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Abstract

Conventional notions of generalization often fail to describe the ability of learned
models to capture meaningful information from dynamical data. A neural network
that learns complex dynamics with a small test error may still fail to reproduce
its physical behavior, including associated statistical moments and Lyapunov ex-
ponents. To address this gap, we propose an ergodic theoretic approach to gener-
alization of complex dynamical models learned from time series data. Our main
contribution is to define and analyze generalization of a broad suite of neural repre-
sentations of classes of ergodic systems, including chaotic systems, in a way that
captures emulating underlying invariant, physical measures. Our results provide
theoretical justification for why regression methods for generators of dynamical
systems (Neural ODEs) fail to generalize, and why their statistical accuracy im-
proves upon adding Jacobian information during training. We verify our results
on a number of ergodic chaotic systems and neural network parameterizations,
including MLPs, ResNets, Fourier Neural layers, and RNNs.

1 Introduction

Learning a dynamical system from time series data is a pervasive challenge across scientific domains.
Such data come from expensive experiments and high-fidelity numerical models that simulate the
underlying nonlinear, often chaotic, processes. The learning challenge is to train on available
data to produce output models that i) provably preserve known symmetries and invariances (e.g.,
conservation principles); and ii) are inexpensive surrogates for use in downstream computations
such as optimization and uncertainty quantification. The field of physics-guided machine learning
[vdGSB+20, FO22, LK22, KKLL21, RPK19, KKL+21] has emerged in response, rapidly integrating
neural networks into data-driven modeling and prediction workflows for a wide variety of complex
dynamics, from geophysical fluid flows to phase transitions in materials (see [KMA+21, CCC+19]
for surveys). Yet rigorous generalization analyses of neural parameterizations in these applications,
wherein the underlying dynamics can exhibit chaotic behavior, have been underexplored.
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Figure 1: A random orbit on the x-z plane obtained from RK4 integration of the Lorenz vector field
([Lor63] (first column), Neural ODE, ‘MSE_MLP’, trained with mean-squared loss (second column)
and Neural ODE, ‘JAC_MLP’, trained with Jacobian loss (third column). The last column shows the
empirical PDF of the orbit generated by the true (gray), ‘MSE_MLP’ (red) and ‘JAC_MLP’ (blue)
models. Experimental settings and additional results are in Appendices B and C respectively. Gist: A
model trained well with MSE can produce atypical orbits but when Jacobian information is added to
the training, it reproduces the long-term/statistical behavior accurately.

Here we investigate data-driven neural parameterizations of chaotic ODEs/PDEs and maps (discrete-
time dynamical systems) motivated by the following observation: a neural representation that is
learned well, i.e., with a small generalization error, can still produce unphysical long-term or ensemble
behavior. Figure 1 (left) shows the classical Lorenz ’63 chaotic attractor [Lor63] plotted using a long
random trajectory/orbit (time integration of the Lorenz equation vector field starting from a random
initial condition, which is indicated by a ‘+’ sign). The second column shows an orbit from a neural
network model, ‘MSE_MLP’, which minimizes the mean-squared error in the represented vector
field at 10,000 training points and shows high accuracy (< 5% average relative error) over 8000 test
points on the attractor. Surprisingly, Figure 1(column 2) shows that the learned ‘MSE_MLP’ Neural
ODE [CRBD18] model produces an atypical orbit – an orbit different from almost every orbit of
the true system – for the same randomly chosen initial condition. As a result, the learned empirical
distribution is not close to the physical distribution – that of almost every true orbit, as shown in
Figure 1 (column 4). On the other hand, the ‘JAC_MLP’ model, which is obtained by minimizing the
mean-squared error in the vector field and its first derivative (Jacobian matrix), reproduces the Lorenz
’63 attractor and the physical distribution on the attractor (Figure 1, column 4). The ‘JAC_MLP’ also
captures all the Lyapunov exponents (LEs) – measures of asymptotic stability to perturbations, which
are invariants in ergodic systems – accurately, while the ‘MSE_MLP’ only obtains the leading LE
accurately.

Naturally, we ask about the wider applicability of these observations. For any ground truth dynamical
system, how can we quantify the probability of success, including obtaining sample complexity results,
of learning its physical or typical behavior? That is, how do we redefine and extend generalization
analyses to neural representations of complex dynamical systems? To answer these questions, we
start with a deceivingly simple supervised learning setup: given m samples from a time series,
{(xt, xt+1)}t, 0 ≤ t ≤ (m− 1), how can we learn a model, Fnn, such that, i) xt+1 ≈ Fnn(xt), for
all time t, and ii) the underlying distribution of the states xt and other dynamical invariants such
as Lyapunov exponents are reproduced by orbits of Fnn? It is widely accepted that learning such
an Fnn involves matching orbits of Fnn with xt over large t during training. However, small errors
propagate over orbits, by definition, in a chaotic system, leading to training instabilities. In response,
a vast literature has been dedicated to developing sophisticated training models based on RNNs
[PLH+17, PWF+18, RM21], operator learning [LLSK+22] and regularizations [LG22, FJNO20].

We focus instead on the empirical risk minimization (ERM) for Fnn that does not explicitly use the
temporal correlations/dynamical structure in the data, avoiding training instabilities. Thus, we attempt
to characterize when an elementary regression problem Fnn can still lead to learning a physical
representation, leading to a practical theory of learning chaotic systems from data. Our specific
contributions are as follows:

• Motivated by extensive empirical results, we develop useful notions of generalization that
characterize a model’s ability to reproduce dynamical invariants.

• We develop new dynamics-aware generalization bounds for minimization of errors in the
Cr, r = 0, 1, topology.

• We leverage shadowing theory from dynamical systems to rigorously characterize failure
modes in learning statistically accurate models.
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2 Generalization of parameterized ergodic dynamics

In this section, we motivate, through illustrative examples, the need for a dynamics-aware definition
of generalization in the context of learning from time series data. We introduce concepts from
dynamical systems as needed for a self-contained presentation.

Dynamics.: A map, or a discrete-time dynamical system, F, is a function on a closed and bounded
(compact) set, M ⊂ Rd, which is called the state/phase space of the dynamics. We exclude scenarios
where the dynamics can be unbounded, and focus on settings where F ∈ C1(M) is a differentiable
function on M. We denote by F t, t ∈ Z+, the iterates of the dynamics, or the compositions of F
with itself t times, i.e., F t = F ◦ F t−1. An orbit or trajectory of F t starting at an initial state x ∈ M
is the sequence {F t(x)}t∈Z+ . In practice, F may be a numerical ODE solver that approximates
the continuous-time solutions, φt, t ∈ R+, of the ODE (written in dynamical systems notation2

): dφt(x)/dt = v(φt(x)), where v : M → TM is the true vector field describing the governing
equations. Fixing some τ ∈ R+, F := φτ . We say a map F is chaotic if there exists a subbundle
of TM , called the unstable subbundle, where infinitesimal perturbations grow exponentially under
the linearization (Jacobian map), dF t, of the dynamics. The true map F generates a deterministic,
autonomous system (see Appendix A).

Physical measures. A probability measure µ : M → R+ is a physical measure [You02] for
the dynamics F if it is a) F -invariant, b) ergodic and c) observable through F . A measure µ is
observable if time-averages along any orbit starting from a randomly chosen initial point converge to
constants that are expectations (phase space average) with respect to µ. That is, for any f ∈ C(M),

(1/T )
∑

t≤T f(F t(x))
T→∞−−−−→ Ef(x), for any initial point x chosen Lebesgue a.e. on a set U ⊆ M.

The orbits starting almost everywhere on the basin of attraction, U, asymptotically enter a set, Λ,
called the attractor. In dissipative chaotic systems, the attractor, Λ, which is the compact support
of the physical measure µ, has Lebesgue measure 0. Consequently, µ may not have a probability
density, that is, µ is not absolutely continuous, or is singular, with respect to Lebesgue measure.

Neural ODE. Introduced in [CRBD18], a Neural ODE, denoted here by, vθ : M → Rd, with
parameters, θ, is a vector field represented by a neural network. The vector field can be time
integrated to obtain solutions φt

θ : Rd → Rd, t ∈ R+ to the ODE, dφt
θ(x)/dt = vθ(φ

t
θ(x)). As

noted in the introduction, suppose we have n distinct pairs S = {(xi, F (xi))}i∈[n], which could
come from a single orbit of F, as our training data. We train the Neural ODE by solving an ERM for
the loss, ℓ, that can be chosen to be a square loss, e.g., ℓ(x, φτ

θ ) = ∥φτ
θ (x) − F (x)∥2. That is, we

solve for θ that minimizes the training loss, (1/n)
∑

x∈S ℓ(x, θ). Note that the true ODE or vector
field is not explicitly used in training, only the solution map at some time intervals, F. We refer to the
map, x → φτ (x), as Fnn, or neural representation of the target map, F.

Data and optimization. Suppose we use an m-length orbit as our training data, i.e., xi+1 = F (xi),
then, the data are not, strictly speaking, independent. However, a feature of chaotic systems is an
exponential decay of correlations, and so training data of the form, {(xi, F

ω(xi))} starting from an
initial condition x0 ∼ µ, can be thought of as iid, for a large enough ω ∈ N. In that case, the learned
map Fnn represents the function Fω. During optimization, infinitesimal linear perturbations, will
have to be evolved for time ω. Since adjoint solutions blow up exponentially, a longer ω will lead
to training instabilities. To avoid numerical difficulties in training and focus on issues surrounding
generalization, we choose τ := δt, a small time step, to define the target map F and learn a neural
network representation of this function. When viewed this way, the generalization of Neural ODEs
can be analyzed through the conventional lens of supervised learning with the loss,

ℓ(x, Fnn) = ∥Fnn(x)− F (x)∥2, (1)

where Fnn := φδt is a neural network representing the map. For a map h : M → M, we define the
training and generalization errors in the usual way:

R̂S(h) = (1/m)

m∑
i=1

ℓ(xi, h), R(h) = Eℓ(x, h), (2)

2We use this notation rather than the customary dx(t)/dt = v(x(t)), x(0) = x0, since in dynamical systems,
we are interested in all possible orbits, as opposed to a particular orbit/path, for which defining the flow, φt, is
necessary.
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Figure 2: Learned and true LEs computed over 30,000 time steps using the QR algorithm of Ginelli
et al [GCLP13] starting from 10,000 random initial states. The “MSE” and “JAC” labels indicate
computations using the Neural ODE models trained with the loss functions in (1) and (3) respectively.

where the expectation is over the data distribution, which may be µ or any initial probability distribu-
tion of the states.

Example. To illustrate our conceptual findings surrounding generalization, we use the canonical
Lorenz ’63 system, which is a 3-variable reduced order model of atmospheric convection [Lor63].
The ODE can be written as dφt(x)/dt = v(φt(x)), where the vector field v is given by v(x) =
[σ(y − x), x(ρ− z)− y, xy − βz]⊤, and x = [x, y, z]⊤ are the coordinate functions of the state x.
We use the standard values of the parameters σ = 10, ρ = 28, β = 8/3, at which the solutions are
chaotic. We use the Runge-Kutta 4-stage time integrator with a time step size of 0.01 to define the
map F. That is, F (x) is the solution φ0.01(x) approximated by an RK4 time-integrator. Our Neural
ODE map, Fnn, is learned to approximate F by solving the above optimization with n = 10, 000
training points along an orbit. We illustrate our numerical results on various Neural ODE models and
architectures that have fully connected layers, ResNet blocks with convolutional layers, and Fourier
neural operators [LKA+20]. Many such models learn accurate representations of the true vector field
v, as evidenced by small training and test errors (sample average approximation of the generalization
error in (2) over 8,000 points from the data distribution). These are shown in Figure 3 (Appendix C),
while other hyperparameter and optimization settings are in Appendix B.

Statistical measures and Lyapunov exponents. Our numerical results test the accuracy of models
beyond generalization error as defined in (2). In particular, we compute time-averages using the
Neural ODE models and compare against expectations with respect to µ obtained from the true
equations. For the Lorenz system, we note that time averages obtained from the models with small
generalization errors can be inaccurate. That is, even if the errors in the vector field are small (see
also Figure 4 in Appendix C), the time-averages can match poorly. This is described for the best
performing Neural ODE model in Table 3. The discrepancy in the learned distribution is shown
in terms of Wasserstein distance computed using empirical distributions on long orbits (of length
50,000). We find that the Neural ODE model does not learn the ground truth statistics even if the
training data include transient dynamics off the attractor.

Lyapunov exponents, roughly speaking, measure the asymptotic exponential growth/decay of in-
finitesimal perturbations under the Jacobian map dF. In an ergodic system, they are independent
of the initial state and can be written as an expectation with respect to µ. In this work, Lyapunov
exponents are yet another dynamical invariant (statistical quantity) in ergodic systems that we use to
evaluate the statistical fidelity of learned models. In a chaotic system, there is at least one positive
Lyapunov exponent, and the number of positive Lyapunov exponents is the dimension of the unstable
manifold. The Lorenz system has one positive Lyapunov exponent (LE), one zero LE (corresponding
to a center direction, or the vector field v itself) and one negative LE. The ground truth map F, which
is a time δt approximation of the flow φt has a two-dimensional center-unstable manifold and a
one-dimensional stable manifold.

In Figure 2, we plot the Lyapunov exponents obtained using a classical QR iteration-based algorithm
[GCLP13]. The Neural ODE model, marked ‘MSE’, produces a reasonably close approximation
of the ground truth value (≈ 0.9) for the positive LE but obtains an incorrect approximation of the
stable LE (true value ≈ −14.5). We note also that standard deviations in the LE values computed
over different orbits is quite large, indicating some orbits with atypical behaviors. We show the ℓ2
error in the computed LEs by the Neural ODE model in Table 3, and full details in Table 5.
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Table 1: True vs. learned Lorenz system: comparison of statistics. (W 1: Wasserstein-1 Distance, Λ:
set of LEs, µ̂T : empirical distribution of an orbit T. The subscript NN indicates quantities computed
using NN models trained with different loss functions (MSE (1), JAC (3)).

Norm Difference

Model Loss W 1(µ̂500, µNN,500) ∥Λ− ΛNN∥ ∥⟨x⟩500 − ⟨x⟩500,NN∥
MLP MSE 18.9711 9.6950 15.2220
MLP JAC 0.6800 0.0118 0.6524
ResNet MSE 1.3567 10.8516 0.7760
ResNet JAC 0.1433 0.0106 0.0559
FNO MSE 10.5409 22.1600 9.4270
FNO JAC 1.3076 0.0505 0.9748

Jacobian-matching. We now consider Neural ODE models trained with the following loss function.

ℓλ(x, Fnn) = ∥Fnn(x)− F (x)∥2 + λ∥dFnn(x)− dF (x)∥2, (3)

where Fnn : M → M is a Neural ODE map, dFnn(x) : TxM → TxM its (d× d) Jacobian matrix at
x, and λ > 0 is a hyperparameter that scales the relative importance of the two terms. We train in
the usual way, by solving an ERM problem to minimize the training error, R̂S,λ, which is defined as
before, but with the new Jacobian-matching loss:

R̂S,λ(h) = (1/m)

m∑
i=1

ℓλ(xi, h), Rλ(h) = Eℓλ(x, h). (4)

We train Neural ODE models with similar architectures as above, and find best performing models in
terms of the test error (approximation of the generalization error) in (4). As in the training with the
loss function ℓ, we find several accurate neural representations of the Lorenz map (see training and
test loss plots in Appendix C). Their performance on statistical measures and Lyapunov exponent
predictions is remarkably different, however. In Figure 1, a Neural ODE trained with the Jacobian-
matching loss produces an attractor (column 3) that is visually similar to the Lorenz attractor. The
empirical distributions match closely with the ground truth, as shown in column 5 of Figure 1 and
in Table 3, where the model is marked with a ‘JAC’, while one trained with the loss ℓ in (1) is
indicated with an ‘MSE’. The LEs and statistical averages of the state are all accurately represented,
although the model is not explicitly designed to learn temporal patterns in the data. The MSE models
learn vector fields with comparable accuracy with the Jacobian-matching models. That is, they learn
accurate representations of F with high probability (over the data distribution), but failing to learn
dF accurately leads to statistical inaccuracy. Due to the presence of atypical orbits, the attractor and
the physical measure are not reproduced. Even though our formulation of Neural ODEs is simply
stated as an ERM for regression, the generalization errors R(Fnn) and Rλ(Fnn) cannot determine
whether Fnn is a physical representation of the dynamics.

3 When generalization implies statistical accuracy

In the previous section, we observed that adding information about the Jacobian in the training
process led to statistically-accurate learning. Does this observation apply more broadly to other
ergodic systems? How can one further improve generalization? In this section, we provide answers
to these questions by proving dynamics-aware generalization bounds for Neural ODEs.

Our ultimate goal is to minimize a statistical loss function rather than (1) or (3) since this mea-
sures how accurately a model h can reproduce ergodic averages associated with F. For instance,
ℓstat(x, h) = supf∈Lip1

|E[f(x)]− limT→∞(1/T )
∑

t≤T f(ht(x))|. This is the Wasserstein (W 1)
distance (expressed in its dual form) between the ergodic measure µ and the ergodic measure associ-
ated with the orbit of h, a learned model, starting at x, limT→∞ Unif{x, h(x), h2(x), · · · , hT (x)}.
As noted, ERMs for this loss function do not have a straightforward implementation when the map
h sought is chaotic. Hence, we seek conditions under which solving ERMs defined with losses (1)
and (3) can still minimize ℓstat. To understand when solving regression problems for Fnn lead to
statistically accurate physical representations, we first assume that a notion of “shadowing” applies to
F.

5



Definition 1. We say that the shadowing property applies to a map F if for any δ > 0, there exists an
ϵ = O(δ) so that for any map G with ∥G−F∥1 := supx∈M (∥G(x)−F (x)∥+∥dG(x)−dF (x)∥) ≤
ϵ, there exists a map τ : M → M close to the identity such that ∥Gt(τ(x))− F t(x)∥ ≤ δ for all t.

Intuitively, the shadowing property means that an orbit of a nearby dynamical system can closely
follow a true orbit – called a shadowing orbit – of F for all time. This kind of uniform-in-time
shadowing is a classical result for a mathematically ideal class of chaotic systems, called uniformly
hyperbolic systems (see Katok and Hasselblatt [KKH95] Ch 18; Appendix A). For a textbook
presentation and extension of shadowing for dynamical systems with some hyperbolicity, see [Pil06].
For a uniformly hyperbolic F (see Appendix A), we now assume that a neural representation Fnn of
F trained with n samples generalizes well in terms of C1-distance. That is, an ERM solution for the
loss 3 (‘JAC’ models in sections 1 and 2) generalizes so that Rλ(Fnn) is small.
Definition 2 (C1 generalization). Given δ > 0, there exist E0, E1 > 0 and a function (δ, E0, E1) →
τ(δ, E0, E1) ∈ N such that Ex∼µ∥F (x)−Fnn(x)∥ ≤ E0 and Ex∼µ∥dF (x)− dFnn(x)∥ ≤ E1 for all
m ≥ τ with probability ≥ 1− δ over the randomness of the training data from µm.

We now make an optimistic assumption on a learned model, Fnn, that satisfies the above definition
of C1 generalization. Using Hoeffding’s inequality, we know that for any δ0 > 0, with proba-
bility at least 1 − δ0 over the randomness of x, ∥F (x) − Fnn(x)∥ ≤ E0 + (supx∈M ∥F (x) −
Fnn(x)∥)

√
log(2/δ0) and ∥dF (x)−dFnn(x)∥ ≤ E1+(supx∈M ∥dF (x)−dFnn(x)∥)

√
log(2/δ0).

Given δ > 0, let ϵ0 := 2E0 and ϵ1 := 2E1. Fixing δ0 > 0, suppose that the trained model Fnn is
such that (supx∈M ∥F (x)−Fnn(x)∥) < ϵ0/(2

√
log(2/δ0)) and (supx∈M ∥dF (x)− dFnn(x)∥) ≤

ϵ1/(2
√
log(2/δ0)). Taking a union bound, with probability > 1− (δ + δ0), ∥F (x)− Fnn(x)∥ ≤ ϵ0

and ∥dF (x)− dFnn(x)∥ ≤ ϵ1. We enhance this inequality to obtain a stronger assumption on Fnn.

Assumption 1 (C1 strong generalization). Given δ > 0, there exist ϵ0, ϵ1 > 0 and a function
(ϵ0, ϵ1,m) → n(ϵ0, ϵ1,m) ∈ N such that ∥F (F t

nn(x)) − F t+1
nn (x)∥ ≤ ϵ0 and ∥dF (F t

nn(x)) −
dFnn(F

t
nn(x))∥ ≤ ϵ1 for all t ≤ n, m ≥ τ(δ, ϵ), and n → ∞ as m → ∞, with probability ≥ 1− δ

over the initial state x.

That is, we assume that, with high probability, the trained model makes a small error at each time.
This stronger notion of generalization can be satisfied when the true model shows a smooth linear
response in its statistics [Bal14], or in practice, training is performed with points sampled at random
near the attractor, as opposed to with a spin-off time to achieve a state on the attractor. Given a
tuple, (ϵ0, ϵ1), an orbit with initial condition x that satisfies, ∥F (F t

nn(x)) − F t+1
nn (x)∥ ≤ ϵ0 and

∥dF (F t
nn(x))− dFnn(F

t
nn(x))∥ ≤ ϵ1 for all t ≤ m will be referred to as an (ϵ0, ϵ1) orbit. That is, at

each time, the neural representation Fnn is (ϵ0, ϵ1)-close to the true map, F. Under this assumption,
we can follow the proof of the Shadowing lemma (see e.g., Ch 18 of [KKH95]) for hyperbolic maps
to show that a true orbit (of F ) shadows every (ϵ0, ϵ1) orbit.
Proposition 1 (Shadowing). Let Fnn be an approximation of F that satisfies the C1 strong gen-
eralization (Assumption 1). Given any δ > 0, there exist ϵ0, ϵ1, n such that every (ϵ0, ϵ1) orbit is
δ-shadowed by an orbit of F. That is, there is a true orbit, say, {F t(x)}, corresponding to every
orbit, {Gt(x′)} such that ∥F t(x)−Gt(x′)∥ ≤ δ, for all t ≤ n.

See section A.1 for the proof. Let {xnn
t }t≤n be an n-length orbit of Fnn, i.e., xnn

t+1 = Fnn(x
nn
t ). We

use Tn,nnM to denote the direct sum ⊕n
i=1Txnn

i
M of tangent spaces along the orbit, xnn

t . The proof
follows Theorem 18.1.3 of [KKH95] to apply contraction mapping on a compact ball in Tn,nnM .

The above result defines, for each (ϵ0, ϵ1)-orbit, {xnn
t }t, a shadowing orbit, xsh := {F (xnn

t + vt)}t,
where v = ⊕tvt is the fixed point of the contraction map in the proof (section A.1). Let µsh

n (xnn
0 ) be

the empirical measure defined on the shadowing orbit corresponding to an (ϵ0, ϵ1)-orbit, {xnn
t }t, i.e.,

µsh
n (xnn

0 ) = Unif{xsh
0 , · · · , xsh

t , · · · , xsh
n−1}. A shadowing orbit is indeed an orbit of the true map F,

but, unexpectedly, it may be atypical for the physical measure, µ. That is, for an atypical shadowing
orbit, the time average, (1/n)

∑
t≤n f(x

sh
t ) does not converge to the expected value Ex∼µf(x), as

n → ∞. This means that the Wasserstein distance, W 1(µsh
n (xnn

0 ), µ), does not converge to 0 as
n → ∞.

Given an initial condition, xnn
0 , of an (ϵ0, ϵ1)-orbit, the corresponding shadowing orbit may be

typical with some probability (over the distribution of xnn
0 ), and this probability of finding typical

shadowing orbits is a property of the true dynamics, F. When µ, the physical measure of F, is highly
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sensitive to perturbations of F, (see [Rue09, Bal14] for surveys on linear response theory, the study
of perturbations of statistics) this probability may be small. Although the connection between the
sensitivity of statistics and the atypicality of shadowing orbits is not completely known, this can justify
the differences in the statistical accuracy of neural parameterizations with good C1 generalization
(see Definition 2). A neural model Fnn which generalizes well in the C1 sense (Definition 2) can be
thought of as a C1-smooth perturbation of the true dynamics F. If smooth perturbations of F can
cause a large change in µ, then even when the training size m → ∞, and the orbit length n → ∞,
W 1(µsh

n (xnn
0 ), µ), may not converge to zero, resulting in a model that does not preserve the physical

behavior of F. On the other hand, for typical shadowing, this possibility is excluded and gives us a
characterization of statistically accurate learning.

Theorem 1 (Statistically accurate learning). Let Fnn be a model of F that satisfies C1 strong
generalization. In addition, let Fnn and F be such that for any δ > 0, there exists an ϵ2 > 0 so that
limn→∞ W 1(µsh

n (x), µ) ≤ ϵ2 with probability (over the randomness of x) ≥ 1−δ. Then, for any δ >
0, there exists an ϵ > 0 such that limn→∞ W 1(Unif{x, Fnn(x), · · · , F t

nn(x), · · · , Fn
nn(x)}, µ) ≤ ϵ

with probability ≥ 1− δ.

Proof : Let µnn
n (x) := Unif{x, Fnn(x), · · · , F t

nn(x), · · · , Fn−1
nn (x)} be the empirical measure of

an n-length orbit of Fnn starting at x. Given a δ > 0, we choose (ϵ0, ϵ1) so that C1 strong
generalization is satisfied with probability ≥ 1 − δ/2. Thus, an initial condition x is such that
{F t

nn(x)}t≤n is an (ϵ0, ϵ1) orbit, where the tuple (ϵ0, ϵ1) is as defined in Proposition 1, with prob-
ability ≥ 1 − δ/2. Applying Proposition 1, we have, for any 1-Lipschitz function f : M → R,
(1/n)

∑
t≤n |f(F t

nn(x)) − f(F t(x))| ≤ (1/n)
∑

t≤n ∥F t
nn(x)) − F t(x)∥ ≤ δ/2. Taking a supre-

mum over f , W 1(µsh
n (x), µnn

n (x)) ≤ δ/2, with probability ≥ 1 − δ/2. By assumption, there
exists some ϵ2 > 0 such that limn→∞ W 1(µ, µsh

n (x)) < ϵ2 with probability 1 − δ/2. Hence,
limn→∞ W 1(µ, µnn

n (x)) ≤ limn→∞ W 1(µsh
n (x), µnn

n (x)) +W 1(µ, µsh
n (x)) ≤ ϵ2 + δ/2 := ϵ, with

probability > 1− δ, using triangle inequality and taking union bound.

This result explains why training to minimize Jacobian-matching loss (3) can lead to statistically
accurate models, even though, long-time temporal patterns in the data are not learned explicitly by
regression for the one-time map F. Since C0 generalization (i.e., small errors in(2)) is insufficient for
learning shadowing orbits, and thus for Proposition 1 and Theorem 1 to hold, the models trained on
MSE loss 1 are not expected to learn ergodic/statistical averages with respect to µ.

When shadowing orbits are atypical with high probability, we observe numerically that C1 generaliza-
tion, i.e., training with Jacobian-matching loss, still does not produce statistically accurate dynamics,
in line with the above theorem. For instance, for maps with atypical shadowing described in [CW21],
we find that learned neural representations with Jacobian-matching do have good C1 generalization
(Figure 6), but do not exhibit good statistical accuracy and learn incorrect Lyapunov exponents (see
Table 5, Plucked Tent map).

4 Dynamic generative models

So far, we have focused on understanding the statistical accuracy of supervised learning of dynamical
systems. Without any minimization of distances on the space of probability measures, we proved
sufficient conditions under which regression with Jacobian-matching information can yield samples
from µ with high probability. A generative method is an unsupervised learning technique to train on
samples from a target distribution to produce more samples (provably) from the target. Naturally,
we can use several popular generative models for our target physical measure here, including score-
based methods [SE19, SSDK+20], Variational Autoencoders (VAE) [RM15] or normalizing flows
[RM15, PNR+21]. However, these methods neglect the dynamical relationships in the input samples.
In other words, from a vanilla generative model of a physical measure, we cannot also recover the
true dynamics. Thus, we focus here on Latent SDEs models from [LWCD20], which combine neural
representations of dynamics with generative models. We reinterpret them as dynamic generative
models, and analyze their ability to faithfully represent both the underlying dynamics as well as the
physical measure.

In a dynamic generative model, we approximate F t with a stochastic map, that can written as,
Fls := fθ ◦ Φt

ϕ ◦ gϕ, where the subscript ls stands for “latent SDE”. Here, the function gϕ : Rd →
Rdl , with learnable parameters, ϕ, is a (possibly stochastic) embedding from the data to latent
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space (Rdl), such that, gϕ♯µ = qϕ,0. Recall the pushforward notation (♯), i.e., if x ∼ µ, then,
gϕ(x) ∼ qϕ,0. The dynamical system Φt

ϕ : Rdl → Rdl acts on the latent space, and defines a
sequence of pushforward distributions Φt

ϕ♯qϕ,0 = qϕ,t. A special case of this setup is a “latent ODE”,
where Φt

ϕ is a deterministic map instead. With a stochastic latent SDE model instead, we observe, in
line with [LWCD20], that the multimodal distribution of the Lorenz ’63 attractor is reproduced better.
That is, Φt

ϕ is a solution map of a Neural SDE: dΦt
ϕ(z) = wϕ(t,Φ

t
ϕ(z))dt + σϕ(t,Φ

t
ϕ(z)) ◦ dWt.

Here the drift term, wϕ, and the diffusion term, σϕ, are represented as neural networks. The
decoder fθ : Rdl → Rd is a deterministic map that defines the conditional, fθ♯qϕ,t = pθ(·|Zt).
This dynamic VAE approach has been found to be expressive for chaotic systems (see Chapters
3 and 5 of [Kid22], [KMFL20]), wherein the conditional distribution, z → qϕ,0(z|X1:m), of Z0

given X1:m := {F t(x)}t≤m is modeled as a Gaussian distribution whose learnable parameters
are also denoted by ϕ. Similarly, the conditional pθ(·|Zt) is again modeled as a Gaussian with
parameters θ. The parameters, ϕ and θ respectively, of the encoder and the decoder are trained by
maximizing the following dynamic version of the evidence lower bound (ELBO): ℓls(X1:m, (ϕ, θ)) :=∑m

t=1 Ezt∼qϕ,t(·|X1:m)[− log pθ(xt|zt)] + KL(qϕ,0(·|X1:m)∥pZ0
)], where the prior pZ0

follows a
standard Gaussian distribution in the latent dimension. For alternatives to the ELBO objective above,
such as the Wasserstein-GAN objective, we refer the reader to [Kid22].

We now evaluate both the learned dynamics, Fls, and the learned generative model, pθ, which
approximates µ. In Figure 11, we present the empirical distribution of a generated orbit against that of
a typical orbit of the Lorenz system (µ). We observe that the distributions match well, nevertheless the
vector field is not well-approximated. First, even though the system is deterministic, the learned Φt

ϕ

with minimum generalization error (Eℓstat) encountered in the hyperparameter search (Appendix C.8)
is not, i.e, the diffusion term σϕ is not zero. The learned stochastic map, Fls, produces an incorrect
stable LE for the Lorenz system (≈ −11.8), while the leading unstable LE matches reasonably well.

Since the map Fls, or its underlying vector field, on the latent space is not unique, we may obtain
maps that do not preserve dynamical structure or invariants, even if the generated samples from
pθ approximately capture µ. As noted in section 2, the physical measure µ is often singular, but
absolutely continuous on lower-dimensional manifolds, leading to lack of theoretical guarantees for
vanilla generative models [Pid22]. Finally, the sample complexity (and tight generalization bounds)
of generative models, the above variational optimization, are not fully understood theoretically,
especially for singular distributions (that satisfy the manifold hypothesis [BCV13]). We remark
that since the minimax rates for approximating distributions have an exponential dependence on the
dimension, exploiting the intrinsic dimension (unstable dimension) associated with the support of µ
will be key to tractable generative models for µ in high-dimensional chaotic systems. Even in the
Lorenz ’63 system, we require O(106) samples for training reasonably accurate model in Figure 11,
while the Jacobian-matching (Figure 1 column 5) produces smaller Wasserstein distances with fewer
samples (104), and a simpler regression problem as opposed to variational optimization above.

5 Numerical Experiments

We conduct experiments with the MSE and JAC losses in (1) and (3) respectively on many canonical
chaotic systems: 1D tent maps, 2D Bakers map, 3D Lorenz ’63 system and the Kuramoto Sivanshinsky
equation (127 dimensional system after discretization) (Appendix C). In each system, we identify
the Neural ODE model with the lowest generalization errors R and Rλ in (2) and (4) respectively,
by an architecture and optimization hyperparameter search (Appendix B) . On these models that
generalize well, we perform tests of statistical accuracy and LE computations (as described in section
2 for the Lorenz ’63 system). Consistent with Theorem 1, although most of the considered systems
are not uniformly hyperbolic, we find that the JAC models are statistically accurate and reproduce
the LEs, while the MSE models with R comparable to Rλ are not statistically accurate. For the KS
system for instance, the MSE models even overpredict the number of positive LEs. Interestingly,
the best JAC model can learn more than half of the first 64 LEs, compared to the best MSE model
that can learn only 2 out of 64 LEs, with < 10% relative error. The Python code is available at
https://github.com/ni-sha-c/stacNODE.
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6 Related work

Neural ODEs and generalization. Introduced as continuous-time analogues [Wei17, HR17,
CRBD18] of Residual neural networks (ResNets) [HZRS16], Neural ODEs [CRBD18, HR17] offer
a vector field parameterization that can be time-integrated with an ODE solver. Augmented Neural
ODEs [DDT19, RCD19, DA22] demonstrate improved expressivity for complex dynamics, and
some universal approximation results appear in [ZGUA20, Kid22]. Neural ODEs [CRBD18] as
normalizing flows [RM15] and for density estimation have been tackled in [GCB+19]. Training and
regularization techniques that allow handling long time series are the subject of numerous works
[RMM+20, KJD+21, FJNO20, PER23a, PER23b, PMSR21, GBD+20, MSKF21]. Our focus is dif-
ferent: we characterize when an elementary Jacobian-matching regularization serves as an inductive
bias toward learning physical representations from irregular, even chaotic data.

Data-driven surrogates of complex systems. The vast and growing literature in the field of physics-
informed machine learning[VAUK22, LKB22, PABT+21, HZB+21, vdGSB+20, WY21, RPK19,
WY21, KKLL21, LK22] has encouraged the adoption of physical machine learning models that
preserve physical properties, symmetries and conservation laws, and are yet applicable in scientific
problems [HKUT20, PABT+21, HZB+21, RBL22, VAUK22, vdGSB+20, YHP+23]. At the same
time, several purely data-driven methods for complex systems [CNH20, PSH+22], which do not
require an expensive high-fidelity solver, have gained attention for their impressive prediction skill
[RCVS+19, SLST17, LSGW+23] and both faster training and inference making them suitable
for optimization [BB21, RBL22, LP21, JD21] and inverse problems [HVT23, AEOV23]. Since
the fundamental regression problem we study underlies both hybrid and data-driven methods, we
provide insight into dynamics-aware generalization (e.g., reproducing ergodic behavior, Lyapunov
exponents etc) applicable to different surrogate modeling approaches. Several innovative approaches
for ensuring training stability [MMD22, SWP+24, HMBD23, JLOW24] in chaotic systems when
using recurrent architectures have been proposed recently. The failure of generalization notions based
on mean-squared error have also been noted in [SWP+24, JLOW24] and empirical strategies and
new definitions of generalization suitable of non-ergodic systems have been introduced in [GHB+24].
For ease of theoretical analysis, we do not consider these more sophisticated training approaches,
choosing instead to learn short-term dynamics which obviates the need for stabilization strategies.
Encouragingly, we observe low sample complexity of vanilla regression with Jacobian information
to learn physical measures, when compared to the generative modeling approaches (which can be
comparable to RNNs as well). A computational analysis of the Jacobian loss training compared to
generative modeling/stablized recurrent training is deferred to a future work.

Ergodic theory and shadowing. Hyperbolic dynamics and ergodic theory (see e.g. the textbook
[KKH95]) lay the foundation for understanding the long-time/statistical physical behavior [You02] of
complex systems. The scientific computing community has leveraged ergodic theory and shadowing
[Ano67, Bow75, Pil06] for rigorous computations that use high-fidelity numerical simulations of
chaotic systems [GL24, Wan13, Ni21] and to analyze the correctness of numerical simulations
[HYG87, CW21, Lia17, Sau05, GHYS90]. The novelty of our work lies in introducing shadowing as
the basis for generalization, thus providing new analysis tools to understand the correctness of learned
chaotic systems [LLSK+22]. An interesting direction for future work is to extend dynamics-aware
generalization bounds similar to Theorem 1 to operator learning with Sobolev norms introduced in
[LLSK+22].

7 Conclusion

Our dynamics-aware generalization (Theorem 1) and empirical results provide a new characterization
of statistical accuracy in models learned from dynamical data. These results open many avenues
for improving mechanistic understanding and bridging the theory-practice gap in physical neural
modeling of complex systems:

Understanding learning attractors. By exposing foundational problems in the elementary and
fairly general setting of regression of a dynamical system, our analytical tools in section 3 broaden
our conceptual understanding of learning from time series data in more complicated models and
paradigms.
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Learning dynamical representations vs. generative models. We show that physical measures
can be produced by accurate neural representations of the dynamics, which can be more data and
time-efficient compared with generative modeling for time series generated by chaotic systems.

Dynamics-aware learning of scientific models. Our results imply that generalization does not
imply statistical accuracy and preservation of dynamical invariants and properties such as Lyapunov
exponents, which is crucial for trustworthy ML for science. Thus, we reinforce the need to move
toward a context-aware theory of generalization, organically unifying complex dynamics with learning
theory.

Limitations: A limitation of the theoretical results about C1 generalization is that we need to
assume the typicality of shadowing. Empirically, the Jacobian can be expensive to estimate for
high-dimensional scientific applications. We leave the study of statistical accuracy for learning
atypical shadowing orbits, and the extension of an efficient algorithm for Jacobian information during
training as a future work.
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A Proofs and assumptions

Our results in section 3 make the assumption that the map F is uniformly hyperbolic. Roughly
speaking, this means the uniform (on the attractor Λ ⊆ M ) expansion and contraction of infinitesimal
perturbations under the differential dF. More precisely, in a uniformly hyperbolic system, there exists
a decomposition of the tangent bundle, TM = Eu ⊕ Es, into an unstable (Eu) and stable (Es)
subbundle such that these subbundles are dF -invariant, and moreover, for any vector field v ∈ Es,
∥dF tv∥ ≤ C λt ∥v∥, t ∈ Z+. Similarly, an infinitesimal perturbation along vector field v ∈ Eu

shows a uniform exponential decay in norm backward in time, ∥dF tv∥ ≤ C λ|t| ∥v∥, t ∈ Z−.
Here the constants C, λ are uniform over Λ. There are several relaxations of the uniformity in the
splitting to obtain nonuniform and partial hyperbolicity; there are also several known examples of
non-hyperbolic chaotic systems. Assumptions of hyperbolicity are common in dynamical systems
analyses due to well-understood ergodic theoretic results, including existence of physical measures
of the SRB-type [You02, You17]. Such assumptions are also widespread in computational dynamics,
wherein algorithms derived rigorously for uniformly hyperbolic systems are found to be applicable
[WG18] to turbulent fluids and chaotic systems in practice [GC95, EHL04, CW22], where a rigorous
verification [BJS24] of these assumptions is not feasible.

We remark that we only require high-probability finite-time shadowing, and thus, our results can
possibly be extended under relaxations of uniform hyperbolicity. Despite being mathematically
convenient, the class of uniformly hyperbolic systems do contain examples of the pathological
behaviors we address: atypicality of shadowing and large linear responses. Moreover, our numerical
examples, including our primary one – the Lorenz ’63 system, which is only singular hyperbolic
– are chosen to not all be uniformly hyperbolic systems, in order for our inferences to have wider
applicability.

A.1 Proof of Proposition 1

Here, we complete a proof sketch that we begin in section 3. An element v ∈ Tn,nnM with
v = ⊕t≤nvt can be identified as t → vt ∈ Txnn

t
M. We define a function Fnn : Tn,nnM → Tn,nnM

as Fnn(v)t+1 = xnn
t+1 − F (xnn

t + vt). If v is a fixed point of Fnn, that is, Fnn(v) = v, then,
{xnn

t + vt}t≤n is an orbit of F. Writing Fnn(v) = Fnn(0) + dFnn(0)v +Nnn(v), where N is the
nonlinear part of Fnn, a fixed point v satisfies, (Id− dFnn(0))v = Fnn(0)+Nnn(v). To show that v
exists, we follow Theorem 18.1.3 of [KKH95] and prove that Tnn(w) = (Id−dFnn(0))

−1(Nnn(w)+
Fnn(0)) is a contraction on a compact subset of Tn,nnM . We have ∥Tnn(v) − Tnn(w)∥ ≤ ∥(Id −
dFnn(0))

−1∥∥Nnn(v) − Nnn(w)∥ ≤ C(ϵ0, ϵ1)∥Nnn(v) − Nnn(w)∥ with probability > 1 − δ. To
see this, note that dFnn(0)(v) = dF v, and F is a hyperbolic map, by assumption, and hence Lemma
18.1.4 of [KKH95] applies. Next, assuming that supx∈M ∥d2F (x)∥ is bounded (i.e., dF is Lipschitz),
we obtain that dNnn is Lipschitz, and hence, ∥Tnn(v)−Tnn(w)∥ ≤ ∥(Id− dFnn(0))

−1∥∥Nnn(v)−
Nnn(w)∥ ≤ C(ϵ0, ϵ1)Kδ0∥v − w∥ with probability > 1 − δ. Here, maxt{∥vt∥, ∥wt∥} ≤ δ0,
which is chosen independent of n, ϵ0, ϵ1 and δ, and K is the Lipschitz constant of dNnn. Thus,
Tnn is a contraction on a δ0 ball around 0 ∈ Tn,nnM when C(ϵ)Kδ0 < 1 − ϵ2, for some ϵ2 > 0.
Since ∥Tnn(0)∥ ≤ C(ϵ0, ϵ1)ϵ0, and for any v in a δ0 ball around in 0 in Tn,nnM, ∥Tnn(v)∥ ≤
C(ϵ0, ϵ1)ϵ0 + (1− ϵ2)δ0, when ϵ0, ϵ1 and δ0 are such that C(ϵ0, ϵ1)ϵ0 + (1− ϵ2)δ0 < δ0, we have
that Tnn maps a δ0 ball around in 0 in Tn,nnM to itself. Thus, the unique fixed point (from contraction
mapping theorem on the δ0 ball) lies within the ball.

B Experimental Details

B.1 Data

In this paper, the time series data from different chaotic systems are generated by simulating the ODEs
and iterated function systems below. The ODEs were numerically integrated using the fourth-order
Runge-Kutta solver from the torchdiffeq3 library [CRBD18], with an absolute and relative error
tolerance of 10−8.

3https://github.com/rtqichen/torchdiffeq
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We split the simulated trajectories into training and test datasets. The first 10,000 data points are used
as the training data and the last 8,000 points are the test data. The time step size of the simulation is
included in Table 2.

1D: Tent maps As our first examples, we choose three types of tent maps defined in [CW21], that
are shown to be examples exhibiting atypical shadowing orbits: the tilted map (5), the pinched map
(6), and the plucked map (7). We use n = 3 and s = 0.2 and s = 0.8 in the plucked map following
[CW21].

F (x; s) =

{
2

1+sx, x < 1 + s,
2

1−s (2− x), x ≥ 1 + s;
(5)

F (x; s) =


4x

1+s+
√

(1+s)2−4sx
, x < 1,

4(2−x)

1+s+
√

(1+s)2−4s(2−x)
, 2 ≤ x ≤ 1;

(6)

Fs,n(x) = min(λs,n(x), λs,n(2− x)), 0 < x < 2, (7)

where

fs(x) = min(
2x

1− s
, 2− 2(1− x)

1 + s
), x < 1,

os(x) =

{
fs(2x)

2 , x < 0.5,

2− fs(2−2x)
2 , x ≥ 0.5,

λs,n(x) =
os(2

nx− ⌊2nx⌋)
2n

+ 2
⌊2nx⌋
2n

.

2D: Baker’s map We use the following perturbation of the classical Baker’s map from [CW22].

F ([x, y]T ; s) =

2x− ⌊y/π⌋2π
y + s sin x sin(2y) + ⌊x/π⌋2π

2

 mod 2π.

3D: Lorenz ’63 We conduct extensive numerical experiments in this paper with the Lorenz ’63
system [Lor63], with σ = 10, β = 8/3, and ρ = 28, which we describe in section 2.

3D: Rössler We use the parameter setting a = 0.2, b = 0.2, and c = 5.7 in the Rössler system
[Rös76] below, which is in the chaotic regime.

dφt

dt
([x, y, z]

⊤
) =

[ −y−z
x+ay

b+z(x−c).

]

4D: Hyperchaos Another test case we consider is the hyperchaotic system below in 4 dimensions
from [Zha17], where the parameter values are set as a = 16, b = 40, c = 20, d = 8 for the system to
show chaotic behavior.

dφt

dt
([x, y, z,w]

⊤
) =

 ax + dz− yz
xz− by

c(x− z) + xy
c(y − w) + xz.


127D: Kuramoto-Sivashinsky To test Neural ODE’s performance in learning high dimensional
chaotic system, we generate the modified Kuramoto-Sivashinsky (KS) system’s solution defined
below with a second order finite difference scheme used in [BW14].
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∂u

∂t
= −(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

x ∈ [0, L], t ∈ [0,∞)

u(0, t) = u(L, t) = 0

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0

u(x, 0) = u0(x)

B.2 Architecture

We try two neural network architectures for learning the vector field of the systems: a simple Multi-
Layer Perceptron (MLP) model and a ResNet [HZRS16]. For the MLP model, we use GELU4 as the
activation function, and ReLU for ResNet model. In addition, we experiment with adding Fourier
layers [LKA+20] to represent the solution operator. We use the Latent SDE code from [LWCD20]
for results in section 4.

Table 2: Hyperparameter choices

Chaotic
Systems Epochs Time step Hidden

layer width Layers Train,
Test size Neural

Network
λ

in (3)

Tent map 10000 N.A. [256] 2 [10000,
8000] ResNet 500

Baker map 10000 N.A. [512] 3 [5000,
5000] ResNet 100

Lorenz ’63 8000 0.01 [512] 7 [10000,
8000] ResNet 500

Rössler 10000 0.01 [512] 3 [10000,
8000] ResNet 500

Hyperchaos 20000 0.001 [512] 3 [10000,
8000] ResNet 500

Kuramoto-
Sivashinsky 3000 0.25 [512, 256] 3 [3000,

3000] MLP 1

B.3 Hyperparameter Search

When vF (x) is a true vector field and vh(x) is a learned vector field by a neural network, h, given
solution x, relative error can be defined as:

relative error(x) =
∥vF (x)− vh(x)∥

∥vF (x)∥
(8)

Using a grid search, hyperparameter values that yield the lowest relative error in the vector field as
per (8) were chosen. Hyperparameter search results are shown in Tables 7, 8, and 9. Hyperparameter
values that are different for each system are in the Table 2. We use the AdamW [LH17] optimization
algorithm implemented in the PyTorch library for all our experiments.

In addition to MLP and Resnet, for Lorenz ‘63, we train with FNOs [LKA+20] and latent SDE
[LWCD20]. In the FNO network, we fix the number of modes to 4, with a batch size of 200 with 4
Fourier Neural layers. Further details on latent SDE are discussed in section C.8.

B.4 Computing

Numerical experiments were conducted using Tesla A100 GPUs with 80GB and 40GB memory
capacities. All experiments were completed in under one hour, with the exception of those involving
the KS system.

4https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
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C Additional numerical results

In this section, we present results that are described in section 2 for testing the statistical accuracy
and generalization of learned models of the Lorenz ’63 system. We also present additional results for
the tent maps and the KS equation, described in the previous section.

C.1 Loss

Figure 3: Training and test loss of a representative Neural ODE trained with MSE (1) and Jacobian-
matching loss (3).

C.2 Relative Error

Figures 4 and 5 illustrate the comparison of relative error trends, as defined in Eq. (8), for vector
fields learned by a Neural ODE (ResNet) trained with mean squared loss and Jacobian-matching loss
(as defined in Eq. (3)), for two distinct dynamical systems.

Figure 4: Comparison of relative errors in the vector fields of the Lorenz ’63 system produced by
a Neural ODE with a ResNet, trained using mean squared loss (Left), and Jacobian-matching loss
(Right) as defined in (1) and (3) respectively. The vector field is evaluated on a random true orbit.

C.3 Tent map

In Figure 6, we show learned models of representative tent map perturbations from the preceding
section. We observe that the Jacobian-matching loss leads to reasonably accurate representations
of the maps. Yet, the LE computed along learned orbits differ significantly at s = 0.8, as shown in
Table 5. For various other perturbed tent maps, we show the computed LEs alongside the true LEs in
Table 5; for most of the maps, the Jacobian-matching leads to accurate LE predictions, consistent
with the results of Theorem 1.

C.4 Lorenz ‘63

Here we show identical results to Figure 1 but with ResNet-based Neural ODE models as opposed to
MLPs used in Figure 1. We find that Jacobian-matching training leads to superior performance in
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Figure 5: Comparison of relative errors in the vector fields of the Rössler system produced by a
Neural ODE with a ResNet, trained using mean squared loss (Left), and Jacobian-matching loss
(Right) as defined in (1) and (3) respectively. The vector field is evaluated on a random true orbit.

Figure 6: Comparison of true plucked tent map with generated one with Neural ODE trained with
Jacobian-matching loss defined in Equation (3). When s = 0.8, we observe a failure mode of training
with Jacobian-matching loss, possibly due to atypicality of shadowing orbits observed in [CW21].
Details on hyperparameter setting and other statistical results can be found in Table 2 and 5.

terms of distributional match with µ, when compared to MLPs. Furthermore, our overall inference
about MSE models leading to atypical orbits still holds, agnostic to modeling and architectural
choices.

Figure 7: The first 3 columns show orbits on x-z plane obtained from RK4 integration of the Lorenz
vector field ([Lor63], the Neural ODE, ‘MSE_Res’, trained with mean-square loss, and the Neural
ODE, ‘JAC_Res’, trained with Jacobian-regularized loss, respectively (see section 2). The last two
columns show the probability distribution of orbits generated by the true (gray), ‘MSE_Res’ (red)
and ‘JAC_Res’ (blue) models. Experimental settings are in Appendix B.

C.5 KS equation

After spatial discretization and following the scheme of [BW14], we obtain a 127-dimensional
dynamical system representing the KS equation, which we consider to be the ground truth map F.
Figure 8 shows the solutions of the KS system over physical space x and time (T). Since the original
model and the learned models are all chaotic, we expect two solutions of even slightly different
models to diverge along the time axis, even when starting with identical initial conditions. We observe
that this divergence is minimal for the JAC model, while the errors in the MSE model grow strikingly
quickly.
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Figure 8: Solution plot of Kuramoto-Sivashinksy system when number of inner nodes is 127 and
c=0.4 (see [BW14] for the parameter c). True solution (left), solution of the Neural ODE with mean
squared loss (1) (center column), solution of the Neural ODE trained with Jacobian-matching loss
defined in (3) (right)

C.6 Learning Lyapunov exponents

We report Lyapunov exponents learned with Neural ODE trained with mean squared loss and Jacobian-
matching loss in Table 5. To compute Lyapunov exponents, we use a QR algorithm of Ginelli et
al [GCLP13]. We find that, for most systems considered, the LEs computed by JAC models match
very well with the ground truth, while the MSE models sometimes capture the leading LEs but are
inaccurate in the rest of them.

C.7 Comparison of Jacobian-matching loss training with unrolling dynamics

In this section, we report experiments on the Lorenz ’63 system with an unrolled loss function:

ℓu(x) :=
1

k

∑
t≤k

|vt(x)|2,where vt(x) = F t
nn(x)− F t(x). (9)

With k = 10 timesteps of unrolling time, we see that the attractor is reproduced well, as shown in
Figure 9. However, atypical orbits are still produced for random initializations (Figure 10).

We experiment using two types of vnn, MLP and Resnet, and varying sequence lengths, k. As shown
in Table 3, we observe that the learned negative Lyapunov exponent plateaued for k ≥ 40, remaining
between -9 and -10 (the true value being ∼ −14.5), with no further improvement. Also, as k increases,
we observe that Neural ODEs overestimate the positive Lyapunov exponent. Overall, unrolling seems
to learn more accurate representations than the MSE model but less accurate representations than the
JAC models. We also observe that the unrolling time needs to be fine-tuned as a hyperparameter to
achieve good generalization; a small perturbation can lead to training instabilities.

To understand these results, for short times, when compared to the Lyapunov time, vt are in tangent
spaces along the orbit. This yields the recursive relationship, vt ≈ dF (xt−1)vt−1, when O(∥vt∥2)
is negligible. Thus, the unrolled loss does contain Jacobian information implicitly although it does
not enforce the learned trajectory to be close to the true trajectory in C1-distance. We remark,
speculatively, that Theorem 2 gives a possible explanation for why the unrolling loss performs better
than a one-step loss (even in some practical climate emulators, e.g., FourcastNet [PSH+22]) at
learning the physical measure. In other words, our numerical results lend support to the central thesis
of this paper: adding Jacobian information improves statistical accuracy. Table 4 shows the norm
difference between the reproduced invariant statistics and the true statistics of Lorenz ’63.

C.8 Latent SDE: experimental details

Here we present the experimental details and results of learning the Lorenz ’63 system with latent
SDEs [LWCD20] that are described in Section 4.

As training data, we use 1024 time series of the interval [0, 6] and timestep size 0.01. With a smaller
sample size, we empirically observe a large distributional mismatch (see Figure 11). We also observe
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Table 3: Lyapunov Spectra learned by Neural ODE models trained on the MSE (1) for multi-step
prediction.

vnn

k MLP ResNet

10 [0.89, -0.0006, -5.53] [0.77, -0.0080, -4.48]
20 [0.89, 0.0349, -6.31] [0.82, 0.0128, -5.19]
30 [0.906, 0.0018, -7.18] [0.89, -0.0372, -8.02]
40 [0.96, -0.0587, -9.87] [0.92, -0.0655, -9.81]
50 [0.96, -0.0922, -9.88] [0.89, -0.0532, -10.76]

Table 4: True vs. learned Lorenz ’63 system: comparison of statistics. (W 1: Wasserstein-1 Distance,
Λ = [λ1, λ2, λ3]

⊤, set of LEs, µ̂T : empirical distribution of an orbit of length T. The subscript NN
indicates quantities computed using NN models. The variable k refers to the sequence length used
for training.

Norm Difference

Model k W 1(µ̂500, µNN,500) ∥Λ− ΛNN∥ |⟨x⟩500 − ⟨x⟩500,NN|
MLP 50 1.4184 4.4824 1.3845
ResNet 50 0.5091 2.9456 0.2408

Figure 9: Comparison of the true phase plots of Lorenz ’63 with phase plots of Neural
ODE trained with the unrolled loss function (9). Initial condition of the long orbits is at
[−9.1164,−3.3816, 33.7482]. The first row shows the orbits on the xy, xz, and the yz plane obtained
from RK4 integration of the Lorenz ’63 system. The second row shows the orbits on the xy, xz, and
the yz plane generated from Neural ODE trained with the loss (9) with k = 50.

that increasing or decreasing the time length of the trajectories can lead to unstable training. As in
the supervised learning methods, the time series are simulated using a fourth-order Runge-Kutta
scheme (RK4). We follow the same architecture 5 as used in [LWCD20], with a GRU encoder, a
linear decoder, and the drift and diffusion functions in the prior and posterior processes modelled by
MLPs.

We present the learned Lyapunov exponents in Table 6, and a comparison of the learned and true
empirical measures in Figure 11. When learning a deterministic system with a latent SDE, the
diffusion coefficient of the learned system is small but not exactly 0, and this results in a slight
difference in the Lyapunov exponents ([GHL20]) compared to only using the learned drift term. The
latent SDE model was also tested on the stochastic Lorenz attractor [CZH21], where it reproduced
the ‘bimodal’ distribution of the trajectories.

5https://github.com/google-research/torchsde/blob/master/examples/latent_sde_
lorenz.py
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Figure 10: Comparison of the true phase plots of Lorenz ’63 with phase plots of Neural ODE trained
with the unrolled loss function (9). Initial condition of the long orbits is at [−15,−15, 5]. The first
row shows the orbits on the xy, xz, and the yz plane obtained from RK4 integration of the Lorenz ’63
system. The second row shows the orbits on the xy, xz, and the yz plane generated from Neural ODE
trained with the loss (9) with k = 50.

Table 5: Chaotic systems and the true Lyapunov Spectra, the learned Lyapunov Spectra from Neural
ODEs with MSE loss (1), and the learned Lyapunov Spectra from Neural ODEs with Jacobian-
matching loss (3).

Lyapunov Spectrum

Chaotic Systems ΛTrue ΛMSE ΛJAC

Tent map (tilted, s=0.2) [0.3188] [0.6722] [0.3402]
Tent map (pinched, s=0.2) [0.6849] [0.6840] [0.6836]
Tent map (plucked, s=0.2) [0.6681] [0.6763] [0.6348]
Tent map (tilted, s=0.8) [0.3188] [0.3176] [0.3402]
Tent map (pinched, s=0.8) [0.6215] [0.5770] [0.6420]
Tent map (plucked, s=0.8) [0.3199] [0.5819] [0.5013]

Lorenz ’63 [0.9, 0,
-14.52]

[0.87, 0.0091,
-4.82]

[0.88, -0.0012,
-14.54]

Rössler [0.0665, -0.0004
-5.4112]

[0.0008,-0.0285
-1.4108]

[0.0609, -0.0004
-5.3808]

Hyperchaos [4.0039, 0.0082
-19.9972, -48.0205]

[4.1393, 0.0955
-15.2120, -29.9480]

[4.3789, -0.1617
-19.9974, -48.0205]

Kuramoto-
Sivashinsky

[ 0.3036, 0.2733,
0.2592, 0.2257,
0.2050, 0.1888,
0.1649, 0.1496,
0.1288, 0.1128,
0.0992, 0.0776,
0.0646, 0.0492,

0.0342 ]

[ 0.1652, 0.1647,
0.1540, 0.1524,
0.1443, 0.1411,
0.1336, 0.1262,
0.1236, 0.1143,
0.1141, 0.1091,
0.1045, 0.0971,

0.0985 ]

[ 0.2904, 0.2622,
0.2293, 0.1990,
0.1701, 0.1584,
0.1320, 0.1071,
0.0912, 0.0724,
0.0591, 0.0442,
0.0306, 0.0157,

0.0023, ]

C.9 Experimental details of the learned Lorenz ’63 models
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Table 6: Lyapunov spectra computed from the learned latent SDE model evaluated on Euler-
Maruyama and RK4 solvers. Both the learned drift and the near-zero diffusion vector fields are used
in Euler-Maruyama, and only the drift vector field is used in RK4.

Solver Lyapunov Spectrum

Euler-Maruyama [0.841, 0.0125, -11.88]
RK4 [ -0.44, -0.508, -11.75]

Table 7: Results of search over hyperparameters (batch size, weight decay, hidden layer depth and
width) in training Neural ODEs with MLPs (with fully connected and convolution layers). We train
with mean squared loss using the AdamW optimization algorithm, with two values of weight decay:
10−3 and 10−4, and an adaptive learning rate with an initial value of 0.001. For each hyperparameter
combination, we show the test loss and the relative error in the one-timestep predictions averaged
over 8000 samples; we choose the hyperparameter combination that results in the least relative error.
The time step of the maps (both true and NNs) are set at 0.01.

Batch Size

Layer Hidden
Unit Full 1000 2000

10−3 10−4 10−3 10−4 10−3 10−4

256 3.0577,
2.02%

0.1756,
2.16%

1.0858,
9.16%

0.0700,
4.92%

0.0300,
8.45%

0.0713,
6.17%

3 512 0.0967,
2.11%

0.0637,
1.84%

0.0262,
7.71%

3.5441,
6.89%

0.2689,
5.89%

0.2144,
3.98%

1024 0.8875,
1.32%

16.9632
,3.01%

0.0217,
7.89%

0.2425,
3.12%

0.0300,
8.45%

0.0488,
11.22%

256 0.0232,
1.70%

8.2952,
1.12%

0.7407,
2.48%

0.2120,
9.03%

0.0700,
4.92%

3.9985,
10.19%

5 512 0.0936,
2.22%

6.7319,
1.29%

243.8366,
15.01%

24.6090,
17.84%

3.2698,
17.54%

0.1982,
7.44%

1024 158.9892,
1.03%

0.0234,
2.03%

0.0472,
4.94%

0.0713,
4.02%

0.2425,
3.12%

0.0332,
11.46%

256 0.0442,
1.13%

0.0583,
1.65%

0.8257,
8.72%

28.2333,
14.39%

0.1761,
6.32%

0.3564,
4.62%

7 512 0.5062,
1.03%

0.0204,
1.41%

4.5527,
11.59%

0.0470,
12.36%

170.5588,
8.51%

0.0700,
11.94%

1024 162.6586,
1.87%

0.0502,
1.15%

0.0302,
7.71%

3.7282,
19.24%

117.4206,
1.20%

0.0502,
1.15%
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Figure 11: Comparison of empirical distributions of the x, y, and z coordinates of the true orbits of
the Lorenz ’63 system (black) against those of the latent SDE (red). Top row: The latent SDE model
(see section 4) is trained with 614,400 sample points. Bottom row: The latent SDE model is trained
with the same sample size, 10,000, as the JAC_MLP and MSE_MLP (Neural ODE) models. We
generate a trajectory over the interval [0, 50] for both the Lorenz ’63 model and the learned latent
SDE system. Gist: we empirically observe that, even when training with O(100), the latent SDE
model results in a worse prediction of the physical distribution compared to supervised learning based
on Jacobian-matching loss (3).
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Table 8: Results of search over hyperparameters (batch size, weight decay, hidden layer depth and
width) in training Neural ODEs with MLP_skip (ResNets). We train with mean squared loss using the
AdamW optimization algorithm, with two values of weight decay: 10−3 and 10−4, and an adaptive
learning rate with an initial value of 0.001. For each hyperparameter combination, we show the test
loss and the relative error in the one-timestep predictions averaged over 8000 samples; we choose the
hyperparameter combination that results in the least relative error. The time step of the maps (both
true and NNs) are set at 0.01.

Batch Size

Layer Hidden
Unit Full 1000 2000

10−3 10−4 10−3 10−4 10−3 10−4

256 0.5759,
2.60%

0.1186,
3.39%

0.4406,
9.60%

0.2987,
6.64%

0.1015,
4.07%

0.1698,
5.41%

3 512 0.1550,
1.80%

0.0914
,2.08%

0.4885,
5.57%

0.1510,
4.47%

0.4082,
2.86%

0.3319,
6.84%

1024 0.4721,
2.23%

0.1177,
1.76%

0.0433,
2.11%

0.0668,
4.07%

0.1681,
5.15%

0.2515,
4.89%

256 0.5392,
2.14%

0.1348,
2.21%

0.1694,
3.39%

0.2117,
7.68%

0.1862,
3.89%

0.1568,
6.37%

5 512 0.0437,
1.70%

0.0611,
1.31%

0.2823,
4.87%

0.1005,
4.74%

0.0934,
5.97%

0.0822,
5.23%

1024 0.1914,
2.44%

0.2093,
2.08%

0.2429,
8.11%

0.0563,
1.94%

0.4757,
2.60%

0.0377,
4.36%

256 0.1701,
1.91%

0.1523,
1.99%

0.8257,
8.72%

0.9819,
7.22%

0.1255,
9.65%

0.3181,
6.80%

7 512 0.2088
,2.38%

0.0806,
1.87%

0.1857,
4.64%

0.3120,
5.44%

0.1538,
4.62%

0.4729,
7.19%

1024 0.0566,
2.59%

0.0237,
2.16%

0.6599,
8.04%

0.0326,
5.07%

0.1748,
4.07%

0.3441,
5.09%
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Table 9: Results of search over hyperparameters (batch size, hidden layer depth and width) in training
Neural ODEs with MLP_skip (ResNets). We train with the Jacobian-matching loss (3) using the
AdamW optimization algorithm, with a weight decay of 5× 10−4, and an adaptive learning rate with
an initial value of 0.001. For each hyperparameter combination, we show the test loss and the relative
error in the one-timestep predictions averaged over 8000 samples; we choose the hyperparameter
combination that results in the least relative error. The time step of the maps (both true and NNs) are
set at 0.01.

Neural Architecture

Layer Hidden
Unit MLP MLP_skip

500 1000 500 1000

256 0.0535, 0.22% 0.0031, 0.26% 0.3349, 0.96% 0.3689, 1.52%

3 512 0.0022, 0.26% 0.0256, 0.22% 0.0780, 0.93% 0.8011, 1.83%

1024 0.3905, 0.44% 0.0237, 0.82% 0.3349, 0.96% 0.2787, 1.80%

256 0.0060, 0.38% 1.9023, 0.28% 0.4635, 0.98% 0.5906, 2.30%

5 512 0.0300, 0.33% 0.0612, 0.59% 0.4211, 0.76% 0.2773, 2.30%

1024 0.0885, 0.83% 0.0232, 0.75% 0.1064, 0.69% 0.7675, 2.23%

256 0.0297, 0.20% 2.8038, 0.48% 0.1032, 1.01% 0.5467, 2.60%

7 512 0.0437, 0.10% 0.011, 0.45% 0.0991, 0.93% 0.0943, 0.92%

1024 0.4413, 1.3% 1.2202,0.36% 1.1442, 1.24% 0.1917, 1.43%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims, which match with the
presented experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed under Related Work, Conclusion and Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theorems and proofs are clearly documented in the main text along with
supplementary proofs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details on experiment setting and results are thoroughly documented under the
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: To preserve anonymity, we submit main part of the code, but not the full
repository which has the all the pretrained model. We aim to publish the full code with
pretrained model in public later on.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have written all the necessary details under the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We discuss all of the details on the metrics we used under the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on computing resources are written under the Appendix subsection
B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All of the authors have reviewed the NeurIPS Code of Ethics and the research
conducted in the paper conform with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussion on broader impacts are under the Conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citation and versions are properly cited throughout the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details are given under the Appendix and the main text as well.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve research with human subjects nor crowedsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects nor crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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