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ABSTRACT

Out-of-distribution (OOD) data often undermines reliable model deployment in
high-stakes domains such as financial markets, where overlooked correlations
and unexpected shifts can render predictive systems ineffective. We propose
STAR (Structured Transformations and Adversarial Reweighting), a framework
that leverages the geometry of distribution shifts by combining transformation-
based invariances with divergence-based robust optimization. Specifically, STAR
places an f -divergence ball around each label-preserving transformation of the
training sample, empowering an adversary to apply known transformations and
reweight the resulting data within a specified divergence radius. This design cap-
tures both large, structured shifts and subtle, unmodeled perturbations—a critical
step toward mitigating shortcuts and spurious correlations. Notably, STAR recov-
ers standard distributionally robust optimization if no structured transformations
are assumed. We establish a uniform-convergence analysis showing that minimiz-
ing STAR’s empirical nested min–max objective achieves low worst-case error
over all admissible shifts with high probability. Our results quantify the additional
samples needed to handle the adversary’s flexibility, providing theoretical guid-
ance for selecting the divergence radius based on problem complexity. Empirical
studies on synthetic and image benchmarks confirm that STAR outperforms base-
lines, consistent with our theoretical findings.

1 INTRODUCTION

Out-of-distribution (OOD) generalization remains a persistent challenge in machine learning: mod-
els often fail when test samples deviate from training conditions. One widely used strategy is
transformation-based learning, which encodes label-preserving transformations T (e.g., rotations,
flips) to protect against known shifts by minimizing worst-case loss over T ∈ T . Although this ap-
proach effectively exploits domain knowledge, it can be restrictive if actual test shifts extend beyond
the predefined transformations, leading to overlooked or under-modeled variations.
On the other hand, divergence-based distributionally robust optimization (DRO) (Namkoong &
Duchi, 2016) explores distributions within an f -divergence ρ of the empirical measure, thereby ac-
commodating unstructured or adversarial reweightings. However, standard DRO does not explicitly
leverage geometric or semantic transformations, potentially over-preparing for shifts that simpler
invariances would address more directly. Moreover, the lack of explicit structure may cause the
model to focus on unrealistic distributions, increasing computational cost and diluting performance
in practice.
We propose STAR (Structured Transformations and Adversarial Reweighting), an adversarial
framework designed to address these limitations by simultaneously capturing large, structured
shifts and subtler, unmodeled perturbations. STAR places an f -divergence ball around each label-
preserving transformation of the training set, allowing the adversary to reweight examples under
each transformation. By doing so, STAR adapts to a wider range of potential shifts while retaining
the interpretability of transformations and the flexibility of adversarial reweighting.
We establish a uniform-convergence analysis showing that minimizing STAR’s empirical min–max
objective achieves low worst-case error, with sample-complexity bounds quantifying the data re-
quired to handle both geometry and reweighting. Empirical evaluations confirm that STAR outper-
forms methods relying solely on transformations or on divergence-based DRO.
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2 RELATED WORKS

Learning robust models that generalize under distribution shifts has been a central focus in recent
years. One prominent strategy is transformation-invariant learning, which aims to capture features
stable under certain data transformations or across domains. Invariant Risk Minimization (IRM)
is a notable example that learns a data representation supporting an optimal predictor invariant
across multiple training environments Arjovsky et al. (2019), thereby reducing reliance on spurious
correlations. More recently, Montasser et al. investigate theoretical guarantees for transformation-
invariant learning in settings where test samples are generated by applying a class of transformations
to training data Montasser et al. (2024). They provide learning rules with PAC guarantees and frame
the problem as a two-player game between the learner and an adversary choosing transformations,
which offers a worst-case (adversarial) view on achieving OOD generalization. These approaches
underscore the value of leveraging prior knowledge of invariances to improve out-of-distribution
performance.
Another line of research studies adversarial robustness and distributionally robust optimization
(DRO) as means to safeguard against worst-case shifts. Namkoong and Duchi introduced an f-
divergence–based DRO framework that seeks a worst-case reweighting of the data, effectively up-
weighting high-loss examples via a min-max objective Namkoong & Duchi (2016). This formula-
tion provides performance guarantees under shifts and closely relates to adversarial training, which
can be seen as DRO over perturbation sets – for example, Sinha et al. show that augmenting updates
with worst-case input perturbations (within a Wasserstein ball) confers certifiable robustness to ad-
versarial examples Sinha et al. (2017). Similarly, DRO has been applied to group shifts: Sagawa et
al. train models to minimize the worst-case loss across pre-defined data groups, improving worst-
group accuracy on challenging subsets Sagawa et al. (2019).

3 PROBLEM SETUP

We study a learning setting where an m-sample S = {(xi, yi)}mi=1 is drawn i.i.d. from an unknown
distribution D ⊆ X×Y . Alongside this training set, we have a finite family of label-preserving trans-
formations T = {T1, . . . , T|T |}, each of which acts on x ∈ X while leaving the corresponding label
y unchanged. To handle shifts beyond these structured transformations, we adopt an f -divergence
measure Df (·∥·) and a radius ρ ≥ 0, thereby allowing an adversary to reweight or perturb the dis-
tribution within ρ divergence of a baseline measure. We measure the performance of any hypothesis
h ∈ H through a loss function ℓ : H×X × Y → R≥0.

4 METHODOLOGY

Let T be a known set of label-preserving transformations, and let f be any convex function defining
an f -divergence Df . Given an m-sample S = {(xi, yi)}mi=1 from distribution D, we denote its
empirical measure by PS . Our goal is to learn h ∈ H that is robust to applying a transformation
T ∈ T , and reweighting the transformed empirical distribution within Df (·∥ T (PS)) ≤ ρ.

Our Min–Max Objective. Formally, we solve
min
h∈H

max
T∈T

max
Q :Df (Q∥ T (PS))≤ρ

E(x,y)∼Q

[
ℓ
(
h(x), y

)]
. (1)

Any (T,Q) pair represents a shift: T enacts geometric or semantic changes, while Q further redis-
tributes mass within f -divergence ρ of T (PS). This nested min-max-max formulation ensures that
we minimize the worst-case loss over all transformations and redistributions, rather than an average
or sum of losses.

Naı̈ve Augmentation vs. Dual-View. A direct solution is to augment S by all transformations
{T (xi)}, then optimize maxQ:Df (Q∥u)≤ρ

∑
pi ℓ
(
h, ·
)

over the augmented dataset (with uniform
baseline u). However, if |T | and m are large, the dimension |T |×m can be prohibitive. We therefore
adopt a dual-view strategy with a two-level adversarial approach. This approach maintains a distri-
bution π over transformations to identify the worst-case T ∈ T , while simultaneously assigning a
weight vector pT for each transformation, constrained by Df

(
pT ∥ 1

m1
)
≤ ρ.

The algorithm proceeds through alternating optimization steps. First, an inner adversary updates
each pT to maximize the loss under its respective transformation T . Next, an outer adversary up-
dates π to concentrate mass on the worst-case transformations. Finally, the learner updates h to
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minimize the weighted loss
∑

T πT

∑
i pT,iℓ

(
h, T (xi), yi

)
. This nested structure effectively imple-

ments the min-max objective while keeping computation tractable.

Theoretical Guarantees. By standard uniform convergence arguments, our solution (1) guaran-
tees
OPT∞ = inf

h
sup
T∈T

sup
Q:Df (Q∥ T (D))≤ρ

EQ

[
ℓ(h)

]
≈ min

h
max
T∈T

max
Q:

Df (Q∥ T (PS))≤ρ

EQ

[
ℓ(h)

]
.

(2)

provided m is large enough. Section 5 details sample-complexity bounds that combine VC(H ◦ T )
with an additional term Ψ(ρ), reflecting the divergence radius. Notably, when ρ → 0, we recover
pure transformation-based learning; while for large ρ, we protect against strong reweighting but
need more samples.

4.1 DUAL-VIEW ALGORITHM: PER-TRANSFORMATION WEIGHTS

The naive approach in §3 can be computationally expensive when both |T | and m are large, since
it requires handling an adversarial weight vector of dimension |T | × m. Here we describe a more
efficient ”dual-view” algorithm that assigns one weight vector per transformation and updates those
weights in parallel, while also maintaining a distribution over transformations to focus on the worst
cases. This method extends two-player mirror-descent (Namkoong & Duchi, 2016) to a three-player
game with nested adversaries.

Algorithm Sketch. Our algorithm maintains two key distributions throughout the optimization
process. First, for each transformation Tj ∈ T , we maintain a distribution p(j) = (p

(j)
i )mi=1 over

the training samples, constrained such that Df (p
(j) ∥ 1

m1) ≤ ρ. Second, we maintain a distribution
π = (π1, π2, . . . , π|T |) over the transformations themselves, which helps identify the worst-case
transformations.
Initially, each p(j) is set to the uniform vector 1

m1, and π is uniform over T . At iteration r =
1, 2, . . . , R, three updates occur:
(1) Inner Adversary update. For each Tj ∈ T , run a mirror-ascent step on the loss

m∑
i=1

p
(j)
i ℓ

(
hr, Tj(xi), yi

)
,

then project back onto the feasible set {p(j) : Df (p
(j)∥ 1

m1) ≤ ρ}. This step increases the weights
on points that most expose hr’s weaknesses under transformation Tj . We then compute the total
loss for each transformation: gj(hr) =

∑m
i=1 p

(j)
i ℓ

(
hr, Tj(xi), yi

)
.

(2) Outer Adversary update. Update the distribution π over transformations using exponentiated
gradient:

π
(r+1)
j ∝ π

(r)
j exp(ηr · gj(hr))

followed by normalization. This update increases weight on transformations that produce high loss,
effectively focusing on the worst-case transformations.
(3) Learner update. Once all weights are updated, perform a gradient-descent step on

|T |∑
j=1

π
(r+1)
j

m∑
i=1

p
(j)
i ℓ

(
h, Tj(xi), yi

)
,

yielding a new hypothesis hr+1. This move counteracts both adversaries by improving h on the
transformations and data points that have been emphasized.
After R iterations, the algorithm returns the final hypothesis hR or an average over all {hr}Rr=1.
This ”dual-view” approach with the nested adversarial structure properly implements the min-max-
max objective while keeping computational complexity manageable. Each inner adversary update
remains a mirror-ascent step on m coordinates, and the outer adversary update is a simple expo-
nentiated gradient step on |T | coordinates, making the overhead comparable to standard DRO ap-
proaches.

5 THEORETICAL ANALYSIS

In our theoretical analysis the term Ψ(ρ,m) plays a central role by quantifying the additional com-
plexity introduced by allowing adversarial reweightings within an f -divergence ball of radius ρ. In
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this section, we provide a formal definition of Ψ(ρ,m) along with explicit bounds under standard
regularity assumptions on the divergence function.

5.1 ASSUMPTIONS ON THE DIVERGENCE FUNCTION

Assumption 1 (Regularity of f ). Let f : R>0 → R be a convex function with f(1) = 0. We assume
that f is continuously differentiable and strongly convex in a neighborhood of 1; that is, there exist
constants µ > 0 and ϵ0 > 0 such that for all u ∈ (1− ϵ0, 1 + ϵ0),

f(u) ≥ f(1) + f ′(1)(u− 1) +
µ

2
(u− 1)2.

This assumption holds for standard divergences such as the Kullback–Leibler divergence and the
χ2-divergence under moderate parameter settings.

5.2 DEFINITION OF Ψ(ρ,m)

Given a sample S = {(xi, yi)}mi=1, denote by

u =

(
1

m
,
1

m
, . . . ,

1

m

)
the uniform distribution over the m points. For any probability vector p ∈ ∆m (the m-simplex),
define the f -divergence

Df (p∥u) =
m∑
i=1

ui f
( pi
ui

)
.

We then consider the set of all reweightings that are within divergence ρ of the uniform distribution:

P(ρ) =
{
p ∈ ∆m

∣∣∣ Df (p∥u) ≤ ρ
}
.

For a given accuracy ε > 0 (with respect to the ℓ1-norm), let N (P(ρ), ∥ · ∥1, ε) denote the covering
number of P(ρ). We define the divergence complexity as

Ψ(ρ,m) := inf
ε∈(0,1)

logN
(
P(ρ), ∥ · ∥1, ε

)
.

This definition captures the effective number of degrees of freedom available to an adversary under
the divergence constraint.

5.3 BOUNDING Ψ(ρ,m)

Lemma 1 (Bound on Divergence Complexity). Under Assumption 1, there exist constants C1, C2 >
0 (depending on µ and on properties of f ) such that for all ρ satisfying 0 ≤ ρ ≤ ρ0 (for some
ρ0 > 0),

Ψ(ρ,m) ≤ C1 mρ+ C2 lnm.
In particular, when ρ = o(1), the additional complexity Ψ(ρ,m) grows at most sublinearly in m.

This bound shows that for moderate divergence radii, the increase in sample complexity due to
adversarial reweighting is controlled.

5.4 NEAR-OPTIMALITY LOWER BOUND

We now show that the sample complexity bound cannot be substantially improved. In particular, we
prove that any learner must require on the order of Ω

(
VC(H◦T )+Ψ(ρ)

ε2

)
samples to achieve the same

worst-case error bound, thereby demonstrating near-optimality.

Theorem 1 (Near-Optimality Lower Bound). For every integer m, there exist a distribution D, a
hypothesis class H, a transformation family T , and a radius ρ > 0 such that, with probability at
least 1/4 over S ∼ Dm,

inf
learning rule A

sup
T∈T

sup
Q:Df (Q ∥ T (D))≤ ρ

EQ

[
ℓ
(
A(S), x, y

)]
≥ OPT∞ + c

for some absolute constant c > 0. Equivalently, to attain risk less than OPT∞ + c/2 with high

probability, any rule A requires m = Ω
(

VC(H◦T )+Ψ(ρ)
ε2

)
.

Sketch of Proof We adapt a standard VC argument to construct d = VC(H ◦ T ) points
{x1, . . . , xd} that can be shattered by H ◦ T . By choosing a random labeling pattern α and an

4



Published as a conference paper at ICLR 2025

appropriate label-preserving transformation Tα ∈ T , we form a distribution Dα that lies within
f -divergence ρ of Tα(D), yet forces any single hypothesis h ∈ H to misclassify at least one point
xi. If the sample size m is too small, the learner cannot reliably identify which α has been chosen,
and so with constant probability it will pick a hypothesis ĥ that incurs extra error on Dα. Hence,
no algorithm can guarantee near-optimal worst-case risk below OPT∞+ c, implying the claimed Ω
bound on m.

Algorithm 1 Mirror-Descent for Adversarial Reweighting with Transformations

1: Input: A sample S ∼ Dm, transformations T , radius ρ, loss ℓ, etc.
2: Initialize: Choose h(1) ∈ H. For each T ∈ T , let p(1)

T be uniform over {T (xi), yi}mi=1.
3: Initialize distribution π(1) to be uniform over T .
4: Fix a step-size schedule, e.g. ηr = c /

√
r for some c > 0.

5: for r = 1 to R do
6: for T ∈ T do
7: (Inner Adversary) Update p

(r)
T via mirror-ascent on

∑
i p

(r)
T,i ℓ

(
h(r), T (xi), yi

)
8: Project onto {p(r+1)

T : Df (p
(r+1)
T ∥ T (PS)) ≤ ρ}.

9: Compute transformation loss gT (h(r)) =
∑

i p
(r+1)
T,i ℓ(h(r), T (xi), yi)

10: end for
11: (Outer Adversary) Update π(r+1) via exponentiated gradient:
12: π

(r+1)
T ∝ π

(r)
T exp(ηr · gT (h(r))) for each T ∈ T , then normalize

13: (Learner step) Update h(r+1) by minimizing
∑

T∈T π
(r+1)
T

∑
i p

(r+1)
T,i ℓ(h, T (xi), yi).

14: end for

15: Output: h :=
1

R

R∑
r=1

h(r), pT :=
1

R

R∑
r=1

p
(r)
T , ∀T ∈ T , π :=

1

R

R∑
r=1

π(r).

Theorem 2 (Approximate Saddle-Point Guarantee). Under convexity of ℓ in h and appropriate
conditions on Df (·∥·) for mirror-ascent, the final triple (h,π, {pT }) produced by Algorithm 1 is an

O
(
R− 1

2
)
-approximate saddle point with high probability (over the sample S and any algorithmic

randomness). Concretely, there exists a function ϵ(R) = O
(
R− 1

2
)

such that

max
T∈T

(
max

Q:Df (Q ∥T (PS))≤ ρ
EQ

[
ℓ(h, x, y)

])

≤ min
h∈H

max
T∈T

(
max

Q:Df (Q ∥T (PS))≤ ρ
EQ

[
ℓ(h, x, y)

])
+ ϵ(R).

(3)

Sketch of Proof Since ℓ(·) is convex in h and the feasible sets for π and each pT are convex
under their respective constraints, we can apply a two-level mirror-descent analysis. For the outer
level, exponentiated gradient updates on π ensure convergence to the distribution that places weight
on the worst-case transformations. For the inner level, mirror-descent on each pT converges to the
worst-case reweighting within the f -divergence ball. Averaging the iterates across all three variables
yields an O(R−1/2) approximation to the nested min-max-max solution.

6 EXPERIMENTS AND RESULTS

We construct a toy distribution in R2 consisting of two Gaussian clusters (one per class). To induce
structured perturbations, we apply two label-preserving transformations: (i) a mild rotation by 15◦

and (ii) a reflection across the x-axis. Additionally, an adversary can reweight transformed samples
within a KL-divergence ball of radius ρ > 0. We evaluate three strategies: (a) Transform-Only,
(b) Divergence-Only, and (c) STAR (Ours).

Results. Figure 1 illustrates two key aspects of our analysis: (a) a phase-transition plot for sample
complexity and (b) an empirical error comparison across different sample sizes and divergence radii.
As ρ grows, we see a clear boundary between sufficient and insufficient sample regimes, with higher
ρ requiring more data to maintain low error. Larger sample sizes (m = 500 → 2000) reduce error,
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Figure 1: (a) Sample complexity phase transition diagram showing the ratio of required to available samples
across different sample sizes and divergence radii. The dashed line indicates the threshold where the ratio
equals 1.0. (b) Empirical validation showing generalization error versus divergence radius for different sample
sizes (m). Shaded regions represent one standard deviation over multiple trials. The decreasing error with larger
sample sizes and graceful degradation with increasing divergence radius validate our theoretical analysis.

but increasing ρ naturally degrades performance. Table 1 shows worst-case errors (over 5 trials)
at ρ = 0.5 for three methods: Transform (label-preserving transformations only), Divergence (f -
divergence–based reweighting only), and STAR (our method). STAR yields the lowest mean error
(7.58%) and similar variance, outperforming both baselines.

Table 1: Worst-case test error (%) at ρ = 0.5 over 5 trials. Lower is better.

Method Mean Error Std. Dev.
Transform 9.83 0.83
Divergence 8.94 0.77
STAR 7.58 0.79

Key Insights. Our analysis reveals a fundamental trade-off: while nesting transformations within
f -divergence balls theoretically requires more samples (as evidenced by the phase transition), it
empirically delivers better worst-case performance. The phase transition diagram shows that this
increased sample complexity scales predictably with ρ, allowing practitioners to make informed
choices about the robustness-complexity trade-off. The empirical results demonstrate that this the-
oretical cost is justified by the improvements in robustness, particularly as the divergence radius
increases.

7 CONCLUSION

We present a robust learning framework that addresses both structured transformations and adver-
sarial reweightings. By accommodating label-preserving transformations alongside an f -divergence
constraint, our approach incorporates domain knowledge in tandem with distributionally robust op-
timization. The uniform-convergence analysis provides explicit sample-complexity bounds, indicat-
ing that this added flexibility may require more data but yields robust generalization over a wider
range of potential shifts. Empirical evaluations confirm the method’s effectiveness, outperforming
baseline techniques.
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