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Abstract

Q-learning is widely used algorithm in reinforcement learning (RL) community.
Under the lookup table setting, its convergence is well established. However, its
behavior is known to be unstable with the linear function approximation case. This
paper develops a new Q-learning algorithm, called RegQ, that converges when
linear function approximation is used. We prove that simply adding an appropriate
regularization term ensures convergence of the algorithm. Its stability is established
using a recent analysis tool based on switching system models. Moreover, we
experimentally show that RegQ converges in environments where Q-learning with
linear function approximation was known to diverge. An error bound on the
solution where the algorithm converges is also given.

1 Introduction

Recently, RL has shown great success in various fields. For instance, Mnih et al. [2015] achieved
human level performance in several video games in the Atari benchmark [Bellemare et al., 2013].
Since then, researches on deep RL algorithms have shown significant progresses [Lan et al.]. Although
great success has been achieved in practice, there is still gap between theory and the practical
success. Especially when off-policy, function approximation, and bootstrapping are used together,
the algorithm may show unstable behaviors. This phenomenon is called the deadly triad [Sutton and
Barto, 2018]. Famous counter-examples are given in Baird [1995], Tsitsiklis and Van Roy [1997].

For policy evaluation, especially for temporal-difference (TD) learning algorithm, there has been
several algorithms to resolve the deadly triad issue. Bradtke and Barto [1996] uses the least-square
method to compute a solution of TD-learning, but it suffers from O(h2) time complexity, where h
is number of features. Maei [2011], Sutton et al. [2009] developed gradient descent based methods
which minimize the mean square projected Bellman error. Ghiassian et al. [2020] added regular-
ization term to TD Correction (TDC) algorithm, which uses a single time scale step-size. Lee et al.
[2022] introduced several variants of the gradient TD (GTD) algorithm under control theoretic frame-
works. Sutton et al. [2016] re-weights some states to match the on-policy distribution to stabilize
the off-policy TD-learning. Bharadwaj Diddigi et al. [2020] uses l2 regularization to propose a new
convergent off-policy TD-learning algorithm. Mahadevan et al. [2014] studied regularization on the
off-policy TD-learning through the lens of primal dual method.

First presented by Watkins and Dayan [1992], Q-learning also suffers from divergence issues under
the deadly triad. While there are convergence results under the look-up table setting [Watkins and
Dayan, 1992, Jaakkola et al., 1994, Borkar and Meyn, 2000, Lee and He, 2020], even with the simple
linear function approximation, the convergence is only guaranteed under strong assumptions [Melo
et al., 2008, Lee and He, 2020, Yang and Wang, 2019].

The main goal of this paper is to propose a practical Q-learning algorithm, called regularized Q-
learning (RegQ), that guarantees convergence under linear function approximation. We prove its
convergence using the ordinary differential equation (O.D.E) analysis framework in Borkar and Meyn
[2000] together with the switching system approach developed in Lee and He [2020]. As in Lee
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and He [2020], we construct upper and lower comparison systems, and prove its global asymptotic
stability based on switching system theories. Compared to the standard Q-learning in Watkins and
Dayan [1992], a difference lies in the additional l2 regularization term, which makes the algorithm
relevantly simple. Moreover, compared to the previous works in Carvalho et al. [2020], Maei et al.
[2010], our algorithm is single time-scale, and hence, shows faster convergence rates experimentally.
Our algorithm directly uses bootstrapping rather than circumventing the issue in the deadly triad.
Therefore, it could give a new insight into training reinforcement learning algorithms with function
approximation without using the so-called target network technique introduced in Mnih et al. [2015].
The main contributions of this paper are summarized as follows:

1. A new single time-scale Q-learning algorithm with linear function approximation is pro-
posed.

2. We provide a theoretical analysis on the solution of the projected Bellman equation where a
regularization term is included.

3. We prove the convergence of the proposed algorithm based on the O.D.E approach together
with the switching system model in Lee and He [2020].

4. We experimentally show that our algorithm performs faster than other two time-scale Q-
learning algorithms in Carvalho et al. [2020], Maei et al. [2010].

Related works:

Several works [Melo et al., 2008, Lee and He, 2020, Yang and Wang, 2019] have relied on strong
assumptions to guarantee convergence of Q-learning under linear function approximation. Melo et al.
[2008] adopts an assumption on relation between behavior policy and target policy to guarantee
convergence, which is not practical in general. Lee and He [2020] assumes a similar assumption to that
of Melo et al. [2008] to ensure the convergence with the so-called switching system approach. Yang
and Wang [2019] considered a transition matrix that can be represented by the feature values, which
restricts the class of Markov chain.

Motivated by the empirical success of the deep Q-learning in Mnih et al. [2015], recent works
in Zhang et al. [2021], Carvalho et al. [2020], Agarwal et al., Chen et al. [2023] use the target network
to circumvent the bootstrapping issue and guarantee convergence. Carvalho et al. [2020] designed a
two time-scale learning method motivated by the target network method. Zhang et al. [2021] uses l2
regularization with the target network, while a projection step is involved, which makes it difficult
to implement practically. Moreover, it also relies on a two time-scale learning method. Chen et al.
[2023] used target network and truncation method to address the divergence issue. Agarwal et al.
additionally uses the so-called experience replay technique with the target network. Furthermore, the
optimality is only guaranteed under a specific type of Markov chain. Even though, the target network
update can guarantee stability, it often leads to slow convergence rate [Kim et al., 2019].

Maei et al. [2010] suggested the so-called Greedy-GQ (gradient Q-learning) algorithm, but due to
non-convexity of the objective function, it could converge to a local optima. Lu et al. [2021] used linear
programming approach [Manne, 1960] to design convergent Q-learning algorithm under deterministic
control systems. Devraj and Meyn [2017] proposed a Q-learning algorithm that minimizes asymptotic
variance. However, it requires the assumption that the number of changes of policy are finite, and
involves matrix inversion at each iteration. Meyn [2023] introduced an optimistic training scheme
with modified Gibbs policy for Q-learning with linear function approximation, which guarantees
existence of a solution of the projected Bellman equation, but not the convergence. Geist et al. [2019],
Xi et al. [2024] considered regularization on the policy which address a different scenario than the
regularization in our work.

l2 regularization has been actively explored in the RL literature. Farahm et al. [2016] proposed a
regularized policy iteration algorithm that addresses a regularized policy evaluation problem, followed
by a policy improvement step. The authors derived a performance error bound. Zhang et al. [2021]
studied regularized projected Bellman equation and proves that inside a certain ball, the solution of
the regularized projected Bellman equation exist and is unique. Manek and Kolter [2022] studied fixed
points of off-policy TD-learning algorithm with regularization showing that the bias of the solution
caused by the regularization can be large under certain scenario. Nonetheless, the regularization
method has been widely used in practice Farebrother et al. [2018], Piché et al. [2021].
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2 Preliminaries and Notations

2.1 Markov Decision Process

We consider an infinite horizon Markov Decision Process (MDP), which consists of a tupleM =
(S,A, P, r, γ), where the state space S and action space A are finite sets, P denotes the transition
probability, r : S × A × S → R is the reward, and γ ∈ (0, 1) is the discount factor. Given a
stochastic policy π : S → P(A), where P(A) is the set of probability distributions over A, agent at
the current state sk selects an action ak ∼ π(·|sk), then the agent’s state changes to the next state
sk+1 ∼ P (·|sk, ak), and receives reward rk+1 := r(sk, ak, sk+1). A deterministic policy is a special
stochastic policy, which can be defined simply as a mapping π : S → A.

The objective of MDP is to find a deterministic optimal policy, denoted by π∗, such that
the cumulative discounted rewards over infinite time horizons is maximized, i.e., π∗ :=
argmaxπ E

[∑∞
k=0 γ

krk
∣∣π] , where (s0, a0, s1, a1, . . .) is a state-action trajectory generated by the

Markov chain under policy π, and E[·|π] is an expectation conditioned on the policy π. The Q-function
under policy π is defined as Qπ(s, a) = E

[∑∞
k=0 γ

krk
∣∣ s0 = s, a0 = a, π

]
, (s, a) ∈ S × A, and

the optimal Q-function is defined as Q∗(s, a) = Qπ∗
(s, a) for all (s, a) ∈ S ×A. Once Q∗ is known,

then an optimal policy can be retrieved by the greedy action, i.e., π∗(s) = argmaxa∈A Q∗(s, a).
Throughout, we assume that the Markov chain is time homogeneous so that the MDP is well posed,
which is standard in the literature. It is known that the optimal Q-function satisfies the so-called
Bellman equation expressed as follows:

Q∗(s, a) = E
[
rk+1 + max

ak+1∈A
γQ∗(sk+1, ak+1)

∣∣∣∣ (sk, ak) = (s, a)

]
:= T Q∗(s, a), (1)

where T is called the Bellman operator.

2.2 Notations

In this paper, we will use an O.D.E. model [Borkar and Meyn, 2000] of Q-learning to analyze its
convergence. To this end, it is useful to introduce some notations in order to simplify the overall
expressions. Throughout the paper, ea and es denote a-th and s-th canonical basis vectors in R|A| and
R|S|, respectively, and ⊗ stands for the Kronecker product. Let us introduce the following notations:

P :=

 P1

...
P|A|

 ∈ R|S||A|×|S|, R :=

 R1

...
R|A|

 ∈ R|S||A|, Q :=

 Q1

...
Q|A|

 ∈ R|S||A|,

Da :=

d(1, a) . . .
d(|S|, a)

 ∈ R|S|×|S|, D :=

D1

. . .
D|A|

 ∈ R|S||A|×|S||A|,

where Pa ∈ R|S|×|S|, a ∈ A is the state transition matrix whose i-th row and j-th column component
denotes the probability of transition to state j when action a is taken at state i, Pπ ∈ R|S||A|×|S||A|

represents the state-action transition matrix under policy π, i.e.,

(es ⊗ ea)
TPπ(es′ ⊗ ea′) = P[sk+1 = s′, ak+1 = a′|sk = s, ak = a, π],

Qa = Q(·, a) ∈ R|S|, a ∈ A and Ra(s) := E[r(s, a, s′)|s, a], s ∈ S. Moreover, d(·, ·) is the state-
action visit distribution, where i.i.d. random variables {(sk, ak)}∞k=0 are sampled, i.e., d(s, a) =
P[sk = s, ak = a], (s, a) ∈ S ×A. With a slight abuse of notation, d will be also used to denote the
vector d ∈ R|S||A| such that dT (es ⊗ ea) = d(s, a), ∀(s, a) ∈ S ×A. In this paper, we represent a
policy in a matrix form in order to formulate a switching system model. In particular, for a given
policy π, define the matrix Ππ ∈ R|S|×|S||A|:

Ππ :=
[
(eπ(1) ⊗ e1) (eπ(2) ⊗ e2) · · · (eπ(|S|) ⊗ e|S|)

]⊤
.

Then, we can prove that for any deterministic policy, π, we have ΠπQ =

[Q(1, π(1)) Q(2, π(2)) · · · Q(|S|, π(|S|))]T . For simplicity, let ΠQ := Ππ when
π(s) = argmaxa∈A Q(s, a). Moreover, we can prove that for any deterministic pol-
icy π, Pπ = PΠπ ∈ R|S||A|×|S||A|, where Pπ is the state-action transition probability
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matrix. Using the notations introduced, the Bellman equation in (1) can be compactly
written as Q∗ = γPΠQ∗Q∗ + R =: T Q∗, where πQ∗ is the greedy policy defined as
πQ∗(s) = argmaxa∈A Q∗(s, a).

2.3 Q-learning with linear function approximation

Q-learning is widely used model-free learning to find Q∗, whose updates are given as

Qk+1(sk, ak)← Qk(sk, ak) + αkδk, (2)

where δk = rk+1+γmaxa∈A Qk(sk+1, a)−Qk(sk, ak) is called the TD error. Each update uses an
i.i.d. sample (sk, ak, rk+1, sk+1), where (sk, ak) is sampled from a state-action distribution d(·, ·).
Here, we assume that the step-size is chosen to satisfy the so-called the Robbins-Monro condi-
tion [Robbins and Monro, 1951], αk > 0,

∑∞
k=0 αk =∞,

∑∞
k=0 α

2
k <∞. When the state-spaces

and action-spaces are too large, then the memory and computational complexities usually become in-
tractable. In such a case, function approximation is commonly used to approximate Q-function [Mnih
et al., 2015, Hessel et al., 2018]. Linear function approximation is one of the simplest function
approximation approaches. In particular, we use the feature matrix X ∈ R|S||A|×h and parameter
vector θ ∈ Rh to approximate Q-function, i.e., Q ≃ Xθ, where the feature matrix is expressed
as X := [x(1, 1) · · · x(1, |A|) · · · x(|S|, |A|)]T ∈ R|S||A|×h. Here, x(·, ·) ∈ Rh is called
the feature vector, and h is a positive integer with h << |S||A|. The corresponding greedy policy
becomes πXθ(s) = argmaxa∈A x(s, a)T θ. Note that the number of policies characterized by the
greedy policy is finite. This is because the policy is invariant under constant multiplications, and
there exists a finite number of sectors on which the policy is invariant. Next, we summarize some
standard assumptions adapted throughout this paper.
Assumption 2.1. The state-action visit distribution is positive, i.e., d(s, a) > 0 for all (s, a) ∈ S×A.
Assumption 2.2. The feature matrix, X , has full column rank, and is a non-negative matrix. Moreover,
columns of X are orthogonal.
Assumption 2.3 (Boundedness on feature matrix and reward matrix). There exists constants, Xmax >
0 and Rmax > 0, such that max(||X||∞, ||XT ||∞) < Xmax and ||R||∞ < Rmax.

We note that except for the orthogonality of the feature matrix in Assumption 2.2, the assumptions in
the above are commonly adopted in the literature, e.g. Carvalho et al. [2020], Lee and He [2020].
Moreover, under Assumption 2.1, D is a nonsingular matrix with strictly positive diagonal elements.

Lemma 2.4 (Gosavi [2006]). Under Assumption 2.3, Q∗, is bounded, i.e., ||Q∗||∞ ≤ Rmax

1−γ .

The proof of Lemma 2.4 comes from the fact that under the discounted infinite horizon setting, Q∗

can be expressed as an infinite sum of a geometric sequence.

2.4 Switching System

In this paper, we consider a particular system, called the switched linear system [Liberzon, 2003],

ẋt = Aσt
xt, x0 = z ∈ Rn, t ∈ R+, (3)

where xt ∈ Rn is the state,M := {1, 2, . . . ,M} is called the set of modes, σt ∈ M is called the
switching signal, and {Aσ, σ ∈M} are called the subsystem matrices. The switching signal can be
either arbitrary or controlled by the user under a certain switching policy.

Stability and stabilization of (3) have been widely studied for decades. Still, finding a practical
and effective condition for them is known to be a challenging open problem. Contrary to linear
time-invariant systems, even if each subsystem matrix Aσ is Hurwitz, the overall switching system
may not be stable in general. This tells us that tools in linear system theories cannot be directly
applied to conclude the stability of the switching system.

Another approach is to use the Lyapunov theory [Khalil, 2002]. From standard results in control
system theories, finding a Lyapunov function ensures stability of the switching system. If the
switching system consists of matrices with strictly negatively row dominant diagonals, defined
in Definiiton A.5 in the Appendix, or negative-definite matrices, we can always find a common
(piecewise) quadratic Lyapunov function to ensure its stability. We use this fact to prove the
convergence of the proposed algorithm.
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Lemma 2.5. Consider a switched system in (3). Suppose one of the following two conditions hold:

1) Each Aσ for σ ∈ M has a strictly negatively row dominating diagonal, i.e., [Aσ]ii +∑
j∈{1,2,...,n}\{i} |[Aσ]ij | < 0 for all 1 ≤ i ≤ n.

2) Aσ +A⊤
σ ≺ 0 for all σ ∈M.

Then, the origin of (3) is asymptotically stable.

The proof is given in Appendix A.4

3 Projected Bellman equation

In this section, we introduce the notion of projected Bellman equation with a regularization term,
and establish connections between it and the proposed algorithm. Moreover, we briefly discuss the
existence and uniqueness of the solution of the projected Bellman equation. We will also provide an
example to illustrate the existence and uniqueness of the solution.

3.1 Projected Bellman equation (PBE)

When using the linear function approximation, since the true action value may not lie in the subspace
spanned by the feature vectors, a solution of the Bellman equation may not exist in general. To
resolve this issue, a standard approach is to consider the projected Bellman equation (PBE) defined as

Xθ∗ = ΓT Xθ∗, (4)

where Γ := X(XTDX)−1XTD is the weighted Euclidean projection with respect to state-action
visit distribution onto the subspace spanned by the feature vectors, and T Xθ∗ = γPΠXθ∗Xθ∗ +R.
In this case, there are more chances for a solution satisfying the PBE to exist. Still, there may exist
cases where the PBE does not admit a solution. To proceed, letting

AπXθ∗ := XTDX − γXTDPΠXθ∗X, b = XTDR,

we can rewrite (4) equivalently as

Xθ∗ = X(XTDX)−1XTD(γPΠXθ∗Xθ∗ +R)⇔ AπXθ∗ θ
∗ = b, (5)

Furthermore, we use the simplified notation C := XTDX . A potential deterministic algorithm to
solve the above equation is

θk+1 = θk + αk(b−AπXθk
θk). (6)

It iteratively solves the linear or nonlinear equation, which is a widely used algorithm called a
Richardson iteration [Kelley, 1995]. If it converges, i.e., θk → θ∗ as k →∞, then it is clear that θ∗
solves (5). In this paper, the proposed algorithm is a stochastic algorithm that solves the modified
equation

b− (AπXθ∗η
+ ηI)θ∗η = 0, (7)

where I is the h× h identity matrix, and η ≥ 0 is a weight on the regularization term. We can use
ηC instead of ηI as the regularization term but ηC is known to solve a MDP with modified discount
factor Chen et al. [2023]. Similar to (6), the corresponding deterministic algorithm is

θk+1 = θk + αk(b− (AπXθk
+ ηI)θk). (8)

If it converges, i.e., θk → θ∗η as k →∞, then it is clear that θ∗η solves (7).

3.2 Regularized projected Bellman equation

The equation (7) can be written as the regularized projected Bellman equation (RPBE)

Xθ∗η = ΓηT Xθ∗η, (9)

where

Γη := X(X⊤DX + ηI)−1X⊤D. (10)
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(a) Regularized projection: C(X)
means the range space of X

(b) Regularized projection: One di-
mensional case

(c) Boundedness of the projection

Figure 1: Illustrative explanation on the regularized projection. The Figure 1c implies that as η →∞,
γΓη can potentially move outside of the unit ball satisfying ||x||∞ ≤ 1, and this phase is indicated
with the term “blowing up” phase. The quantity ∥γΓη∥∞ actually blows up initially as η → ∞.
However, since limη→∞ ∥γΓη∥∞ = 0, we know that γΓη will eventually converge to the origin and
move inside the unit ball. This behavior is indicated by the “shrinking” phase in the figure.

The proof of the equivalence between (7) and (9) are given in Lemma A.12 in the Appendix
Section A.3. The matrix Γη can be viewed as a modified projection operator which will be
called the regularized projection. It can be interpreted as the projection with a regularization term
Γη(x) = argminθ∈Rh

(
1
2 ∥x−Xθ∥2D + η

2 ∥θ∥
2
2

)
. The concept is illustrated in Figure 1a. Before

moving forward, some natural questions that arise here are as follows: How does θ∗ and θ∗η differ?
Furthermore, which conditions can determine the existence and uniqueness of the solution of (4)
and (9)? Partial answers are given in the sequel.

First, let us assume that the solution of (4) and (9), θ∗ and θ∗η , respectively, exist and are unique. To
understand the difference between θ∗ and θ∗η , an important property of Γη is introduced:
Lemma 3.1. (a) The projection Γη satisfies the following properties: lim

η→∞
Γη = 0 and lim

η→0
Γη = Γ.

(b) We have ∥Γη∥∞ ≤
∥∥X⊤D

∥∥
2
∥X∥2

∥∥(X⊤DX)−1
∥∥
2

√
|S ×A| for all η ≥ 0.

The proof is given in Appendix A.5. From the above result, one can observe that as η → ∞, the
projection is attracted to the origin as illustrated in Figure 1b. Moreover, as η → 0, we will expect
that θ∗η → θ∗. Furthermore, one can observe that the bound in item (b) of Lemma 3.1 cannot be
controlled by simply scaling the feature function, and therefore, it more depends on the inherent
structures of the feature matrix X . The concept is illustrated in Figure 1c. We will provide a more
in-depth discussion on the error bound of θ∗η − θ∗ in Section 3.3.

Now, we will discuss the existence and uniqueness of the solutions. Considering the non-existence of
the solution of (4) [De Farias and Van Roy, 2000], (9) may not also have a solution. However, for
RPBE in (9), we can prove that under mild conditions, its solution exists and is unique. We provided
an example where the solution does not exist for (4) but does exist for (9) in Appendix A.14. Let us
first state a general condition such that the solution of (9) exists and is unique:

γ||Γη||∞ < 1, (11)

Lemma 3.2. Suppose that (11) holds. Then the solution of RPBE in (9) exists and is unique.

The proof is given in Appendix A.6, which uses Banach fixed-point theorem [Agarwal et al., 2018].
From Lemma 3.2, we can see that the condition, γ||Γη||∞ < 1, is important to guarantee the
uniqueness and existence of the solution. We will clarify under what situations the condition (11)
can be met, and provide related discussions in Lemma 3.3, 3.4, and 3.5, where each lemma illustrate
different scenarios when (11) is met. In particular, Lemma 3.3 shows that with simple feature scaling,
η can be easily chosen such that (11) holds. Furthermore, Lemma 3.4 considers a case when η is in a
small neighborhood of zero, and Lemma 3.5 considers the case when (11) should hold for all η ≥ 0.

We note that Zhang et al. [2021] also studied the solution of the regularized projected Bellman
equation. Nonetheless, the result of Zhang et al. [2021] only ensures a unique solution within a
certain ball whereas we consider the whole Rh space.
Lemma 3.3. For η > γ||X⊤D||∞||X||∞ + ||X⊤DX||∞, we have γ ∥Γη∥∞ < 1.
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The proof is given in Lemma A.11 in Appendix. From Lemma 3.3, we can satisfy the condition
in (11) with scaling the values of the feature matrix X . For example, if max(||X||∞, ||X⊤||∞) < 1,
it is enough to choose η > 2 to meet the condition in Lemma 3.3. It is worth noting that scaling the
values of feature matrix is a commonly employed technique in the both theoretical literature or in
practice.
Lemma 3.4. Suppose γ||Γ||∞ < 1 so that the solution point of PBE in (4) exists and is unique. Then,

the condition 0 ≤ η <
(1−γ||Γ||∞)||(XTDX)

−1||−1
∞

γ||(XTDX)−1||∞||X||∞||XTD||∞+(1−γ||Γ||∞)
implies γ||Γη||∞ < 1.

The proof is in Appendix A.7. We note that the condition, γ||Γ||∞ < 1 in Lemma 3.4 is used to
guarantee the existence and uniqueness of the solution of PBE in (4), which is provided in Melo et al.
[2008]. Therefore, without any special conditions, we can guarantee the existence and uniqueness of
the solution in the neighborhood of η = 0.
Lemma 3.5. Suppose the feature vector satisfies X⊤DX = aI for a positive real number a such
that a|S||A| ≥ 1. Assume that ||X||2 ≤ 1 and D = 1/(|S||A|)I . Then, (11) holds for all η > 0.

The proof is given in Appendix A.8. A simple example where the above statement holds is by letting
X = I . This is only a conceptual example and there could be many other examples in existence.

3.3 Error analysis

As promised in the previous section, we provide discussion on the behavior and quality of θ∗η , i.e., the
error bound analysis in θ∗ − θ∗η depending on η. Even though Manek and Kolter [2022] provided a
specific example when the bias can be large in the policy evaluation case, throughout the analysis, we
show that the error can be small under particular scenarios.

Let us first examine the case when η → 0 and η →∞. As discussed in Section 3.2, we can consider
η → 0 if we can guarantee the existence of θ∗η and θ∗ when η is nearby the origin, for example in the
case of Lemma 3.4 and 3.5. As η → 0, (4) and (9) coincide, implying that θ∗η → θ∗.

Furthermore, as η gets larger, by Lemma 3.3, we can always guarantee existence and uniqueness of
θ∗η after a certain threshold. As from the discussion of Lemma 3.1, we expect θ∗η → 0, which is stated
in the following lemma whose proof is given in Appendix A.9:
Lemma 3.6. We have limη→∞ θ∗η = 0.

Note that even if a solution satisfying (7) exists, Xθ∗η may be different from Q∗. However, we can
derive a bound on the error, Xθ∗η −Q∗, using simple algebraic inequalities and contraction property
of the Bellman operator. We present the error bound of the solution in the following lemma:
Lemma 3.7. Suppose (11) holds. Then, we have :||Xθ∗η −Q∗||∞ ≤ 1

1−γ||Γη||∞ ||ΓηQ
∗ −Q∗||∞.

The proof is given in Appendix A.10. We provide a discussion on the error bound in the following:

1) η → 0: Consider the case when θ∗η and θ∗ exists and unique, for example the condition in
Lemma 3.4 is satisfied. Since Γη → Γ from Lemma 3.1, we exactly recover the error bound by fixed
point of original projected Bellman equation (η = 0) in (4), which is ||ΓQ∗−Q∗||∞

1−γ||Γ||∞ provided in Melo
et al. [2008]. Thus, our bound in Lemma 3.7 is tight when η → 0.

2) η →∞: As from Lemma 3.3, θ∗η always exist when η gets larger than certain value. Noting that
Γη → 0, we have ||Xθ∗η −Q∗||∞ ≤ ||Q∗||∞. Considering that θ∗η → 0 as η →∞ from Lemma 3.6,
we should have ||X · 0−Q∗||∞ = ||Q∗||∞. Thus, our bound in Lemma 3.7 is tight when η →∞.

3) The error bound is close to zero: An upper bound on Lemma 3.7 can be obtained by simple
algebraic manipulation:

||Xθ∗η −Q∗||∞ ≤
||ΓηQ

∗ −Q∗||∞
1− γ||Γη||∞

≤ 1

1− γ||Γη||∞

||ΓηQ
∗ − ΓQ∗||∞︸ ︷︷ ︸

(T1)

+ ||ΓQ∗ −Q∗||∞︸ ︷︷ ︸
(T2)

 .

(12)

Suppose that the features are well designed such that (T2) in (12) will be small. For example, if Q∗ is
in the range space of X , then the error term in (T2) vanishes. Moreover, we can make (T1) arbitrarily
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small as follows: as η → 0, we have ||Γη − Γ||∞ → 0 while 1 − γ||Γη||∞ > 0. This yields (T1)
in (12) to be sufficiently small. In the end, we will have ||Xθ∗η −Q∗||∞ ≤ ϵ for any ϵ ≥ 0.

4) When the PBE does not admit a fixed point around η = 0: In this case, we should always
choose η > 0 greater than a certain number, and (T1) cannot be entirely vanished, while (T2) can
be arbitrarily close to zero when Q∗ is close to the range space of X . The error in (T1) cannot
be overcame because it can be seen as a fundamental error caused by the regularization for PBE.
However, (T1) can be still small enough in many cases when ||Γ− Γη||∞ is small.

4 Algorithm

In this section, we will introduce our main algorithm, called RegQ, and elaborate the condition on
the regularization term to make the algorithm convergent. The proposed algorithm is motivated
by TD-learning. In particular, for on-policy TD-learning, one can establish its convergence using
the property of the stationary distribution. On the other hand, for an off-policy case, the mismatch
between the sampling distribution and the stationary distribution could cause its divergence [Sutton
et al., 2016]. To address this problem, Bharadwaj Diddigi et al. [2020] adds a regularization term
to TD-learning in order to make it convergent. Since Q-learning can be interpreted as an off-policy
TD-learning, we add a regularization term to Q-learning update motivated by Bharadwaj Diddigi
et al. [2020]. This modification leads to the proposed RegQ algorithm as follows:

θk+1 = θk + αk(x(sk, ak)δk − ηθk) (13)

The pseudo-code is given in Appendix A.16. Note that it can be viewed as a gradient descent
step applied to the TD-loss L(θ) := 1

2 (yk −Qθ(sk, ak))
2 + 1

2η ∥θ∥
2
2, where yk = rk+1 +

γmaxa∈AQθk(sk+1, a) is the TD-target, and Qθk = Xθk. Furthermore, letting η = 0, the above
update is reduced to the standard Q-learning with linear function approximation in (2). The proposed
RegQ is different from Bharadwaj Diddigi et al. [2020] in the sense that a regularization term is
applied to Q-learning instead of TD-learning. Rewriting the stochastic update in a deterministic
manner, it can be written as follows:

θk+1 = θk + αk(b− (AπXθk
+ ηI)θk +mk+1), (14)

where mk+1 = δkx(sk, ak) − ηθk − (b − (AπXθk
+ ηI)θk) is a Martingale difference sequence.

Without mk+1, (14) is reduced to the deterministic version in (8). In our convergence analysis, we
will apply the O.D.E. approach, and in this case, AπXθk

+ ηI will determine the stability of the
corresponding O.D.E. model, and hence, convergence of (13). Note that (14) can be interpreted as a
switching system defined in (3) with stochastic noises. As mentioned earlier, proving the stability of
a general switching system is challenging in general. However, we can find a common Lyapunov
function to prove its asymptotic stability. In particular, we can make−(AπXθk

+ηI) to have a strictly
negatively row dominant diagonal or negative-definite under the following condition:

η > min


γ||X⊤D||∞||X||∞ + ||X⊤DX||∞︸ ︷︷ ︸

(S1)

, λmax(C)

 max
π∈Θ

(s,a)∈S×A

γdTPπ(ea ⊗ es)

2d(s, a)
− 2− γ

2


︸ ︷︷ ︸

(S2)


,

(15)

The conditions in (S1) and (S2), which make −(AπXθk
+ ηI) to have strictly negatively row

dominant diagonal or negative definite matrix , respectively, do not necessarily imply each others,
which are discussed in Appendix A.15. Now, we can use the Lyapunov argument to establish stability
of the overall system. Building on the fact, in the next section, we prove that under the stochastic
update (13), we have θk → θ∗η as k → ∞ with probability one, where θ∗η satisfies RPBE in (7). If
η = 0 satisfies (15), we can guarantee convergence to an optimal policy without errors.

5 Convergence Analysis

Recently, Lee and He [2020] suggested a switching system framework to prove the stability of
Q-learning in the linear function approximation cases. However, its assumption on the behavior
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policy and feature matrix seems too stringent to check in practice. Here, we develop more practical
Q-learning algorithm by adding an appropriately preconditioned regularization term. We prove the
convergence of the proposed Q-learning with regularization term (13) following lines similar to Lee
and He [2020]. Our proof mainly relies on Borkar-Meyn theorem. Therefore, we first discuss about
the corresponding O.D.E. for the proposed update in (13), which is

θ̇t = −(XTDX + ηI)θt + γXTDPΠXθtXθt +XTDR := f(θt). (16)

Then, using changes of coordinates, the above O.D.E. can be rewritten as
d

dt
(θt − θ∗η) =(−AπXθt

− ηI)(θt − θ∗η) + γXTDP (ΠXθt −ΠXθ∗
η
)Xθ∗η, (17)

where θ∗η satisfies (7). Here, we assume that an equilibrium point exists and is unique. We later prove
that if an equilibrium exists, then it is unique. To apply Borkar-Meyn theorem in Lemma A.1, we
discuss about the asymptotic stability of the O.D.E. in (17). Note that (17) includes an affine term, i.e.,
it cannot be expressed as a matrix times vector θt − θ∗η . It is in general hard to establish asymptotic
stability of switched linear system with affine term compared to switched linear system (3). To
circumvent this difficulty, Lee and He [2020] proposed upper and lower comparison systems, which
upper bounds and lower bounds the original system. Then, the stability of the original system can
be established by proving the stability of the upper and lower systems, which are easier to analyze.
Following similar lines, to check global asymptotic stability of the original system, we also introduce
upper and lower comparison systems. Then, we prove global asymptotic stability of the two bounding
systems. Since upper and lower comparison systems can be viewed as switched linear system and
linear system, respectively, the global asymptotic stability is easier to prove. We stress that although
the switching system approach in Lee and He [2020] is applied in this paper, the detailed proof is
entirely different and nontrivial. In particular, the upper and lower comparison systems are given as
follows:
θ̇ut = (−XTDX − ηI + γXTDPΠXθu

t
X)θut , θ̇lt = (−XTDX − ηI + γXTDPΠXθ∗

η
X)θlt,

where θut and θlt denote the states of the upper and lower systems, respectively. We defer the detailed
construction of each system to Appendix A.12. The stability of overall system can be proved by
establishing stability of the upper and lower comparison systems.
Theorem 5.1. Suppose η satisfies (15), and Assumption 2.1, 2.2, and 2.3 hold. Moreover, assume
that a solution of RPBE in (7) exists. Then, it is also unique, and the origin is the unique globally
asymptotically stable equilibrium point of (17).

The detailed proof is given in Appendix A.12. Building on the previous results, we now use Borkar
and Meyn’s theorem in Lemma A.1 to establish the convergence of RegQ. The full proof of the
following theorem is given in Appendix A.13.
Theorem 5.2. Suppose η satisfies (15), then with Assumption 2.1, 2.2, and 2.3 holds. Assume that
solution of RPBE in (7) exists. Then, θ∗η is unique, and under the stochastic update (13), θk → θ∗η as
k →∞ with probability one, where θ∗η satisfies (7).

We note that if η is larger than the term (S1) in (15), then θ∗η exists and is unique by Lemma 3.3.

6 Experiments

In this section, we briefly present the experimental results under well-known environments in Tsitsiklis
and Van Roy [1996], Baird [1995], where Q-learning with linear function approximation diverges.
As from Figure 2b, our algorithm shows faster convergence rate than other algorithms. Further details
on the experiments are deferred to Appendix B. In Appendix B.6, we also compare performance
under the Mountain Car environment [Sutton and Barto, 2018] where Q-learning performs well.
In Appendix B.5, we show experimental results under various step-size and η. Moreover, the
trajectories of upper and lower systems to illustrate the theoretical results are given in Appendix B.7.

7 Conclusion

In this paper, we presented a new convergent Q-learning with linear function approximation (RegQ),
which is simple to implement. We provided theoretical analysis on the proposed RegQ, and demon-
strated its performance on several experiments, where the original Q-learning with linear function
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(a) Results in θ → 2θ (b) Results in Baird seven star counter example

Figure 2: Experiment results

approximation diverges. Developing a new Q-learning algorithm with linear function approximation
without bias would be one interesting future research topic. Moreover, considering the great success
of deep learning, it would be interesting to develop deep reinforcement learning algorithms with
appropriately preconditioned regularization term instead of using the target network.
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A Appendix

A.1 O.D.E analysis

The dynamic system framework has been widely used to prove convergence of reinforcement learning
algorithms, e.g., Sutton et al. [2009], Maei et al. [2010], Borkar and Meyn [2000], Lee and He [2020].
Especially, Borkar and Meyn [2000] is one of the most widely used techniques to prove stability of
stochastic approximation using O.D.E. analysis. Consider the following stochastic algorithm with a
nonlinear mapping f : Rn → Rn:

θk+1 = f(θk) +mk, (18)

where mk ∈ Rn is an i.i.d. noise vector. For completeness, results in Borkar and Meyn [2000] are
briefly reviewed in the sequel. Under Assumption A.2 given in Appendix A.2, we now introduce
Borkar and Meyn theorem below.

Lemma A.1 (Borkar and Meyn theorem). Suppose that Assumption A.2 in the Appendix A.2 holds,
and consider the stochastic algorithm in (18). Then, for any initial θ0 ∈ Rn, supk≥0 ||θk|| <∞ with
probability one. In addition , θk → θe as k →∞ with probability one, where θe satisfies f(θe) = 0.

The main idea of Borkar and Meyn theorem is as follows: iterations of a stochastic recursive algorithm
follow the solution of its corresponding O.D.E. in the limit when the step-size satisfies the Robbins-
Monro condition. Hence, by proving the asymptotic stability of the O.D.E., we can induce the
convergence of the original algorithm. In this paper, we will use an O.D.E. model of Q-learning,
which is expressed as a special nonlinear system called a switching system.

A.2 Assumption for Borkar and Meyn Theorem

Assumption A.2.
1. The mapping f : Rn → Rn is globally Lipschitz continuous, and there exists a function f∞ :
Rn → Rn such that

lim
c→∞

f(cx)

c
= f∞(x), ∀x ∈ Rn. (19)

2. The origin in Rn is an asymptotically stable equilibrium for the O.D.E. ẋt = f∞(xt).

3. There exists a unique globally asymptotically stable equilibrium θe ∈ Rn for the O.D.E.
ẋt = f(xt) , i.e., xt → θe as t→∞.

4. The sequence {mk,Gk}k≥1 where Gk is sigma-algebra generated by {(θi,mi, k ≥ i}, is
a Martingale difference sequence. In addition , there exists a constant C0 < ∞ such that for any
initial θ0 ∈ Rn , we have E[||mk+1||2|Gk] ≤ C0(1 + ||θk||2),∀k ≥ 0.

5. The step-sizes satisfies the Robbins-Monro condition [Robbins and Monro, 1951] :
∞∑
k=0

αk =∞,

∞∑
k=0

α2
k <∞.

A.3 Auxiliary lemmas

Lemma A.3 (Woodbury matrix identity [Hager, 1989]). For A,B ∈ Rn×n, suppose A and I+A−1B
is invertible, then A+B is invertible and we have

(A+B)−1 = A−1 −A−1B(I +A−1B)−1A−1.

Lemma A.4 (Gelfand’s formula, Corollay 5.6.14 in Horn and Johnson [2013]). For any matrix norm
|| · ||, for A ∈ Rn×n, we have

ρ(A) = lim
k→∞

||Ak|| 1k ,

where ρ(·) denotes the spectral radius of a given matrix.
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Definition A.5 (Theorem 3 in Molchanov and Pyatnitskiy [1989]). A matrix A ∈ Rn×n is said
to have strictly negatively row dominating diagonal if [A]ii +

∑
j∈{1,2,...,n}\{i}[A]ij < 0 for all

1 ≤ i ≤ n.

Lemma A.6 (Theorem 3 in Molchanov and Pyatnitskiy [1989]). Consider a switched system in (3)
whereM =: {1, 2, . . . ,M} is the set for switching modes. If there exists a number m ≥ n, a full-row
rank matrix L ∈ Rn×m and a set of matrices {Lσ ∈ Rm×m}σ∈M such that

1) Each Lσ for σ ∈M has a strictly negatively row dominating diagonal:

[L]ii +
∑

j∈{1,2,...,m}\{i}

|[L]ij | < 0.

2) The following holds for all σ ∈M:

A⊤
σ L = LL⊤

σ .

Then, the origin of (3) is asymptotically stable.

Lemma A.7 (Gerschgorin circle theorem [Horn and Johnson, 2013]). Let A ∈ Rn×m whose i-th row
and j-th column element is aij . Let Ri(A) =

∑
j∈{1,2,...,m}\{i}

aij . Consider the Gerschgorin circles

{z ∈ C : |z − aii| ≤ Ri(A)}, i = 1, . . . , n.

The eigenvalues of A are in the union of Gerschgorin discs

G(A) = ∪ni=1{z ∈ C : |z − aii| ≤ Ri(A)}.

Now, we state the lemma to guarantee positive definiteness of AπXθ
+ ηI . Instead we prove positive

definiteness of AπXθ
+ η

λmax(C)C. We follow the similar lines in Bharadwaj Diddigi et al. [2020].

Lemma A.8. Let

MπXθ := D

((
1 +

η

λmax(C)

)
I − γPπXθ

)
.

Under the following condition:

η > λmax(C) max
π∈Θ

(s,a)∈S×A

(
γdTPπXθ (ea ⊗ es)

2d(s, a)
− 2− γ

2

)
,

where Θ is the set of all deterministic policies, and ⊗ is the Kronecker product, MπXθ is positive
definite.

Proof. For simplicity of the notation, we will denote di = d(s, a) and ei = ea ⊗ ea for some
i ∈ {1, 2, . . . , |S||A|} where i corresponds to some s, a ∈ S ×A.

We use Gerschgorin circle theorem for the proof. First, denote mij = [MπXθ ]ij . Then, one gets

mii = di

((
1 +

η

λmax(C)

)
− γeTi P

πXθei

)
,

mij = −diγeTi PπXθej for i ̸= j.

Except for the diagonal element, the row and column sums, respectively, become∑
j∈Si

|mij | = γdi(1− eTi P
πXθei),∑

j∈Si

|mji| = γdTPπXθei − γdie
T
i P

πXθei,
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where Si = {1, 2, . . . , |S||A|} \ {i}. We need to show that MπXθ +MπT
Xθ is positive definite. To

this end, we use Lemma A.7 to have the following inequality:

|λ− 2mii| ≤
∑
j∈Si

|mij |+
∑
j∈Si

|mji|.

Considering the lower bound of λ, we have

λ ≥ 2mii −
∑
j∈Si

|mij | −
∑
j∈Si

|mji|

= 2di

((
1 +

η

λmax(C)

)
− γeTi P

πXθei

)
− γdi(1− eTi P

πXθei)− (γdTPπXθei − γdie
T
i P

πXθei)

= η
2di

λmax(C)
+ (2− γ)di − γdTPπXθei.

Hence, for λ > 0, we should have

η > λmax(C)

(
γdTPπXθei

2di
− 2− γ

2

)
.

Taking η > λmax(C) max
π∈Θ

i∈{1,2,...,|S||A|}

(
γdTPπXθ ei

2di
− 2−γ

2

)
, we can make MπXθ always positive

definite. This completes the proof.

We first introduce a lemma to bound the inverse of a matrix norm:

Lemma A.9. [Page 351 in Horn and Johnson [2013]] If M ∈ Rn×n satisfies ||M || < 1 for some
matrix norm || · ||, then I −M is non-singular, and∥∥(I −M)−1

∥∥ ≤ 1

1− ∥M∥
.

Lemma A.10. Suppose that ∥∥X⊤DX
∥∥
∞ < η.

Then, we have ∥∥(X⊤DX + ηI)−1
∥∥
∞ ≤

1

η − ∥X⊤DX∥∞
.

Proof. We have

∥∥(X⊤DX + ηI)−1
∥∥
∞ =

∥∥∥∥∥1η
(
1

η
X⊤DX + I

)−1
∥∥∥∥∥
∞

=
1

η

∥∥∥∥∥
(
1

η
X⊤DX + I

)−1
∥∥∥∥∥
∞

≤1

η

1

1−
∥∥∥ 1
ηX

⊤DX
∥∥∥
∞

=
1

η − ∥X⊤DX∥∞
.

The first inequality follows from Lemma A.9. This completes the proof.

Lemma A.11. For η > γ||X⊤D||∞||X||∞ + ||X⊤DX||∞, we have

γ ∥Γη∥∞ < 1.
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Proof. From the definition of Γη in (10), we have

γ ∥Γη∥∞ =γ
∥∥X⊤D(X⊤DX + ηI)−1X

∥∥
∞

≤γ
∥∥X⊤D

∥∥
∞ ||X||∞

1

η − ∥X⊤DX∥∞
<1.

The first inequality follows from Lemma A.10. The last inequality follows from the condition
η > γ||X⊤D||∞||X||∞ + ||X⊤DX||∞. This completes the proof.

Lemma A.12. The equation (7) can be written as

Xθ∗η = ΓηT Xθ∗η.

Proof. Let us expand the terms in (7):

X⊤DR = (ηI +X⊤DX)θ∗η − γX⊤DPΠXθ∗
η
Xθ∗η

⇐⇒ X⊤D(R+ γPΠXθ∗
η
Xθ∗η) = (ηI +X⊤DX)θ∗η

⇐⇒ X(ηI +X⊤DX)−1X⊤D(R+ γPΠXθ∗
η
Xθ∗η) = Xθ∗η.

The last line follows from that X is full-column rank matrix. This completes the proof.

Lemma A.13. For any θ ∈ Rh, if η > γ||X⊤D||∞||X||∞ + ||X⊤DX||∞, then −AπXθ
− ηI has

strictly negatively row dominating diagonal.

Proof. For 1 ≤ i ≤ h, we have

[−AπXθ
− ηI]ii +

∑
j∈{1,2,...,h}\{i}

|[AπXθ
+ ηI]ij | ≤ − η +

h∑
j=1

|[AπXθ
]ij |

≤ − η + ∥AπXθ
∥∞

≤− η +
∥∥X⊤DX

∥∥
∞ + γ

∥∥X⊤D
∥∥
∞ ∥X∥∞

<0.

The second last inequality follows the fact that ||PΠXθ
||∞ ≤ 1.

Lemma A.14 (Continuity of θ∗η with respect to η). Let η0 be a non-negative real valued constant.
Suppose γ||Γη0

||∞ < 1. Then, θ∗η is continuous at η0.

Proof. Note that Γη is continuous function of η, and we have,

Γη0+η = Γη0
+O(η),

where O(·) stands for the big O notation. Therefore,

||Xθ∗η0+η −Xθ∗η0
||∞ =||Γη0+ηT Xθ∗η0+η − Γη0

T Xθ∗η0
||∞

≤
∥∥Γη0

T X(θ∗η0+η − θ∗η0
)
∥∥
∞ +O(η)

≤γ ∥Γη0∥∞ ||X(θ∗η0+η − θ∗η0
)||∞ +O(η).

The first equality follows from the definition of θ∗η0+η and θ∗η0
. The second inequality follows from

triangle inequality. The last inequality follows from the contraction property of the Bellman operator.
Therefore, we have

||θ∗η0+η − θ∗η0
||∞ ≤ C||Xθ∗η0+η −Xθ∗η0

||∞ ≤ O(η),

where the first inequality holds because X is full-column rank matrix, and C is a universal constant.
This completes the proof.
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A.4 Proof of Lemma 2.5

Proof. The first item follows from Lemma A.6. The second item follows from the fact that if all the
subsystem matrices are negative-definite, then it will have V (x) = ||x||22 as a common Lyapunov
function. This completes the proof.

A.5 Proof of Lemma 3.1

Proof. Let us prove the first item. When, η → 0 , we have (X⊤DX + ηI)−1 → (X⊤DX)−1.
Therefore, we have Γη → Γ as η → 0.

Moreover, note that from Lemma A.10, for sufficiently large η, we have (X⊤DX + ηI)−1 is
invertible. Therefore, we get

∥Γη∥∞ =
∥∥X⊤D(X⊤DX + ηI)−1X

∥∥
∞

≤
∥∥X⊤D

∥∥
∞ ||X||∞

1

η − ∥X⊤DX∥∞
,

where the first inequality follows from Lemma A.10. As η → ∞, we get ∥Γη∥∞ → 0. This
completes the proof of the first item.

Now, we will prove the second item. First of all, using Woodbury matrix identity [Hager, 1989] in
Lemma A.3, we have

(X⊤DX + ηI)−1 =(X⊤DX)−1 − (X⊤DX + η−1(X⊤DX)(X⊤DX))−1

⪯(X⊤DX)−1,

where the inequality comes from the fact that (X⊤DX + η−1(X⊤DX)(X⊤DX))−1 is positive
semidefinite. Then, we have

∥Γη∥∞ =
∥∥X⊤D(X⊤DX + ηI)−1X

∥∥
∞

=
√
|S ×A|

∥∥X⊤D(X⊤DX + ηI)−1X
∥∥
2

≤
√
|S ×A|

∥∥X⊤D
∥∥
2
∥X∥2

∥∥(X⊤DX + ηI)−1
∥∥
2
.

Next, since the spectral norm is monotone, for any two symmetric positive semidefinite matrices A
and B, A ⪰ B implies ∥A∥2 ≥ ∥B∥2, which comes from the properties of the spectral norm for
symmetric positive semidefinite matrices. Therefore, one gets

∥Γη∥∞ ≤
∥∥X⊤D

∥∥
2
∥X∥2

∥∥(X⊤DX + ηI)−1
∥∥
2

√
|S ×A|

≤
∥∥X⊤D

∥∥
2
∥X∥2

∥∥(X⊤DX)−1
∥∥
2

√
|S ×A|,

which is the desired conclusion.

A.6 Proof of Lemma 3.2

Proof. To show the existence and uniqueness of the solution of (9), we use Banach fixed-point
theorem. Note that it is enough show the existence and uniqueness of the solution of the following
equation:

y = Γη(R+ γPΠyy), y ∈ Rh. (20)

This is because a solution y∗ ∈ Rh satisfying the above equation is in the image of X . We can find a
unique θ such that Xθ = y∗ because X is a full-column rank matrix. To this end, we will apply the
Banach fixed point theorem:

||y1 − y2||∞ = ||X(XTDX + ηI)−1(γXTDPΠy1
y1 − γXTDPΠy2

y2)||∞
≤ γ||X(XTDX + ηI)−1X⊤D||∞||Πy1y1 −Πy2y2||∞
≤ γ||X(XTDX + ηI)−1X⊤D||∞||y1 − y2||∞
< ||y1 − y2||∞.

The second inequality follows from the non-expansiveness property of the max-operator. Now, we
can use Banach fixed-point theorem to conclude existence and uniqueness of (20). This completes
the proof.
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A.7 Proof of Lemma 3.4

For the proof, suppose that γ∥Γ∥∞ < 1. If the condition 0 ≤ η <
(1−γ∥Γ∥∞)∥(XTDX)−1∥−1

∞
γ∥(XTDX)−1∥∞∥X∥∞∥XTD∥∞+(1−γ∥Γ∥∞)

holds, it ensures
∥∥∥η(XTDX)

−1
∥∥∥
∞

< 1 since
(1−γ∥Γ∥∞)

γ∥(XTDX)−1∥∞∥X∥∞∥XTD∥∞+(1−γ∥Γ∥∞)
< 1. Then, using Gelfand’s formula in Lemma A.4,

we can easily prove that the spectral radius of η(XTDX)−1 is less than one. Next, note that for any
two square matrices A and B, (A−B)−1 =

∑∞
i=0(A

−1B)iA−1 if the spectral radius of A−1B is
less than one. Using this fact, one has

γ ∥Γη∥∞ =
∥∥∥γX(XTDX + ηI)

−1
XTD

∥∥∥
∞

=γ

∥∥∥∥∥X
∞∑
i=0

(−η(XTDX)−1)
i
(XTDX)−1XTD

∥∥∥∥∥
∞

≤γ
∥∥∥X(XTDX)

−1
XTD

∥∥∥
∞

+ γ

∥∥∥∥∥(XTDX)−1
∞∑
i=1

ηiX(−XTDX)−iXTD

∥∥∥∥∥
∞

≤γ
∥∥X(XTDX)−1XTD

∥∥
∞ + γη

∥∥(XTDX)−1
∥∥2
∞ ∥X∥∞

∥∥XTD
∥∥
∞

∞∑
i=0

∥∥η(XTDX)−1
∥∥i
∞

≤γ∥Γ∥∞ +
γη

∥∥(XTDX)−1
∥∥2
∞ ∥X∥∞

∥∥XTD
∥∥
∞

1− η∥(XTDX)−1∥∞
,

where the second line uses the matrix inverse property. Therefore, γ ∥Γη∥∞ < 1 holds if

γ∥Γ∥∞ +
γη

∥∥∥(XTDX)
−1

∥∥∥2
∞
∥X∥∞

∥∥XTD
∥∥
∞

1− η ∥(XTDX)−1∥∞
< 1.

Rearranging terms, one gets the desired conclusion.

A.8 Proof of Lemma 3.5

From the definition of Γη in (10), we have

γ ∥Γη∥∞ ≤γ ∥X∥∞
∥∥(X⊤DX + ηI)−1

∥∥
∞

∥∥X⊤∥∥
∞ ∥D∥∞

≤γ 1

|S||A|
1

a+ η

<1.

The second inequality follows from the assumption that X⊤DX = aI and ||X||2 ≤ 1. The last
inequality follows from the condition a|S||A| ≥ 1.

A.9 Proof of Lemma 3.6

Proof. Since we are going to consider the case η → ∞, assume that η >
∥∥X⊤DX

∥∥
∞ +

γ
∥∥X⊤D

∥∥
∞ ∥X∥∞. From (7), we have∥∥θ∗η∥∥∞ =

∥∥∥(X⊤DX + ηI)−1(X⊤DR+ γX⊤DPΠXθ∗
η
Xθ∗η)

∥∥∥
∞

≤ 1

η − ∥X⊤DX∥∞

∥∥∥X⊤DR+ γX⊤DPΠXθ∗
η
Xθ∗η

∥∥∥
∞

≤ 1

η − ∥X⊤DX∥∞

∥∥X⊤DR
∥∥
∞ +

1

η − ∥X⊤DX∥∞

∥∥X⊤D
∥∥
∞ ∥X∥∞

∥∥θ∗η∥∥∞ .
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The first inequality follows from Lemma A.10. Therefore, considering that η >
∥∥X⊤DX

∥∥
∞ +

γ
∥∥X⊤D

∥∥
∞ ∥X∥∞, we have

η −
∥∥X⊤DX

∥∥
∞ − γ

∥∥X⊤D
∥∥
∞ ∥X∥∞

η − ||X⊤DX||∞
∥∥θ∗η∥∥∞ <

1

η − ∥X⊤DX∥∞

∥∥X⊤DR
∥∥
∞ ,

which leads to ∥∥θ∗η∥∥∞ ≤ 1

η − ∥X⊤DX∥∞ − γ ∥X⊤D∥∞ ∥X∥∞

∥∥X⊤DR
∥∥
∞ .

As η →∞, the right-hand side of the above equation goes to zero, i.e., θ∗η → 0.

A.10 Proof of Lemma 3.7

Proof. The bias term of the solution can be obtained using simple algebraic inequalities.

||Xθ∗η −Q∗||∞ ≤
∥∥ΓηT (Xθ∗η)− ΓQ∗∥∥

∞ + ∥ΓηQ
∗ −Q∗∥∞

≤∥Γη∥∞
∥∥T (Xθ∗η)−Q∗∥∥

∞ + ∥ΓηQ
∗ −Q∗∥∞

= ∥Γη∥∞
∥∥T (Xθ∗η)− T (Q∗)

∥∥
∞ + ∥ΓηQ

∗ −Q∗∥∞
≤γ ∥Γη∥∞

∥∥Xθ∗η −Q∗∥∥
∞ + ∥ΓηQ

∗ −Q∗∥∞ .

The first inequality follows from triangle inequality. The third equality follows from the fact that Q∗

is the solution of optimal Bellman equation. The last inequality follows from the contraction property
of the Bellman operator. Noting that γ ∥Γη∥∞ < 1, we have∥∥Xθ∗η −Q∗∥∥

∞ ≤
1

1− γ ∥Γη∥∞
∥ΓηQ

∗ −Q∗∥∞ .

This finishes the proof.

A.11 Proofs to check Assumption A.2 for Theorem 5.2.

In this section, we provide omitted proofs to check Assumption A.2 in Appendix Section A.2 to apply
the Borkar and Meyn Theorem in Lemma A.1 in the Appendix.

First of all, Lipschitzness of f(θ) ensures the unique solution of the O.D.E..
Lemma A.15 (Lipschitzness). Let

f(θ) = −(XTDX + ηI)θ + γXTDPΠXθXθ +XTDR. (21)

Then, f(θ) is globally Lipschitzness continuous.

Proof. Lipschitzness of f(θ) can be proven as follows:

||f(θ)− f(θ′)||∞ ≤ ||(XTDX + ηI)(θ − θ′)||∞ + γ||XTDP (ΠXθXθ −ΠXθ′Xθ′)||∞
≤ ||XTDX + ηI||∞||θ − θ′||∞ + γ||XTDP ||∞||ΠXθXθ −ΠXθ′Xθ′||∞
≤ (||XTDX + ηI||∞ + γ||XTDP ||∞||X||∞)||θ − θ′||∞

The last inequality follows from non-expansiveness property of max-operator. Therefore f(θ) is
Lipschitz continuous with respect to the || · ||∞,

Next, the existence of limiting O.D.E. of (16) can be proved using the fact that policy is invariant
under constant multiplication when linear function approximation is used.
Lemma A.16 (Existence of limiting O.D.E. and stability). Let

f(θ) = (−XTDX − ηI)θ + γXTDPΠXθXθ +XTDR. (22)

If η satisfies (15), there exists limiting O.D.E. of (22) and its origin is asymptotically stable.
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Proof. The existence of limiting O.D.E. can be obtained using the homogeneity of policy, ΠX(cθ) =
ΠXθ.

f(cθ) = −(XTDX + ηI)(cθ) + γXTDPΠX(cθ)X(cθ) +XTDR,

lim
c→∞

f(cx)

c
= (−XTDX − ηI + γXTDPΠXθX)θ

This can be seen as switching system and, from Lemma A.8 and Lemma A.13, we can apply
Lemma 2.5. Therefore, the origin is asymptotically stable.

Lastly, we check conditions for martingale difference sequences.
Lemma A.17 (Martingale difference sequence, mk, and square integrability). We have

E[mk+1|Fk] = 0,

E[||mk+1||22|Fk] < C0(1 + ||θk||22),

where C0 := max(12X2
maxR

2
max, 12γX

4
max + 4η2).

Proof. To show {mk, k ∈ N} is a martingale difference sequence with respect to the sigma-algebra
generated by Gk, we first prove expectation of mk+1 is zero conditioned on Gk:

E[mk+1|Gk] = 0.

This follows from definition of b, C and AπXθ
.

The boundedness E[||mk||2] < ∞ for k ∈ N also follows from simple algebraic inequalities.
Therefore {mk, k ∈ N} is martingale difference sequence.

Now, we show that the following hods:

E[||mk+1||22|Gk] ≤ C0(||θk||22 + 1).

Using simple algebraic inequalities, we have

E[||mk+1||22|Gk] = E[||δkx(sk, ak) + ηθk − Eµ[δkx(sk, ak) + ηθk]||22|Gt]
≤ E[||δkx(sk, ak) + ηθk||22 + ||Eµ[δkx(sk, ak) + ηθk]||22|Gt]
≤ 2E[||δkx(sk, ak) + ηθk]||22|Gt]
≤ 4E[||δkx(sk, ak)||22|Gt] + 4η2E[||θk||22|Gt]
≤ 12X2

maxE[||rk||22 + ||γmaxx(sk, ak)θk||22 + ||x(sk, ak)θk||22|Gt] + 4η2||θk||22
≤ 12X2

maxR
2
max + 12γX4

max||θk||22 + ||θk||22 + 4η2||θk||22
≤ C0(1 + ||θk||22),

where C0 := max(12X2
maxR

2
max, 12γX

4
max + 4η2). The fourth inequality follows from the fact that

||a+ b+ c||22 ≤ 3||a||22+3||b||22+3||c||22. Together with the above inequality, the square integrability
of mk for k ∈ N follows from the recursive update of θk in (14). This completes the proof.

A.12 Proof of Theorem 5.1

Before moving onto the proof of Theorem 5.1, in order to prove the stability using the upper and
lower systems, we need to introduce some notions such as the quasi-monotone function and vector
comparison principle. We first introduce the notion of quasi-monotone increasing function, which is
a necessary prerequisite for the comparison principle for multidimensional vector system.
Definition A.18 (Quasi-monotone function). Consider a vector-valued function f : Rn → Rn with
f := [f1 f2 · · · fn]

T where fi : Rn → R for i ∈ {1, 2, . . . , n}. f is said to be quasi-monotone
increasing if fi(x) ≤ fi(y) holds for all i ∈ {1, 2, . . . , n} and x, y ∈ Rn such that xi = yi and
xj ≤ yj for all j ̸= i.
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Based on the notion of quasi-monotone function, we introduce the vector comparison principle.
Lemma A.19 (Vector Comparison Principle, Hirsch and Smith [2006]). Suppose that f̄ , f are
globally Lipschitz continuous. Let xt be a solution of the system

d

dt
xt = f̄(xt), x0 ∈ Rn, ∀t ≥ 0.

Assume that f̄ is quasi-monotone increasing, and let vt be a solution of the system

d

dt
vt = f(vt), v0 < x0, ∀t ≥ 0,

where f(v) ≤ f̄(v) holds for any v ∈ Rn. Then, vt ≤ xt for all t ≥ 0.

The vector comparison lemma can be used to bound the state trajectory of the original system by
those of the upper and lower systems. Then, proving global asymptotic stability of the upper and
lower systems leads to global asymptotic stability of original system. We now give the proof of
Theorem 5.1.

Proof. First we construct the upper comparison part. Noting that

γXTDPΠXθ∗
η
Xθ∗η ≥ γXTDPΠXθXθ∗η (23)

and
γXTDPΠX(θ−θ∗

η)
X(θ − θ∗η) ≥ γXTDPΠXθX(θ − θ∗η), (24)

we define f̄(y) and f(y) as follows:

f̄(y) = (−XTDX − ηI + γXTDPΠXyX)y,

f(y) = (−XTDX − ηI + γXTDPΠX(y+θ∗
η)
X)y + γXTDP (ΠX(y+θ∗

η)
−ΠXθ∗

η
)Xθ∗η.

Using (23) and (24), we have f(y) ≤ f̄(y).

f is the corresponding O.D.E. of original system in (17) and f̄ becomes O.D.E. of the upper system.
f̄ becomes switched linear system.

Now, consider the O.D.E. systems

d

dt
θut = f̄(θut ), θu0 > θ0,

d

dt
θt = f(θt).

Next, we prove quasi-monotone increasing property of f̄ . For any y ∈ Rh, consider a non-negative
vector p ∈ Rh such that its i-th element is zero. Then, for any 1 ≤ i ≤ h, we have

eTi f̄(y + p) = eTi (−XTDX − ηI + γXTDPΠX(y+p)X)(y + p)

= −eTi (XTDX + ηI)y − ηeTi p+ γeTi X
TDPΠX(y+p)X(y + p)

≥ −eTi (XTDX + ηI)y + γeTi X
TDPΠXyXy

= eTi f̄(y),

where the inequality comes from eTi X
TDXp = 0 due to Assumption 2.2 and eTi p = 0 since i-th

element of p is zero.

Therefore by Lemma A.19, we can conclude that θt ≤ θut . The condition (S1) in (15) ensures the
switching matrices to have strictly negatively row dominating diagonal. Therefore, from Lemma A.13,
and from Lemma 2.5, the global asymptotically stability of the origin follows. Likewise, the condition
(S2) in (15) ensures that the matrices are all negative-definite, implying that the switching system
shares V (θ) = ||θ||22 as common Lyapunov function. Therefore, we can conclude that the upper
comparison system is globally asymptotically stable.
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For the lower comparison part, noting that

γXTDPΠXθXθ ≥ γXTDPΠXθ∗
η
Xθ,

we can define f(y) and f̄(y) such that f(y) ≤ f̄(y) as follows:
f̄(y) = −XTDXy − ηy + γXTDPΠXyXy +XTDR,

f(y) = −XTDXy − ηy + γXTDPΠXθ∗
η
Xy +XTDR.

The corresponding O.D.E. system becomes
d

dt
θt = f̄(θt),

d

dt
θlt = f(θlt), θl0 < θ0. (25)

Proving the quasi-monotonicity of f̄ is similar to previous step. Consider a non-negative vector
p ∈ Rh such that its i-th element is zero. Then, we have

eTi f̄(y + p) = eTi (−(XTDX + ηI)(y + p) + γXTDPΠX(y+p)X(y + p) +XTDR)

= eTi (−(XTDX + ηI)y + γXTDPΠX(y+p)X(y + p) +XTDR)

≥ eTi (−(XTDX + ηI)y + γXTDPΠXyXy +XTDR)

= eTi f̄(y).

The second equality holds since XTDX is diagonal matrix and pi = 0. Therefore by Lemma A.19,
we can conclude that θlt ≤ θt. The lower comparison part is linear system without affine term. Hence,
following the similar lines as in proving the stability of upper comparison system, we can conclude
that (25) is globally asymptotically stable.

To prove uniqueness of the equilibrium point, assume there exists two different equilibrium points θe1
and θe2. The global asymptotic stability implies that regardless of initial state, θt → θe1 and θt → θe2.
However this becomes contradiction if θe1 ̸= θe2. Therefore, the equilibrium point is unique.

A.13 Proof of Theorem 5.2

Proof. To apply Lemma A.1, let us check Assumption A.2.

1. First and second statement of Assumption A.2 follows from Lemma A.16.

2. Third statement of Assumption A.2 follows from Theorem 5.1.

3. Fourth statement of Assumption A.2 follows from Lemma A.17.

Since we assumed Robbins Monro step-size, we can now apply Lemma A.1 to complete the proof.

A.14 Example for non-existence of solution of PBE

Let us define a MDP whose state transition diagram is given as in Figure 3. The cardinality of state
space and action space are |S| = 3, |A| = 2 respectively. The corresponding state transition matrix,
and other parameters are given as follows:

X =


1 0
2 0
0 1
0 1
2 0
0 1

 , R1 =

[−2
0
0

]
, R2 =

[
1
0
0

]
,

P1 =

0 1 0
1
4

1
4

1
2

1
4

1
2

1
4

 , P2 =

0 0 1
1
4

1
4

1
2

1
4

1
2

1
4

 ,

γ = 0.99, d(s, a) =
1

6
, ∀s ∈ S,∀a ∈ A,
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Figure 3: State transition diagram

where the order of elements of each column follows the orders of the corresponding definitions. Note
that for this Markov decision process, taking action a = 1 and action a = 2 at state s = 2 have the
same transition probabilities and reward. It is similar for the state s = 3. In this MDP, there are only
two deterministic policies available, denoted by π1 and π2, that selects action a = 1 and action a = 2
at state s = 1, respectively, i.e., π1(1) = 1 and π2(1) = 2. The actions at state s = 2 and s = 3 do
not affect the overall results.

The motivation of this MDP is as follows. Substitute πXθ∗ in (5) with π1 and π2. Then each of its
solution becomes

θe1 :=

[
θe11
θe12

]
≈

[
−0.85
−0.72

]
, θe2 :=

[
θe21
θe22

]
≈

[
−1.26
−1.46

]
.

If π1 is the corresponding policy to the solution of (5), it means that action a = 1 is greedily
selected at state s = 1. Therefore, Qπ1(1, 1) > Qπ1(1, 2) should be satisfied. However, since
Qπ1(1, 1) = x(1, 1)T θe1 ≈ −0.85 and Qπ1(1, 2) = x(1, 2)T θe1 ≈ −0.72, this is contradiction.
The same logic applies to the case for π2. Therefore, neither of them becomes a solution of (5).
On the other hand, considering (7) with η = 4 which satisfies (15), the solution for each policy
becomes θe11 ≈ −0.069, θe12 ≈ 0.032 and θe21 ≈ −0.069, θe22 ≈ 0.035, respectively. For π1 and π2,
we have Qπ1(1, 1) < Qπ2(1, 2) and Qπ1(1, 1) < Qπ1(1, 2) respectively. Hence, θe2 satisfies (7) and
becomes the unique solution.

A.15 Discussion on (15)

In this section, we provide further discussion on (15). The two conditions (S1) and (S2) are to make
a matrix to have strictly negatively row dominating diagonal or negative definite, respectively. We
first provide a case where a matrix with strictly negatively row dominating diagonal is not necessarily
a negative definite matrix, and vice versa. We will consider MDPs with γ = 0.99.

A matrix with strictly negatively row dominating diagonal but not negative-definite: Consider the
following MDP with only single action for each state:

X =

[
13 −4
1 8

]
, P =

[
0 1
0 1

]
, D =

[
1
2 0
0 1

2

]
, Π =

[
1 0
0 1

]
.

where the matrix Π represents the policy. Then, we have

M := −X⊤DX + γX⊤DPΠX ≈
[
−78 −77
24 −24.2

]
.

This is a matrix with strictly negatively row dominating diagonal but M +M⊤ is not negative definite
matrix.

A negative-definite matrix but not with a strictly negatively row dominating diagonal: Consider the
following MDP with single action for each state:

X =

[
−1 −4
0 5

]
, P =

[
1
2

1
2

1
2

1
2

]
, D =

[
1
2 0
0 1

2

]
, Π =

[
1 0
0 1

]
.

Then, we have

M := −X⊤DX + γX⊤DPΠX ≈
[
−0.25 −2.25
−2.25 −20

]
.
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M +M⊤ is negative definite matrix but M does not have strictly negatively row dominating diagonal.

Now, we provide an example where the condition (S1) and (S2) in (15) does not imply each other,
i.e., there are cases such that (S1) ≥ (S2) or (S2) ≥ (S1):

As for the condition in (15), consider the following MDP with single action for each state:

X =

[
1
2

]
, D =

[
1

100 0
0 99

100

]
, P1 =

[
1
2

1
2

1
2

1
2

]
, P2 =

[
0 1
0 1

]
, Π =

[
1 0
0 1

]
.

where P1 and P2 are two different transition matrices and the matrix Π represents the policy. First,
considering P1, we have

(S1) ≈ 7.9, (S2) ≈ 196.

Meanwhile, considering P2 as the transition matrix, we have

(S1) ≈ 7.9, (S2) ≈ 2.

Therefore, (S1) and (S2) does not necessarily imply each other.

A.16 Pseudo-code

Algorithm 1 Regularized Q-learning

1: Initialize θ0 ∈ Rh.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ and ak ∼ µ.
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k).

6: Update θk using (13).
7: end for

B Experiment

B.1 Experiments

In this section, we present experimental results under well-known environments in Tsitsiklis and
Van Roy [1996], Baird [1995], where Q-learning with linear function approximation diverges.
In Appendix B.6, we also compare performance under the Mountain Car environment [Sutton and
Barto, 2018] where Q-learning performs well. In Appendix B.5, we show experimental results under
various step-sizes and η. We also show trajectories of the O.D.E. of upper and lower comparison
systems to illustrate the theoretical results.

B.2 θ → 2θ, Tsitsiklis and Van Roy [1996]

Even when there are only two states, Q-learning with linear function approximation could di-
verge [Tsitsiklis and Van Roy, 1996]. Depicted in Figure 4a in Appendix B.4, from state one (θ),
the transition is deterministic to absorbing state two (2θ), and reward is zero at every time steps.
Therefore, the episode length is fixed to be two. Learning rate for Greedy GQ (GGQ) and Coupled Q
Learning (CQL), which have two learning rates, are set as 0.05 and 0.25, respectively as in Carvalho
et al. [2020], Maei et al. [2010]. Since CQL requires normalized feature values, we scaled the feature
value with 1

2 as in Carvalho et al. [2020], and initialized weights as one. We implemented Q-learning
with target network [Zhang et al., 2021], which also have two learning rates, without projection for
practical reason (Qtarget). We set the learning rate as 0.25 and 0.05 respectively, and the weight η as
two. For RegQ, we set the learning rate as 0.25, and the weight η as two. It is averaged over five runs.
In Figure 2a, we can see that RegQ achieves the fastest convergence rate.

B.3 Baird Seven Star Counter Example, Baird [1995]

Baird [1995] considers an overparameterized example, where Q-learning with linear function ap-
proximation diverges. The overall state transition is depicted in Figure 4b given in Appendix B.4.
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There are seven states and two actions for each state, which are solid and dash action. The number of
features are h = 15. At each episode, it is initialized at random state with uniform probability. Solid
action leads to seventh state while dashed action makes transition uniformly random to states other
than the seventh state. At seventh state, the episode ends with probability 1

100 . The behavior policy
selects dashed action with probability 5

6 , and solid action with probability 1
6 . Since CQL in Carvalho

et al. [2020] converges under normalized feature values, we scaled the feature matrix with 1√
5

. The
weights are set as one except for θ7 = 2. The learning rates and the weight η are set as same as the
previous experiment. As in Figure 2b, Our RegQ shows the fastest convergence compared to other
convergent algorithms.

B.4 Diagrams for θ → 2θ and Baird Seven Star Counter Example

The state transition diagrams of θ → 2θ and Baird seven-star example are depicted in Figure 4a
and Figure 4b respectively.

(a) θ → 2θ

(b) Baird seven star counter example

Figure 4: Counter-examples where Q-learning with linear function approximation diverges

B.5 Experiments with varying hyperparameters
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(a) ThetaTwoTheta learning rate 0.01 (b) ThetaTwoTheta learning rate 0.05

(c) Baird learning rate 0.01 (d) Baird learning rate 0.05

Figure 5: Learning curve under different learning rate and regularization coefficient

In Figure 5, we have ran experiments under η ∈ {2−2, 2−1, 1, 2}, and learning rate 0..01, 0.05.
Overall, we can see that the convergence rate gets faster as η increases.

B.6 Mountain car [Sutton and Barto, 2018] experiment

Mountain Car is environment where state consists of position, and velocity, which are both continuous
values. The actions are discrete, accelerating to left, staying neutral, and accelerating to the right.
The goal is to reach the top of the mountain quickly as agent gets -1 reward every time step. We
use tile-coding [Sutton and Barto, 2018] to discretize the states. We experimented under various
tiling numbers and with appropriate η, it achieves performance as Q-learning does. We ran 1000
episodes for the training process, and the episode reward was averaged for 100 runs during test time.
From Table 1, with appropriate η, RegQ performs comparable to Q-learning.

Table 1: Result of episode reward, step size = 0.1. The columns correspond to η, and rows correspond
to number of tiles.

0 0.01 0.05 0.1
2× 2 −199.993± 0.005 −200.0± 0.0 −199.28± 0.074 −199.993± 0.005
4× 4 −196.631± 0.179 −189.903± 0.225 −194.178± 0.166 −196.631± 0.179
8× 8 −185.673± 0.305 −163.08± 0.248 −185.103± 0.219 −185.673± 0.305
16× 16 −166.893± 0.33 −158.152± 0.251 −167.934± 0.238 −166.893± 0.33
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B.7 O.D.E. experiment

Let us consider a MDP with |S| = 2, |A| = 2, and the following parameters:

X =

1 0
0 2
1 0
0 2

 , D =


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

 ,

P =

 0.5 0.5
1 0
0.5 0.5
0.25 0.75

 , R =

111
1

 , γ = 0.99.

For this MDP, we will illustrate trajectories of the upper and lower system. Each state action pair
is sampled uniformly random and reward is one for every time step. η = 2.25 is chosen to satisfy
conditions of Theorem 5.1. From Figure 6, we can see that the trajectory of the original system is
bounded by the trajectories of lower and upper system.

(a) θ1 − θe1 (b) θ2 − θe2

Figure 6: O.D.E. results
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have rigorously proved the result of a convergent Q-learning algorithm,
and provided thorough analysis on the quality of its solution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have cleary stated the Assumptions used througout the paper. Moreover, as
a limitation, we discuseed that the convergence solution is biased, and provided thorough
analysis on its error bound.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have provided thorough analysis in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimantal envirnoments are fairly simple and well-known in the
community, thus making it easy to reproduce.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have attached the code in the supplementary files.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have stated the choice of step-size, which is the only hyper-parameter.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have plotted the error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: NA
Justification: Our experiments can simply run on normal computer because we do not
require any heavy computation including using GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have checked NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is a theoretical paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:We did not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no such risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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