured in an aerial view, inviting contemplation of the convergence of reality and dreams.
5. In the style of visionary art, depict a serene female figure draped in a luminous white gown with intricate mandala
patterns in deep blue and vibrant teal hues. This ethereal portrait is viewed from an aerial perspective, showcasing the
subject against a cosmic background that seamlessly blends into swirling galaxies and nebulae. The radiant colors and
harmonious compositions evoke a profound sense of spiritual awakening and interconnectedness with the vast universe
around us.
6. In the style of visionary art, depict a serene female figure draped in a luminous white gown with intricate mandala
patterns in deep blue and vibrant teal hues. This ethereal portrait is viewed from an aerial perspective, showcasing the
subject against a cosmic background that seamlessly blends into swirling galaxies and nebulae. The radiant colors and
harmonious compositions evoke a profound sense of spiritual awakening and interconnectedness with the vast universe
around us.
7. A dreamlike landscape emerges from a first-person viewpoint, immersing the observer in an alluring world where
waterlilies of soft lavender and violet hues gracefully drift on the surface of an opalescent pond. Towering lotus blossoms
stretch towards an indigo sky embellished with celestial bodies that gleam like stars, invoking both tranquility and awe.
A regal swan presides over this fantastical garden, its iridescent feathers creating captivating ripples across the water
that seem to distort time itself, crafting a harmonious melody of dreams and nature, encapsulating the spirit of beauty and
whimsy in one stunning tableau.
8. Envision an otherworldly aquatic environment where a graceful mermaid adorned with iridescent scales reminiscent of
deep-sea hues gracefully dances amidst vibrant coral formations. Her tranquil expression mirrors a state of contemplative
introspection, as if she is enveloped in the enigmatic depths from an unconventional vantage point – that of a diminutive
seashell. Delicate intricacies emerge, such as her cascading tresses mirroring tender seaweed and how sunlight weaves
through the water to cast enchanting patterns upon her skin. This captivating scene instills a sense of awe and reflection
while preserving an ethereal aura reminiscent of surrealistic art.
9. Craft an enchanting surrealist scene showcasing a ’bug’s-eye view’ perspective of a chess game occurring on a shifting
landscape. In this scene, a majestic phoenix perches atop a black bishop, its vibrant wings casting intricate shadows across
the checkerboard expanse below. The background alternates between lush tropical forests and barren deserts with each
move made by the ethereal beings participating in this mysterious match, instilling feelings of intrigue and wonder as they
traverse the unpredictable terrain under the eerie illumination of a full moon.
10. Imagine an enchanting digital artwork depicting a dragonfly’s perspective above a tranquil pond, reminiscent of Monet’s
captivating water lilies. The scene showcases lush, vibrant vegetation surrounding the serene water surface, with an
emotional gradient highlighting the beauty and enchantment as light gracefully dances across the composition. Merging
elements of impressionism with high-resolution photorealistic textures, this piece evokes a sense of awe and wonder, creating
an ethereal atmosphere that captures the dragonfly’s mesmerizing flight amidst a blooming floral paradise.
11. Imagine a lively digital painting capturing the exhilarating spirit of an anime-inspired hoverboard race in a neon-
drenched cyberpunk cityscape at twilight. The scene pulses with action as diverse characters navigate through a maze-like
urban landscape of towering skyscrapers and radiant billboards, deftly maneuvering around airborne vehicles and zipping
pedestrians while leaving trails of shimmering pixels behind them. As the sun dips below the horizon, its dramatic lighting
casts elongated shadows that accentuate the futuristic architecture and high-tech trinkets sprinkled throughout, creating
a rich tapestry of cool blues, purples, and pinks that intensify the emotional stakes and anticipation as the race nears its
peak. This captivating image, with its dynamic composition and vibrant use of color and light, transports viewers into an
enthralling world where technology and nature intertwine in a dazzling display of innovation and style.
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12. An enigmatic digital artwork showcases an celestial ballerina gracefully spinning across the cosmos, her luminescent
dress shimmering with iridescence against the inky black backdrop of space. The scene is observed from a unique ’worm’s
eye view’, accentuating the grandeur and elegance of this otherworldly dancer as she whirls amidst nebulae and stars,
creating an entrancing spectacle that captivates both the senses and the imagination while evoking a sense of wonder and
awe for the hidden beauty within the universe.
13. A mesmerizing digital artwork portraying an enchanting celestial sorceress in shimmering robes adorned with starlight-
inspired patterns. Seen from above, her captivating gaze reflects the light of distant galaxies as she skillfully shapes the
cosmos with her mystical staff, creating swirling nebulae and brilliant constellations in a breathtaking display. The backdrop
showcases a deep purple expanse of space filled with nebulous clouds, pulsating stars, and enigmatic planets, generating an
emotional gradient that balances wonder and mystery within this celestial tableau.
14. Craft an image that embodies spiritual realism with celestial elements, depicting an astronaut in a reflective spacesuit
adorned with intricate mandala patterns. This ethereal figure floats amidst the cosmic void, traversing through a luminous
wormhole that connects our physical world to a higher plane of existence. The astronaut’s journey is captured from an

’eye-of-the-needle’ perspective, enveloped by vivid colors and profound symbolism that evoke wonder, transcendence, and
spiritual awakening in the vast expanse of space.
15. A celestial ballet unfolds within an ethereal nebula as galaxies collide in a mesmerizing dance of cosmic forces. From an
impossible vantage point, suspended above the event horizon, we gaze upon this breathtaking spectacle. The scene captures
the chaotic beauty and sublime mystery of the universe, with swirling patterns of stars, nebulas, and cosmic dust illuminated
by an otherworldly light source that casts long shadows across the celestial plane. This visually stunning composition
evokes a sense of awe and wonder at the sheer scale and complexity of our cosmos, as well as the delicate balance between
order and chaos in the grand design. Inspired by the visionary artistry of Escherian architecture and the cosmic explorations
of space telescopes, this image invites viewers to ponder the infinite mysteries that lie beyond the stars.
16. Create a dreamlike still life scene blending impressionistic water lilies with surreal melting elements. Picture a tranquil
garden pond adorned with softly ruffled blue, pink, and green flowers, as if captured in an ethereal dance of light and color.
In the background, a tower melts into the distant horizon, its hands frozen in time, evoking a sense of timeless wonder. The
reflection on the water’s surface distorts the landscape into mesmerizing shapes and colors, blurring the line between reality
and fantasy, enveloping the viewer in an enchanting atmosphere of surreal beauty and awe.
17. An awe-inspiring image reveals an enigmatic blend of swirling celestial patterns reminiscent of van Gogh’s iconic
brushstrokes and the surreal melting clocks synonymous with Dali’s dreamscapes. Set within the opulent interior of a vast
library, the scene captivates the viewer’s gaze as they stand amidst towering shelves adorned with golden-hued spines.
Above, an intricate celestial map unfolds across the ceiling, its constellations echoing van Gogh’s dynamic style while
clocks dissolve into nebulous forms that cast whimsical shadows over the polished marble floors. This surreal tableau
masterfully combines wonder and introspection, inviting the observer to embark on a journey through time and space within
its harmonious visual symphony.
18. A captivating digital artwork merges Victorian-era street market with an underwater world, creating a surreal fusion
of reality and fantasy. The bustling activity of vendors selling exotic goods under a sky of swirling auroras transitions
seamlessly into the vibrant depths of the ocean, inviting viewers to explore this mysterious realm. This unique blend of
surface-level excitement and serene tranquility evokes curiosity and wonder, guiding the audience through a mesmerizing
journey that defies traditional boundaries.
19. An enchanting digital artwork portrays an underwater haven where fantastical creatures interact harmoniously in a
style reminiscent of James Gurney’s Dinotopia. From an aerial perspective, this captivating scene reveals the gentle touch
between a regal triceratops and a graceful mermaid, as they share a tender moment under the luminous sunlight filtering
through the pristine waters. This mesmerizing encounter evokes wonder and tranquility, skillfully blending fantasy with
prehistoric elements to create a visually stunning tableau that transcends time and imagination.
20. Craft an enchanting digital artwork that fuses surrealism with vibrant colors, depicting an underwater realm where
fish gracefully perform ballet in harmony with the flowing currents. This unique perspective showcases a dreamlike dance
between elegant sea creatures and floating bubbles, bathed in soft pastel hues evoking a sense of wonder and tranquility.
Delicate brushstrokes and fantastical shapes intertwine to create a captivating visual symphony, inviting viewers into an
otherworldly realm where reality and imagination seamlessly blend.

19



Ultra-Resolution Adaptation with Ease

C. More Experimental Results
C.1. More Results on AI Preference Study

We additionally use GPT-4o for a quantitative analysis, allowing for a more intuitive evaluation of performance of each
method across different assessment dimensions. Our experimental setting and pairwise comparison remain consistent. We
randomly select 300 prompts from the COCO30K dataset and generate images of 2048×2048. The results are shown
in Table 4. The results indicate that our method achieves an exceptionally high level across all three dimensions and is
comparable to SOTA model FLUX1.1 [Pro] Ultra.

Table 4: Results on AI preference study. Evaluation images are generated with COCO30K prompts with a resolution of
2048 × 2048.

Method/Setting Overall Quality Rank Prompt Alignment Rank Visual Aesthetics Rank

SDEdit 87.09 2 90.99 2 89.18 2
w/ URAE 88.23 1 92.49 1 90.09 1

I-Max 88.24 2 91.38 2 89.96 2
w/ URAE 89.12 1 92.58 1 90.86 1

FLUX1.1 [Pro] Ultra 90.42 1 93.53 2 90.42 2

PixArt-Sigma-XL 86.13 4 88.71 6 86.31 5
Sana-1.6B 86.46 3 90.25 3 87.80 3

FLUX.1-dev 84.23 6 89.05 5 84.88 6
FLUX.1-dev∗ 86.05 5 89.48 4 87.02 4

w/ URAE 89.71 2 93.64 1 91.47 1

C.2. More Results on FID and LPIPS against Real Images

In Table 1, we report the FID and LPIPS evaluation results of baseline methods against reference images generated by
FLUX1.1 [Pro] Ultra model. In this section, we also provide FID and LPIPS results of baseline methods against real images.
The results are shown in Table 5.

Table 5: Results on FID and LPIPS evaluated against real images. Evaluation images are generated with 2, 000 and 1, 000
prompts randomly selected from COCO2014val with a resolution of 2048 × 2048 and 4096 × 4096.

2048 × 2048 FID LPIPS 4096 × 4096 FID LPIPS

FLUX1.1 [Pro] Ultra 47.12 0.4518 FLUX1.1 [Pro] Ultra - -

PixArt-Sigma-XL 57.02 0.5075 PixArt-Sigma-XL 75.81 0.5066
Sana-1.6B 54.57 0.5122 Sana-1.6B 73.46 0.5108

Ours 52.95 0.4669 Ours 70.44 0.4647

C.3. More Results on Few-Step Diffusion Model

We also conduct experiments on FLUX.1-Schnell to demonstrate the generalization and the strong adaptation capabilities of
our proposed method. Without any additional training, a trained adapter on FLUX.1-dev can be migrated onto FLUX.1-
schnell, which can generate high-quality results with only 4 denoising steps and achieves 6× acceleration compared with
FLUX.1-dev (25.8 v.s. 36.5 sec./image). The results are shown in Table 6.
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Table 6: The quantitative results on FLUX.1-Schnell. All images are generated with the 2, 000 prompts randomly selected
from COCO2014val, and are of 2048 × 2048 in size. Here, FID is evaluated against real images. Here, FLUX.1-Schnell∗ is
FLUX.1-Schnell with scaled RoPE, proportional attention, and removing dynamic shifting strategies.

FID (↓) HPSv2.1 (↑) PickScore (↑)

FLUX.1-schnell 42.42 27.97 22.07
FLUX.1-schnell∗ 42.20 28.17 22.38

w/ URAE 38.66 29.63 22.74

C.4. More Results on Ablation Studies

C.4.1. CHOICE OF SINGULAR COMPONENT RANK

We also conduct the ablation studies to analyze the sensitivity to the singular component rank r. The evaluation results are
shown in Table 7. From the results, the performance remains stable when r is around 16.

Table 7: The quantitative results on the choice of singular component rank (r). All images are generated with the 2, 000
prompts randomly selected from COCO2014val, and are of 2048 × 2048 in size. Here, FID is evaluated with inference
images generated by FLUX1.1 [Pro] Ultra.

FID (↓) HPSv2.1 (↑) PickScore (↑)

r = 1 42.34 30.21 23.01
r = 4 38.08 30.99 23.04
r = 16 38.85 31.50 23.21
r = 64 38.97 30.14 22.91
r = 256 38.77 29.89 22.82

C.4.2. TRAINING-TIME GPU MEMORY REQUIREMENTS FOR DIFFERENT RANKS

For parameter efficiency, we conduct experiments on training-time GPU memory requirement (MB) with respect to various
ranks of the adapters. The results are shown in Table 8. We observe that comparing with full-rank adaptation, the low-rank
adapters save GPU memory over 50%.

Table 8: Training-time GPU memory requirements for different ranks for 2048 × 2048 and 4096 × 4096 image generation
tasks. Here, we adopt r = 16 as the default setting in the paper.

r = 1 r = 4 r = 16 (Default) r = 64 r = 256 r = 3072 (Full)

2048 × 2048 35916 35958 36124 36816 39884 77880
4096 × 4096 62806 62850 63010 63704 66114 OOM
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