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Abstract

The machine learning community has recently put
effort into quantized or low-precision arithmetics
to scale large models. This paper proposes per-
forming probabilistic inference in the quantized,
discrete parameter space created by these repre-
sentations, effectively enabling us to learn a con-
tinuous distribution using discrete parameters. We
consider both 2D densities and quantized neural
networks, where we introduce a tractable learning
approach using probabilistic circuits. This method
offers a scalable solution to manage complex distri-
butions and provides clear insights into model be-
havior. We validate our approach with various mod-
els, demonstrating inference efficiency without sac-
rificing accuracy. This work advances scalable, in-
terpretable machine learning by utilizing discrete
approximations for probabilistic computations.

1 INTRODUCTION

Probabilistic inference is central to modern machine learn-
ing, providing a principled framework for reasoning un-
der uncertainty. In Bayesian inference, uncertainty is cap-
tured through probability distributions over parameters, with
Bayes’ theorem offering a systematic way to update beliefs
with data. However, exact Bayesian inference is often in-
tractable due to the complexity of the integrals involved.
Variational inference (VI) [Blei et al., 2017, Jordan et al.,
1999, Wainwright and Jordan, 2008] is typically employed
as a scalable alternative to Markov chain Monte Carlo
(MCMC) methods, enabling inference in high-dimensional
models. Despite its success, VI relies on continuous pa-
rameterizations and often restrictive Gaussian assumptions,
which can introduce representational and computational
inefficiencies, particularly in large-scale settings.

To address computational constraints, the machine learning
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Figure 1: Capturing a 1D Gaussian mixture with BitVI
with different numbers of bits in the bitstring. Even the 4-bit
result serves a practical purpose, while the model saturates
around 8 bits when compared to its 16 bit version.

community has increasingly embraced quantization tech-
niques. These methods reduce numerical precision to im-
prove efficiency, leveraging low-bit representations for stor-
age and computation. Many of those can be related to re-
ducing the numerical precision, such as developing tailored
low-precision number systems [Gustafson and Yonemoto,
2017, Agrawal et al., 2019] or methods for parameter quanti-
zation. Recent works leveraging large-scale mixed-precision
FP8 [e.g., Liu et al., 2024], FP4 [Wang et al., 2025], or even
1-bit neural architectures [Ma et al., 2024] have shown inno-
vative low-precision training approaches.

Fig. 1 illustrates how a Gaussian mixture model, typically
represented in high-precision floating point, can be equiv-
alently expressed using a low-precision bitstring represen-
tation, motivating the feasibility of inference in quantized
spaces. These developments suggest that probabilistic infer-
ence need not be tied to continuous-valued computations
but can instead be formulated in the space of bitstrings.

This work hinges on the fundamental principle that on a
computer, continuous values are represented by finite-length
bitstrings—that is, a discrete representation. Hence, prob-
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Figure 2: Exact target densities and BitVI (4-bit) on non-Gaussian 2D density functions. We capture the overall and
cross-densities well despite the low bit precision. We include comparisons to full-covariance VI in Fig. 11.

ability distributions representable with a computer neces-
sarily possess a representation over finite-length bitstrings.
We explore this connection and derive a method to conduct
efficient approximate inference through this link.

This work introduces BitVI, a novel approach for approxi-
mate probabilistic inference in bitstring models. BitVI ex-
ploits the inherent discrete nature of number representations
to approximate continuous distributions directly in the space
of bitstrings. By leveraging probabilistic circuits [Darwiche,
2003, Choi et al., 2020], our method provides a tractable
way to learn and perform inference over complex distri-
butions without requiring high-precision representations.
Fig. 2 demonstrates how BitVI can model complex distribu-
tion with only 4-bit precision.

We validate BitVI across (i) standard benchmark densities,
demonstrating its ability to approximate known distribu-
tions; and (ii) Bayesian deep learning in neural network mod-
els in Bayesian Benchmarks, where BitVI enables scalable
and direct uncertainty quantification. Our results highlight
the efficiency and accuracy of BitVI, making it a compelling
alternative to traditional inference methods.

Our contributions can be summarized as follows.

• Methodological: We introduce BitVI, a novel ap-
proach for approximate Bayesian inference in bitstring
models, leveraging probabilistic circuits for efficient
learning and inference.

• Experimental: We provide proof-of-concept and
benchmarking results on standard test problems as well
as Bayesian deep learning tasks, demonstrating the ef-
fectiveness of BitVI in practical applications.

• Insights: We explore the role of bitstring representa-

tions in probabilistic inference and shed light on the
trade-offs between model flexibility and quantization.

2 BACKGROUND AND RELATED WORK

The relationship between continuous and discrete represen-
tations is fundamental to computational science. At its core,
digital computation relies on discrete structures, with real-
valued quantities encoded as finite-length bitstrings [Ch. 4
Knuth, 1997]. Floating-point arithmetic provides an approx-
imation to continuous values within this discrete framework,
ensuring efficient numerical operations while introducing
inherent precision limitations [Ch. 1 Sterbenz, 1974]. In re-
cent years, this foundational connection has gained renewed
attention in machine learning, particularly due to advances
in quantization and low-precision arithmetic. While these
techniques are primarily motivated by hardware constraints,
they also present an opportunity: if inference can be formu-
lated directly over discrete bitstring representations, it may
unlock new efficiencies in probabilistic modeling.

Bayesian inference provides a principled framework for
reasoning under uncertainty, yet exact inference remains
intractable in most real-world scenarios. This has led to
the development of approximate inference techniques,
such as variational inference (VI) [Blei et al., 2017,
Jordan et al., 1999, Wainwright and Jordan, 2008]. VI
formulates inference as an optimization problem, where a
parametric distribution is fitted to approximate the posterior
while minimizing the reverse KL divergence. Despite its
scalability, VI is often constrained by its reliance on con-
tinuous parameterizations, which can introduce numerical
instabilities and bias due to restrictive approximations, e.g.,
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Figure 3: Illustration of our method: For the case of fixed-point numbers, where we use the bitstring to up to each sum
node to index the sum in the circuit. The bitstring can be visualized as a hypercube, and the PC induces a distribution over
the fixed-point numbers represented by the bitstring.

mean-field or unimodality assumptions. These limitations
are apparent when operating under low-precision, raising
the question: Can we perform inference directly in a
discrete representation space?

Probabilistic circuits (PCs) are a recent framework to study
tractable representations of complex probability distribu-
tions [Choi et al., 2020]. Depending on the structural prop-
erties of the PC, certain inference scenarios can be rendered
tractable (polynomial in the model complexity) under the
circuit while maintaining a high expressivity. While PCs are
typically employed for exact probabilistic inference, they
have found successful application in approximate Bayesian
inference, for example, as surrogate through compilation
[Lowd and Domingos, 2010], as variational distribution
for structured discrete models [Shih and Ermon, 2020], or
in discrete probabilistic programs [Saad et al., 2021]. Our
work is closely related to work by Garg et al. [2024], which
utilized PCs over bitstring representation for efficient ap-
proximate inference in probabilistic programs. This work
highlights that PCs are a natural and promising representa-
tional framework for approximate Bayesian and uncertainty
quantification.

3 METHODS

Given a target density p, we aim to find a variational approxi-
mation q that minimizes the divergence of p from q. As com-
monly done, we will focus on the reverse Kullback–Leibler
(KL) divergence of q from p, instead of the forward KL.
Moreover, we assume that q takes a parametric form with
parameters θ, i.e., qθ. Thus, the goal is to find θ such that

KL(qθ ∥ p) =
∫
x∈X

qθ(x) log

(
qθ(x)

p(x)

)
dx, (1)

is minimized, assuming that X ⊆ Rd for some d ≥ 1.

In general, computing Eq. (1) is intractable for two reasons:
(i) p is often only known up to an unknown normaliza-
tion constant Zp and (ii) p and q do not exhibit sufficient

structure to render the integration tractable [Wang et al.,
2024]. Henceforth, one typically optimizes the evidence
lower bound (ELBO), which can be written as

L(qθ, p) = Ex∼qθ [log p(x)] +H (qθ) , (2)

where H(qθ) = −Ex∼qθ [log qθ(x)] denotes the entropy of
the variational distribution qθ . In case qθ admits a tractable
entropy computation, only the first term in Eq. (2) requires
numerical approximation.

Crucially, when computing either Eq. (1) or Eq. (2) on a
computer, each x will inevitably be represented in a dis-
cretized form. In fact, every real-valued number is repre-
sented by a series of bitstrings and mapped to the real line
by a mapping function ϕ : {0, 1}B → R given by the cho-
sen number system. Consequently, any distribution p or q
represented on a computer can be expressed in terms of a
distribution over bitstrings. Fig. 4 illustrates the represen-
tation of a real-valued number using an 8-bit fixed-point
representation.

−2.375 = 1 0 1 0 0 1 1 1

sign integer fraction

(8-bit fixed-point)

Figure 4: Representation of ‘−2.375’ using an 8-bit fixed-
point number system with sign, integer, and fraction bits.

In the following, we will exploit that continuous distribu-
tions can be represented by defining a distribution over
bitstrings to formulate a tractable and flexible variational
family.

3.1 BITVI: VARIATIONAL DISTRIBUTIONS OVER
BITSTRING REPRESENTATIONS

Let q̂ be a distribution over binary strings with probabil-
ity measure Q̂ defined on the measurable space of binary
strings (Y,A) with corresponding σ-algebra A. Further, let



(R,B) be the measurable space of real numbers with Borel
σ-algebra B. Define a measurable mapping ϕ : Y → R that
assigns to each binary string a real number according to a
specified number system, for example, the fixed point rep-
resentation. The induced probability measure Q on (R,B)
is the pushforward measure of Q̂ through ϕ. Specifically,
for any Borel set B ∈ B we have Q(B) = Q̂(ϕ−1(B))
where ϕ−1(B) is the pre-image of B under ϕ. Finally, we
represent the density q of Q using a (deterministic) proba-
bilistic circuit (PC). The resulting construction is illustrated
in Fig. 3 for the case of fixed-point numbers, where we use
the bitstring up to each sum node to index the sum in the
circuit. Note that for fixed-point representations with infi-
nite precision, this construction is equivalent to probability
measures generated by Pólya trees [Ferguson, 1974, Trapp
and Solin, 2022].

Definition 3.1 (Deterministic Probabilistic Circuit). A prob-
abilistic circuit f(x) is a multi-linear function represented
by a computational graph consisting of sum nodes S(x) =
⊕iwifi(x), product nodes P(x) = ⊗ifi(x), and leaf nodes
consisting of tractable (univariate) functions ψi(x). The cir-
cuit f characterizes a multivariate probability distribution
over random variables X1, . . . , Xd by, for example, repre-
senting its mass, density, or characteristic function [Yu et al.,
2023, Broadrick et al., 2024]. Note that we assume that the
circuit is smooth and decomposable [Choi et al., 2020] and
refer to Appendix A for details.

We call a sum node S deterministic if for each x, only one
summand is positive. Consequently, f is deterministic if all
sum nodes are deterministic [Choi et al., 2020].

By specifying a q̂ over bitstrings and a respective number
system, we obtain an induced variational distribution q on
the real line. As previously mentioned, our goal is to find
a parameterization θ of our variational distribution such
that Eq. (1) is minimal. When representing q using a deter-
ministic PC, the parameters θ correspond to the collection
of weights {wi}i of the circuit. Note that by construction,
the leaf nodes of our circuit model are continuous uniform
distributions and, therefore, do not have any additional pa-
rameters. The resulting deterministic PC is a tree with depth
proportional to the number of bits used in the bitstring repre-
sentation. Each sum node in the PC represents the decision
of a bit and weights correspond to the conditional probabil-
ity of the respective decision. For example, the probability
of 0.5 in 3-bit fixed-point number system with one integer
bit and no sign-bit, which corresponds to the bitstring 010,
is computed by obtaining the bit decisions, i.e., b0 = 0,
b1 = 1, and b2 = 0, and evaluating the circuit along the
respective path, i.e., p(x = 0.5) = w0w01w010

1
2Bfrac

where
Bfrac = 2 is the number of fraction bits. Fig. 5 illustrates the
decision process represented by the circuit.

Depth Regularization To encourage that q has a smooth
density in the limit of infinite precision, we leverage a depth
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Figure 5: The decision process represented by the circuit.

regularization. The depth regularization is based on Pólya
tree prior constructions for priors over continuous probabil-
ity distributions. Specifically, Ferguson [1974] proposed to
use a Beta prior on each weight of a Pólya tree with sym-
metric α-parameter that has a quadratic increase in depth j
of the tree, i.e., α(j) = j2. An alternative parameterization
is given by Castillo [2017] as α(j) = 2j . In essence, both
approaches ensure that the prior probability of uniformly
distributed weights increases with depth. We adopt this ap-
proach and use Laplace smoothing of the circuit weights
with a depth-dependent smoothing factor. In particular, for
bit bj (depth j) with j ≥ 0 we define each weight for bj = 0
as

wϵ0 =
vϵ0 + cα(j)

vϵ0 + vϵ1 + 2cα(j)
, (3)

where ϵ denotes a j − 1 long binary string, vϵ0 > 0 is an
unnormalized weight, and c > 0 is a hyperparameter. The
weight for ϵ1 is given analogously.

Computation of the ELBO A particular property of de-
terministic PCs is that the entropy can be computed in linear
time w.r.t. the number of edges of the circuit [Vergari et al.,
2021] (see Appendix B for details). As such, we only need
to approximate the expected log probability in Eq. (2) using
Monte Carlo (MC) integration. To do so, we first use a repa-
rameterization using the inverse CDF transform, which is
available analytically in the case of deterministic PCs.

In particular, we reparameterize the ELBO as,

L(qθ, p) = Eu∼Unif(0,1)

[
log p(F−1

qθ
(u))

]
+H (qθ) , (4)

where F−1
qθ

(·) is the inverse CDF transform of qθ. We
then generate T samples from a uniform distribution us ∼
Unif(0, 1) and compute a MC estimate of Eq. (4), i.e.,

L(qθ, p) ≈
1

T

S∑
s=1

log p(F−1
qθ

(us)) +H (qθ) . (5)

Note that Eq. (5) can be computed efficiently.

Remark 3.2. The inverse CDF transform of qθ can be
computed in linear time w.r.t. the depth of the circuit. ◁
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Figure 6: Uncertainty quantification in neural networks: We consider the two moons binary classification problem with
an MLP neural network (two hidden layers). The predictive density ( ) shows that BitVI provides both representative
uncertainties and good decision boundaries compared to the deterministic and MFVI baselines.

For a given input y, we can compute the inverse CDF trans-
form of y under qθ using a series of linear transformations.
In particular, for sum nodes S compute

F−1
Sϵ

(y) =

F
−1
Cϵ1

(
y−wϵ0

wϵ1

)
if y > wϵ0

F−1
Cϵ0

(
y
wϵ0

)
otherwise

, (6)

where C denotes a child node of S, i.e. a sum or leaf node,
and ϵ ∈

⋃B
j=0{0, 1}j is a bitstring. If C is a leaf node,

we compute the inverse CDF according to the respective
leaf distribution, i.e., F−1

ψ (y) = y(b− a) + a in case of a
continuous uniform distribution Unif(a, b).

Note that the resulting value still requires discretization, and
in case of fixed-point numbers needs to be rounded to the
nearest fixed-point value. In fact, the bitstring ϵ generated
by traversing the circuit in order to compute its inverse
CDF already encodes the nearest fixed-point value for y.
However, as the discretization operation does not have a
well-defined gradient, we resort to the application of the
straight-through estimator (STE) [Bengio et al., 2013]. In
particular, we compute:

x = (ϕ(ϵ) + F−1
qθ

(y))− F−1
qθ

(y), (7)

where ϕ(ϵ) is the mapping function defined by the number
system and the bitstring ϵ is a function of F−1

qθ
and indicates

the decision taken in Eq. (8).

Representing Multivariate Distributions So far, our in-
duced variational distribution is only defined on the real line
(univariate case). To extend the approach to the multivari-
ate case, we considered two approaches: (i) a mean-field
variational family, and (ii) a variational family model with
dependencies between dimensions. To represent dependen-
cies between the dimensions, we construct a deterministic
PC representing the joint distribution over the bits of all the
dimensions. In the case of fixed-point number systems, the
resulting circuit model recursively splits the domain into
hyper-rectangles by performing axis-aligned splits that al-
ternate between dimensions in the construction. Note that
this construction results in a binary tree consisting of 2B∗D

leaves, where B is the number of bits and D is the number
of dimensions. Thus, making it useful in low-dimensional
or low-precision settings. However, including conditional
independencies in the model can result in substantially more
compact representations [Peharz et al., 2020, Garg et al.,
2024]. We provide further details on the construction in
Appendix A.

Applying the inverse CDF reparameterization for multi-
variate densities modeled with BitVI requires further con-
siderations. In the case of the mean-field approximation,
we apply the inverse CDF reparameterization (described
above) independently for each dimension. If BitVI repre-
sents a variational distribution that models dependencies
between dimensions, we employ the inverse of the tree-
CDF transformation [Awaya and Ma, 2024], which is a map
RD → [0, 1]D where D is the number of dimensions. In
particular, for a given input y ∈ [0, 1]D, we compute the
inverse tree-CDF transform of y by applying the following
axis-aligned linear transformations at each sum node, where
Sd,ϵd denotes the sum node for dimension d ≤ D under
bitstring ϵd. The axis-aligned transformations are given as:

F−1
Sd,ϵd

(yd) =

F
−1
C1

(
yd−wd,ϵd0

wd,ϵd1

)
if yd > wd,ϵd0

F−1
C0

(
yd

wd,ϵd0

)
otherwise

, (8)

where with some abuse of notation C0 denotes the left child
of Sd,ϵd , which corresponds to a bit value of zero, and C1

denotes the right child (bit value of one). As we alternate
dimensions at each level in the tree, decisions are made only
based on the ‘selected’ dimension at each step. Comput-
ing the inverse of the tree-CDF transformation can still be
performed efficiently, i.e., in O(B ∗D) for B bits.

4 EXPERIMENTS

Our experiments are designed to systematically validate the
effectiveness of BitVI in performing approximate probabilis-
tic inference over bitstring representations. In Section 4.1,
we begin with 2D density estimation to demonstrate the
expressiveness of our method in capturing complex non-



Table 1: Bayesian benchmarks: Negative log predictive density (NLPD±std, smaller better) results on the Bayesian
Benchmarks UCI tasks (5-fold CV). We compare BitVI to Gaussian MFVI and Full-covariance Gaussian VI (FCGVI) on
small MLP NN models. The best-performing method for each task is bolded, and multiple methods are bolded based on a
paired t-test (p = 5%). We show that BitVI works well on all test cases and is not significantly different from the baselines
in most cases, even in the very low-bit range.

Dataset (n, d) MFVI FCGVI 2-BitVI 4-BitVI 8-BitVI
FERTILITY (100,10) 0.379±0.107 0.406±0.111 0.728±0.139 0.407±0.109 0.406±0.142

PITTSBURG-BRIDGES-T-OR-D (102,8) 0.345±0.168 0.347±0.078 0.301±0.064 0.352±0.082 0.391±0.068

ACUTE-INFLAMMATION (120,7) 0.004±0.001 0.021±0.009 0.006±0.002 0.006±0.002 0.684±0.031

ACUTE-NEPHRITIS (120,7) 0.003±0.001 0.014±0.003 0.002±0.000 0.002±0.002 0.051±0.016

ECHOCARDIOGRAM (131,11) 0.446±0.167 0.515±0.151 0.524±0.200 0.435±0.095 0.660±0.132

HEPATITIS (155,20) 0.438±0.081 0.447±0.116 0.620±0.246 0.694±0.279 0.427±0.085

PARKINSONS (195,23) 0.322±0.151 0.284±0.109 0.253±0.098 0.261±0.064 0.289±0.061

BREAST-CANCER-WISC-PROG (198,34) 0.540±0.106 0.522±0.128 0.699±0.087 0.584±0.073 0.548±0.087

SPECT (265,23) 0.614±0.067 0.624±0.053 0.801±0.108 0.807±0.148 0.670±0.125

STATLOG-HEART (270,14) 0.478±0.133 0.488±0.156 0.550±0.207 0.606±0.270 0.478±0.147

HABERMAN-SURVIVAL (306,4) 0.535±0.062 0.523±0.054 0.531±0.042 0.525±0.044 0.530±0.036

IONOSPHERE (351,34) 0.288±0.094 0.276±0.092 0.335±0.126 0.459±0.217 0.323±0.127

HORSE-COLIC (368,26) 0.611±0.159 0.595±0.163 0.618±0.119 0.690±0.143 0.576±0.103

CONGRESSIONAL-VOTING (435,17) 0.670±0.093 0.700±0.126 0.699±0.105 0.704±0.108 0.644±0.048

CYLINDER-BANDS (512,36) 0.602±0.107 0.633±0.050 0.835±0.222 0.955±0.361 0.678±0.019

BREAST-CANCER-WISC-DIAG (569,31) 0.078±0.050 0.108±0.029 0.148±0.080 0.172±0.152 0.155±0.097

ILPD-INDIAN-LIVER (583,10) 0.547±0.059 0.547±0.033 0.535±0.053 0.518±0.032 0.567±0.025

MONKS-2 (601,7) 0.083±0.121 0.607±0.082 0.563±0.060 0.656±0.073 0.666±0.030

CREDIT-APPROVAL (690,16) 0.357±0.025 0.417±0.096 0.405±0.041 0.358±0.026 0.343±0.009

STATLOG-AUSTRALIAN-CREDIT (690,15) 0.662±0.035 0.650±0.029 0.764±0.075 0.629±0.019 0.626±0.019

BREAST-CANCER-WISC (699,10) 0.091±0.042 0.105±0.041 0.171±0.113 0.168±0.055 0.122±0.059

BLOOD (748,5) 0.483±0.058 0.483±0.036 0.486±0.057 0.478±0.043 0.486±0.039

PIMA (768,9) 0.516±0.045 0.507±0.042 0.512±0.039 0.492±0.031 0.492±0.042

MAMMOGRAPHIC (961,6) 0.428±0.039 0.468±0.044 0.430±0.053 0.417±0.039 0.423±0.049

STATLOG-GERMAN-CREDIT (1000,25) 0.547±0.066 0.557±0.086 0.651±0.092 0.646±0.101 0.894±0.249

Gaussian distributions. In Section 4.2, we explore Bayesian
deep learning applications by applying BitVI to MLP neu-
ral networks, showcasing its ability to perform effective
uncertainty quantification in predictive modeling. We then
conduct a series of ablation studies in Section 4.3 to as-
sess the trade-offs between numerical precision and model
expressivity, investigating the effect of bitstring depth on
performance and the role of hierarchical structure in neural
networks.

Implementation The method was implemented in Python
using the PyTorch library in order to facilitate automatic
differentiation, convenient construction of neural network
architectures, and fast parallelized training on GPUs. The
training was conducted on a high-performance computing
cluster with Nvidia [H,A,V,P]100, K80, and H200 GPUs.
As a ballpark, the model training run time for single models
in the experiments is measured in the range of minutes for
the size of models we consider in these experiments.

4.1 2D DENSITIES

First, we demonstrate the flexibility of our proposed ap-
proach in 2D non-Gaussian target distributions. In Fig. 2, we
include typical benchmark target densities (mixture, Neal’s
funnel, two-modal Gaussian, ring, and banana) that we ap-
proximate with 4-bit BitVI . Moreover, Fig. 7 shows a com-
parison for two densities, indicating that BitVI captures the
overall density and cross-dependencies well, with approxi-
mation quality increasing with the number of bits. Fig. 11 in

Gaussian Mixture

(a) Target (b) FCGVI

(c) BitVI 4-bit (d) BitVI 8-bit

Ring Distribution

(e) Target (f) FCGVI

(g) BitVI 4-bit (h) BitVI 8-bit

Figure 7: Comparison of 4-bit/8-bit BitVI against full-
covariance Gaussian VI (FCGVI) on 2D non-Gaussian tar-
get distributions. A full comparison on all target distribu-
tions is given in Fig. 11. BitVI captures the overall density
and cross-dependencies better than FCGVI.

the Appendix shows comparisons to the remaining densities.

4.2 MLP NEURAL NETWORK MODELS

We experiment with probabilistic inference in multi-layer
perceptron (MLP) neural network (NN) models. For sim-
plicity, we use similar neural network architectures in all
the NN experiments. We use two hidden layers in all experi-
ments, only varying the number of units. Additionally, we
use the layer norm to ensure weight scaling.



Fig. 6 shows an uncertainty quantification example. We con-
sider the two moons binary classification problem with an
MLP neural network ([8,8] hidden units). The predictive
density shows that BitVI provides both representative un-
certainties and good decision boundaries compared to the
deterministic and mean-field Gaussian VI baselines.

To give a more quantitative treatment to MLP NN mod-
eling tasks, we use the Bayesian Benchmarks1 community
suite meant for benchmarking Bayesian methods in machine
learning. Bayesian benchmarks include common evaluation
data sets (typically from UCI [Kelly et al., 2025]) and make
it possible to run a large number of comparisons under
a fixed evaluation setup. We evaluate our approach in bi-
nary classification, and for an interesting probabilistic treat-
ment, we include small-data binary classification tasks with
100 ≤ n ≤ 1000 data samples (25 data sets). We follow the
standard setup of input point normalization and splits in the
evaluation suite. Additional details on the NN architectures
and evaluation setup can be found in Appendix C.2.

Table 1 shows the results for BitVI (with 2, 4, and 8 bits),
mean-field Gaussian VI (MFVI), and full-covariance Gaus-
sian VI (FCGVI). Our approach consistently performs com-
petitively with the standard variational inference baselines,
even in the low-bit regime. Notably, in most data sets, BitVI
with 4-bit and 8-bit representations achieves comparable
performance to MFVI and FCGVI, demonstrating that prob-
abilistic inference can be effectively conducted over bit-
string representations without significant loss in predictive
power. Even at 2-bit precision, BitVI remains viable in sev-
eral cases. Yet, the results also suggest that more flexible
probabilistic modeling in this neural network setting might
not be needed, as the 8-bit models show very little or any
benefits over the 4-bit models.

4.3 ABLATION STUDIES

Increasing Complexity of Target Distribution We con-
sider an ablation study where we control the target distri-
bution complexity. For this, we constructed a mixture of
equidistant Gaussians and assessed the entropy of BitVI
under varying numbers of bits under three different amounts
of variance for each Gaussian. Fig. 9 shows the fitted re-
sults of BitVI (black) with 16 bits for target distributions
with increasing complexity (gray) alongside the entropy of
BitVI under varying number of bits. The entropy (lower
figures) shows the cut-off for number of bits needed to rep-
resent each target, indicating that BitVI naturally exhibits a
parsimonious behaviour.

Trade-off Between Model Complexity and Bitstring
Depth For NN applications, an interesting question is

1github.com/secondmind-labs/bayesian_
benchmarks; originally by Salimbeni et al.

Table 2: The trade-off between NN model complexity (units
in hidden layers) and bitstring length (2–12 bits). The nega-
tive log predictive density (NLPD, smaller better) on the two
moons data suggests that even low bit depth models perform
well, and the dominating factor in expressivity is the number
of units in the NN. See Appendix D for ACC/ECE.

Increasing NN complexity →
[4, 4] [6, 6] [8, 8] [10, 10] [12, 12] [14, 14] [16, 16]

B
its

tr
in

g
de

pt
h

2 0.36 0.35 0.35 0.32 0.33 0.3 0.29
3 0.37 0.36 0.26 0.34 0.27 0.24 0.25
4 0.38 0.32 0.31 0.3 0.27 0.28 0.24
5 0.35 0.32 0.36 0.29 0.27 0.25 0.25
6 0.34 0.34 0.37 0.3 0.28 0.25 0.24
7 0.31 0.3 0.3 0.26 0.28 0.25 0.24
8 0.33 0.31 0.25 0.3 0.29 0.26 0.26
9 0.36 0.32 0.32 0.33 0.26 0.23 0.25
10 0.33 0.35 0.3 0.3 0.25 0.26 0.24
12 0.37 0.29 0.35 0.35 0.26 0.27 0.24

whether fine-grained numerical accuracy is needed to repre-
sent the model weights in the first place. Recent advances in
large-scale model training and inference suggest that rather
than numerical accuracy, the models benefit from more pa-
rameters, which enable further flexibility. Hence, we study
whether the models benefit from higher numerical granular-
ity w.r.t. probabilistic treatment.

In Table 2, we vary both the neural network complexity
(units in the two hidden layers) and the bitstring length. We
consider 2–12-bit models (with only fractional bits). The
negative log predictive density (NLPD, smaller better) on
the two moons data suggests that even low bit depth models
perform well, and the dominating factor in expressivity is
the number of units in the NN. In Appendix D, we include
similar tables for both accuracy and expected calibration
error (ECE).

Do Bitstrings Capture Hierarchies in NNs? Finally, we
use a neural network model to study the hierarchies captured
by BitVI. We start from a 10-bit NN BitVI results on the
Banana binary classification data set and gradually decrease
the fractional precision of the trained model, chopping off
more granular levels of the model. Fig. 8 shows the results
for 10, 8, 6, 4, and 2-bit models (2 integer bits each, except
for the 2-bit model). Even the 4-bit model (2 integer bits and
1 fractional bit) captures the overall structure well, whereas
the 2-bit model (with no integer bits; only a sign bit and a
fraction bit) struggles.

5 DISCUSSION AND CONCLUSION

In this work, we introduced BitVI, a novel approach for
approximate Bayesian inference that operates directly in
the space of discrete bitstring representations. By leverag-
ing (deterministic) probabilistic circuits as the representa-
tional framework, we demonstrated that inference can be
performed directly on bitstring representations of number

github.com/secondmind-labs/bayesian_benchmarks
github.com/secondmind-labs/bayesian_benchmarks


(a) 10-bit (b) 8-bit (c) 6-bit (d) 4-bit (e) 2-bit

Figure 8: Chopping the banana: We start from a 10-bit NN BitVI results on the Banana binary classification data set and
gradually decrease the fractional precision of the trained model. The low-bit models up to 4 bits capture the overall structure
well. This is further confirmed by the results in Table 2.
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Figure 9: Ablation result of BitVI (black) for target distri-
butions with increasing complexity (gray) and the precision
used by the variational distribution to represent the target.
The entropy (lower figures) shows the cut-off for bitstring
depth needed to represent each target.

systems, enabling effective approximate inference and un-
certainty quantification. Our approach presents a paradigm
shift by learning a rich variational approximation induced
by a variational family on bitstring representations without
relying on high-precision representations. Our experiments
showcased the flexibility of BitVI across different settings:
In Section 4.1, we illustrated its ability to approximate com-
plex non-Gaussian densities; and in Section 4.2, we demon-
strated its effectiveness in Bayesian deep learning, where
it provided robust uncertainty estimates while maintaining
computational efficiency.

Beyond demonstrating feasibility, these results highlight
that flexible approximate Bayesian inference does not need
to be constrained to continuous-valued computations but can
be reformulated in a fully discrete manner. Moreover, our
results further highlight the potential of using probabilistic
circuits as the representational framework for approximate
inference. While BitVI provides a promising direction for
flexible variational inference, several limitations remain,
which we will briefly discuss.

Limitations In order to scale to high-dimensional settings,
our approach currently needs to employ a mean-field approx-
imation to the posterior. This limitation arises from our tree
construction, which considers dependencies between all bits
and dependencies between all dimensions if no mean-field
assumption is made. In practical applications, modeling
all dependencies is likely unnecessary and introduces an
excessive computational and memory burden. Therefore,
a promising future direction is to leverage more compact
representations such [Peharz et al., 2020]. For the same rea-
son, our approach currently introduces many parameters
to be optimized, which can result in a challenge for high-
dimensional settings. Lastly, our experiments are currently
limited to fixed-point representations, and exploiting the rep-
resentational power of floating-point representations would
be a promising future avenue.

The codes and resources for BitVI will be made available
on GitHub upon publication of the paper2.
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A TECHNICAL DETAILS

A.1 PROBABILISTIC CIRCUITS

We will briefly review the main concepts related to probabilistic circuits (PC), relevant for this work.

Definition A.1 (scope of a node). The scope of a node is the set of variables it depends on. See [Trapp et al., 2019] for
details.

Definition A.2 (smooth & decomposable circuit). A sum node is smooth if its children have the same scope. A product node
is decomposable if its children have pairwise disjoint scopes. A circuit is smooth (resp. decomposable) if all its sum nodes
are smooth (resp. product nodes are decomposable).

In this work, we only consider circuits that fullfil both smoothness and decomposability conditions as they both are required
to render common inference tasks, such as density evaluation and marginalisation, tractable.

A.2 MULTIVARIATE BITSTRING REPRESENTATIONS

As outlined in the main text, for multivariate distributions, we generate a circuit model that represents a distribution over
hyper-rectangles. Let Ω denote the domain of the distribution, we recursively construct a dyadic partition of the domain
into measurable subsets. This process is done by selecting a splitting dimension at each level of the tree and splitting the
hyper-rectangle according to the number system representation, i.e., in the middle for fixed-point numbers. At the next
level, we select a splitting dimension our of the remaining dimension (those that have not been split yet) and split the
hyper-rectange accordingly. We make sure each dimension has been split in the process, before restarting the splitting. The
construction ends if each dimension has been split B many times, where B is the number of bits used in the number system.
Fig. 10 illustrates the recursive splitting of the input domain Ω into sub-domains (hyper-rectangles).

Ω

level= 0

A0 A1

level= 1

A00

A01

A10

A11

level= 2

. . .

Figure 10: Illustration of the iterative axis-aligned splitting of the domain into hyper-rectangles (sub-domains) by the circuit.
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B DERIVATIONS

B.1 ENTROPY CALCULATION EXAMPLE FOR A DETERMINISTIC PC

Let C be a deterministic PC with a sum node S0 as its root and two children P00 and P01. Product nodes have two children,
one of which is a leaf node and the other a sum node. For example, P has a leaf node L00 and a sum node S00 as its children.
Leaf nodes are indicator functions L00(x) = 1{x0 = 0}, where 1{·} is the indicator function. All sum nodes in the circuit
have two children. Hence, S0 has weights w00 and 1− w00, where 0 ≤ w00 ≤ 1.

H [C(x)] = −
∫

x∈X
C(x) log C(x) (9)

= −
∫

x∈X
S0(x) log (S0(x)) (10)

= −
∫

x∈X
[w00P01(x) + (1− w00)P00(x)] log {[w00P01(x) + (1− w00)P00(x)]} (11)

= −
∫

x∈X
[w00L01(x0) ∗ S00(x̂) + (1− w00)L01(x0) ∗ S00(x̂)] ∗ (12)

log {[w0,0L01(x0) ∗ S0,0(x̂) + (1− w00)L00(x0)S0,1(x̂)]} (13)

= −
∫

x∈X
[w001{x0 = 1}S01(x̂) + (1− w00)1{x0 = 0}S00(x̂)] ∗ (14)

log {[w001{x0 = 1}S01(x̂) + (1− w00)1{x0 = 0}S00(x̂)]} . (15)

Where x̂ denotes the vector x without variable x0.

Next, partition the integral into two integrals leveraging the fact that,

∫
x∈X

f(x)dx =

∫
x∈XA

f(x)dx+

∫
x∈XB

f(x)dx, X = XA
⋃

XB ,XA
⋂

XB = ∅. (16)

Here, the integral splits into subsets Xx0 representing the set of all bit vectors x with x0 = 1, and respectively X¬x0 with all
bit vectors x with x0 = 0. Hence,

H[C(x)] = −
∫

x∈Xx0

[w001{x0 = 1}S01(x) + (1− w00)1{x0 = 0}S00(x)] ∗ (17)

log {[w001{x0 = 1}S01(x) + (1− w00)1{x0 = 0}S00(x)]} (18)

−
∫

x∈X¬x0

[w001{x0 = 1}S01(x) + (1− w00)1{x0 = 0}S00(x)] ∗ (19)

log {[w001{x0 = 1}S01(x) + (1− w00)1{x0 = 0}S00(x)]} . (20)

Now, each integral can be simplified since the indicator functions will always evaluate to 0 or 1 in the respective subsets of
X , i.e.,

H[C(x)] = −
∫

x∈Xx0

w00S01(x) log {[w00S01(x)]} (21)

−
∫

x∈X¬x0

[(1− w00)S00(x)] ∗ log {(1− w00)S00(x)} . (22)

As the two integrals have the same form, for notational simplicity, we will only consider the first integral (in orange). The



second integral can be computed in the same way.

−
∫

x∈Xx0

w00S01(x) log {[w00S01(x)]} (23)

= −
∫

x∈Xx0

w00S01(x) [logw00 + log (S01(x))] (24)

= −
∫

x∈Xx0

w00 log(w00)S01(x) + w00S01(x) ∗ log (S01(x)) (25)

= −w00 log(w00)

∫
x∈Xx0

S01(x)− w00

∫
x∈Xx0

S01(x) ∗ log (S01(x)) . (26)

Notice that the second integral is the entropy of the sum node S01. Hence,

= −w00 log(w00)

∫
x∈Xx0

S01(x̂) + w00H(S01(x̂)). (27)

Furthermore, if S01 is normalized, then
∫

x∈Xx0
S01(x)dx = 1, leading to the further simplification,

= −w00 log(w00) + w00H(S01(x̂)). (28)

B.2 REVERSE KL DIVERGENCE CALCULATION

Let us define a density q and a density p. The reverse KL divergence of q from p is denoted as KL(q ∥ p), and defined as:

KL(q ∥P ) =
∫
q(x) log

p(x)

q(x)
dx (29)

= −
∫
q(x) log q(x)dx+

∫
q(x) log p(x) dx. (30)

Note that −
∫
q(x) log q(x) dx is the entropy of distribution q, and will be denoted as −H(q):

KL(q ∥ p) = −
∫
q(x) log p(x) dx−H (q) . (31)

Note also that
∫
q(x) log p(x) d is the expected value of the log-likelihood of p w.r.t. q:

KL(q ∥ p) = −Ex∼q [log p(x)]−H (q) . (32)

C EXPERIMENTAL DETAILS

C.1 2D DENSITIES

We present results for 2D non-Gaussian target distributions. In Fig. 11, we include additional results for typical benchmark
target densities (mixture, Neal’s funnel, two-modal Gaussian, ring, and banana) that we approximate with 4-bit/8-bit BitVI,
which captures the overall density and cross-dependencies well.

C.2 MLP NEURAL NETWORK MODELS

The experiments with the Bayesian-benchmarks data sets used the following hyperparameters and setup:

• Adam optimizer with a learning rate of 0.001

• Hidden layer size 16×16 for D ≤ 500 and 32×32 for D > 500

• Batch size of 32 for D ≤ 500 and 128 for D > 500



• 64 samples for computing the Monte Carlo approximation of the posterior log-joint

• Weight representations used two integer bits, except for the 2-bit model, which used zero integer bits

• LayerNorm [Ba et al., 2016] applied to hidden layers (pre-activation)

• Depth-based regularization for circuit parameters ϵ d2 with ϵ = 0.1

• Early stopping based on the validation set ELBO loss after 2000 epochs

• Circuit weights were initialized from a beta distribution based on the height of the sum node in the circuit. The beta
distribution α and β were set as 2h where h is the height of the sum node in the circuit.

• 5-fold cross-validation into train and test sets

• Validation set split from the train set with 20% of the train set data

C.3 ABLATION STUDIES

Banana Chopping

• Training set of 2048 points

• Validation set of 512 points

• Adam optimizer with a learning rate of 0.01

• Batch size of 256

• LayerNorm [Ba et al., 2016] applied to hidden layers (pre-activation)

• Weight representations used 10 bits with no integer bits. A sign bit and nine fractional bits.

• Depth-based regularization for circuit parameters ϵ d2 with ϵ = 0.001.

• Circuit weights were initialized from a beta distribution based on the height of the sum node in the circuit. The beta
distribution α and β were set as 2h where h is the height of the sum node in the circuit.

D ADDITIONAL RESULTS

The following section contains additional results.

D.1 ABLATION STUDIES



Target toy 2D density functions

Full-Covariance Gaussian VI

BitVI (8-bit) result

BitVI (4-bit) result

(a) Gaussian Mixture (b) Neal’s Funnel (c) Two-modal Gaussian (d) Ring (e) Banana

Figure 11: 2D non-Gaussian target distributions. We include results for typical benchmark target densities (mixture, Neal’s
funnel, two-modal Gaussian, ring, and banana) that we approximate with 4-bit/8-bit BitVI, which captures the overall
density and cross-dependencies well.



Table 3: Trade-off between NN model complexity (units in hidden layers) and bitstring depth (2–12 bits). Accuracy and
expected calibration error (ECE) on the two moons data suggest that even low bit depth models perform well, and the
dominating factor in expressivity is the number of units in the NN. See Table 2 in the main paper for the NLPD.

(a) Accuracy

[4, 4] [6, 6] [8, 8] [10, 10] [12, 12] [14, 14] [16, 16]
2 0.856 0.85 0.852 0.87 0.868 0.888 0.89
3 0.854 0.857 0.903 0.865 0.897 0.909 0.906
4 0.852 0.879 0.88 0.884 0.904 0.898 0.909
5 0.86 0.877 0.854 0.895 0.901 0.909 0.913
6 0.863 0.861 0.853 0.887 0.895 0.91 0.906
7 0.882 0.883 0.888 0.899 0.896 0.909 0.905
8 0.874 0.877 0.909 0.884 0.886 0.909 0.904
9 0.864 0.873 0.873 0.877 0.897 0.914 0.909
10 0.87 0.862 0.886 0.884 0.912 0.899 0.909
12 0.852 0.888 0.863 0.863 0.898 0.895 0.908

(b) ECE

[4, 4] [6, 6] [8, 8] [10, 10] [12, 12] [14, 14] [16, 16]
2 0.059 0.053 0.061 0.064 0.065 0.055 0.06
3 0.06 0.071 0.051 0.053 0.046 0.042 0.049
4 0.064 0.064 0.055 0.045 0.042 0.045 0.038
5 0.061 0.057 0.058 0.053 0.042 0.043 0.044
6 0.06 0.067 0.057 0.048 0.044 0.039 0.046
7 0.063 0.053 0.048 0.046 0.041 0.042 0.046
8 0.061 0.051 0.038 0.047 0.048 0.045 0.042
9 0.055 0.056 0.053 0.053 0.045 0.04 0.042
10 0.057 0.058 0.056 0.05 0.037 0.047 0.046
12 0.064 0.05 0.055 0.053 0.041 0.05 0.045
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