

WRITING-RL: ADVANCING LONG-FORM WRITING VIA ADAPTIVE CURRICULUM REINFORCEMENT LEARNING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
WRITING-RL: ADVANCING LONG-FORM WRITING VIA
ADAPTIVE CURRICULUM REINFORCEMENT LEARNING
Anonymous authors
Paper under double-blind review
ABSTRACT
Recent advances in Large Language Models (LLMs) have enabled strong performance in long-form writing, but current training paradigms remain limited: Supervised Fine-Tuning (SFT) remains constrained by data saturation and performance ceilings, while Reinforcement Learning with Verifiable Reward (RLVR), though successful in verifiable domains like math and code, cannot be directly migrated to open-ended long-form writing due to a lack of ground-truths. To further advance long-form writing, we present **Writing-RL**: an *Adaptive Curriculum Reinforcement Learning* framework to advance long-form writing capabilities beyond SFT. The framework consists of three key components: *Margin-aware Data Selection* strategy that prioritizes samples with high learning potential, *Pairwise Comparison Reward* mechanism that provides discriminative learning signals in the absence of verifiable rewards, and *Dynamic Reference Scheduling* approach, which plays a critical role by adaptively adjusting task difficulty based on evolving model performance. Experiments on 7B-scale writer models show that Writing-RL effectively improves long-form writing performance over strong SFT baselines. Furthermore, we observe that models trained with long-output RL generalize surprisingly well to long-input reasoning tasks, potentially offering a promising perspective for rethinking long-context training.

1 INTRODUCTION

Recent years have witnessed the remarkable advance of Large Language Models (LLMs) (OpenAI, 2023; DeepSeek-AI et al., 2025; Zhao et al., 2023) to follow complicated instructions and provide helpful responses. Among their impressive capabilities, long-form writing, which aims to generate long and high-quality articles, has drawn increasing attention (Wu et al., 2025b; Bai et al., 2024b; Wu et al., 2025c) due to its broad practical applications.

However, generating articles of both sufficient length and high quality is non-trivial for current LLMs. Previous research has identified several challenges to employ LLMs for long-form generation, including inherently limited output ceiling (Bai et al., 2024b; Tu et al., 2025) and performance degradation as output length grows (Wu et al., 2025c; Tu et al., 2025). To address these issues, recent efforts perform targeted Supervised Fine-Tuning (SFT) on LLMs to extend their output lengths, with long-generation datasets constructed by iterative agent pipelines (Bai et al., 2024b; Quan et al., 2024; Wu et al., 2025c) or instruction back-translation (Pham et al., 2024; Wang et al., 2024). Though effective, these approaches introduce heavy burdens of dataset construction due to the broad coverage of writing tasks and potential copyright issues (Maini et al., 2024) when incorporating human-written texts. Furthermore, training LLMs to imitate the collected long-generation responses inherently imposes a capability upper bound determined by teacher models or human experts, which may cause data saturation and sample inefficiency.

Meanwhile, recent progress of Reinforcement Learning (RL) with Verifiable Rewards (DeepSeek-AI et al., 2025; Team et al., 2025; Yuan et al., 2025) in reasoning-intensive areas reveals a promising direction to advance model capabilities beyond SFT. In long-form writing, however, the lack of ground truths prevents a straightforward transfer of these successes. Wu et al. (2025a) utilize static reward models for grading, failing to dynamically adapt to evolving model capability. Overall, adaptive online RL for long-form writing remains under-explored and presents several challenges:

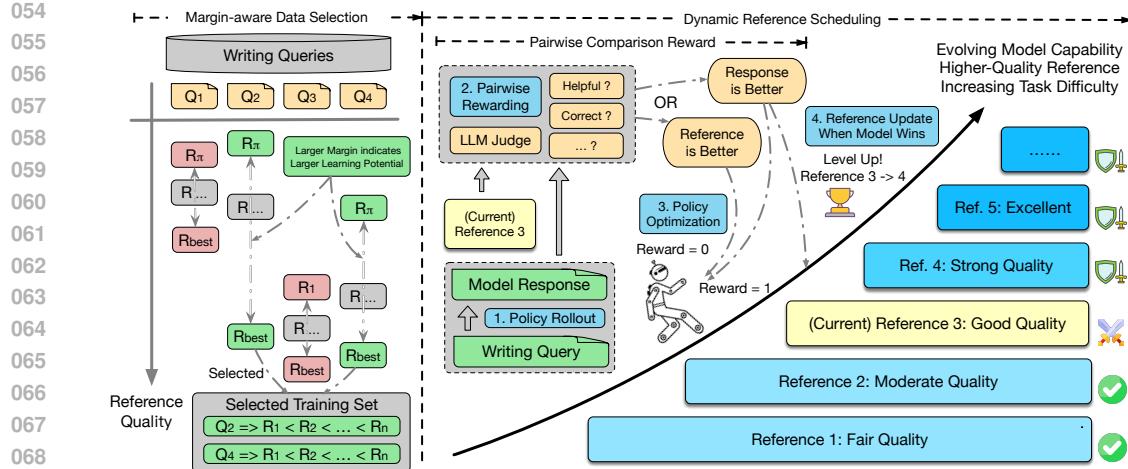


Figure 1: Overall framework of **Writing-RL**. 1) *Margin-aware Data Selection*: prioritizes samples with high learning potential; 2) *Pairwise Comparison Reward*: provides more discriminative reward signals; 3) *Dynamic Reference Scheduling*: adaptively incentivizes the model to surpass progressively stronger references.

- **Data Selection**: Data quality and difficulty play a critical role in eliciting model potential. However, the optimal approach for selecting data for RL in long-form writing tasks remains unclear, requiring more explorations towards better learning efficiency.
- **Reward Design**: Rule-based outcome rewards (DeepSeek-AI et al., 2025) cannot be directly applied to generative writing tasks. Without ground-truth labels, constructing an effective reward mechanism for long-form writing poses a significant challenge.
- **Curriculum Scheduling**: Curriculum Learning (Bengio et al., 2009) is widely used to progressively improve model performance, but current static scheduling fails to adapt to the model’s evolving competence, thereby reducing training effectiveness.

To tackle these challenges, our work proposes **Writing-RL**: an *Adaptive Curriculum Reinforcement Learning* framework tailored for long-form writing. As illustrated in Figure 1, our framework begins with **Margin-aware Data Selection** strategy which leverages the quality differential between the policy model response and the highest-quality reference as a measure of *learning potential*, diverging from the conventional difficulty-prioritized selection approach. Considering the limited discriminative capacity of pointwise rewarding, we construct a **Pairwise Comparison Reward** mechanism which challenges the policy model to generate responses of better quality than provided references to earn positive rewards. To facilitate progressive model enhancement, we propose a **Dynamic Reference Scheduling** approach that assigns each query a set of references with progressively increasing quality. The scheduling approach dynamically updates the references per sample when the evolving policy model surpasses the current reference during training. In this way, the dynamic curriculum adjusts sample-level task difficulty based on the current model performance, encouraging the model to consistently outperform a marginally superior reference. This rationale aligns with insights from recent R1-like RL practices (Shi et al., 2025; Bae et al., 2025) that samples neither too easy nor too difficult help to achieve the best learning efficiency.

To evaluate our framework, we conduct continuous reinforcement training on top of supervised fine-tuned writer models. The results indicate that our RL framework effectively boosts the long-form writing capability, advancing the SOTA performances of 7B-level writer models. Besides the improvement in long-form generation, we also observe an inspiring generalization phenomenon: our RL-trained writer model (*average input length < 1k*) shows a surprising improvement in long-text reasoning tasks (*input length: 8k–2M*), in contrast to the performance degradation of the SFT-trained model. The results suggest a novel perspective on long-context learning: models trained on *long-output* tasks may also improve their reasoning abilities on *long-input* tasks, offering new insights into the relationship between long-context understanding and generation.

108 In summary, the contributions of our work are:
 109

- 110 • We propose **Writing-RL**: an *Adaptive Curriculum Reinforcement Learning* framework for long-
 111 form writing, which integrates three key components: *Margin-aware Data Selection*, *Pairwise*
 112 *Comparison Reward*, and *Dynamic Reference Scheduling*.
- 113 • Particularly, we propose **Dynamic Reference Scheduling**, which adaptively adjusts sample-level
 114 task difficulty based on the model’s evolving performance. This dynamic curriculum encourages
 115 the model to continually outperform progressively stronger references.
- 116 • Our resulting writer model achieves state-of-the-art performance at its scale, demonstrating the
 117 effectiveness of Writing-RL. Furthermore, we observe inspiring **Output-to-Input Generalization**
 118 from *long-output* generation to *long-input* reasoning, revealing a novel benefit of long-form RL
 119 training for long-context understanding.

120

121 2 RELATED WORK

122

123 **Training Methods for Long-form Writing.** Recent efforts to advance long-form writing capabilities
 124 (Bai et al., 2024b; Wu et al., 2025c) mainly focuses on constructing long-generation post-training
 125 datasets for fine-tuning. Main approaches include teacher model distillation (Wu et al., 2025c),
 126 iterative agent pipelines for extended output (Bai et al., 2024b; Tu et al., 2025; Quan et al., 2024) and
 127 instruction back-translation (Pham et al., 2024; Wang et al., 2024). Wu et al. (2025a) incorporates
 128 static reward models for supervision, which fails to dynamically adapt to evolving model capability
 129 during training. However, the application of adaptive online reinforcement learning methods are
 130 relatively underexplored, hindering further improvement.

131 **Long-form Writing Evaluation.** Long-form writing (Wu et al., 2025b) requires LLMs to write
 132 open-ended articles, posing challenges for evaluation due to the lack of ground-truths. Earlier studies
 133 establish writing benchmarks (Wu et al., 2025c; Que et al., 2024), with proprietary models (Bai
 134 et al., 2024b; Paech, 2023; Liu et al., 2024) or fine-tuned LLMs (Wu et al., 2025c; Ke et al., 2024) to
 135 serve as judges. However, there exist several biases of including position bias and self-enhancement
 136 bias (Zheng et al., 2023), challenging the reliability of LLM-as-Judge evaluation methods.

137 **Curriculum Learning.** Reinforcement Learning methods (Schulman et al., 2017; Shao et al., 2024;
 138 DeepSeek-AI et al., 2025) have become a critical step to elicit LLM capabilities. To boost efficiency,
 139 Curriculum Learning (Bengio et al., 2009) has been widely adopted in RL practices (Team et al.,
 140 2025; Xie et al., 2025; Wen et al., 2025), including static difficulty-based scheduling (Luo et al.,
 141 2025; Song et al., 2025) and dynamic data selection (Bae et al., 2025; Shi et al., 2025). However,
 142 these methods use rule-based correctness as a measure for difficulty and perform sample selection,
 143 which increases rollouts and may cause imbalanced learning across samples.

144

145 3 WRITING-RL

146

147 In this work, we propose **Writing-RL**, an *Adaptive Curriculum Reinforcement Learning* framework
 148 aimed at further improving long-form writing capabilities after instruction fine-tuning. The framework
 149 comprises three key components: *Margin-aware Data Selection*, *Pairwise Comparison Reward* and
 150 *Dynamic Reference Scheduling*. By integrating outcome-based RL into long-form writing tasks, our
 151 approach improves model writing capabilities through more effective sample selection, reward design,
 152 and learning scheduling. We will describe the components in detail respectively.

153

154 3.1 MARGIN-AWARE DATA SELECTION

155

156 Previous data selection approaches typically take question difficulty as a key criteria, measured by
 157 the accuracy of the policy model (Shi et al., 2025; Bae et al., 2025), simplistic indicators (Cheng
 158 et al., 2021; Yang et al., 2025) like solution step counts or simple heuristics grounded in human
 159 intuition (Hendrycks et al., 2021b). While difficulty-prioritized data selection has been effective in
 160 tasks such as math and code, where RL benefits from verifiable rewards, it depends on clearly defined
 161 ground truth to measure difficulty. In open-ended writing tasks, however, the lack of ground-truths
 makes difficulty an unreliable indicator of data utility.

To address this issue, we propose *Margin-aware Data Selection*, which uses the performance gap between the policy output and the highest-quality reference as a measure of *learning potential*. Our intuition is simple: a question suitable for learning is a question with sufficient room for performance improvement. Specifically, the procedure is detailed as follows.

Generation with Multiple LLMs. Instead of relying on a single model as the difficulty estimator (Shi et al., 2025; Bae et al., 2025), we leverage a set of competitive LLMs $\mathcal{C} = \{\pi, M_1, M_2, \dots\}$, including the policy model, to generate diverse candidate responses for each writing instruction.

Multi-dimensional Grading. Each generated response r_j from model $M_j \in \mathcal{C}$ is graded using a multi-dimensional pointwise LLM-as-a-Judge approach (Liu et al., 2024; Wu et al., 2025c), with averaged quality score denoted as s_j per response.

Data Selection on Learning Potential. To prioritize samples from which the policy model can benefit most, we define the *model-grounded learning potential* p as the quality gap between the best competitor and the policy model:

$$p = \max_{j \in \mathcal{C}, j \neq \pi} (s_j - s_\pi)$$

where s_π is the score of the policy model’s response. A higher p indicates greater headroom for improvement. To filter out noisy instructions, we first discard samples where all the competitors produce under-performing responses, as such instructions are often overly difficult or suffer from quality issues themselves. After filtering, we rank the remaining samples by their learning potential p , and retain the top- k examples to construct the training set.

3.2 PAIRWISE COMPARISON REWARD MECHANISM

Reward function is a critical component to guide policy optimization in RL practice. While rule-based outcome reward (DeepSeek-AI et al., 2025; Team et al., 2025) has been proven to be remarkably effective in eliciting long-CoT (Wei et al., 2022) reasoning in reasoning-intensive tasks, it can not be directly applied to long-form writing tasks due to the lack of ground-truths and its subjective nature, posing challenges to reward design.

Recent efforts utilize LLM-as-a-Judge (Zheng et al., 2023; Wu et al., 2025c) to measure the quality of model-generated responses, achieving high agreement with human judges. There exists two evaluation approaches including pointwise grading and pairwise comparison. Though widely adopted in writing evaluation due to its simplicity, pointwise grading exhibits limited discriminative capabilities and relatively high variance. On the contrary, pairwise comparison evaluates the response against a high-quality reference, capturing the subtle differences and potential direction of improvement. By providing more discriminative reward signals, pairwise grading incentivizes the policy model to generate better response and defeat high-quality references for positive rewards. Therefore, our reward design is as follows:

$$r_{\text{quality}}(\mathbf{x}) = \begin{cases} 1 & \text{if } \text{Judge}(\mathbf{ref}, \mathbf{x}) = \mathbf{x} \succ \mathbf{ref} \\ 0.5 & \text{if } \text{Judge}(\mathbf{ref}, \mathbf{x}) = \mathbf{x} \equiv \mathbf{ref} \\ 0 & \text{if } \text{Judge}(\mathbf{ref}, \mathbf{x}) = \mathbf{x} \prec \mathbf{ref} \end{cases}$$

where $r_{\text{quality}}(\mathbf{x})$ denotes the reward for a generated response \mathbf{x} ; \mathbf{ref} represents the high-quality reference response; and $\text{Judge}(\mathbf{ref}, \mathbf{x})$ is the evaluation function performed by the LLM-based judge to compare \mathbf{x} with \mathbf{ref} .

To evaluate the reliability of the LLM judges in our setting, we conduct extensive experiments on 300 samples to measure the agreement between model judges and human judges. The results are shown in Table 1, demonstrating the reliability of LLM-as-Judge methods.

Furthermore, LLM judges are known to exhibit position bias (Zheng et al., 2023) in pairwise comparisons, systematically favoring the first response. To impose additional learning pressure, we deliberately place the model-generated response in the second position, thereby introducing *positional disadvantage*.

Table 1: Agreement experiments between model judges and human judges.

Model	Agreement
claude-3.7-sonnet	0.82
Deepseek R1	0.76
gpt-4o-2024-11-20	0.70
qwen-plus	0.75

216 **Algorithm 1** Dynamic Reference Scheduling for Long-form Writing

217 1: **Pre-processing:** For each instruction $w \in W$, apply Margin-aware Data Selection (Section 3.1) to obtain a
218 stage-wise reference list $\mathcal{R}^{(w)} = \{r_\pi^{(w)}, r_1^{(w)}, r_2^{(w)}, \dots\}$ ordered by ascending quality.

219 2: **Input:** Instruction set W ; reference lists $\{\mathcal{R}^{(w)}\}_{w \in W}$; policy model π_θ ; RL updater \mathcal{A} (e.g., PPO); batch
220 size B .

221 3: Initialize reference pointer $t_w \leftarrow 1$ **for all** $w \in W$ ▷ current reference index

222 4: **while** training not finished **do**

223 5: Sample batch $\mathcal{B} = \{w_k\}_{k=1}^B$ from W

224 6: **for all** $w_k \in \mathcal{B}$ **do** ▷ current reference

225 7: $r_k \leftarrow \mathcal{R}^{(w_k)}[t_{w_k}]$

226 8: Generate response $g_k \leftarrow \pi_\theta(w_k)$

227 9: Compute reward $R_k \leftarrow \text{Judge}(r_k, g_k)$ ▷ 1 (win), 0.5 (tie), 0 (loss)

228 10: **end for**

229 11: Update policy $\pi_\theta \leftarrow \mathcal{A}(\pi_\theta, \{(w_k, g_k, R_k)\}_{k=1}^B)$ ▷ reference surpassed

230 12: **for all** $w_k \in \mathcal{B}$ **such that** $R_k = 1$ **do**

231 13: **if** $t_{w_k} < |\mathcal{R}^{(w_k)}|$ **then** ▷ promote to next stronger reference

232 14: $t_{w_k} \leftarrow t_{w_k} + 1$

233 15: **end if**

16: **end for**

17: **end while**

236 *tage* in training. This avoids the need for position-swapped comparisons and halves the evaluation
237 cost, while encouraging the model to generate stronger outputs from a less favorable position.

239 3.3 DYNAMIC REFERENCE SCHEDULING

241 Curriculum Learning (Bengio et al., 2009) schedules progressive task difficulty for better learning
242 efficiency. Previous efforts utilize offline-calculated difficulty for scheduling (Shi et al., 2025; Song
243 et al., 2025) or introducing additional rollouts during training for adaptive sample selection (Bae
244 et al., 2025; Yu et al., 2025). Though effective in reasoning-centered RL, these methods suffer from
245 either non-adaptive difficulty estimates or increased inference overhead.

246 Faced with the disadvantages of insufficient adaptivity of current curriculum scheduling, we propose a
247 *Dynamic Reference Scheduling* approach that encourages the policy model to sequentially outperform
248 references of ascending quality. With the algorithm detailed in Algorithm 1, our framework introduces
249 a more competitive reference when the policy model beats the current one in training process, enabling
250 asynchronous per-sample difficulty updates and dynamic adaptivity with the evolving model.

251 **Prior to Training: Data Preparation.** Given
252 a set of writing instructions W , we first apply
253 the Margin-aware Data Selection strategy as
254 elaborated in Sec 3.1, obtaining multiple com-
255 petitive references $\mathcal{R} = \{r_\pi, r_1, r_2, \dots\}$ and
256 their corresponding LLM-judged quality scores
257 $\mathcal{S} = \{s_\pi, s_1, s_2, \dots\}$ for each instruction. The
258 references are then sorted in ascending order of
259 quality to produce a stage-wise reference list
260 $\mathcal{R}_s = \{r_{q1}, r_{q2}, \dots\}$. To maintain sufficient
261 positive feedback early in training, we deliber-
262 ately include the response from the initial pol-
263 icy model π in the reference set, as the other
264 reference-generation LLMs are generally larger
265 in size and more competent.

266 **During Training: Dynamic Scheduling.** At
267 the start of training, each instruction is ini-
268 tialized with the lowest-quality reference r_{q1} ,
269 which is comparable to the initial policy model’s response. As the model evolves during training,
270 the model gradually generates higher-quality responses during rollouts and receives positive rewards
271 in some of the LLM-judged pairwise comparisons. Subsequently, the defeated references r_t are re-

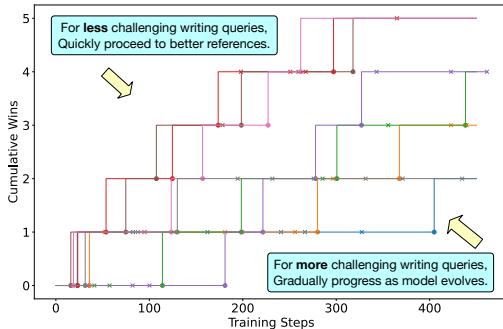


Figure 2: Sample-wise asynchronous learning schedule during training enabled by *Dynamic Reference Scheduling*. Each line represents a sample, where an upward step indicates LLM surpassing its current reference and advancing to a better one. As the model evolves during training, the model gradually generates higher-quality responses during rollouts and receives positive rewards in some of the LLM-judged pairwise comparisons. Subsequently, the defeated references r_t are re-

270 Table 2: Evaluation results of the models trained with Writing-RL, with the highest score in each
 271 model family **bold**. Notably, our trained models perform the best within their model family, on par
 272 with the proprietary models.

273 Model	274 Writing-Oriented Training		275 Long-form Writing Evaluation			
	276 SFT	277 RL	278 WritingBench	279 EQ-Bench	280 LongBench-Write	281 Average
(a) Proprietary LLMs						
276 Qwen-Plus	277 –	278 –	279 77.62	280 76.78	281 95.42	282 83.27
276 GPT-4o	277 –	278 –	279 83.42	280 80.45	281 92.92	282 85.60
(b) Writing-Oriented Fine-Tuned LLMs						
276 Suri-7B	277 ✓	278 ✗	279 49.70	280 18.44	281 33.44	282 33.86
276 Longwriter-9B	277 ✓	278 DPO	279 79.10	280 44.15	281 80.83	282 68.03
276 Longwriter-Zero-32B	277 ✓	278 GRPO	279 82.92	280 61.14	281 85.90	282 76.65
(c) Qwen2.5-7B-Instruct Model Family						
276 Qwen2.5-7B-Instruct	277 ✗	278 ✗	279 73.26	280 49.59	281 85.03	282 69.29
276 Qwen2.5-7B-WritingBench-SFT (12k)	277 ✓	278 ✗	279 83.71	280 70.02	281 92.22	282 81.98
276 Qwen2.5-7B-WritingBench-SFT (24k)	277 ✓	278 ✗	279 83.71	280 69.55	281 92.57	282 81.94
276 Qwen2.5-7B-Reference-SFT	277 ✓	278 ✗	279 84.23	280 68.89	281 92.88	282 82.00
276 Qwen2.5-7B-Writing-RL (Ours)	277 ✓	278 PPO	279 87.23	280 73.19	281 93.06	282 84.49
(d) Llama3.1-8B-Instruct Model Family						
276 Llama3.1-8B-Instruct	277 ✗	278 ✗	279 66.40	280 48.40	281 73.89	282 62.89
276 Llama3.1-8B-WritingBench-SFT	277 ✓	278 ✗	279 83.98	280 78.11	281 90.66	282 84.25
276 Llama3.1-8B-Reference-SFT	277 ✓	278 ✗	279 83.98	280 76.70	281 91.53	282 84.07
276 Llama3.1-8B-Writing-RL (Ours)	277 ✓	278 PPO	279 87.10	280 82.73	281 92.36	282 87.40

290 placed with marginally stronger ones r_{t+1} while the undefeated references are retained, progressively
 291 increasing the challenge without overwhelming the model, in alignment with the model’s evolving
 292 capability. This dynamic and adaptive reference update mechanism establishes an asynchronous
 293 learning schedule for each writing instruction and effectively incentivize the model to consistently
 294 perform better. As shown in Figure 2, our approach enables sample-wise asynchronous scheduling to
 295 dynamically adapt task difficulty to model capability.

297 4 EXPERIMENTS

299 To demonstrate the effectiveness of Writing-RL, we conduct experiments on writing-oriented fine-
 300 tuned LLMs to see whether it can further advance long-form writing capabilities beyond SFT.

302 4.1 DATASETS

303 We use two carefully-constructed generative writing datasets primarily designed for supervised
 304 fine-tuning, including LongWriter training set (Bai et al., 2024b) and WritingBench training set (Wu
 305 et al., 2025c). As detailed in Section 3.1, we perform the *Margin-aware Data Selection* procedure on
 306 these two datasets respectively. Specifically, we first generate references for each writing instruction
 307 with the initial policy model and four competent larger-size LLMs, including Qwen-Plus (Yang et al.,
 308 2024), GPT-4o (Hurst et al., 2024), Claude-3.7 (Anthropic Team, 2025) and Deepseek R1 (DeepSeek-
 309 AI et al., 2025). Then, we utilize a fine-tuned judge model (Wu et al., 2025c), which is optimized
 310 for evaluating long-form writing responses and reaches high agreement with human judges, to grade
 311 the responses in multiple dimensions. Finally, after the selection process, we obtain 1.5k chosen
 312 samples each dataset for further reinforcement learning. Each sample contains a writing instruction
 313 and references ordered by ascending quality.

314 4.2 TRAINING SETUP

316 To fully harness the full potential of reinforcement learning, we use two writing-expert LLMs as the
 317 base models for RL, which are primarily fine-tuned with the full WritingBench training set, denoted
 318 as *Qwen2.5-7B-WritingBench-SFT* and *Llama3.1-8B-WritingBench-SFT* respectively.

319 With the proposed Writing-RL, we use the PPO algorithm (Schulman et al., 2017) to optimize the
 320 two selected based models for long-form writing. During the training process, we adopt Qwen-Plus
 321 to serve as pairwise-comparison judge, providing rewards for policy optimization. We include more
 322 details about reward model choice in Appendix A.3. The resulting models are denoted as *Qwen2.5-7B-Writing-RL*
 323 and *Llama3.1-8B-Writing-RL* respectively. More implementation details and training
 parameters can be found in Appendix A.

324 Table 3: Evaluation results of the models trained with Writing-RL on LongBench v2, demonstrating
 325 the generalization potential from long-output generation to long-input reasoning.

326 327 328 Model	329 330 331 Writing-Oriented Training		332 333 334 Evaluation					
	335 336 337 SFT	338 339 340 RL	341 342 343 Easy	344 345 346 Hard	347 348 349 Short	350 351 352 Medium	353 354 355 Long	356 357 358 Overall
Qwen2.5-7B-Instruct	✗	✗	31.8	28.3	38.9	26.0	21.3	29.6
Qwen2.5-7B-WritingBench-SFT	✓	✗	27.6	27.7	35.0	25.1	20.4	27.6
Qwen2.5-7B-Writing-RL (Ours)	✓	PPO	35.8	29.3	42.1	25.7	26.5	31.8
Llama3.1-8B-Instruct	✗	✗	32.3	28.9	35.6	27.4	26.9	30.2
Llama3.1-8B-WritingBench-SFT	✓	✗	29.7	27.7	36.7	23.7	24.1	28.4
Llama3.1-8B-Writing-RL (Ours)	✓	PPO	31.2	33.8	42.2	29.3	24.1	32.8

335 4.3 BENCHMARKS AND BASELINES

336 To comprehensively evaluate long-form writing capabilities of LLMs, we use three established
 337 benchmarks including WritingBench (Wu et al., 2025c), LongBench-Write (Bai et al., 2024b), and
 338 EQ-Bench creative writing split (Paech, 2023). The benchmarks are of broad coverage and use strong
 339 judge LLMs to evaluate the quality of generated responses. Note that the judge LLMs adopted for
 340 evaluation are diverse and different from the rewarding judge LLM used in training, mitigating the
 341 risk of overfitting particular judge preferences to ensure a fair evaluation.

342 Our selected baselines include strong proprietary models (Yang et al., 2024; Hurst et al., 2024),
 343 instruction fine-tuned LLMs (Yang et al., 2024; Dubey et al., 2024), writing-oriented fine-tuned
 344 LLMs (Wu et al., 2025c; Bai et al., 2024b; Pham et al., 2024; Wu et al., 2025a), and the models
 345 continually trained via SFT on our RL dataset. More evaluation details can be found in Appendix B.
 346

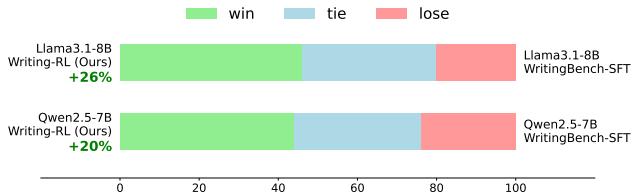
347 4.4 RESULTS

348 As detailed in Table 2, the evaluation
 349 results demonstrate that models trained with Writing-RL outperform
 350 other models across all the three
 351 benchmarks. Specifically, *Llama3.1-8B-Writing-RL (Ours)* achieves the
 352 highest average score of 87.14, and
 353 *Qwen2.5-7B-Writing-RL (Ours)* follows with an average of 84.49, both
 354 showing strong performance in 7B-level. Notably, our trained models ex-
 355 hibit long-form writing capabilities that match or even surpass those of proprietary models, positioning
 356 them as strong open-source alternatives for long-form generation tasks.
 357

358 Meanwhile, we observe distinct performance trends when applying RL and SFT to relatively strong
 359 models. Despite utilizing identically constructed datasets from the same expert model and agent
 360 pipeline, the fine-tuned model on 24k samples exhibits performance equivalent to, or slightly below,
 361 that of the variant trained with 12k samples. Furthermore, the models continuously fine-tuned with
 362 high-quality references in the RL dataset, namely *Llama3.1-8B-Reference-SFT* and *Qwen2.5-7B-Reference-SFT*,
 363 also show minimal performance gain, or even slight degradation. This observation
 364 potentially underscores the phenomenon of data saturation, where beyond a certain capability thresh-
 365 old, simply scaling SFT data volume fails to enhance model performance. In contrast, models
 366 continuously trained by reinforcement learning, such as *Llama3.1-8B-Writing-RL (Ours)* compared
 367 to *Llama3.1-8B-WritingBench-SFT* within the same model family, demonstrate consistent per-
 368 formance improvements and thereby indicates the promising potential of RL to further advance model
 369 capabilities where SFT encounters limitations.
 370

371 4.5 HUMAN EVALUATION

372 Furthermore, we recognize that human evaluation could serve as a great supplement to automatic
 373 LLM-as-Judge. Therefore, we also conduct human evaluation experiments to further validate our
 374 model performance. We randomly sample 100 writing instructions in total from our evaluation
 375 datasets and generate responses using our RL-trained models and the most competitive baselines.
 376



377 Figure 3: Human evaluation results of pairwise comparison
 378 between our RL-trained models and the best-performing SFT-
 379 trained competitors.

378
379
380
Table 4: Comparison of different data selection
strategies, indicating the benefits of larger learn-
ing potential.

Selection Strategy	Initial Score	Learning Potential	Writ. Score
Baseline (w/o RL)	–	–	83.71
Full (w/o Selection)	84.20	3.64	85.64
Difficulty-prioritized	77.61	8.18	86.40
Margin-aware (Ours)	78.84	9.16	87.02

381
382
383
384
385
386
Table 5: Comparison of different reward designs,
indicating the effectiveness of multi-dimensional
pairwise LLM during training.

Reward Strategy	Multi Dimension	Reference Based	Writ. Score
Baseline (w/o RL)	✗	✗	83.71
Pointwise	✓	✗	84.59
Pairwise (Ours)	✓	✓	87.02

387
388
389
390
Then, the annotators select the better-quality response under the same writing instruction. As shown
in Fig 3, the results demonstrate higher win rates of our trained models, indicating their stronger
long-form writing capability and better alignment with human preferences.

391 5 GENERALIZATION FROM OUTPUT TO INPUT

392
393
394 To understand the influence on long-context capabilities of long-output RL, we adopt the challenging
395 long-context reasoning benchmark LongBench v2 (Bai et al., 2024a) to evaluate long-input reasoning.
396 Notably, as shown in Figure 4, the input lengths in LongBench v2 are substantially longer than those
397 in our training set, mostly exceeding not only the input lengths but also the total input–output lengths.

398
399 As detailed in Table 3, our findings are inspiring.
400 Beyond improved performance in long-form
401 generation, the writer models fine-tuned with
402 our RL recipe also exhibit surprising generaliza-
403 tion to long-context reasoning tasks with sub-
404 stantially longer inputs, while the SFT-trained
405 counterparts show slight performance degra-
406 dation in this regime. To further understand and
407 utilize this interesting phenomenon, we give
408 an intuitive explanation to the following re-
409 search questions and include more details in
410 Appendix C.

411 **Why does long-output training generalize to**
412 **long-input reasoning?** Generating high-quality
413 long-form text inherently requires a deep and
414 holistic understanding of the preceding context.
415 Therefore, long-generation RL encourages LLMs to
416 develop long-input understanding capabilities as a prerequisite for producing coherent long-outputs.

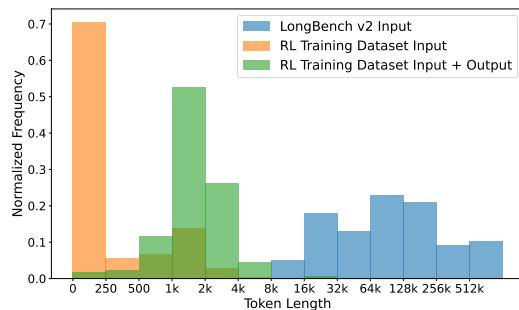
417 **Why does long-output RL generalize better than SFT?** SFT forces the model to imitate and memorize
418 the behaviors of the training samples, while RL aligns model behavior with outcome-based objectives
419 via reward signals. Therefore, by empowering the model to enhance its underlying capabilities, RL
420 generalizes better. This observation is also consistent with recent findings in other domains (Chu
421 et al., 2025; Shen et al., 2025).

422 **How might these findings inform long-context training?** The generalization from long-output
423 generation to long-input reasoning may suggest a mutually beneficial relationship between long-input
424 and long-output training. Integrating both perspectives may lead to more effective long-context
425 training strategies, and we leave the systematic exploration of this promising approach to future work.

426 6 DISCUSSION

427 6.1 ANALYSIS ON DATA SELECTION STRATEGY

428 Our Margin-aware Data Selection strategy aims to prioritize training samples with greater room for
429 improvement. Unlike prior work that employs single-model difficulty estimates (Shi et al., 2025; Bae
430 et al., 2025), our method measures the *learning potential* of each sample using the performance gap
431 between the policy model and the best-performing LLM competitors, thereby amplifying sample-wise
432 *learning potential*.



433
434
435
436
Figure 4: Length distribution of our *long-output*
437 RL training dataset and the *long-input* evalua-
438 tion dataset LongBench v2.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
22

486 REPRODUCIBILITY STATEMENT
487488 To reproduce the results in our experiments, we describe our methods elaborately in Section 3 and
489 include implementation details in Section 4 and Appendix A. We also include the code implementation
490 of our method in the supplemental materials for reference and reproduction.
491492 REFERENCES
493494 Anthropic Team. Claude 3.7 sonnet system card. <https://assets.anthropic.com/m/785e231869ea8b3b/original/clause-3-7-sonnet-system-card.pdf>, 2025.
495496 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
497 Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. *arXiv preprint*
498 *arXiv:2504.03380*, 2025.
499500 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
501 Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench v2: Towards deeper understanding
502 and reasoning on realistic long-context multitasks. *CoRR*, abs/2412.15204, 2024a. doi: 10.48550/
503 ARXIV.2412.15204. URL <https://doi.org/10.48550/arXiv.2412.15204>.
504505 Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
506 Juanzi Li. LongWriter: Unleashing 10,000+ word generation from long context LLMs. *CoRR*,
507 abs/2408.07055, 2024b. doi: 10.48550/ARXIV.2408.07055. URL <https://doi.org/10.48550/arXiv.2408.07055>.
508509 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
510 Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman (eds.), *Proceedings of the*
511 *26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,*
512 *Canada, June 14-18, 2009*, volume 382 of *ACM International Conference Proceeding Series*, pp.
513 41–48. ACM, 2009. doi: 10.1145/1553374.1553380. URL <https://doi.org/10.1145/1553374.1553380>.
514515 Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li, Chenghua Lin, and Yefeng Zheng. Guiding the
516 growth: Difficulty-controllable question generation through step-by-step rewriting. In Chengqing
517 Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting*
518 *of the Association for Computational Linguistics and the 11th International Joint Conference on*
519 *Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August*
520 *1-6, 2021*, pp. 5968–5978. Association for Computational Linguistics, 2021. doi: 10.18653/V1/
521 2021.ACL-LONG.465. URL <https://doi.org/10.18653/v1/2021.acl-long.465>.
522523 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
524 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
525 model post-training. *CoRR*, abs/2501.17161, 2025. doi: 10.48550/ARXIV.2501.17161. URL
526 <https://doi.org/10.48550/arXiv.2501.17161>.
527528 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
529 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
530 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
531 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
532 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
533 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
534 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
535 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
536 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
537 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
538 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
539 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
540 Ruyi Chen, Shanghao Lu, Shanyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
541 Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing reasoning capability in
542 llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.
543 URL <https://doi.org/10.48550/arXiv.2501.12948>.
544

540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 542 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 543 Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
 544 Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
 545 Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
 546 Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
 547 Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
 548 Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
 549 Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan
 550 Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
 551 Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon
 552 Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
 553 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 554 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
 555 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
 556 Heafield, Kevin Stone, and et al. The Llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi:
 557 10.48550/ARXIV.2407.21783. URL <https://doi.org/10.48550/arXiv.2407.21783>.

558 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 559 Steinhardt. Measuring massive multitask language understanding. In *9th International Conference
 560 on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 2021a. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

561 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 562 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 563 Joaquin Vanschoren and Sai-Kit Yeung (eds.), *Proceedings of the Neural Information Processing
 564 Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, Decem-
 565 ber 2021, virtual*, 2021b. URL <https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html>.

566 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 567 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
 568 Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
 569 Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
 570 Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
 571 Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
 572 Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
 573 toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
 574 Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben
 575 Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
 576 Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
 577 Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
 578 Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Burette, Chelsea
 579 Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
 580 Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
 581 Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
 582 Sherburn. GPT-4o system card. *CoRR*, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
 583 URL <https://doi.org/10.48550/arXiv.2410.21276>.

584 Pei Ke, Bosi Wen, Andrew Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan Wang, Aohan
 585 Zeng, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. CritiqueLLM: Towards an
 586 informative critique generation model for evaluation of large language model generation. In
 587 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting
 588 of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
 589 Thailand, August 11-16, 2024*, pp. 13034–13054. Association for Computational Linguistics, 2024.
 590 doi: 10.18653/V1/2024.ACL-LONG.704. URL <https://doi.org/10.18653/v1/2024.acl-long.704>.

591 Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Andrew Feng, Bosi Wen, Jiale Cheng, Pei
 592 Ke, Yifan Xu, Weng Lam Tam, Xiaohan Zhang, Lichao Sun, Xiaotao Gu, Hongning Wang, Jing

594 Zhang, Minlie Huang, Yuxiao Dong, and Jie Tang. AlignBench: Benchmarking chinese alignment
 595 of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings*
 596 *of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 597 *Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 11621–11640. Association
 598 for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.624. URL <https://doi.org/10.18653/v1/2024.acl-long.624>.

600 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 601 Inference-time scaling for generalist reward modeling, 2025. URL <https://arxiv.org/abs/2504.02495>.

603 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta,
 604 Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deep-
 605 ScaleR: Surpassing O1-Preview with a 1.5b model by scaling rl, 2025. URL
 606 <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2>. Notion Blog.

607 Pratyush Maini, Skyler Seto, Richard He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly.
 608 Rephrasing the web: A recipe for compute and data-efficient language modeling. In Lun-Wei
 609 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of*
 610 *the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok,
 611 Thailand, August 11-16, 2024, pp. 14044–14072. Association for Computational Linguistics, 2024.
 612 doi: 10.18653/V1/2024.ACL-LONG.757. URL <https://doi.org/10.18653/v1/2024.acl-long.757>.

613 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 614 URL <https://doi.org/10.48550/arXiv.2303.08774>.

615 Samuel J. Paech. EQ-Bench: An emotional intelligence benchmark for large language models. *CoRR*,
 616 abs/2312.06281, 2023. doi: 10.48550/ARXIV.2312.06281. URL <https://doi.org/10.48550/arXiv.2312.06281>.

617 Chau Pham, Simeng Sun, and Mohit Iyyer. Suri: Multi-constraint instruction following in long-form
 618 text generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of*
 619 *the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November*
 620 *12-16, 2024*, pp. 1722–1753. Association for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.findings-emnlp.94>.

621 Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang, Dayiheng Liu, Bofei Gao, Jianhong Tu,
 622 Yichang Zhang, Jingren Zhou, and Junyang Lin. Language models can self-lengthen to generate
 623 long texts. *CoRR*, abs/2410.23933, 2024. doi: 10.48550/ARXIV.2410.23933. URL <https://doi.org/10.48550/arXiv.2410.23933>.

624 Haoran Que, Feiyu Duan, Liqun He, Yutao Mou, Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
 625 Zekun Moore Wang, Jian Yang, Ge Zhang, Junran Peng, Zhaoxiang Zhang, Songyang Zhang, and
 626 Kai Chen. HelloBench: Evaluating long text generation capabilities of large language models.
 627 *CoRR*, abs/2409.16191, 2024. doi: 10.48550/ARXIV.2409.16191. URL <https://doi.org/10.48550/arXiv.2409.16191>.

628 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 629 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

630 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 631 Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open
 632 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 633 <https://doi.org/10.48550/arXiv.2402.03300>.

634 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 635 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 636 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

648 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 649 Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. *arXiv preprint*
 650 *arXiv*: 2409.19256, 2024.

651

652 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
 653 via adaptive curriculum learning. *arXiv preprint arXiv:2504.05520*, 2025.

654

655 Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang.
 656 FastCuRL: Curriculum reinforcement learning with progressive context extension for efficient
 657 training R1-like reasoning models. *CoRR*, abs/2503.17287, 2025. doi: 10.48550/ARXIV.2503.
 658 17287. URL <https://doi.org/10.48550/arXiv.2503.17287>.

659

660 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 661 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 662 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 663 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
 664 Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
 665 Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling
 666 Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
 667 Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin
 668 Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia,
 669 Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
 670 Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
 671 Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu,
 672 Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan
 673 Yang. Kimi k1.5: Scaling reinforcement learning with llms. *CoRR*, abs/2501.12599, 2025. doi:
 674 10.48550/ARXIV.2501.12599. URL <https://doi.org/10.48550/arXiv.2501.12599>.

675

676 Shangqing Tu, Yucheng Wang, Daniel Zhang-Li, Yushi Bai, Jifan Yu, Yuhao Wu, Lei Hou, Huiqin
 677 Liu, Zhiyuan Liu, Bin Xu, and Juanzi Li. LongWriter-V: Enabling ultra-long and high-fidelity
 678 generation in vision-language models. *CoRR*, abs/2502.14834, 2025. doi: 10.48550/ARXIV.2502.
 679 14834. URL <https://doi.org/10.48550/arXiv.2502.14834>.

680

681 Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao,
 682 Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei
 683 Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang,
 684 Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu
 685 Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang,
 686 Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen,
 687 Yuchen Eleanor Jiang, and Wangchunshu Zhou. Weaver: Foundation models for creative writing.
 688 *CoRR*, abs/2401.17268, 2024. doi: 10.48550/ARXIV.2401.17268. URL <https://doi.org/10.48550/arXiv.2401.17268>.

689

690 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 691 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 692 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 693 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural
 694 Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
 695 - December 9, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

696

697 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang,
 698 Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang. Light-R1:
 699 Curriculum SFT, DPO and RL for long COT from scratch and beyond. *CoRR*, abs/2503.10460,
 700 2025. doi: 10.48550/ARXIV.2503.10460. URL <https://doi.org/10.48550/arXiv.2503.10460>.

701

702 Yuhao Wu, Yushi Bai, Zhiqiang Hu, Roy Ka-Wei Lee, and Juanzi Li. Longwriter-zero: Mastering
 703 ultra-long text generation via reinforcement learning. *CoRR*, abs/2506.18841, 2025a. doi: 10.
 704 48550/ARXIV.2506.18841. URL <https://doi.org/10.48550/arXiv.2506.18841>.

702 Yuhao Wu, Yushi Bai, Zhiqing Hu, Shangqing Tu, Ming Shan Hee, Juanzi Li, and Roy Ka-Wei Lee.
 703 Shifting long-context LLMs research from input to output. *CoRR*, abs/2503.04723, 2025b. doi:
 704 10.48550/ARXIV.2503.04723. URL <https://doi.org/10.48550/arXiv.2503.04723>.

705 Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
 706 Mengyue Wu, Qin Jin, and Fei Huang. WritingBench: A comprehensive benchmark for generative
 707 writing. *CoRR*, abs/2503.05244, 2025c. doi: 10.48550/ARXIV.2503.05244. URL <https://doi.org/10.48550/arXiv.2503.05244>.

708 710 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai
 711 Qiu, Zhirong Wu, and Chong Luo. Logic-RL: Unleashing LLM reasoning with rule-based
 712 reinforcement learning. *CoRR*, abs/2502.14768, 2025. doi: 10.48550/ARXIV.2502.14768. URL
 713 <https://doi.org/10.48550/arXiv.2502.14768>.

714 715 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 716 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 717 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 718 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 719 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 720 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115, 2024. doi:
 721 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.

722 723 Shuxun Yang, Cunxiang Wang, Yidong Wang, Xiaotao Gu, Minlie Huang, and Jie Tang. StepMath-
 724 Agent: A step-wise agent for evaluating mathematical processes through tree-of-error. *CoRR*,
 725 abs/2503.10105, 2025. doi: 10.48550/ARXIV.2503.10105. URL <https://doi.org/10.48550/arXiv.2503.10105>.

726 727 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 728 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 729 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 730 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 731 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
 732 open-source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025. doi:
 10.48550/ARXIV.2503.14476. URL <https://doi.org/10.48550/arXiv.2503.14476>.

733 734 Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
 735 TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. VAPO: Efficient and reliable reinforcement
 learning for advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025.

736 737 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 738 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
 739 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
 740 Ji-Rong Wen. A survey of large language models. *CoRR*, abs/2303.18223, 2023. doi: 10.48550/
 741 ARXIV.2303.18223. URL <https://doi.org/10.48550/arXiv.2303.18223>.

742 743 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
 744 Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonza-
 745 lez, and Ion Stoica. Judging LLM-as-a-Judge with MT-Bench and chatbot arena. In Alice
 746 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 747 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
 748 ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
 749 ber 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html.

750
 751
 752
 753
 754
 755

756 A IMPLEMENTATION AND TRAINING SETTINGS
757758 A.1 IMPLEMENTATION DETAILS
759

760 In this section, we introduce the implementation details of our proposed RL framework.

761 **Margin-aware Data Selection.** We use several close-sourced LLMs to generate high-quality
762 references for further training, including Qwen-plus (Yang et al., 2024), GPT-4o (Hurst et al., 2024),
763 Claude 3.7 (Anthropic Team, 2025) and Deepseek R1 (DeepSeek-AI et al., 2025). We set the
764 inference temperature to 0.1 for balanced diversity and quality, and we remain other parameters to
765 the default setting.766 In our pointwise grading process, we utilize the state-of-the-art evaluation procedure proposed by
767 WritingBench (Wu et al., 2025c), which includes generating sample-dependent evaluation criteria,
768 then uses a fine-tuned LLM to grade the answers from multiple dimensions, finally averages the
769 dimensional scores to give a scalar rating. We use Qwen-Plus (Yang et al., 2024) to generate the
770 evaluation dimensions and we use the same evaluation prompt as WritingBench (Wu et al., 2025c)
771 for the Judge Model.772 Evaluation Prompt Template
773774 Evaluate the Response based on the Query and criteria provided.
775776 ** Criteria **
777 “{criteria}”
778779 ** Query **
780 “{query}”
781782 ** Response **
783 “{response}”
784785 Provide your evaluation based on the criteria:
786787 “{criteria}”
788789 Provide reasons for each score, indicating where and why any strengths or deficiencies
790 occur within the Response. Reference specific passages or elements from the text to
791 support your justification.
792 Ensure that each reason is concrete, with explicit references to the text that aligns with the
793 criteria requirements.794 Scoring Range: Assign an integer score between 1 to 10
795796 ** Output format **
797798 Return the results in the following JSON format, Only output this JSON format and nothing
799 else:
800 “json
801 {
802 “score”: an integer score between 1 to 10,
803 “reason”: “Specific and detailed justification for the score using text elements.”
804 }”
805806 **Pairwise Comparison Reward Mechanism.**
807808 We use the Qwen-Plus (Yang et al., 2024) model to judge the quality of the generated responses. The
809 pairwise comparison prompts used in our experiment are adapted from Zheng et al. (2023) and Wu
810 et al. (2025c).811 For the training samples in LongWriter (Bai et al., 2024b) dataset, we use the original evaluation
812 dimensions and the prompt is as follows.

810
811

Default Pairwise Comparison Prompt

812
813
814
815
816
817
818
819
820
821
822
823

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user's instructions and answers the user's question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie. NOTE: If the response contains severe repetition or redundancy, it should be viewed as low quality score, losing the comparison.

824
825
826

User Question

{question}

827
828
829
830
831
832
833

The Start of Assistant A's Answer

{answer_a}

The End of Assistant A's Answer

834
835
836
837
838

The Start of Assistant B's Answer

{answer_b}

The End of Assistant B's Answer

For the training samples in WritingBench (Wu et al., 2025c) training dataset, we use the generated criteria as the original paper recommends and the prompt is as follows.

839
840

Criteria Pairwise Comparison Prompt

841
842
843
844
845
846
847

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user's instructions and answers the user's question better. Your evaluation should consider the following dimensions.

criteria

Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie. NOTE: If the response contains severe repetition or redundancy, it should be viewed as low quality score, losing the comparison.

854
855
856

User Question

{question}

857
858
859
860

The Start of Assistant A's Answer

{answer_a}

The End of Assistant A's Answer

861
862
863

The Start of Assistant B's Answer

{answer_b}

The End of Assistant B's Answer

864

865

Table 8: Performance and cost comparison of different LLM judges.

866

867

Model	Agreement	Cost (Input / Output, \$/M tokens)	First Token Latency (s)
Claude-3.7-Sonnet	0.82	3.0 / 15.0	5.35
R1	0.76	—	—
GPT-4o (2024-11-20)	0.70	2.5 / 10.0	2.19
Qwen-Plus	0.75	0.4 / 1.2	1.16

871

872

873

874

A.2 TRAINING PARAMETERS

875

876

We display the key training parameters used in our training experiments. We adopt the effective reinforcement training framework VeRL (Sheng et al., 2024) to train our models. In our experiment, we use the proximal policy optimization (PPO) (Schulman et al., 2017) algorithm with generalized advantage estimation (GAE) as the advantage estimator. The training process is conducted using a batch size of 32 for training, with a maximum prompt length of 4096 tokens and response length capped at 10,000 tokens to accommodate long-form generation tasks. We enable the parameter/optimizer offloading via Fully Sharded Data Parallel (FSDP) to support efficient multi-GPU training and the training is conducted on 8x A100 GPUs. we use dynamic batch sizing and a low learning rate (1e-6) with a warm-up ratio of 0.4 to train the actor model, while the critic adopts a higher learning rate (1e-5) with a warm-up ratio of 0.05. We utilize a rollout strategy based on the vLLM engine with a tensor model parallel size of 2. The KL divergence penalty is set to a modest coefficient of 0.001. We train each model for about 400 steps and evaluate the checkpoints on the validation set each 50 steps.

888

889

890

A.3 REWARD MODEL CHOICE

891

892

To select an appropriate model to serve as the pairwise judge during training, we analyze the human agreement, cost and latency of several cutting-edge LLMs. As shown in Table 8, Qwen-plus has already achieved a high agreement with human judges, demonstrating its reward-giving capablities and making it a reliable choice for the training writer models. As shown in the following human evaluation results, qwen-plus has reached a remarkable agreement of 0.75, on par with R1 and surpassing gpt-4o-2024-11-20. Furthermore, GPT-4o and Claude models are widely adopted as judges in LLM benchmarks. If we use GPT series as training-time judges, the evaluation will be biased and unreliable. Therefore, we use a different training-time judge rather than the test-time judges.

893

894

895

RL requires a large amount of pairwise rewarding, therefore leading to huge API costs and high efficiency demands. As shown in the following results, qwen-plus has a remarkably lower price than gpt-4o and claude-3.7-sonnet and possesses the lowest first token latency.

896

897

898

899

A.4 API COST CALCULATION

900

901

902

903

We conduct further analysis about the cost of the sample-specific dynamic scheduling and pairwise reward generation in our framework. The cost is calculated in two metrics, the number of LLM generations and the average tokens per generation.

904

905

906

Dynamic Scheduling Costs: Before training, generating LLM references requires LLM generation number of $dataset\ size \times reference\ size$. Then, a fine-tuned critic model is used to grade the same number of responses. In reference generation, the average input (writing instruction) token number is 414.91 and the average token number of the generated reference is 1643.13.

907

908

909

910

Pairwise Reward Costs: During training, pairwise reward mechanism uses an advanced LLM (Qwen-plus in our experiments) for comparisons between model responses and corresponding references, totaling $training\ steps \times batch\ size$ LLM generations. In pairwise comparisons, the average input token number is 4113.19 and the average output token number is 660.88.

918 **B BENCHMARKS AND EVALUATION METHODS**
919920 In this section, we introduce the benchmarks and evaluation prompt templates used in our experiments.
921923 **LongBench-Write** LongBench-Write (Bai et al., 2024b) is designed to evaluate the LLM long-
924 form generation abilities, which focuses on generating coherent outputs exceeding 10000 words,
925 addressing challenges in maintaining consistency and quality over extended text. Key evaluation
926 metrics include coherence, fluency and topic relevance. In this work, we use the Quality Score as the
927 metric. The evaluation prompt template used is as follows:
928929 **Evaluation Prompt Template**930 You are an expert in evaluating text quality. Please evaluate the quality of an AI assistant's
931 response to a user's writing request. Be as strict as possible.
932933 You need to evaluate across the following six dimensions, with scores ranging from 1 to 5.
934 The scoring criteria from 5 to 1 for each dimension are as follows:
935936

1. Relevance: From content highly relevant and fully applicable to the user's request to
937 completely irrelevant or inapplicable.
2. Accuracy: From content completely accurate with no factual errors or misleading information
938 to content with numerous errors and highly misleading.
3. Coherence: From clear structure with smooth logical connections to disorganized structure
939 with no coherence.
4. Clarity: From clear language, rich in detail, and easy to understand to confusing expression
940 with minimal details.
5. Breadth and Depth: From both broad and deep content with a lot of information to seriously
941 lacking breadth and depth with minimal information.
6. Reading Experience: From excellent reading experience, engaging and easy to understand
942 content to very poor reading experience, boring and hard to understand content.

943 Please evaluate the quality of the following response to a user's request according to the
944 above requirements.
945946 <User Request>
947 \$INST\$
948 </User Request>
949 <Response>
950 \$RESPONSE\$
951 </Response>952 Please evaluate the quality of the response. You must first provide a brief analysis of its
953 quality, then give a comprehensive analysis with scores for each dimension. The output
954 must strictly follow the JSON format: "Analysis": ..., "Relevance": ..., "Accuracy": ...,
955 "Coherence": ..., "Clarity": ..., "Breadth and Depth": ..., "Reading Experience": You
956 do not need to consider whether the response meets the user's length requirements in your
957 evaluation. Ensure that only one integer between 1 and 5 is output for each dimension score.
958959
960 **WritingBench** WritingBench (Wu et al., 2025c) is designed to evaluate the LLM long-form
961 generation capabilities across six domains: creative, persuasive, informative, technical, business,
962 and legal writing. It includes over 1200 tasks, further divided into 100 subdomains, with each task
963 evaluated based on five dynamic criteria, such as coherence and relevance. We use the fine-tuned
964 critic model in the original paper to evaluate the responses. The evaluation prompt template used is
965 the same as the one used for pointwise grading in data selection process, detailed in Appendix A.1.
966967 **EQ-Bench** EQ-Bench (Paech, 2023) is designed to evaluate the emotional intelligence (EQ) of
968 LLMs, which focuses on assessing models' ability to predict and quantify emotions such as anger,
969 surprise, empathy and confidence in dialogue-based contexts. In this work, we use the creative writing
970 split of EQ-Bench and we adopt the Rubric Score as the metric. The evaluation prompt template used
971 is as follows:

972
973

Evaluation Prompt Template

974
975

You are an expert in assessing creative writing. Your task is to score the quality of the test model's response below, by several metrics, on a 0-20 scale.

976

[PROMPT START]

977

{writing_prompt}

978

[PROMPT END]

979

[TEST MODEL RESPONSE]

980

{test_model_response}

981

[TEST MODEL RESPONSE END]

982

[Task]

983

You are an expert in assessing creative writing. Your task is to score the quality of the test model's response below, by several metrics, on a 0-20 scale.

984

Scoring notes:

985

- A scores of 20 represents a masterpiece.

986

- If the criteria is not relevant to the piece (e.g. criteria relating to dialogue but the piece has none), exclude it from your assessment.

987

- Do not add any commentary or explanation to the scores section.

988

- Do not penalize NSFW output; that is the default for some models. Just assess it on its merits.

989

- Everything within the "TEST MODEL RESPONSE" section was written by the test model. Sometimes models like to write comments on the piece after the piece is concluded; if this happens you should ignore their comments.

990

- In the output, write the metric names exactly as below so they can be parsed.

991

- Do not use markdown in your response. Use the designated output format exactly.

992

- You are to write a comprehensive analysis of the piece, then give your scores.

993

- For these criteria, lower is better: {lower_is_better_criteria}

994

- You are a critic, and your job is to be critical, especially of any failings or amateurish elements.

995

- Output format is:

996

[Analysis]

997

Write your detailed analysis.

998

[Scores]

999

Metric 1 name: [Score 0-20]

1000

Metric 2 name: ...

1001

Now, rate the supplied model output on the following criteria:

1002

{creative_writing_criteria}

1003

1004

1005

1006

1007

C ANALYSIS ABOUT LONG-INPUT GENERALIZATION

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

To better understand the long-input generalization, we further conduct a comprehensive analysis in terms of case study, length distribution and common failure modes based on the evaluation results on Longbench v2.

C.1 CASE ANALYSIS

Here we display one case as follows.

Wrong Answer: llama3.1-instruct-8b-writingbench-sft

<think> Okay, let's see. The user provided a text that's too long to read here, but they want me to answer questions based on it. The first question is about the order of four narratives. The options are (A) 4123, (B) 2314, (C) 3412, (D) 3421.

First, I need to figure out the correct order. However, in the provided text, there's no mention of Paige getting a makeover. The original text's narratives include a car ride (Chapter

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 9: Length distribution of different models on Longbench v2.

Model	Average Length	Performance
llama3.1-8b-instruct	185.20	30.2
llama3.1-8b-instruct-writingbench-sft	789.51	28.4
llama3.1-8b-instruct-writing-rl (Ours)	894.68	32.8

3), a salon event (Chapter 8), Folcrum planning (Chapter 9), and acknowledgments (Chapter 96). But the user’s question includes a narrative about Paige’s makeover, which isn’t in the text. That might be a mistake. Therefore, the correct order is 3, 8, 9, 96. But the options are 4123, 2314, 3412, 3421. So the correct answer is 3412, which is option (C). </think> The correct answer is (C).

Correct Answer: llama3.1-instruct-8b-writing-rl (Ours)

"<think> Okay, I need to figure out the correct order of the narratives based on the provided text. Let’s start by looking at each option and see which one matches the events in the book. First, option (A) is 4123. Let me check each part: The narrator is interrupted by her husband, Grant, while planning to recreate the Folcrum Party murders using fake evidence to implicate the original killer and divert attention for personal motives. In Chapter 9, Perla is listening to a podcast about the Folcrum murders Wait, the fourth option is the Folcrum planning, which is in Chapter 9, and the first is the car ride in Chapter 3. So the correct order is 3, 4, 1, 2? Wait, the author’s thanks (3) are in the acknowledgments, which is at the end. The Folcrum planning is in Chapter 9, and the car ride is in Chapter 3. The Paige salon is not in the text, so it can’t be part of the correct order. Therefore, the correct answer is (A) 4123. </think> The correct answer is (A).

From the representative case, the original sft-only model fails to effectively locate the key detail in the long input and finally leads to a hallucinated answer. While the rl-trained model exhibits a more developed long-understanding capability and performs longer and more effective thinking process. It also shows self-reflection process using "Wait, ..." and leads to a correct answer.

From the capability perspective, long-output tasks requires the model to perform organized thinking and utilize all the relevant details in previous generated texts, therefore sharing the similar fundamental capabilities with long-input reasoning. Generally, RL training, when conducted properly, incentivizes the model to conduct more extensive thinking and generate higher-quality long-form texts. The learned capabilities can be more effectively generalized from long output to long input through RL than SFT.

C.2 LENGTH DISTRIBUTION

We analyze the output length distribution of several models including llama3.1-8b-instruct, llama3.1-8b-instruct-writingbench-sft and llama3.1-8b-instruct-writing-rl.

As shown in Table 9, the sft-trained model can also produce longer output but slightly degrades performance, indicating its ineffective thinking. While the rl-trained model performs better by generating longer and more effective thinking sequences.

C.3 FAILURE MODES

We identify several failure modes about our rl-trained models and hope these observations will help future research efforts. Based on our observations, the most common failure reason is the lack of long-input understanding capability. Constrained by relatively limited model size and context limit (32k), the model sometimes misses important details in the long texts. Additionally, some of the tasks in LongBench v2 require models to produce ultra-long chain of thoughts, which can be challenging for the model to maintain coherence and accuracy over extended reasoning steps. For

1080

1081

Table 10: Comparison of different reference quality settings.

1082

1083

1084

1085

1086

1087

1088

1089

1090

D METHOD ANALYSIS.

D.1 ANALYSIS ON REFERENCE QUALITY

Under the Pairwise Comparison Reward Mechanism, the quality of references directly influences the difficulty for the policy model to obtain positive rewards, thereby impacting training stability and final performance. To examine the effect of reference quality, we conduct training experiments using multiple static reference sets, each generated by a different LLM, as well as a combined set consisting of the highest-quality references selected from all candidates. Specifically, we also include a reference set generated by the initial policy model itself to serve as a baseline, denoted as *Self-Generated*.

As shown in Table 10, the results demonstrate that reference quality plays a critical role in effective training. Specifically, when statically using relatively low-quality references (e.g., *Self-Generated*), the policy model initially receives sufficient positive rewards to improve but quickly saturates, achieving near-perfect win rates without further progress. In contrast, overly high-quality references (e.g., *Best Reference*) suffer from the sparsity of positive rewards early in training, thereby reducing learning efficiency and destabilizing optimization. These observations highlight a key limitation of static reference scheduling: it requires careful reference selection and fails to adapt to the evolving capability of the policy model during training.

1109

1110

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

1111

In this work, we used LLMs solely as a grammar and style assistant at the word and sentence level to polish writing. Specifically, we employed an LLM to double-check grammar and improve sentence-level readability, while ensuring that the core content in the paper, like ideation and experiments, was entirely developed by the authors.

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133