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ABSTRACT

The appearance of adversarial examples raises attention from both academia and
industry. Along with the attack-defense arms race, adversarial training is the
most effective against adversarial examples. However, we find inequality phe-
nomena occur during the l∞-adversarial training, that few features dominate the
prediction made by the adversarially trained model. We systematically evaluate
such inequality phenomena by extensive experiments and find such phenomena
become more obvious when performing adversarial training with increasing ad-
versarial strength (evaluated by ϵ). We hypothesize such inequality phenomena
make l∞-adversarially trained model less reliable than the standard trained model
when the few important features are influenced. To validate our hypothesis, we
proposed two simple attacks that either perturb important features with noise or
occlusion. Experiments show that l∞-adversarially trained model can be easily
attacked when a few important features are influenced. Our work sheds light on
the limitation of the practicality of l∞-adversarial training.

1 INTRODUCTION

Szegedy et al. (2013) discovered adversarial examples of deep neural networks (DNNs), which pose
significant threats to deep learning-based applications such as autonomous driving and face recog-
nition. Prior to deploying DNN-based applications in real-world scenarios safely and securely, we
must defend against adversarial examples. After the emergence of adversarial examples, several
defensive strategies have been proposed (Guo et al., 2018; Prakash et al., 2018; Mummadi et al.,
2019; Akhtar et al., 2018). By retraining adversarial samples generated in each training loop, ad-
versarial training (Goodfellow et al., 2015; Zhang et al., 2019; Madry et al., 2018b) is regarded as
the most effective defense against adversarial attacks. The most prevalent adversarial training is l∞
adversarial training, which applies adversarial samples with l∞ bounded perturbation by ϵ.

Numerous works have been devoted to theoretical and empirical comprehension of adversarial train-
ing (Andriushchenko & Flammarion, 2020; Allen-Zhu & Li, 2022; Kim et al., 2021). For example,
Ilyas et al. (2019) proposed that an adversarially trained model (robust model for short) learns ro-
bust features from adversarial examples and discards non-robust ones. Engstrom et al. (2019) also
proposed that adversarial training forces the model learning to be invariant to features to which
humans are also invariant. Therefore, adversarial training results in robust models’ feature represen-
tations that are more comparable to humans. Theoretically validated by Chalasani et al. (2020), the
l∞-adversarial training suppresses the significance of the redundant features, and the robust model,
therefore, has sparser and better-behaved feature representations than the standard trained model.
In general, previous research indicates that robust models have a sparse representation of features
and view such sparse representation as advantageous because it is more human-aligned. Several
works investigate this property of robust models and attempt to transfer such feature representation
to a standard trained model using various methods (Ross & Doshi-Velez, 2018; Salman et al., 2020;
Deng et al., 2021).
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However, contrary to the claim of previous work regarding such sparse feature representation as
an advantage, we find that such sparseness also indicates inequality phenomena (see Section 3.1
for detailed explanation) that may pose unanticipated threats to l∞-robust models. During l∞-
adversarial training, the model not only suppresses the redundant features (Chalasani et al., 2020) but
also suppresses the importance of other features including robust ones. The degree of suppression
is proportional to the adversarial attack budget (evaluated by ϵ). Hence, given the input images
for an l∞-robust model, only a handful of features dominate the prediction. Intuitively, standard-
trained models make decisions based on various features, and some redundant features serve as a
“bulwark” when a few crucial features are accidentally distorted. However, in the case of a l∞ robust
model, the decision is primarily determined by a small number of characteristics, so the prediction
is susceptible to change when these significant characteristics are modified (see Figure 1). As shown
in Figure 1, an l∞-robust model recognizes a street sign using very few regions of the sign. Even
with very small occlusions, the robust model cannot recognize a street sign if we obscure the region
that the model considers to be the most important (but well recognized by humans and the standard-
trained model). Even if an autonomous vehicle is deployed with a robust model that achieves high
adversarial robustness against worst-case adversarial examples, it will still be susceptible to small
occlusions. Thus, the applicability of such a robust model is debatable.

Figure 1: l∞-robust model fails to recognize street sign with small occlusions. With given feature
attribution maps that attribute the importance of each pixel, we occlude the image’s pixels of high
importance with small patches. The resultant image fools the robust model successfully. We notice
prior works (Tsipras et al.) showed that feature attribution maps of robust models are perceptually
aligned. For clarity we strongly suggest the readers check Appendix A.2. )

In this work, we name such a phenomenon that only a few features are extremely crucial for mod-
els’ recognition as “inequality phenomenon”. we study the inequality from two aspects: 1) global
inequality: characterized by the dominance of a small number of pixels. 2) regional inequality: char-
acterized by the tendency of pixels deemed significant by the model to cluster in particular regions.
We analyze such phenomena on ImageNet- and CIFAR10-trained models with various architec-
tures. We further devise attacks to expose the vulnerabilities resulting from such inequality based on
our findings. Experiments demonstrate that under the premise that human observers can recognize
the resulting images, l∞-robust models are significantly more susceptible than the standard-trained
models. Specifically, they are susceptible to occlusion and noise with error rates of 100% and 94%
respectively, whereas standard-trained models are only affected by 30.1% and 34.5%. In summary,
our contribution can be summed up in the following manner:

• We identify the occurrence of the inequality phenomenon during l∞-adversarial training.
We design correlative indices and assess such inequality phenomena from various perspec-
tives (global and regional). We systematically evaluate such phenomena by conducting
extensive experiments on broad datasets and models.

• Then, we identify unrealized threats posed by such inequality phenomena that l∞-robust
models are much more vulnerable than standard trained ones under inductive noise or
occlusion. In this case, during the l∞-adversarial training, the adversarial robustness is
achieved at the expense of another more practical robustness.

• Our work provides an intuitive understanding of the weakness of l∞-robust model’s feature
representation from a novel perspective. Moreover, our work sheds light on the limitation
and the hardness of l∞-adversarial training.
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2 BACKGROUND AND RELATED WORK

2.1 ADVERSARIAL ATTACK

DNNs are known to have various risks. These risks include adversarial attacks Li et al. (2021); Zhu
et al. (2022); Mao et al. (2021); Qi et al.; Gu et al. (2022), backdoor attacks (Guo et al., 2023; Qi
et al., 2023), privacy concerns (Li et al., 2020) and etc. Given a model denoted as f(x; θ) : x→ Rk

and training dataset denoted as D, empirical risk minimization (ERM) is a standard way (denoted
as standard training) to train the model f through:

minθE(x,y)∈Dloss(x, y) (1)

where y ∈ Rk is the one-hot label for the image and loss (x, y) is usually cross-entropy loss.
With such a training scheme, the model typically performs well on clean test samples. Adversarial
examples (Szegedy et al., 2013) aim to generate perturbation superimposed on clean sample x to
fool a well-trained model f . Adversarial example x′ can be crafted by either following the direction
of adversarial gradients (Goodfellow et al., 2015; Kurakin et al., 2016; Madry et al., 2018a; Duan
et al., 2021) or optimizing perturbation with a given loss (Carlini & Wagner, 2017; Chen et al.,
2018).

2.2 ADVERSARIAL TRAINING

Several defensive strategies are proposed to improve the models’ adversarial robustness (Wong &
Kolter, 2018; Akhtar et al., 2018; Meng & Chen, 2017; Raghunathan et al., 2018; Wu et al., 2022).
However, analysis by Athalye et al. (2018) shows that among various defensive strategies against
adversarial examples, only the adversarial training does not rely on the obfuscated gradient and truly
increases the model’s robustness. A model is considered robust against adversarial examples if:

argmaxf (x; θ) = argmaxf(x+ σ;θ), s.t.||σ||∞ ≤ ϵ (2)
where ϵ represents the magnitude of the perturbation. Therefore, the core idea of adversarial training
is to train models with adversarial examples, formally:

loss(x, y) = E(x,y)∈D[max||σ||∞≤ϵloss(x+ σ, y)], (3)
The objective max|σ|≤ϵloss(x+σ, y) introduces the model to minimize empirical risk on the training
data points while also being locally stable in the (radius-ϵ) neighborhood around each of data points
x. The objective is approximated via gradient-based optimization methods such as PGD (Madry
et al., 2018b). Several following works attempt to improve adversarial training from various aspects
(Shafahi et al., 2019; Sriramanan et al., 2021; Jia et al., 2022b; Cui et al., 2021; Jia et al., 2022a;c).

Interestingly, Ilyas et al. (2019) proposes that by suppressing the importance of non-robust features,
adversarial training makes the trained model more focused on robust and perceptually-aligned fea-
ture representations. In this process, the feature representation becomes more sparse. Chalasani
et al. (2020); Salman et al. (2020); Utrera et al. (2020) suggests that the feature representation gen-
erated by a robust model is concise as it is sparse and human-friendly. It only assigns the feature
that is truly predictive of the output with significant contributions.

2.3 HOW INEQUALITY FORMS DURING l∞ ADVERSARIAL TRAINING

In (Chalasani et al., 2020), they theoretically prove the connection between adversarial robustness
and sparseness: During l∞-adversarial training, supposed the adversarial perturbation σ satisfying
||σ||∞ ≤ ϵ, the model attempts to find robust features serving as strong signals against perturba-
tion. Meanwhile, the non-robust ones which serve as relatively weak signals, and their significance
(acquired by feature attribution methods) more aggressively shrunk toward zero. The shrinkage
rate is proportional to adversaries’ strength (evaluated by ϵ). In other words, standard training can
result in models where many non-robust features have significant importance for models, whereas
l∞-adversarial training tends to selectively reduce the magnitude of the significance of non-robust
features with weakly relevant or irrelevant signals and push their significance close to zero. In the
end, the feature attribution maps generated by gradients-based feature attribution methods (Smilkov
et al., 2017; Lundberg & Lee, 2017; Sundararajan et al., 2017) look more sparse. They regard such
sparseness as a merit of adversarial training as it produces more concise and human-aligned feature
attributions. However, we further study such sparseness and find it introduces a phenomenon of
extreme inequality, which results in unanticipated threats to l∞-robust models.
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3 METHODOLOGY

In this section, we first introduced the index used to measure inequality from two aspects. Then we
propose two types of attacks to validate our hypothesis: extreme inequality brings in unexpected
threats to l∞-robust model.

3.1 MEASURING THE INEQUALITY OF A TEST DATA POINT

Firstly, feature attribution maps are required to characterize the inequality degree by given test
data point x and model f . Several feature attribution methods have been proposed in recent years
(Smilkov et al., 2017; Lundberg & Lee, 2017; Sundararajan et al., 2017). In general, feature attri-
bution methods rank the input features according to their purported importance in model prediction.
To be specific, we treat the input image x as a set of pixels x = {xi, i = 1...M} and denote the
generated feature attribution map of x of model f as Af (x), where Af (x) is composed of ai. Fea-
ture attribution methods attribute an effect ai to each xi, and summing the effects of all feature
attributions approximates the output f(x). xi achieves the top-most score (ai) is regarded as the
most important pixel for prediction, whereas those with the bottom-most score are considered least
important.

With a given sorted Af (x) = {ai, i = 1...M |ai < ai+1} generated by a typical feature attribution
method, if the prediction f(x) can be approximated with the sum of N most important features and
N is much less than M , we name such distribution of Af (x) is unequal. Namely, the prediction on
x made by model f is dominated by a few pixels. Formally, we use Gini index (Dorfman, 1979) to
measure the inequality of the distribution of a given feature attribution map. Given a population set
indexed in non-decreasing order Φ = {ϕi, i = 1...n|ϕi ≤ ϕi+1}, Gini coefficient can be calculated
as:

Gini(Φ) =
1

n

(
n+ 1− 2

∑n
i=1 (n+ 1− i) ∗ ϕi∑n

i=1 ϕi

)
(4)

An advantage of the Gini(·) index is that inequality of the entire distribution can be summarized
by using a single statistic that is relatively easy to interpret (see Appendix A.3 for a more detailed
comparison between Gini and other sparsity measures). The Gini index ranges from 0, when the
value of every ϕi is equal, to 1, when a single ϕi takes all the sum. This allows us to compare the
inequality degree among feature attributions with different sizes. We define two types of inequality
as follows:

• Global inequality: Given a feature attribution map Af (x) = {ai, i = 1...M |ai < ai+1}
on test data point x, we only consider the inequality degree of the global distribution of
Af (x) and take no into account for other factors, the inequality degree is calculated with
Ginig(A

f (x)) directly. The higher of Ginig(A
f (x)), the more unequal the distribution

Af (x), the fewer pixels take the most prediction power. When Ginig(A
f (x)) is equal

to 1, it indicates one pixel dominates the prediction while all the other pixels have no
contribution to the current prediction.

• Regional inequality: We also consider inequality degree together with spatial fac-
tor, whether important feature tends to cluster at specific regions. A region is de-
fined as a block with size of n ∗ n of input space. We first divide pixels into differ-
ent regions and calculate the sum of pixels’ importance by regions, formally, Af

r (x) ={
ari , i = 1...m|ari < ari+1

}
, where ar is the sum of ai in the region. Therefore, the Gini

value on Af
r (x) reflects the inequality degree of different regions of input space. The higher

the value of Ginir(A
f
r (x)), the more important pixels tend to cluster in the specific regions.

When Ginir(A
f
r (x)) is equal to 1, it represents all pixels that contribute to the prediction

cluster in one region (block).

In what follows, we propose potential threats caused by such inequality (global and regional inequal-
ity). We devise attacks utilizing common corruptions to reveal the unreliability of such decision
pattern by l∞-robust model.
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3.2 ATTACK ALGORITHMS

We propose two simple attacks to validate potential threats caused by such inequality phenomena:
1) Inductive noise attack. 2) Inductive occlusion attack.

3.2.1 INDUCTIVE NOISE ATTACK

We evaluate the models’ performance under attacks designed by two types of noise.

• Noise (Type I): Given an image x, we perturb the most influential pixels of images with
Gaussian noise σ ∈ N (0, 1) via masking M . Formally:

x′ = x+M ∗ σ, where Mi =

{
0,ai < atre

1,ai ≥ atre
(5)

where atre represents the threshold. xi with value that is below to the atre will be kept,
and xi whose ai ≥ atre is perturbed by Gaussian noise.

• Noise (Type II): About the second type of noise attack, we directly replace important pixels
with Gaussian noise, formally x′ = M ∗ x + M ∗ σ, where M represents reverse mask
of M . Compared to Noise-I, Noise-II replaces important pixels totally and disturbs images
more severely.

If the model’s decision pattern is extremely unequal, the performance will be highly influenced when
important features are corrupted by inductive noise attacks.

3.2.2 INDUCTIVE OCCLUSION ATTACK

With respect to inductive occlusion attack, we obscure regions of important pixels with occlusions
gradually. During the attack, the max count of occlusions is N with a radius at max R. The order of
regions to perturb is decided by the value of Af

r (x), that region of higher ari is perturbed in priority
by occlusions with size r ∈ {1...R}. The number of occlusions is constrained by n ∈ {1...N}. We
also consider occlusion with different colors to reflect potential real-world occlusion. The inductive
occlusion attack algorithm is listed as follows:

Algorithm 1 Inductive Occlusion Attack

Require: Test data point (x, y), Model f , Regional Attribution map Af
r (x), Max count and radius

N,R, Perturb color c.
Ensure: f(x) = y ▷ Ensure the test data x is correctly classified by model f .

n← 1, r ← 1, x′ = x
for n = 1 to N do

for r = 1 to R do
M ← get perturb mask(Af

r (x), n, r) ▷ A function to acquire the perturbation mask.
x′ = M ∗ x+M ∗ c ▷ Perturb x by mask M with color c.
If f(x′) ̸= y :break

end for
end for
return x′

Note the intention of this work is not to propose strong adversarial attacks. Although either noise
or occlusion is beyond the threat model considered in l∞ adversarial training, we intend to reveal
the threats caused by such inequality phenomena that previous work ignored. In summary, the
extreme inequality decision pattern of l∞-trained adversarial models to result in themselves being
more fragile under some corruptions.

4 EXPERIMENTS

In this section, we first outline the experimental setup. We then evaluate the inequality degree (by
Gini) of different models. Then, we evaluate the performance of the proposed attacks. Finally, we
perform an ablation study about the selection of feature attribution methods.
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4.1 EXPERIMENTAL SETTINGS

Dataset and models. We perform a series of experiments on ImageNet Deng et al. (2009) and CI-
FAR10 Krizhevsky et al. (2009). With respect to experiments on ImageNet, we use ResNet18 (He
et al., 2016), ResNet50, WideResNet50 (Zagoruyko & Komodakis, 2016) provided by Microsoft 1.
For CIFAR10, we use ResNet18, DenseNet (Huang et al., 2017) (see A.1 for detailed configura-
tions). Regarding feature attribution methods (implementation by Captum2), we consider methods
including Input X Gradients (Shrikumar et al., 2016), Integrated Gradients (Sundararajan et al.,
2017), Shapley Value (Lundberg & Lee, 2017) and SmoothGrad (Smilkov et al., 2017). Considering
space and time efficiency, we primarily present experimental results based on Integrated Gradients
and perform an ablation study on the other feature attribution methods.

Metrics. For all the tests about the models’ performance, we use error rate (%) as the met-
ric to evaluate the model’s performance under corruptions (e.g., noise and occlusions), which
is the proportion of misclassified test images among the total number of test images defined as
1
N

∑N
n=1[f(x) ̸= f(x′)], where x represents clean test images, and x′ represents test images cor-

rupted by noise and occlusions. For a fair comparison, we first select 1000 random images from
ImageNet that are correctly classified by all the models before performing the attack.

4.2 INEQUALITY TEST

In this section, we first evaluate the inequality degree (both global and regional inequality) of
l∞-robust models and standard trained models with different architectures (ResNet18, ResNet50,
WideResNet, DenseNet) trained on ImageNet and CIFAR10. We also evaluate the inequality degree
of different models adversarially trained with increasing adversarial strength (ϵ = 1, 2, 4, 8). In the
case of the evaluation on Gini, We applied the Gini index to the sorted absolute value of the flattened
feature attribution maps. On evaluating regional inequality, we set the region’s size as 16 ∗ 16 for
experiments on ImageNet and 4 ∗ 4 for CIFAR10. The results are presented in Table 1. As shown

Table 1: Gini index across different models. We evaluate the Gini coefficient of different models
trained with different ϵ on ImageNet and CIFAR10.

Dataset Model Std. trained ϵ = 1.0 ϵ = 2.0 ϵ = 4.0 ϵ = 8.0

CIFAR10

Global Inequality
ResNet18 0.58 ± 0.05 0.65 ± 0.05 0.67 ± 0.06 0.69 ± 0.06 0.73 ± 0.06
DenseNet 0.57 ± 0.04 0.66 ± 0.06 0.67 ± 0.06 0.69 ± 0.06 0.72 ± 0.07

Regional Inequality
ResNet18 0.79 ± 0.02 0.87 ± 0.04 0.87 ± 0.04 0.88 ± 0.04 0.88 ± 0.04
DenseNet 0.79 ± 0.02 0.85 ± 0.04 0.86 ± 0.04 0.87 ± 0.04 0.88 ± 0.03

ImageNet

Global Inequality
ResNet18 0.60 ± 0.04 0.69 ± 0.06 0.79 ± 0.04 0.92 ± 0.01 0.95 ± 0.01
ResNet50 0.62 ± 0.04 0.75 ± 0.05 0.86 ± 0.03 0.92 ± 0.02 0.94 ± 0.01
WideResNet 0.62 ± 0.05 0.74 ± 0.05 0.79 ± 0.04 0.88 ± 0.03 0.94 ± 0.01

Regional Inequality
ResNet18 0.80 ± 0.02 0.83 ± 0.04 0.88 ± 0.03 0.95 ± 0.01 0.97 ± 0.01
ResNet50 0.84 ± 0.02 0.91 ± 0.05 0.95 ± 0.02 0.96 ± 0.01 0.97 ± 0.01
WideResNet 0.81 ± 0.03 0.86 ± 0.03 0.88 ± 0.03 0.93 ± 0.03 0.97 ± 0.02

in Table 1, on CIFAR10, the global inequality degree of the standard trained model with different
architectures is around 0.58. The Gini (global inequality) for l∞-robust model is around 0.73 when
ϵ = 8. Notably, the inequality phenomena is much more obvious on ImageNet. Especially for an
adversarially trained Resnet50 ( ϵ = 8), the Gini achieves 0.94, which indicates that only a handful
of pixels dominate the prediction. Experiments on CIFAR10 and ImageNet show that l∞-robust
models rely on fewer pixels to support the prediction with the increasing of the adversarial strength

1https://github.com/microsoft/robust-models-transfer
2https://github.com/pytorch/captum
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(ϵ). We also test the inequality degree on different classes belonging to ImageNet; classes related
to animal tends to have a higher value on Gini index. For example, class ‘Bustard’ has the highest
value on Gini of 0.950. Classes related to scenes or stuff tend to have a lower Gini. For example,
class ‘Web site’ has the lowest inequality of 0.890 (See Appendix A.7).

We visualize the features’ attribution of given images for the standard and l∞-adversarially trained
ResNet50 respectively in Figure 2. When the model is adversarially trained with weak adversarial

Figure 2: Feature attributions of different models. We visualize feature attributions generated
by l∞-robust models (adversarially trained by adversaries of different ϵ), the larger of ϵ, the fewer
features that model relies on for prediction.

strength (ϵ = 1), the model has better feature attribution aligned to human observers. However, when
the adversarial strength increases, the model gradually assigns higher importance to fewer pixels and
resulting in extreme inequality regarding feature attribution. Moreover, these most important pixels
tend to gather in a few specific regions ( Additional visualizations for ImageNet and CIFAR10 are
in Appendix A.11 and A.10 respectively).

4.3 EVALUATION UNDER INDUCTIVE NOISE ATTACK

In this part, we compare the performance of standard- and adversarially- trained ResNet50 under
random and inductive noise. We set noise with different scales, including subpixels of 500, 1000,
5000, 10000, and 20000. We present the results in Figure 3.

Figure 3: Evaluation under noise. We plot the error rate of standard- and adversarially-trained
models on images perturbed by the increasing number of noise.

Under random noise, the success rate of attack on the robust model achieves 73.4%, but only 18.8%
for standard-trained model. Under Noise of Type I, the robust model is fooled by 94.0%, while the
standard trained model is only fooled by 34.5%. Under Noise of Type II, even when we control
the amount of noise with a small threshold (e.g., 1000 pixels), more than 50% of predictions made
by the robust model is affected. When we enlarge the threshold to 20000, the robust model (ϵ=8)
is almost fooled with a 100% success rate. In summary, compared to the standard trained model,
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l∞-robust model relies on much fewer pixels to make a decision; such a decision pattern results in
unstable prediction under noise.

4.4 EVALUATION UNDER INDUCTIVE OCCLUSION ATTACK

In this part, we perform an inductive occlusion attack and evaluate the standard- and l∞-robust
ResNet50s’ performance. We set two group experiments with different thresholds.

Table 2: Models’ performance (Error rate %) under occlu-
sions. We evaluate the models’ performance by gradually oc-
cluding important areas with patches of different sizes and col-
ors.

Model Std. ϵ = 1.0 ϵ = 2.0 ϵ = 4.0 ϵ = 8.0
Max cnt N = 5, R = 10

Occlusion-G 23.5% 31.6% 38.4% 32.4% 54.0%
Occlusion-W 28.3% 48.4% 57.5% 61.3% 71.7%
Occlusion-B 31.6% 51.5% 53.3% 48.9% 64.6%

Max cnt N = 10, R = 20
Occlusion-G 30.1% 48.2% 56.3% 100.0% 100.0%
Occlusion-W 40.1% 59.1% 73.3% 100.0% 100.0%
Occlusion-B 41.2% 70.2% 72.2% 100.0% 100.0%

In the first group of experi-
ments, we generate occlusions
with a max count of 5 and a
max radius of 10. In this case,
the adversarially-trained model
is fooled at a 71.7% error rate,
but the standard trained model’
predictions are only affected by
31.6%. When we enlarge the
threshold and set max count as
10 and radius as 20 for occlu-
sions, both ϵ = 4 and ϵ = 8
adversarially trained model can
be fooled with 100% success rate
while only 41.2% attack suc-
cess rate for the standard-trained
model. We visualize the re-
sults in Figure 4. As the figure
shows, l∞-adversarially trained
model with larger ϵ could be easily attacked by smaller occlusions even under the same thresh-
old. For example, in Figure 4, the standard trained model can recognize ‘Bulbul‘ well with the head
part occluded, but the adversarially trained model fails to recognize the ‘Bulbul’ if only the beak of
the bulbul is occluded. Moreover, compared with adversarial perturbation, occlusion is more practi-

Figure 4: Visualization of occluded images. We visualize images occluded with different patches
of different sizes and the corresponding predictions made by standard and l∞-adversarially trained
models. Compared to a standard-trained model, the adversarially trained model is fragile when
occlusion covers the area of important features.

cal as occlusion frequently appears in the real world. We also evaluate the transferability of attacked
results between the robust model and the standard trained model, the results are consistent with our
observation (see Appendix A.4).
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4.5 ABLATION STUDY

We consider four attribution methods for the ablation study: Input X Gradient (Shrikumar et al.,
2016), SmoothGrad (Smilkov et al., 2017), Gradient Shapley Value (GradShap for short) (Lundberg
& Lee, 2017) and Integrated Gradients (Sundararajan et al., 2017) (see Appendix A.8 for detailed
configuration). We perform an ablation study to evaluate the effect of selection on the feature at-
tribution methods (see Table 3). Among various attribution methods, SmoothGrad produces more

Table 3: Ablation study on selection. We evaluate our hypothesis with different feature attribution
methods.

Attribution Method Model Gini Noise I Noise II Occlusion-B Occlusion-G Occlusion-W

Input X Gradient Std. trained 0.63 16.1% 45.0% 24.7% 16.8% 23.5%
Adv. trained 0.93 60.9% 90.4% 63.3% 51.2% 63.2%

GradShap Std. trained 0.62 19.8% 54.7% 31.5% 24.1% 29.9%
Adv. trained 0.93 62.3% 93.7 % 64.8% 53.3% 71.6%

SmoothGrad Std. trained 0.75 63.5% 45.0% 32.3% 25.6% 30.3%
Adv. trained 0.98 82.5% 98.3% 61.6% 49.7% 60.8%

Integrated Gradients Std. trained 0.62 16.5% 55.5% 31.6% 23.5% 28.3%
Adv. trained 0.94 63.9 % 95.5% 64.6% 54.0% 71.7%

spare feature attribution maps and thus results in higher values on Gini. Regarding evaluation under
noise, SmoothGrad increases the inductive noise attack’s success rate. Regarding evaluation under
occlusion, the selection of Integrated Gradients improve the attack’s success rate on models.

In conclusion, the selection of attribution methods slightly affects attacks’ success rates but does not
change our conclusion: the distribution of features’ attribution by l∞-robust model is much more
unequal; such inequality makes the robust model more susceptible to inductive noise and occlusions.

5 DISCUSSION AND CONCLUSION

In this work, we study the inequality phenomena that occur during l∞-adversarial training. Specif-
ically, we find l∞-robust models’ feature attribution is not as aligned with human perception as we
expect. An ideal human-perceptual aligned model is expected to make decisions based on a series of
core feature attributions. For example, if the model classifies an input image as a bird, it should take
attributions, including the eye, the beak of the bird, and the shape of the bird, all of these attribu-
tions into account. However, we find l∞-robust model only relies on individual attribution (only the
bird’s beak) for recognization. We name such phenomena as inequality phenomenon. We perform
extensive experiments to evaluate such inequality phenomena and find that l∞ robust model assigns
a few features with extremely high importance. Thus, a few features dominate the prediction. Such
extreme inequality of l∞-robust model results in unreliability. We also design attacks (by utilizing
noise and occlusion) to validate our hypothesis that robust models could be more susceptible under
some scenarios. We find an attacker can easily fool the l∞-trained model by modifying important
features with either noise or occlusion easily. We suggest that both noise and occlusion are common
in a real-world scenario. Therefore, robustness against either noise or occlusion is more essential
and crucial than robustness against adversarial examples. Our work reveals the limitation and vul-
nerability of the current l∞-robust model. We also evaluate if such inequality phenomenon exists
in l2-robust model and models trained with sparsity regularization. The evaluation results show that
such a phenomenon is a unique property of l∞-robust model (see Appendix A.5 and A.6).

We also propose a strategy to release such inequality phenomena during l∞-adversarial training. We
combine Cutout (DeVries & Taylor, 2017) strategy with adversarial training and force the model
learning features from different regions by cutting out part of training images at each iteration dur-
ing the training (see the result in Appendix A.9). The strategy slightly releases the inequality degree
of the robust model. More effective strategies releasing such extreme inequality could be a crucial
and promising direction for future work. We hope our work can motivate new research into the char-
acteristics of adversarial training and open up further challenges for reliable and practical adversarial
training.
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ETHICS STATEMENT

In this paper, we identify inequality phenomena that occur during l∞-adversarial training, that l∞-
robust model tends to use few features to make the decision. We give a systematical evaluation
of such inequality phenomena across different datasets and models with different architectures. We
further identified unrealized threats caused by such decision patterns and validated our hypothesis by
designing corresponding attacks. Our findings provide a new perspective on inspecting adversarial
training. Our goal is to understand current adversarial training’s weaknesses and make DNNs truly
robust and reliable. We did not use crowdsourcing and did not conduct research with human subjects
in our experiments. We cited the creators when using existing assets (e.g., code, data, models).

REPRODUCIBILITY STATEMENT

We present the settings of hyper-parameters and how they were chosen in the experiment section. We
repeat experiments multiple times with different random seeds and show the corresponding standard
deviation in the tables. We plan to open the source code to reproduce the main experimental results
later.
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A APPENDIX

A.1 DETAILS OF MODELS

A.1.1 DETAILS OF MODELS TRAINED ON IMAGENET

We summarize the clean and robust accuracy (%) of models trained on ImageNet in Table ??. Re-
garding robust accuracy, we use PGD for evaluation. During the training on ImageNet, the images

Table 4: l∞-robust models’ clean and robust accuracy (ImageNet)

Model Std. trained ϵ=1/255 ϵ=2/255 ϵ=4/255 ϵ=8/255

ResNet-18 69.76 63.46 /33.38 59.63 /29.80 52.49 /26.52 42.11 /23.75
ResNet-50 76.13 72.05 /45.02 69.10 / 42.75 63.86 / 38.85 54.53 / 33.05
Wide-ResNet-50 81.60 74.65 /47.30 72.35 /45.95 68.41 /43.10 60.82 /38.35

are resized to 256 using interpolation=InterpolationMode.BILINEAR, followed by a central crop of
size=224. Finally, the values are first rescaled to [0.0,1.0] and then normalized using mean=[0.485,
0.456, 0.406] and std=[0.229, 0.224, 0.225].

TRAIN TRANSFORM = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( 2 5 6 ) ,
t r a n s f o r m s . Cen te rCrop ( 2 2 4 ) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,

] )
TEST TRANSFORM = t r a n s f o r m s . Compose ( [

t r a n s f o r m s . R e s i z e ( 2 5 6 ) ,
t r a n s f o r m s . Cen te rCrop ( 2 2 4 ) ,
t r a n s f o r m s . ToTensor ( ) ,

] )

A.1.2 DETAILS OF MODELS TRAINED ON CIFAR10

We summarize the clean and robust accuracy of models trained on CIFAR10 in Table 5. Regarding
robust accuracy, we use AutoAttack Croce & Hein (2020) for evaluation.

Table 5: l∞-robust models’ clean and robust accuracy (CIFAR10)

Model Std. trained ϵ=1/255 ϵ=2/255 ϵ=4/255 ϵ=8/255
ResNet-18 93.90 92.10 /86.60 90.40 /79.90 88.30 /68.80 81.20 /48.60
DenseNet 92.80 91.30 /86.60 89.90 /79.50 85.80 /65.90 79.60 /44.40

TRAIN TRANSFORM = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . RandomCrop ( 3 2 , padd ing = 4) ,
t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,

] )

TEST TRANSFORM = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . ToTensor ( ) ,

] )
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A.2 FURTHER DISCUSSION ABOUT VISUALIZATION OF FEATURE ATTRIBUTION

Most visualization methods apply post-processing techniques during generating feature attribution
maps. The post-processing technique is also clarified in (Tsipras et al.): “For CIFAR-10 and Ima-
geNet, we clip gradients to within ±3σ and rescale them to lie in the [0, 1] range.” Thus, the most
influential pixels with extremely high values are clipped to a relatively lower value but they actually
dominate the prediction (see Figure 5).

Figure 5: Visualizing feature attribution with and without post-processing (by 3 deviations).

We also provide more visualization of feature attribution maps with and without post-processing.
As Figure 6 shows, the post-processed feature attribution maps are more perceptually-aligned with
human observers. However, such visualization are not subjective.

Figure 6: More visualization of feature attribution maps with and without post-processing .
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A.3 SPARSITY MEASURE VS. GINI INDEX & MOTIVATION BEHIND USING GINI INDEX

The sparsity of a vector can be quantified by ||x||0
|x| (duf, 2017), which simply calculates the ratio

of non-zero elements. However, the sparsity measure treats an infinitesimally small value the same
as a significant value. Even if some of the small coefficients increase by significant values, that
change will not be reflected by a change in the value of the sparsity measure. For example, given
a vector x1 = [0, 0, 0, 1, 1] and x2 = [0, 0, 0, 1, 1000], the sparsity degree of x1 and x2 is equal to
0.4. However, their distributions are totally different. The distribution of x2 is much more unequal
compared with x1. Also, ||x||0

|x| is sensitive to noise, especially in settings where most values of
elements are around 0 (e.g., feature attribution map).

In our case, Gini is able to reflect the change when a small coefficient increases. A Gini coefficient
of 0 expresses perfect equality, where all values are the same, while a Gini coefficient of 1 (or 100%)
expresses maximal inequality among values. For example, the Gini of x1 = [0, 0, 0, 1, 1] equals to
0.6, and 0.799 for x2 = [0, 0, 0, 1, 1000]. The value of Gini also provides an intuitive understanding
of the distribution. When Gini = 0.6, approximately 40% in the population (1-0.6 = 0.4) occupies
the total worth. When Gini = 0.799, approximately 21.1% of the population dominates the worth.
As for our experiment, Gini of feature attributions by l∞-robust model (ϵ = 8.0) is about 0.95,
representing less than 5% of pixels that dominate the prediction.

A.4 TRANSFERABILITY TEST

we perform occlusion attacks with two groups of attack budgets:

• Group 1: max count = 5, max radius = 10.

• Group 2: max count = 10, max radius = 20.

We perform noise attacks with threshold = 5000.

Attack Occ -B (cnt=5, r=10) Occ-B (cnt=10, r=20) Noise-I Noise-II
Model Adv. Std. Adv. Std. Adv. Std. Adv. Std.
Adv. 100.0 11.4 100.0 17.4 100.0 10.6 100.0 18.6
Std. 22.8 100.0 43.6 100.0 26.8 100.0 58.2 100.0

As the table shows, the transferability between the l∞-robust model and the standard-trained model
is low. Transferring attack results from the standard-trained model to the l∞-robust model is easier.
If the region of the most important pixels is occluded, the l∞-robust model fails to recognize the
images correctly. The experiments are consistent with our observations.

A.5 COMPARED WITH l2-ROBUST MODEL

Due to different properties of lp norm vector space, the case of l2 adversarial training is not the same
as l∞ adversarial training. To be specific, l∞ constrains the maximum magnitude of perturbation for
each pixel. The adversarial noise is added on each pixel independently during the l∞ adversarial
training. Therefore, the model attempts to find the most robust feature against noise and drops the
features which could be affected by adversarial noise. Therefore, with increasing the magnitude (ϵ)
of adversarial noise, fewer but more robust features l∞-robust model can rely on for recognition.

Different from l∞ norm measures each pixel independently, l2 norm calculates the square root of
the inner product of all elements in a vector. Thus, during l2 adversarial training, if a large budget
of perturbation perturbs some pixels, the other pixels share the left budget on perturbation. Moay-
eri et al. provides a game-theoretic understanding of l2-adversarial training: during each loop of
l2-adversarial training, the attacker perturbs the features which are predictive for the model. When
some predictive features are perturbed with the most budget of perturbation, the features perturbed
with small or without perturbation are easier for the model to learn. Furthermore, these less per-
turbed features then become more predictive at the next training iteration. Thus, the inequality
phenomenon does not occur during l2-adversarial training. However, the l2-robust model would
use both the object-relevant and object-irrelevant features (e.g., background) for prediction at the
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game’s equilibrium. In (Moayeri et al.; 2022), they show that l2-robust model is more sensitive to
the background and other spurious features.

Model Clean acc Gini-g Gini-r Occ-B Occ-G Occ-W Noise-I Noise-II
Std. trained 76.13% 0.62 0.84 33.0% 28.1% 36.5% 15.8% 49.8%
l2-AT model 56.13% 0.60 0.76 51.4% 32.5% 48.3% 2.9% 36.3%
linf-AT model 54.53% 0.95 0.97 81.5% 61.0% 77.2% 75.6% 96.1%

As explained above, the inequality degree of l2-robust model is similar to the standard trained model
(or l2 is even more equal). However, l2-robust model is still more vulnerable to occlusion. We guess
it is because the most influential features tend to cluster together for both l∞ at and l2-robust model.

A.6 COMPARED WITH MODELS TRAINED WITH SPARSITY REGULARIZATION

we perform experiments on l∞-robust model and model trained with regularization for sparsity. We
consider two types of sparse models: the model with sparse architecture and models with sparse
weights. We compared l∞-robust model with models regularized by the following techniques:

• l1 norm pruning (Li et al.): It prunes filters by removing whole filters in the network to-
gether with their connecting feature maps.

• Weight pruning (Han et al., 2015): It applies mask as regularization and sets the weights to
be 0. It results in sparser weights and connectivity patterns.

Model Clean Acc Gini g Gini r Occ-B Occ-G Occ-W Noise-I Noise II
Adv. trained 54.53% 0.94 0.97 78.2% 80.2% 60.2% 60.9% 95.1%
L1-norm sparsity 73.08% 0.60 0.80 56.8% 57.8% 52.5% 40.7% 89.2%
Weight-level Pruning 75.60% 0.62 0.81 33.1% 29.2% 25.8% 15.7% 49.9%

The sparsity of either model architecture or weights will not result in inequality on feature attri-
bution. The l∞-AT model is much more easily affected by occlusion and noise attack than the
two sparse models. We think l∞ can be regarded as a strong regularization: during l∞-adversarial
training, the model attempts to find the most robust feature against adversarial noise and discards
the features which could be affected by added adversarial noise. With increasing the magnitude
(ϵ) of adversarial noise, only a handful of features l∞-adversarially trained model can rely on for
recognition.

A.7 EQUALITY DEGREE OF DIFFERENT CLASSES

We test the inequality degree of feature attributions’ distribution of 50000 samples from 1000 classes
in ImageNet. We present results in Table 6.

Table 6: Global inequality degree of different classes (l∈-Adv. traind, ϵ = 8)

Top-5 Class Bustard Manhole cover Oystercatcher Redshank Pomeranian

Gini 0.950 0.949 0.949 0.949 0.949

Bottom-5 Class Web site Slot Grocery store Grille Comic book

Gini 0.890 0.900 0.901 0.901 0.905

Classes with top-5 inequality (Gini value) are: Bustard, Manhole cover, Oystercatcher, Redshank
and Pomeranian. And their Gini values are 0.950, 0.949, 0.949, 0.949 and 0.949. Classes with
bottom-5 inequality (Gini value) are: Web site, Slot, Grocery store, Grille and Comic book. Their
corresponding Gini values are: 0.890, 0.900, 0.901, 0.901 and 0.905.

Regarding regional inequality, we present results in Table 7. Classes with high regional inequality
are similar to classes with high global inequality. Specifically, classes of the top 5 (regional inequal-
ity) are Redshank, American coot, Oystercatcher, Bustard and Gazelle. And the Ginir(.) of these
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Table 7: Regional inequality degree of different classes (l∈-Adv. traind, ϵ = 8)

Top-5 Class Redshank American coot Oystercatcher Bustard Gazelle

Gini 0.976 0.975 0.975 0.974 0.974

Bottom-5 Class Web site Grocery store Confectionery Slot Grille

Gini 0.929 0.932 0.934 0.935 0.936

classes are: 0.976, 0.975, 0.975, 0.974 and 0.974. Classes in the bottom 5 (regional inequality) are
Web site, Grocery store, Confectionery, Slot, and Grille. And the Ginir(.) of these classes are:
0.929, 0.932, 0.934, 0.935 and 0.936.
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A.8 DETAILS ABOUT FEATURE ATTRIBUTION METHOD

We use attribution methods including Input X Gradient, Smooth Gradient (short for SmoothGrad),
Gradient Shapley Value (short for GradShap) and Integrated Gradients.

Input X Gradient: The Input X Gradient multiplies input with the gradient with respect to each
input feature. It is a baseline approach for computing the attribution.

GradShap: Shapley Values aims compute each feature’s attribution based on cooperative game
theory. GradShap approximates Shapley Values by computing the expectations of gradients by
randomly sampling from the distribution of baselines. It adds noise to each input sample nsamples

times, selects a random baseline from the baselines’ distribution, and a random point along the path
between the baseline and the input. Then it computes the gradient of outputs with respect to those
selected random points. In our evaluation, we set nsamples = 20 for experiments with ImageNet
and nsamples = 10 for experiments with CIFAR10. We set baseline = 0 for all the experiments.

Integrated Gradients: Integrated Gradients is an axiomatic model which assigns an importance
score to each input feature by approximating the integral of gradients of the model’s output with
respect to the inputs along the path (straight line) from given baseline to inputs. Previous work
points out Integrated Gradients method is sensitive to the choice of path. To reduce such sensitivity,
Integrated Gradients are usually repeated for nstep steps. For all the experiments, we set nstep = 20,
and baseline ∈ N (0, 1).

SmoothGrad: SmoothGrad adds gaussian noise to each input in the batch nsamples times, then
applies the given attribution algorithm to each of the samples. It returns the mean of the sampled
attributions. SmoothGrad returns a sparser feature attribution map than other methods. In our ex-
periment, we set nsamples = 20

A.9 HOW TO RELEASE INEQUALITY PHENOMENON

We also try to propose a strategy to release the inequality phenomenon in adversarial training. In-
tuitively, we hope adversarially trained models learn to find robust features from the whole image
rather than focus on a specific robust feature. Towards this end, we incorporate Cutout with ad-
versarial training that Cutout enables the model to learn features from multiple spatial spaces. We
evaluate our strategy on CIFAR10. The results are presented in Table 8.

Model Gini Gini-R Clean Acc. Adv. Acc. Noise I Noise II Occlusion-B Occlusion-G Occlusion-W
Adv. trained 0.73 0.88 82.10 % 48.50 % 40.31 % 1.58% 100.00% 100.00% 100.00%
Adv. trained+Cutout 0.70 0.88 81.40 % 47.20 % 40.78% 1.72% 93.39% 29.98% 55.06 %

Table 8: l∞-adversarial training with and without Cutout.

As the table indicates, the Cutout strategy can slightly release the inequality of l∞-adversarial train-
ing. But at a price, both clean accuracy and adversarial accuracy slightly decrease. Regarding per-
formance under noise and occlusion, the strategy does not improve the adversarial trained model’s
performance under noise but improves its performance under occlusions. A more effective strategy
to release inequality phenomena is highly required.
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A.10 VISUALIZATION FOR CIFAR10

We visualize feature attribution maps and attack results for CIFAR10. About the setting of attack,
we set max count N = 10, with max radius R = 4. With occlusion with different colors (black,
white and grey), success rates on 1000 correct classified images of l∞-adversarially trained model
are 60.4%, 60.5%, and 38.1% respectively. And success rates for the standard trained models are
34.6 %, 36.7% and 24.1% respectively. We visualize corresponding results in Figure 8.

Figure 7: Visualization of feature attribution on CIFAR10.

Figure 8: Visualization of occluded images for CIFAR10.
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A.11 MORE VISUALIZATION RESULTS FOR IMAGENET

0.68 0.73 0.79 0.89 0.94

0.68 0.74 0.79 0.88 0.93

0.61 0.62 0.70 0.84 0.90

0.62 0.77 0.83 0.91 0.95

0.62 0.69 0.74 0.85 0.91

0.60 0.69 0.77 0.86 0.92

0.59 0.70 0.75 0.86 0.91

Figure 9: Visualization of feature attributions generated by standard- and adversarially trained model
with different ϵ.
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