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ABSTRACT
People effortlessly manipulate fluids due to their intuitive under-
standing of fluid dynamics, while robots struggle with complex
fluid dynamic calculations, particularly in tasks like pouring. To en-
hance assistive robots in such tasks, we propose involving users in
correcting and providing feedback by visualizing the planned pour-
ing trajectories before they are executed. This paper investigates
whether people can predict robotic pouring outcomes and make
adjustments to minimize spills, using visualization devices like aug-
mented reality. In a human-participant study, participants evaluated
and adjusted robot pouring behaviors of unique configurations for
various source containers. Results highlight the effectiveness of
visualization tools such as augmented reality headsets, as well as
traditional 2D display, especially with specific pouring parameters,
and users noted their benefits in open-ended responses. This re-
search illuminates the potential for human-robot collaboration in
fluid manipulation tasks, with visualization tools reducing spills in
robot-controlled pours.
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1 INTRODUCTION
Individuals accumulate years of experience observing both their
own and others’ actions in manipulating fluids. This extensive
experience equips us with an internal physics engine, allowing
us to anticipate the results of a pour and intuitively identify nec-
essary adjustments during the pouring process to prevent spills
[5, 31]. However, it remains uncertain whether individuals can ac-
curately predict the outcomes when a robot is manipulating fluids,
particularly when they lack a precise mental model of the robot’s
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Figure 1: The robot used in our study, shown pouring water
from a source to target container. In our experiments, par-
ticipants were first tasked with predicting the outcome of
a pouring action (spill vs. no spill). Participants were also
tasked to adjust the parameters of the pouring action to min-
imize spills.

capabilities upon initial encounter. Users employing an assistive
robotic arm for pouring a drink may find themselves at risk of spills
due to unfamiliarity with the robot’s behavior.

Pouring fluids from container to container is a challenging task
in robotics and is still considered an open problem requiring ad-
vanced simulators for manipulation learning [12]. Because the fluid
dynamic calculations are often too difficult to solve, robots may
still not apply the appropriate actions to avoid any spillage. We
can leverage human ability to predict pouring outcomes and en-
able people to improve a robot’s pouring capabilities by modifying
parameters related to the manipulation process to minimize the
chances of a spill. For example, a user may want to adjust the rota-
tional speed if they foresee that the planned motion may result in
a spill.

In this paper, we first want to determine to what extent visualiza-
tion tools enable users to predict the outcome of a pouring action,
and second, determine whether such tools enable users to adjust the
planned behavior as to prevent a spill. Augmented Reality (AR) has
been used to visualize a digital twin of a robotic arm manipulator
simulating the pouring action corresponding to parameter changes
made by the user.
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Figure 2: Image shows the three conditions in our study. (Left) A participant in the No Visual condition (CT), shown interacting
with the UI panel to change the pouring parameters, (Middle) A participant in the 2D Display condition (RZ) with a display
monitor positioned above the arm, (Right) A participant in the augmented reality (AR) condition wearing a Hololens2.

The users with an assistive robotic manipulator in this case can
leverage AR to provide more contextual information to help them
minimize the chances of a spill before the robot executes the pour
action. Another justification for utilizing an AR device lies in the
fact that the conventional approach to visualizing data necessitates
users to possess a display screen. This ensures the presentation of a
current representation of the real-world environment, encompass-
ing the position and orientation of the digital twin of the target
container, a feature distinct from augmented reality. We hypoth-
esized that people can better predict the outcome of the pouring
action by visualizing the digital robot simulating different pouring
parameters and anticipate outcomes.

We investigated how visualizing the planned trajectory of pa-
rameter changes, such as the robot’s wrist performing a pouring
action at different speeds, can empower people to adjust parameters
of robotic pouring actions to reduce spills. We specifically ask, “Can
people make reasonable predictions for a robot pouring liquids
better by observing a visualization of the planned action in AR and
2D displays before it is actually executed?”, “Does superimposing
a digital twin of the robotic manipulator over the real robot simu-
lating pouring actions in augmented reality enable people to make
more accurate guesses for the outcome of a robot pouring liquids?”,
and “Do users prefer AR over 2D displays when controlling the
pouring parameters of a robot before executing a pour?”. To answer
these questions, we conducted a human-participant study where
participants were instructed to assist a robot transferring fluids by
manipulating the robot’s pouring parameters. We hypothesized:

H1: Visualizing the actions with digital twins enables users
to better predict the likelihood of a spill caused by a robot
manipulator pouring liquids from a source container. (control
vs. AR/ 2D Displays)
H2: Users with augmented reality to visualize robotic pa-
rameter changes will result in selecting parameters more
accurately (H2a ) leading to less spillage (H2b). (AR vs.
control/2D Displays) The visual feedback provided by aug-
mented reality will enable users to make more informed de-
cisions with less uncertainty (H2c), resulting in improved

control over the pouring process and minimizing the occur-
rence of spills.
H3: Users will have more successful pours involving wider-
rimmed containers compared to narrow-rimmed containers
for all three visual conditions.

We gathered a combination of objective and subjective measures
that showed spill prediction remains a challenge even with the
help of visualization tools; however, AR was useful in reducing
spills when setting pouring configurations for various containers
especially when setting the pour angle limit and horizontal position
although participants remained unsure of their decisions. Overall,
participants seemed to objectively perform better with narrow con-
tainers although the difficultly in the type of container is a matter
of speculation. Our AR visualization setup could further extend
to other applications that require robotic systems to manipulate
sensitive substances that are deemed too dangerous for a human to
handle on their own.

2 RELATEDWORK
Prior works related to robotic pouring have focused on developing
algorithms [16, 29, 30, 37], fluid dynamics calculations [22], teach-
ing from demonstration [25, 44, 52], and reinforcement learning
[48] approaches to achieve successful pours. Although these recent
works have shown promising solutions, these robotic systems re-
quire expertise to operate autonomously. Non-expert users relying
on a robotic assistive device may not feel comfortable having the
robot manipulating fluids unless they can supervise the process
and intervene in the event the robot miscalculates a pour. In our
work, we want to develop a visualization tool to enable users to
make adjustments to a robots pouring behavior to enhance their
confidence towards the robot making more successful pours rather
than risk the robot miscalculating a pour, resulting in a spill.

Research groups have also worked to build the robot’s own inter-
nal model of intuitive physics through observations of a dynamic
environment [1, 35, 51] similar to how people developed this capa-
bility at an early age [23]. Studies have utilized game engines to
gain insights into the core intuitive physics [49]. In our study, we
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explored how users can leverage their own internal visual intuitive
physics engine to determine the ideal location and rotation speed
to make a robot perform a pour action with the least amount of
spillage.

Explainable robotics is an emerging field that aims to enable
robotic systems to effectively communicate their actions, decisions,
and perceptions of their environment to people which otherwise
becomes a “black box” [45]. AR technology renders graphical in-
formation over the real-world with various camera devices [4, 20]
and has been widely used in the Human-Robot Interaction commu-
nity [2, 13, 32, 47] in applications developed for educational [7, 15],
training [17], and maintenance/debugging purposes [26, 27, 34].
Specifically, research groups enabled robots to convey motion in-
tent [14, 19, 21, 41, 43, 50], cognitive and sensory data [8–10, 36],
safety information [18, 33], and affordances [39]. Relevant works
have integrated robotic systems with digital twin (DT) technologies
[53] to enable users within the manufacturing settings to moni-
tor, plan, and control robots [6, 42, 43]. Work by Arboleda et al.
focused on improving task performance of human-robot collabo-
rative pick-and-place tasks by improving a participant’s distance
perception with AR [3]. Here, participants controlled a robotic arm
manipulator to grasp solid objects by pressing buttons that moved
the robot’s end-effector and gripper orientation. Similar to their
study, our participants controlled a robot to reposition the robot’s
end-effector to an ideal location near the target container prior to
a pour action. In our study, we have participants set the robot’s
pour speed which cannot physically play out because such feedback
will force a pour. We want to determine if participants make use
of the AR visual feedback when they adjust the robot’s pouring
parameters to result in a minimal spill. To our knowledge, there is
a lack of work exploring a human’s internal physics engine with
AR, as well as leveraging AR to predict robotic pouring outcomes.

One notable study by Hashimoto et al. [24] introduced an aug-
mented reality device for robot control. In this study, participants
interacted with a touchscreen interface that enables them to con-
trol a mobile-manipulator to complete a pick-and-place task. Using
their developed augmented reality device, TouchMe, participants
individually controlled parts of the robot to accomplish the task of
placing a bottle into a trash bin. The task of transporting a bottle
into a trash bin is relatively simple compared to the complexity
of pouring a fluid to a target container, and their task remained
the same without any changes to the environment. The partici-
pants were also evaluated only on the three scheduling methods
for controlling the robot. In our study, we tasked participants to
first observe the robot to determine the outcome of the robot’s
pour, then manipulate the robot’s pouring behavior to minimize
any chance of a spill.

Another notable work by Stilman et al.[46] developed an aug-
mented reality tool to help resolve any ambiguities that could occur
with any complex robotic system. Because a robot could contain
multiple subsystems that interact within one another, it can more
difficult to determine what part of the robot’s visual, navigational,
or controller pipeline that is problematic in the event of an unde-
sired outcome. By visualizing the robot’s perceived ground truth,
the researchers hope to identify any experimental failures and ad-
dress them prior to any robot actions. The technical demonstration
does not show that a user study was conducted to evaluate the

Figure 3: Visualization of the three conditions in our
study: (Left) No Visuals/Control(CT), (Middle) RViz/2D Dis-
play(RZ) with a model of the environment, (Right) AR from
the prospective of the participant. Screen capture from a
Hololens2. The robot and source container digital twins are
superimposed over the physical robot and container respec-
tively.

effectiveness of their system. In our paper, we intend conduct a
human-participant study to evaluate how visualization tools can
help users identify the problem in a robot’s planned actions and
and essentially reprogram the robot’s action.

3 METHODOLOGY
We conducted a 3 x 10 mixed-design study. Participants were ran-
domly assigned to two out of three visualization conditions where
each participant switched to their second assigned condition halfway
through the experiment. All participants underwent 10 rounds of
different common source containers divided into 2 groups where
the order of conditions were counterbalanced. Participants were
instructed to help a robot pour liquid from one container to an-
other by adjusting the robot’s pouring parameters. Our independent
variable was the method of visualizing the robot’s pouring behavior.

3.1 Procedure
In 10 rounds, all participants completed a two-part task to assist
a 6 degrees of freedom robotic manipulator with pouring water
from various source containers to a target container without caus-
ing a spill. The distance between the source and target container
along with the rotational angular limit and rotational velocity all
determine whether or not a spill will occur. Prior to the study, the
research coordinator curated a set of 10 pouring configurations that
result in either a confirmed spill or a successful pour. Here, a spill
occurs when water falls outside of the target container. The process
of determining these configurations involved a rigorous series of
trial-and-error iterations. Initially, for each container, we metic-
ulously explored a configuration space until identifying one that
consistently led to a successful pour without spillage. Subsequently,
we systematically varied parameters, documenting outcomes to dis-
cern their influence on spillage occurrence. To ensure robustness,
we meticulously replicated these configurations, verifying their
consistency in both success and failure scenarios. Participants were
notified that all containers possessed a pour configuration resulting
in no spills. Moreover, certain container’s pouring configurations
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were intentionally manipulated to induce spillage, prompting par-
ticipants to adjust specific parameters for spill avoidance.

The pouring action by the robot involved only a single joint
rotation of the robot’s wrist with the source container grasped by
the robotic gripper. The pour action is constrained by the angular
limit and rotational velocity. The angular limit is how far the robot
will rotate its wrist, and the rotational velocity is how fast the robot
will rotate its wrist. The position of the robotic gripper is also con-
strained along the x-z plane and could onlymove either horizontally
or vertically. Translation along either axis occurs in discrete 1.5 cm
lengths. For each round, the research coordinator placed a source
container with water in the robot’s gripper at marked heights and
set the pouring parameters for the robot before the pour action.
The target container remained in the same location throughout the
study. The amount of water in each container was approximately
half the container.

The first part of the task involved prediction of the robotic pour
outcome given the source container and assigned pouring param-
eters, and the second part involved adjusting the robotic pouring
parameters to achieve a pour without causing a spill.

3.1.1 Prediction. Participants first observed the scene with the
robot and containers along with the current pouring parameters
on a screen interface (Fig. 4) and visual condition assigned. We
expected participants to consider several factors to make their deci-
sion on whether the robot will cause a spill during its pour action.
These factors can include their intuition on the fluid dynamics of
water along with the geometry of the source container, the hor-
izontal and vertical distance between the containers, rotational
velocity, and pour angle limit. No pour action is carried out in the
first part of the task. The participant’s prediction was recorded and
compared against the ground truth which was determined for each
configuration prior to the experiment by performing the pouring
action without participants in the room. All Participants had access
to a desktop monitor next to the table that displays the robot’s
current pouring parameters along with their assigned visualization
tools. Participants complete part one of the task after reporting
what portion of the ten configurations were spills or no spills along
with their confidence rating.

3.1.2 Parameter Adjustment. In the second part of the task, par-
ticipants had the opportunity to make adjustments to the robot’s
pouring behavior to achieve a pour without causing a spill; however,
participants could only make 1 parameter change before executing
the pouring action. To clarify, if the participant changed the rota-
tional velocity that was initially Slow to Fast but later wanted to
change the Pour angle limit instead, then the rotational velocity
parameter returned to the original configuration of Slow. The pour
action is then executed after the participant is satisfied with their
change. The research coordinator then measured the amount of
fluid transferred with a digital scale while the participant answered
questions regarding their experience in their recent round.

For this study, five of the pouring configurations results in a
confirmed spill unless one of the four parameters is changed to
a specific value. For example, a container’s rotational velocity is
initially set to “fast” which purposely resulted in a spill. To avoid
the spill, the participants could change the velocity setting to “slow”.
Changing any other parameter will still result in a spill but could

Figure 4: Screenshot of the control panel used to adjust the
parameters of the robot’s pouring behavior .

vary in the amount of fluid transfer. Once the participants were
content with their changes, the research coordinator executes the
robot’s pour action and records the outcome. Participants then
answered questions regarding that container. The source container
then cycles between other common containers (See 3.3.4 for more
details).

3.2 Pouring Parameters
• Rotation Velocity - refers to the percentage of the robot’s
maximum rotational velocity of the robot’s wrist. Partici-
pants can control the speed by selecting the speed setting
(slow, medium, fast)

• Rotation Angle Limit - refers to the limit on how far the
wrist can rotate. Users can set the angle rotation by clicking
one of the 4 options (90, 120, 150, 180)

• Horizontal Position - refers to the robot’s end effector
horizontal position. By clicking either the increase or de-
crease buttons, the robot moves along the horizontal axis
approximately 1.5 cm respectively.

• Vertical Position - similar to the Horizontal Position pa-
rameter but along the vertical axis.

Figure 5: The 10 source containers used in this study.

3.3 Conditions
The following conditions were assigned to participants.

3.3.1 No Visuals (Controls). In this condition, participants had
no visualization device (AR or Rviz). Participants could only rely on
what they can see of the robot and the current pouring parameters.
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Participants could not visualize the future planned trajectory of the
pouring behavior. The No Visuals condition evaluates H1.

3.3.2 RViz (2D Screen). In this condition, participants were pro-
vided a standard monitor screen that runs RViz [28], a commonly
used visualization tool in the robotics community. The virtual en-
vironment closely resembles the physical environment containing
a digital twin of the table, robotic manipulator, and the two con-
tainers (Fig. 3 (E)). No fluid is simulated within the cup. Users can
watch the simulated planned trajectory of the pouring behavior at
any viewpoint by manipulating the camera view in RViz.

3.3.3 Augmented Reality (AR). In this condition, participants
used an AR device (Hololens2) to visualize the digital twin of the
robotic arm and source container simulating the pouring behavior
for the set pouring parameters. The visualizations in this condi-
tion mirror the robotic arm and source container visualized in the
RViz condition. As users adjust these parameters, the visualizations
update to show the new expected pouring behavior. No fluid is simu-
lated within the cup and no additional virtual objects were rendered.
Simulating fluid dynamics in our AR devices is not fully supported
yet and is rather difficult to ensure the same fluid simulations from
RViz matches the behavior in the AR device.

3.3.4 Source Containers. Ten source containers were chosen as
common containers that people interact with in their daily lives
that was distributed equally for rim size (i.e., wide rim, narrow rim)
(Fig. 5). For this study, the research coordinator arbitrarily selected
half of the containers to require one of the four pouring parameter
changes. In the final selection, container (B) required changing
the speed, container (E) required an angle limit change, container
(F) required changing the Horizontal Position, and containers (H
and J) required changing the Vertical position, with J seen as an
obvious decision due to the proximity to the source container. The
containers A, C, D, G, and I did not require any changes; note that
a few containers result in a pour without spill even if the vertical
parameter is adjusted. All containers had markings made by the
researcher to indicate the where to place each container within the
robotic gripper to ensure consistency with each pour.

3.4 Participants
We recruited a total of 24 participants (11 males, 13 females). Par-
ticipants’ age ranged from 19-41 with an average of 25 (SD = 5).
The study took approximately 60 minutes for each participant to
complete and consisted of 5 phases: 1) Introduction, 2) Calibra-
tion, 3) Demonstration, 4) Task, and 5) Post Survey. This study was
approved by the university’s IRB (STUDY00004011).

In the introduction, participants, through appointment with the
lab coordinator, arrived at the study space and were given a consent
form which they read and signed. Participants then reported on a
five-point scale [0-4] pre-questionnaire their familiarity and usage
with robots (M = 2.3, SD = 1.57) and augmented reality (M = 0.54,
SD = 0.83). The lab coordinator then gave a brief explanation on the
objective of study and the devices they were going to use. Partici-
pants who were selected to use the AR device were fitted with the
Hololens2 and completed the onboard eye calibration process. In
the demonstration phase, participants were shown both successful
and unsuccessfully pour actions through a video and how each

parameter affects the robot’s pouring behavior. For those with the
visualization condition, participants could see the corresponding
parameter changes in RViz and/or AR device. Participants then
moved on to the main task phase, described in detail in Section 3.1.
Finally, a post survey was issued that gauged their preferences in
a Likert Scale of 10 items in a seven option response format and
open-ended responses.

3.5 Measures & Analysis
We gathered a combination of objective and subjective measures to
evaluate our hypotheses. In the Prediction portion of the study we
collected:

Task success rate in spill prediction - This measure is
defined as the number of correct predictions divided by the
total number of predictions.
Confidence Ratings - This measure is a seven-option re-
sponse format to “How confident are you in your answer?”

In the Parameter Adjustment portion of the study we collected:
Percent average of fluid transfer - This measure is defined
as the amount of fluid within the target container divided
by the initial amount of fluid within the source container.
Parameter Selection Success Rate - This measure is de-
fined as the number of correct parameter selections over the
total number of parameter selections. It is important to note
again that containers A, C, D, G, and I do not require any
parameter changes. There is a situation that we have noted
where if a participant were to change the Vertical parameter
for these containers, then the pour outcomemay not result in
a spill. In this scenario, we would still mark their Parameter
selection as incorrect.
Confidence ratings - This measure is a seven-option re-
sponse format to the following: “It was difficult to pick which
parameter to adjust to prevent a spill.”.
Open-ended Responses - This measure is an open-ended
response to the following: “If a spill did occur, what would
you have done differently?” and “How did you select which
parameter to change?”.

The post-survey included a Likert Scale with 10 Likert items with
seven option response format (Cronbach’s Alpha, 𝛼 = 0.95) that
gauged preference between the participant’s two visual conditions.
Items included the following where Condition 1 and 2 are place-
holders for their assigned conditions:

• (Condition 2) is easier to learn and use than (Condition 1).
• I find (Condition 2)’s interface more user-friendly compared
to (Condition 1).

• (Condition 2) helped me complete my task more efficiently
than (Condition 1).

Three open-ended responses aimed to gather additional information
to describe their experience with the visual condition and source
containers:

• “What were some signs that led you to believe that the robot
was going to cause a spill or not?”

• “What other types of information about the robot or contain-
ers not provided to you in this study that could’ve helped
you determine the outcome of the pour?”
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• “Overall, what type of containers did you believe were the
easiest to predict? Hardest to predict?”

We analyzed data using a one-way Analysis of Variance (ANOVA)
with experimental condition of Visualization as the fixed effect.
Standard Post-hoc tests, including Tukey’s Correction test, com-
pared the effectiveness across each visual condition. P-values were
adjusted using the Bonferroni Correction.

3.6 Hardware & Software
We used a 6-DoF Kinova Gen3 Lite robot with a 2-finger gripper con-
trolled with Robot Operating System (ROS) [40] andMoveIt [11] run-
ning on Ubuntu 18.04. Python and C++ scripts filtered the robotic
data before delivery to the AR device and RViz [28] for visualiza-
tion. Augmented visuals were developed with Unity 2020.3.44f11

and deployed onto a Hololens2 which rendered the data over the
physical environment. Vuforia2 tracked the robot’s position and ori-
entation through a cylindrical target-image fixed to the robot (see
Figure 1). A digital-twin of the robot provided by Kinova3 is placed
with the target-image to match the real robot setup with C# scripts
that control data exchange between the robot and AR device that
occurred over a shared Wi-fi network using ROS-TCP-Connector4.
Scaled digital twins of the source containers were created in model-
ing software and imported to both Unity and RViz. The experiment
took place in an isolated lab space that included a robotic manipu-
lator and a target container fixed to a standard table. The amount
of water filled in each source container was approximately half
the container. A desktop computer connected to the robot was
stationed next to the table with a tablet displaying the UI panel
to control the robot pouring behavior (see Figure 4) along with a
separate window to record participants’ questionnaire responses.

4 RESULTS
We analyzed the accuracy of Spill Prediction, i.e., the extent to which
the participant was able to to correctly determine whether or not
the robot will cause a spill given the set pouring parameters. No
Visuals had an average score of 51.3% (SD = 26.3), RViz had an
average score of 52.5% (SD = 17.7), and AR had an average score
of 53.8% (SD = 22.8). We found no significant main effect F(2, 45) =
0.05, p = 0.95 rejecting H1.

We evaluated participant’s confidence in the Prediction portion
of the study. No Visuals had an average rating of 5.14 (SD = 0.64),
RViz had an average rating of 5.09 (SD = 0.72), and AR had an
average rating of 5.01 (SD = 0.67). We found no significant findings
as well F(2, 45) = 0.14, p = 0.87. All source containers averaged
along “Somewhat Agree” in response to the difficulty rating, “It
was difficult to pick which parameter to adjust to prevent a spill.”

As for the success rate of Parameter Selection in which the par-
ticipant makes the correct parameter selection, No Visuals had an
average score of 26.3% (SD = 15.9), RViz had an average score of
32.5% (SD = 16.1), and AR had an average score of 41.3% (SD = 23.6).
We found a marginal main effect F(2, 45) = 2.55, p = 0.09 not fully

1https://unity.com/
2https://developer.vuforia.com/
3https://github.com/Kinovarobotics/ros_kortex
4https://github.com/Unity-Technologies/ROS-TCP-Connector

supportingH2a. Confidence ratings for parameter changes showed
no main effect F(2, 45) = 0.93, p = 0.40 not supporting H2c.

Finally, we analyzed the parameter section by container type
Narrow (N) vs. Wide(W). No Visuals had an average score of 27.5%
(SD = 29.8) and 25.0% (SD = 29.3) , RViz had an average score of
32.5% (SD = 25.9) and 32.5% (SD = 19.0), and AR had an average score
of 50.0 (SD = 31.9) and 32.5 (SD = 11.2) for N and W respectively.
We found no significant main effect F(2, 24) = 0.34, p = 0.71 rejecting
H3. Figure 7 shows the average score on Parameter Selection by
visual condition and container type (Narrow vs. Wide).

Figure 6 shows the average percent of fluid that was transferred
to the target container. No Visuals had an average score of 78.6%
(SD = 7.27), RViz had an average score of 79.5% (SD = 8.97), and
AR had an average score of 86.5% (SD = 11.3). Overall performance
revealed a significant main effect by visual condition, F(2, 45) = 3.46,
p < 0.04 with an Effect size = 0.09 suggesting that the visualization
condition accounts for a moderate proportion of the variance in
fluid transfer. Comparing conditions of No Visuals and RViz to AR
with Dunnetts’s multiple comparison test, we found a decrease in
performance with No Visuals(CT) (𝑝 = 0.04) supporting H2b.

If we look into individual containers that required specific pa-
rameter changes, we find significant effects for containers D, E, and
F. Container D, which required no changes with the water bottle
showed No Visuals had an average transfer of 93.5% (SD = 10.9),
RViz had an average transfer of 66.3% (SD = 35.6), and AR had an
average transfer of 96.7% (SD = 1.66). AR enabled users to see that
the pouring parameters were adequate for a successful pour F(2,
21) = 4.82, p = 0.02. Post-hoc comparisons revealed that AR signif-
icantly improved perceptions of the pouring behavior over RViz
(𝑝 = 0.02). Container E, which required an angle limit change with
the sports bottle for a successful pour showed No Visuals had an
average transfer of 31.4% (SD = 28.0), RViz had an average transfer
of 72.2% (SD = 37.0), and AR had an average transfer of 73.4% (SD =
35.3) and a main effect F(2, 21) = 4.03, p = 0.03. Post-hoc comparisons
using Tukey’s Honestly Significant Difference (HSD) revealed that
both AR and RViz marginally (0.10 > 𝑝 > 0.05) improved percep-
tions for angular change in pouring outcomes (𝑝 = 0.05, 𝑝 = 0.06)
respectively. Container F, which required a horizontal change with
the tumbler for a successful pour showed No Visuals had an average
transfer of 43.8% (SD = 23.9), RViz had an average score of 35.9% (SD
= 10.1), and AR had an average score of 67.3% (SD = 24.9) and a main
effect, F(2, 21) = 4.95, p = 0.02. Post-hoc comparisons using Tukey’s
HSD revealed that users had a greater perception for horizontal
positioning compared to RViz (𝑝 = 0.01) and a marginal main effect
compared to No Visuals (𝑝 = 0.83).

We also ran a Sample Size calculation with a target Power = 0.8, a
significance level 𝛼 = 0.05, and the effect size 𝛿 = 0.13 to determine
the number of participants we needed to run was approximately
68, which is well above the total number we recruited.

5 DISCUSSION
There could be a number of reasonswhywe did not find a significant
effect for H1. Participants on average were not highly experienced
with AR or robotics as reported with the pre-questionnaire men-
tioned in Section 3.4. Because this study may be a participant’s
first experience with augmented reality and RViz, they may not

https://unity.com/
https://developer.vuforia.com/
https://github.com/Kinovarobotics/ros_kortex
https://github.com/Unity-Technologies/ROS-TCP-Connector
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Figure 6: Average percentage fluid transfers by visual condition. T-bars indicate standard error.

be confident in using either device right away. The reported con-
fidence in spill prediction averaged along “Somewhat Confident”,
so it is worth testing to compare inexperienced with experienced
users to see if experienced users make better spill predictions. Ad-
ditionally, the pouring configurations and various containers used
in our study could be too challenging for users to work with as
observed in the Parameter Selection Difficulty rating. Participants
have mentioned both wide and narrow containers as difficult con-
tainers to predict their outcomes. For example, one user reported
the following when asked about the difficulty of the task associated
with specific containers:

[P:6 (RZ/AR)] “Easier: mugs with wider openings
Harder: taller bottles with lids”
[P:7 (RZ/AR)] “Easiest: Tall, narrow containers (open-
ings and water trajectory were easiest to see when ani-
mated). Hardest: Short, wide containers.”

These opposing views in participants’ belief to which containers
make the task easier or more difficult could explain why we did not
find a significant difference for H2c.

Although participants were not accurate in selecting the correct
pouring parameters to achieve a successful pour for (H2a), visuals
may have helped participants position the robot to minimize the
distance between the two containers ultimately allowing the bulk

Figure 7: Average score in Parameter Selection by condition
(Left) and by container type (right) where N and W corre-
spond to Narrow and Wide respectively.

of the water to transfer to the target container H2b. We noted that
most adjustments users made consisted of changing the horizontal
or vertical position of the end effector.

[P:17 (AR/CT)] “For the non-ar case I based my deci-
sions mostly off of intuition. The AR did a good job of
showing how the two containers would align, using this
I adjusted the robot until the two containers aligned in
a way that intuition dictated would not spill.”
[P:24 (CT/RZ)] “The signs that I looked for were, 1) is
the container positionally too close to the cup, or 2) will
the pour-angle work for to pour all the liquid.”

Some participants mentioned relying on personal experience to
make their decisions.

[P:12 (RZ/CT)] “The ones [containers] I use everyday
like the water bottle that you get at the supermarket
and the paper and solo like cup and the mug and soda
can and bottle. I don’t really use a sport water bottle or
a tumbler so I am not used to how they pour.”
[P:22 (CT/RZ)] “RViz helpedmementally visualize the
action and personal experience regarding the container
attributes.”

A possible reason for the poor performance in the RViz condition
is relative scaling of the objects within the virtual environment. Few
participants suggested that the visuals in both AR and RViz(RZ)
may be slightly misaligned:

[P:4 (RZ/CT)] “No Visuals [Control] was easier for me
to understand because I felt that RViz offered somewhat
conflicting views between the simulation to the real
robot...”.
[P:20 (CT/RZ)] “No visuals [Control] allowed me to
rely onmy intuitions when predicting a spill. In contrast,
RViz seemed a bit confusing and caused me to contradict
myself.”

Such misalignment could explain why differences were found for
container D that did not require any changes to result in a pour
without spill. However, we noticed that participants seemed to rely
solely on the visuals when assigned either the AR and RViz condi-
tion. We observed a few participants of the No Visuals condition
using their hands as a makeshift ruler to determine if the lip of the
source container will reach the target container by rotating their
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wrists with a finger fixed at the center of the rotation point on the
gripper. Although we did not expect this strategy, we allowed par-
ticipants to continue and use any other strategies that they could
use to make a better decision as long as they did not physically
touch the robot or container.

[P:21 (CT/AR)] “The trajectory in AR was really help-
ful, which I could only imaging or measure by hands
with No Visual.”

This strategy of using fixed lengths to gauge distance could explain
the greater performance by the No Visual condition compared to
RViz. We also noticed that participants seemed to rely mostly on
the visuals when assigned to the AR and RViz condition. Although
they have the opportunity to view the scene, we did not record any
eye tracking data to gain insights to determine where and for how
long their focus was when making their decisions.

Participants highlight advantages of AR over the 2D display(RZ)
and No Visuals conditions which contribute to the overall perfor-
mance in fluid transfer:

[P:17 (AR/CT)] “AR was very useful to show where
the container would end up at the end of its cycle.”
[P:7 (RZ/AR)] “It was useful seeing the animation
directly overlaid with the object in real life, which helped
me make more accurate predictions.”
[P:10 (CT/AR)] “Actually visualizing it was super
useful, and I found myself doing that mentally for no
visuals”

Although the Hololens2 has shown its usefulness in mental align-
ment as an AR device, participants have pointed out disadvantages
which could have contributed to low subjective ratings.

[P:11 (AR/RZ)]“Rviz does not need calibration so it is
much easier and also it is more user friendly to people
wearing glasses”
[P:10 (CT/AR)] “The headset felt clunky, and the depth
perception made me feel a little off. No visuals felt more
free”
[P:2 (AR/CT)] “The headset is kinda uncomfortable”

Participants assigned to both RViz(RZ) andNo Visuals(CT) condi-
tions stated the usefulness of having visuals demonstrating the
pouring behavior.

[P:1 (RZ/CT)] “I like how I can see what the animation
will look like before running it.”
[P:3 (RZ/CT)] “In No Visuals, I could imagine the
motion of the container but it was harder to visualize
how that motion would occur in relation to the cup. RViz
made this much easier.”
[P:22 (CT/RZ)] “I like that RViz loops through the
speed of which the robot is rotating”

However, a few participants stated why No Visuals was more bene-
ficial for them other than the alignment issue mentioned earlier.

[P:21 (CT/AR)] “No setup, no calibration, easier”
[P:5 (CT/RZ)] “no visuals is straightforward and doesn’t
require looking in two places”

5.1 Limitations & Future Work
Although we demonstrated a potential application of AR and 2D
screens (RViz) for robotic pouring, there were some limitations.
The target container was fixed relative to the robot arm along with
its digital twin within RViz for simplicity. Ideally the robot should
perceive both the source and target cup to account for any mis-
alignment so that RViz displays a more accurate representation
of the pouring scene. We can only say that the virtual scene cre-
ated in RViz was matched to the real world as close as possible.
This drawback highlights the advantage of AR by only needing to
render the source container instead of the entire virtual environ-
ment. Another limitation for our study is implementing a partial
within study design where participants were assigned to two out of
three visual conditions. A full within participant study where each
participant would see all visual conditions and source containers
using balanced Latin squares to account for ordering-effects would
have been infeasible due to the number of required participants;
therefore, we decided to compensate with the partial within study
design. We focused on controlling the visual conditions rather than
the type of source containers and sacrificed order-effects among
the source containers.

While participants in this study did not engage in direct in-
teraction with the robot, we showcase how AR holds promise in
enhancing users’ predictive abilities regarding pouring outcomes.
Future research could also delve into user engagement with the
robot, directing fluid manipulation under defined pouring condi-
tions while observing parameter alterations through AR. Another
direction includes a similar study with simulating fluids as new
visualizations techniques to convey the robot’s pouring intent [38].
Sixty percent of participants claimed to have wanted a form of fluid
simulator and water level indicator as additional useful information.

Our results showed that participants had greater performance
when adjusting the angular limit and horizontal positioning; how-
ever, it is not clear if the geometry of the container played a role.
It would be worth testing pouring behaviors with other container
shapes such as rectangular containers [29].

6 CONCLUSIONS
In this work, we explored how visualizing a robot’s planned actions
could improve a person’s prediction on the outcome of that action
in the context of pouring behaviors. We used pouring as a task
that is intuitive for people but challenging for robots. In a two-part
task, participants first predict the outcome of a pouring behavior
from various source containers and then adjust the robot’s pouring
parameters to reduce spillage. We found that visualizing the ro-
bot’s future planned pouring trajectory in augmented reality (AR)
significantly improved a participant’s ability to reduce spills. Pour
angle limit and horizontal positioning were two key parameters
that participants were able to discern as faults and correct to avoid
a spill event. However, spill prediction remained a challenge for
all participants. Visualizing the planned pouring trajectory with
fluid simulators in future work may improve user prediction of
pouring outcomes for assistive robotics. We hope this study will
inspire and inform future research about how different modes of
visualization can improve the abilities of robots to interact with
liquids in assistive robotics settings.
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