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Abstract—Given their vital importance for governments and
enterprises around the world, we need to trust public clouds to
provide strong security guarantees even in the face of advanced
attacks and hardware vulnerabilities. While transient execution
vulnerabilities, such as Spectre, have been in the spotlight
since 2018, until now there have been no reports of realistic
attacks on real-world clouds, leading to an assumption that
such attacks are not practical in noisy real-world settings
and without knowledge about the (host or guest) victim. In
particular, given that today’s clouds have large fleets of older
CPUs that lack comprehensive, in-silicon fixes to a variety of
transient execution vulnerabilities, the question arises whether
sufficient software-based defenses have been deployed to stop
realistic attacks—especially those using older, supposedly mit-
igated vulnerabilities.

In this paper, we answer this question in the negative. We
show that the practice of mitigating vulnerabilities in isolation,
without removing the root cause, leaves systems vulnerable.
By combining such “mitigated” (and by themselves harmless)
vulnerabilities, attackers may still craft an end-to-end attack
that is more than the sum of its parts. In particular, we show
that attackers can use L1TF, one of the oldest known tran-
sient execution vulnerabilities (discovered in January 2018), in
combination with a simple speculative out-of-bounds load, to
leak data from other guests in a commercial cloud computing
platform. Moreover, with an average end-to-end duration of 15
hours to leak the TLS key of an Nginx server in a victim VM
under noisy conditions, without detailed knowledge of either
host or guest, the attack is realistic even in one of today’s
biggest and most important commercial clouds.

1. Introduction

As governments and enterprises around the world rely
on proprietary public clouds for on-demand access to scal-
able computing, today’s clouds have become a foundational
component of our digital infrastructure. Since all multi-
tenant cloud solutions imply that users may share physical
resources with untrusted other tenants, they require implicit
trust in the security guarantees of the underlying hardware
and system software to keep data safe from adversarial co-
tenants. Providing such guarantees is challenging, especially
in the presence of the ever-expanding arsenal of transient-
execution and side-channel exploits [1]], [2], [3], [4l, [5],
[6f1, 171, 81, 191, [[10], [11]], [12]. While mitigations exist for
each of these vulnerabilities, even for older and vulnerable
hardware, they are often incomplete, especially as deployed.
The reason is that comprehensive mitigation of transient

execution vulnerabilities such as Spectre [1f], L1TF [7],
[13[], and MDS [8]], [9], [10] is very expensive [14]]. Not
surprisingly, industry deploys ‘spot’ mitigations instead—
rendering the vulnerability too difficult to exploit using
known techniques, but without removing the root cause.

Even so, there have been no reports of realistic attacks
on real-world clouds with any of the older vulnerabilities.
It appears as if the collection of mitigations put in place
by cloud providers is sufficient to stop exploitation of these
vulnerabilities in practice [15]. Indeed, some consider these
attacks so complicated that it is questionable if they form a
practical threat [[16]], [17], [18], [19]], [20]. While new vul-
nerabilities still create media attention [21]], [22] and often
remain under embargo while mitigations are deployed [23]],
there is little concern about older vulnerabilities such as
LITF [7], [13] (discovered in January 2018).

In this paper, we question this lack of concern and
show not only that practical attacks on modern clouds are
possible, but that they are possible with vulnerabilities we
considered mitigated 7 years ago. In particular, we use LITF
together with a speculative out-of-bounds load to overcome
all relevant security measures and leak sensitive data from
the hypervisor and even a co-tenant on the Google cloud.
While others have argued that combining L1TF and half-
Spectre was possible [24], [25]], and some used synthetic
gadgets in proof-of-concepts [26], we show that more than
a theoretical possibility, this is a real-world threat in popular
clouds. Using a novel technique based on pointer chasing
through the host and guest, we leak all information required
to manually perform two-dimensional page table walks (i.e.,
through the guest’s page tables and extended page tables) in
software; with this, we can translate arbitrary virtual guest
addresses to host physical addresses, enabling the leakage
of any byte in the memory of the victim via L1TF.

Our leakage primitive also works on the AWS cloud, but
defenses in depth restrict leakage to non-sensitive host data.
The attack assumes no knowledge of the software running
on the victim, nor does it assume a prior leakage of the
randomized address space layouts, and it is effective even
in the presence of realistic noise. Our research provides
further evidence that the common practice of mitigating a
vulnerability in isolation is not sufficient if it fails to remove
the root cause, as attackers may combine issues that are
harmless in isolation to craft an end-to-end attack that is
more than the sum of its parts.

We demonstrate our attack on KVM-based hypervisors,
and believe the approach applies to other hypervisors as
well. In particular, we evaluate the attack in three types
of cloud environments that run on CPUs where L1TF was



mitigated in software: a local system running base KVM,
Google cloud (GCE) instances of type N1 [27]], and AWS
cloud instances of type C5 [28]. On base KVM and GCE
instances, we successfully extracted sensitive data, such as
the TLS key from an Nginx server running on a guest
VM. On AWS cloud instances, we were able to leak non-
sensitive information from the host, but not any data from
guest VMs, due to defenses in depth in the hypervisor that
unmap sensitive guest data from it. Our attack is stealthy and
explicitly detects whether it is running on a CPU that may be
L1TF-vulnerable. We are not aware of any mechanism that
reliably allows a hypervisor to detect this type of transient
execution attack and have not received any indication that
Google or AWS detected any of our exploitsﬂ
We summarize our contributions as follows:

« We show transient execution attacks: (a) are prac-
tical to leak sensitive data in real-world clouds,
(b) using some of the oldest vulnerabilities available,
and (c) without prior knowledge of the victims.

o We demonstrate that spot mitigations of transient ex-
ecution vulnerabilities are not sufficient, as the com-
bined exploitation of vulnerabilities deemed harm-
less individually can lead to high-impact attacks.

e We describe a novel attack technique based on
aggressive pointer chasing and software-controlled
two-dimensional page table walks to leak any byte
in a VM running on the same host system in the
GCE cloud.

e We showcase our findings by launching an end-to-
end guest-to-guest attack on proprietary cloud envi-
ronments and successfully leak cryptographic data
from a victim VM in the GCE cloud.

Coordinated Disclosure. Following coordinated disclosure
practices, we officially notified the relevant parties — Google
and AWS - about the attacks in May, 2025. Both Google
and AWS acknowledged the leakage primitive presented in
this paper and confirmed our ability to read host mem-
ory. AWS further confirmed that deployed defense-in-depth
mechanisms prevent us from leaking sensitive data (i.e.,
memory from guest VMs running on the same physical
system). Google, being vulnerable to our end-to-end exploit,
verified the attack and confirmed its severity; in response,
they awarded a total bounty of over $150k as part of their
Cloud Vulnerability Reward Program (VRP), the most that
the Cloud VRP has ever given out. We strongly believe
that this open attitude towards security is a good thing.
Our conclusion is not that AWS’s and Google’s security
was lacking, but that they are actively stimulating security
improvements. Google and AWS have notified us that, in ad-
dition to patching the exploited half-Spectre gadget in their
respective hypervisors, they plan to implement additional
security measures to (further) improve their security. They
aim to release security patches/updates accordingly.

'As we explain later, we did our research with explicit permission of
the cloud providers, with safeguards to prevent leakage of third party data.

Ethical Considerations. To avoid any negative impact on
the targeted cloud provider parties or any of their cus-
tomers, we took the necessary precautions. Both Google
and AWS were fully aware of our exploitation efforts, and
we frequently discussed progress. All of our experiments
were conducted on dedicated host systems in the respec-
tive provider’s fleet. As a precaution, we informed each
provider about the exact system we were going to attack and
when. This guaranteed exploitation occurred in a realistic,
representative environment with no risk to any of the cloud
providers’ customers. Lastly, we disclosed all findings in this
paper to the affected parties in a coordinated disclosure, and
discussed its contents prior to submission. Google and AWS
acknowledge our findings and have agreed on a coordinated
public disclosure.

2. Background

2.1. Transient Execution Attacks

For optimization purposes, modern processors imple-
ment out-of-order and prediction-based speculative execu-
tion to perform operations before they are needed or before
the CPU knows if it should perform them at all. Doing
so may lead to undesired behavior when the prediction is
wrong or the processor is unable to handle execution faults
(e.g., illegal data accesses) immediately. While the CPU will
detect these errors eventually and roll back all changes to
the architectural state (registers, memory), traces of such
“transient execution” remain detectable in the microarchi-
tectural state. For instance, data accessed by the transient
instructions will now be in the cache. Moreover, if a memory
access is secret dependent, attackers can often recover the
secret data by means of a cache attack [29], [30], [31], [32].
Since the first disclosure of Meltdown [2] and Spectre [1]]
in 2018, researchers have discovered many new transient
execution attacks [3], [4]l, (6], [71, I8, [90, [LL, 1130, [33],
[134], 1351, 36, [37].

2.2. L1 Terminal Fault

One of the earliest transient execution vulnerabilities,
discovered in January 2018, is L1 Terminal Fault (L1TF [7],
[13], [38[1, [39]). It allows unprivileged speculative access
to data residing in the L1 data cache and affects Intel
processors up to Coffee Lake [40]. The root cause of L1TF is
the use of faulty address translations in speculative execution
in the case of invalid page table entries (PTEs). For instance,
accessing a virtual address for which the corresponding
PTE’s present bit is cleared (or its reserved bit is set), should
stop all further address translation [38]], including Extended
Page Table (EPT) translation. However, speculative execu-
tion will not wait for such checks to resolve and, instead,
load the referenced data, assuming it resides in the L1 data
cache. Moreover, it will forward the data to subsequent
instructions, enabling the leakage.

In prior work [[13]], Weisse et al. outlined different meth-
ods to exploit L1TF. For instance, an unprivileged attacker



can wait for the operating system to clear the present bit
of a PTE when swapping pages to disk and then access
any cached data that maps to the same physical address as
pointed to by the PTE, regardless of ownership. Better still,
a malicious guest VM may itself clear the present bits in the
guest page table to trigger terminal faults. Because of the
fault, the CPU skips host address translation and passes the
guest physical address immediately to the L1 data cache,
enabling the attacker to read any cached physical memory
on the system.

To combat such exploits, Intel provides in-silicon mitiga-
tions for newer generations of CPUs, and microcode updates
and software-based measures for older CPUs [38§]]. Fully mit-
igating L1TF in software requires disabling SMT together
with flushing the L1 data cache upon context switches, or
disabling EPT in virtualized environments—measures that
are so expensive that providers opt for more practical spot
mitigations [/18]].

In particular, cloud providers use the combination of
L1D flushing [38]], [41] and core scheduling [15], [42].
L1D flushing consists of flushing the L1 data cache upon
a context switch and prevents a task’s data from leaking to
another task scheduled after it on the same vCPU. In Linux
on x86-64, this occurs upon vmresume instructions, either
for every context switch or conditionally [41]. However,
flushing the cache alone does not suffice, as another task or
guest may run concurrently on another vCPU of the same
physical core. Security-minded systems therefore combine
flushing with core scheduling: ensuring that a task is only
scheduled on a core if the other tasks on the core are also
trusted. Combined, these mitigations prevent user-to-user or
guest-to-guest attacks. In principle, user-to-kernel or guest-
to-host attacks are still possible, as the kernel/hypervisor can
still run on the same physical core with any process/guest at
any time, but Linux kernel developers explicitly doubted the
practical exploitability of the short vulnerable window [[15].
Further, some kernel developers questioned whether the risk
posed by vulnerabilities such as L1TF were worth the cost
and complexity of implementing a more comprehensive mit-
igation such as address space isolation [43|], [44], especially
when VMs are running on dedicated physical cores and core
scheduling is enabled [43].

2.3. Half-Spectre Gadgets

To launch a Spectre attack [1]], an attacker steers spec-
ulative execution toward a particular code pattern, a so-
called “gadget”, that discloses and transmits secret data
via a microarchitectural side channel (e.g., a cache attack).
For instance, the Spectre-vl gadget in Listing |I| consists
of an out-of-bounds memory access that loads some secret
data, and a subsequent secret-dependent load that transmits
said data, following a mispredicted conditional branch. To
exploit this gadget, the attacker lets the branch execute many
times with a value for index that satisfies the condition on
Line 1 to ‘train’ the CPU to predict that the branch will
be taken upon the next iteration. By subsequently providing
a value for index that does not satisfy the condition, the

if (index < ARRAY SIZE)
x = A[index]; //
y = B[4096x*x]; //

if (index < ARRAY_ SIZE)

x = A[index]; // access secret during speculation

Listing 1: Top: a classic Spectre-vl gadget. Bottom: a half-
Spectre gadget, an incomplete Spectre-vl gadget where the
transmission of the secret is absent.

CPU speculatively accesses a value outside the array bounds
(Line 2) and then leaks the data using a memory dereference
through B, before recognizing its mistake.

To mitigate Spectre, software developers aggressively
remove such code patterns from their programs. However,
what about incomplete gadgets, such as the bottom code
fragment in Listing [I? This “half-Spectre” gadget (some-
times referred to a prefetch gadget in literature [45]) is
exactly like the top one, but without the transmission part
(Line 3). These are harmless by themselves, and are still
very common. While attackers may still leak the secret
accessed in Line 2 using other transient execution attacks
such as MDS [8]], [9], [10], these attacks have been compre-
hensively mitigated [46]], so the risk was considered limited.
However, recent work has shown that, in theory at least, half-
Spectre gadgets are still usable in combination with other
vulnerabilities to leak sensitive data [24]], [26]]. The question
is whether the spot mitigations deployed in modern clouds
are sufficient to stop such attacks in practice.

3. Threat Model

We consider a malicious VM in a realistic cloud envi-
ronment, in the presence of co-located workloads. Attackers
have root access to their own virtual machine and may per-
form hypercalls to interact with the hypervisor. We assume
that the host system runs the latest microcode version and
is up-to-date with regard to all (default) mitigations against
transient execution attacks, including L1D flushing [38],
[41] and core scheduling [[15]], [42]. In addition, we assume
the presence of all default mitigations against traditional
software exploitation, such as stack canaries, WX and
(K)ASLR. Further, we consider the attacker blind with
respect not just to other guest VMs, but also to the host
system, i.e., they do not have any in-depth knowledge of
the (proprietary) hypervisor and the undocumented measures
deployed against exploitation. The aim of our attacker is to
perform a transient execution attack in order to leak sensitive
data from the host and/or other VMs in the system.

4. Attack Overview

In this section, we provide an overview of LITF
Reloaded, in which an attacker combines L1TF with a half-
Spectre gadget in the hypervisor to launch a guest-to-guest
attack that achieves arbitrary data leakage from other guest
VMs in the system.



@

§ Attacker vCPU § Attacker vCPU é

= triggering Half- b triggering Half- =

L | | Spectre gadgets 8 Spectre gadgets 3

|| a > A q >

O | |in the hypervisor T in the hypervisor T

- g 5
2 2

' 'l

3 T

Physical core
L1d

AN N N N N N N
|

X X X X ¥ N

Attacker vCPU continuously try to use L1TF to
leak L1D content from the hypervisor

Logical core

y
>

Time

Figure 1: L1TF Reloaded combines L1TF with half-Spectre.
On logical core 1, the attacker performs a hypercall, to make
the hypervisor execute a half-Spectre gadget. By mistraining
a prior bounds check, the attacker forces the hypervisor to
speculatively access out-of-bounds memory, bringing hyper-
visor data into L1d which logical core 2 leaks using L1TF.

LITF mitigations, such as L1D flushing and core
scheduling, prevent guest-to-guest attacks, but not guest-to-
host attacks—although Linux kernel developers were ini-
tially doubtful about their practical exploitability [15]]. In
this paper, we instead demonstrate the practicality of the
attack. By means of a controllable half-Spectre gadget in the
hypervisor, we trick it into speculatively loading arbitrary
system memory into the L1 data cache. We then use L1TF to
leak the contents of the L1 data cache, despite all mitigations
present against L1TF. Figure [T] conceptually illustrates this
combination of L1TF + half-Spectre.

Our end-to-end attack consists of six phases: (1) local
attack preparation, (2) cloud host profiling, (3) gadget base
discovery, (4) host targeting, (5) guest targeting, and (6) data
extraction. Given the sophisticated nature of the attack, we
first give a high-level overview of each of the steps and
defer the detailed explanation to Section [5] We display this
high-level overview in Figure [2]

Local Attack Preparation. In this phase, we lay the ground
work for our subsequent attack steps on our own machine. In
particular, we prepare a guest VM that is optimized for LITF
leakage and scan a recent version of the target hypervisor
for an exploitable half-Spectre gadget. While we do not
know if the version of the hypervisor in the public cloud
is the same, we assume that it will be similar. For instance,
after discovering an exploitable half-Spectre gadget in KVM
through local gadget analysis, we make the educated guess
that this gadget also exists in the hypervisors in public
clouds that are based on KVM. While any controllable
transient load primitive will do, we assume in the remainder
of this paper that the gadget accesses an element in an array
with an offset that is controlled by the attacker.

Cloud Host Profiling. Next, we determine whether the host
system provided by the targeted public cloud is vulnerable to

our attack. We do so by first profiling the CPU, to see if our
guest VM is likely running on a CPU that is vulnerable to
LITE. If so, we perform a number of experiments that detect
the mitigations that the host enables against L1TF, and check
whether they impede our attack. If all indicators suggest that
the host is vulnerable, we commence our exploit.

Gadget Base Discovery. Given the half-Spectre gadget in
the hypervisor, we define x as the attacker-controllable offset
used by the gadget to access an array element. We first
consider the gadget’s base—the address corresponding to
offset zero of the array. This is an unknown virtual address
v. Since we can only use L1TF to leak data from the cache
corresponding to a particular physical host address, we find
the physical host address p that corresponds to v.

Next, we are interested in the host kernel’s direct (mem-
ory) map, where all physical memory of the host system
is linearly mapped in virtual memory. Namely, if v points
inside the direct map, we can use the gadget to load arbitrary
physical host memory mapped at v + = (with x potentially
negative) into the L1 data cache, and extract it using L1TF
on the linearly matched physical address p + x. In that way,
we acquire an arbitrary physical memory read primitive for
the host.

However, it is not guaranteed that the gadget’s base v
points inside the direct map. If not, we must find the value
for z such that v + z accesses the gadget’s base v’ in the
direct map; with that, we can then add y to = such that v +
(z+y) loads arbitrary physical memory from the direct map
that we can then leak using L1TF at the matching physical
address p + y.

Host Targeting. From the direct map, we leak a kernel
pointer to easily recognizable data and search through phys-
ical memory for this data using our previously acquired
primitive. To this end, we find the physical address that
corresponds to the (virtual) kernel pointer. As the physical
memory is linearly mapped in the direct map, subtracting
the found physical address from the kernel pointer gives us
the start of the direct map in virtual memory. With the start
of the direct map, we can translate host virtual addresses
in the direct map to physical addresses to leak them using
LITF, effectively breaking KASLR in the host.

We subsequently use our address translation ability to
discover the location of the root page table of the host.
We do so by chasing (i.e., repeatedly dereferencing) kernel
pointers in the direct map through kernel structures and
leaking their contents. By performing a page table walk with
our leakage primitive, we can now translate arbitrary host
virtual addresses to physical addresses (and with that, chase
arbitrary host pointers).

Guest Targeting. Using our ability to translate arbitrary host
virtual addresses to physical addresses, we chase pointers
through kernel structures to find and leak the metadata of
our victim VM in the host system. Doing so, we leak the root
of its extended page tables and the value of its CR3 register
(i.e., the root of its own page tables). Together, these enable
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Figure 2: Overview of our attack strategy. After (1) preparing our attack locally and (2) checking whether our VM is likely
running on a vulnerable CPU, we (3) find the physical address of the gadget’s base and use the host kernel’s direct map
to establish an arbitrary host physical memory read primitive. Then, we (4) break KASLR by determining the start of the
direct map, and by chasing kernel pointers in it locate the host’s root page table to enable the translation of all host virtual
addresses to host physical addresses. Using this translation ability, we further chase pointers through kernel structures to
(5) find the victim VM’s page tables and extended page tables, enabling virtual guest address to host physical address

translation. With that, we can (6) chase arbitrary guest pointers to extract sensitive data from the victim VM guest.

us to perform two-dimensional page table walks, translating
guest virtual addresses to host physical addresses.

Next, we evaluate the guest’s page tables to determine
its address space layout in order to break KASLR in the
guest. With that, we have now acquired the ability to chase
arbitrary pointers in the guest kernel, and know where to
start searching for interesting processes to target.

Data Extraction. Finally, with knowledge of the guest’s
kernel layout, we leak the kernel structures necessary to
discover all running tasks in the guest. For the target task,
we chase pointers throughout its metadata structures to leak
its root page table. From there, we search through the task’s
memory in the guest for any sensitive data that we desire.

5. L1TF Reloaded

L1TF Reloaded, our end-to-end transient execution at-
tack on a (proprietary) public cloud, leaks sensitive data
from a victim guest VM on a mainline Linux host and a
GCE host, while on AWS, we leak (only) non-sensitive data
from the host itself due to deployed defenses in depth. The
main challenge for the attacker is finding the targeted secret
data in physical memory — within the hundreds of gigabytes
of RAM commonly available on cloud servers. We address
this challenge by abusing the (meta)data resident in the host
and victim guest kernels. In this section, we discuss the steps
necessary to build our exploit and leak sensitive data from
a victim guest VM.

5.1. Local Attack Preparation

Before launching the exploit, an attacker locally prepares
a guest kernel and scans for usable half-Spectre gadgets in
a host that is similar to the targeted cloud’s hypervisor.

Exploiting L1TFE. To leak data from arbitrary physical
addresses using L1TF, the attacker needs (partial) control
over the PTE that is used to cause a terminal fault, and
ensure that the data is present in L1 data cache. In our
threat model, the attacker has full control over a malicious
VM, and thus has the ability to change their own PTEs.
Specifically, they can choose the host physical address to
leak from and set the present or reserved bits to trigger the
terminal fault. For our attack, we use a modified version of
PTEditor [47]], which maps the page tables of our program
into user space to enable the modification of PTEs without
involving the kernel. Normally, the TLB must be flushed
when the PTE is changed. However, as no TLB entry or
paging-structure cache entry is created for non-present pages
on Intel CPUs [48]], we add this use case to PTEditor to
improve our performance.

Upon accessing a non-present page, the CPU’s MMU
will raise a page fault exception that is handled by the
kernel’s page fault handler. Consequently, every address we
attempt to leak causes a slow context switch to the kernel,
as well as the execution of many instructions. This not
only impedes our performance, but also affects our leakage
results, as every instruction that is executed may influence
the state of the L1 data cache and may even lead to the
eviction of the target data. Since we have full control over
the guest kernel, we apply a patch that suppresses a page
fault in the kernel and bypasses the page fault handler. More
specifically, instead of properly handling the L1TF-induced
page fault, the interrupt handler returns immediately to a
user-defined user address—executing only a few instructions
in the kernel. In terms of performance, this approach yields
an average 0.5 microsecond latency for a page fault as
opposed to a 2.6 microsecond one for the base kernel (across
2 million measurement samples).



Half-Spectre in the Hypervisor. LITF allows an attacker
to leak data in the L1 data cache in a guest-to-host attack
scenario. Thus, any data accessed by a hypervisor running
on the same core as the attacker will be susceptible to leak-
age. As the hypervisor by itself is unlikely to (frequently)
access sensitive data, we combine L1TF with a half-Spectre
gadget to trick the hypervisor into loading sensitive data into
the L1 data cache, and subsequently leak it using L1TF.

For a half-Spectre gadget in the hypervisor to be usable
in our attack, the attacker must be able to control its exe-
cution reliably. In particular, to induce mispredictions on a
conditional branch, the branch needs to be consistently taken
to train the branch predictor. Secondly, the attacker should
control the memory the gadget accesses, for instance, by
means of an attacker-controlled offset. To find such gadgets,
we focused our analysis on VM hypercalls and potential
gadgets in their handlers, because a VM may use the
privileged vmcall instruction to call a predefined function
in the hypervisor—a hypercall. As these functions can be
reached reliably by an attacker VM, and some hypercalls
take attacker-controlled arguments, they are fertile ground
to scan for exploitable gadgets.

Through manual code review, we found the half-
Spectre gadget in the hypercall handling code for the
KVM_HC_SCHED_YIELD hypercall shown in Listing @
By manually tracing uses of this hypercall’s user-controlled
parameters, we find that one of these values is used to index
into the phys_map array—an array located in the direct
memory map of the Linux kernel. In the base, upstream
Linux kernel, all available physical memory of the host
is directly mapped into the kernel’s virtual memory [49].
Thus, an out-of-bounds memory access in this array allows
an attacker to transiently access all of the host’s mem-
ory. In this gadget, the index value is checked before it
is used, preventing an architectural out-of-bounds access.
However, in-place branch mistraining of the bounds check
on dest_1id, and evicting map—max_apic_id from the
cache to lengthen the speculative window, allows an attacker
to force the host kernel to perform the speculative load
map—phys_map[dest_id] on any (8-byte aligned) 64-
bit virtual address.

A drawback of this particular half-Spectre gadget is that
the throughput, even on a mostly idle system, is very low due
to the single_task_running check (line 9) blocking access to
the gadget most of the time. To quantify this, the gadget is
essentially blocked 99.9% of the time. However, this is not
a fundamental issue, and we will show in Section that
with various optimizations we can use the gadget to perform
an end-to-end exploit.

5.2. Cloud Host Profiling

To perform the attack, the attacker must determine
whether their malicious VM runs on a vulnerable host
system in the targeted cloud.

For the host system, this means:

1) The host must run on an L1TF-vulnerable CPU.

static void kvm_sched_yield(struct kvm_vcpu *vcpu,
unsigned long dest_id)
{
struct kvm_vecpu starget = NULL;
struct kvm_apic_map *map;

vcpu->stat.directed_yield_attempted++;

©® N B W —

9 if (single_task_running())

10 goto no_yield;

1

12 rcu_read_lock () ;

13 map = rcu_dereference (vcpu->kvm->arch.apic_map);
14

15 if (likely (map) && dest_id <= map->max_apic_id
16 && map—>phys_map [dest_id])

17 target = map->phys_map[dest_id]->vcpu;

19

Listing 2: The half-Spectre gadget we exploit in Lin-
ux/KVM. Via a hypercall, a VM can trigger this KVM func-
tion with full control over the hypercall argument dest_id.

2)  The hypervisor must deploy insufficiently compre-
hensive mitigations in software.

In a virtualized environment, the hypervisor may emu-
late CPUID to hide the true CPU microarchitecture, and in
addition, attackers do not know the exact defenses deployed.
Therefore, we consider an attack scenario where we auto-
matically detect whether a system is likely to be vulnerable
from inside a guest, without relying on the hypervisor.

Vulnerable CPU. Intel server CPUs of the Skylake microar-
chitecture and earlier are vulnerable to L1TF [40]. Hence, to
address the first requirement, we assess whether the attacker
VM runs on such a system. Unfortunately, we cannot assume
that self-reporting by means of the CPUID instruction is
accurate, as the instruction may be emulated. Instead, we
measure the size of the Path History Register (PHR), which
in Skylake and older microarchitectures is only 93 branches,
while on recent CPUs such as Ice Lake have PHRs it is as
large as 194 [50]. The PHR is a shift register that records the
global history of recently executed branches (and whether
they were taken) to help predict correlated branch patterns.
Thus, we can determine the PHR size by testing how many
dummy branches we can insert between branches while still
capturing the correlation between them—using an algorithm
from prior work [50] adapted to a virtualized environment.

A PHR size equal to 93 does not guarantee that the
CPU is vulnerable to L1TF. For instance, the Cascade
Lake microarchitecture has the same PHR size, but is not
vulnerable to L1TF by virtue of hardware mitigations. Even
so, PHR size estimation provides attackers with a quick test
to narrow down the search for vulnerable systems, without
wasting cycles on CPUs that are known not to be vulnerable.

Deployed Hypervisor Mitigations. As the only mitigations
that tackle the root of the issue in software are prohibitively
expensive, the default configuration on operating systems
such as Linux relies on spot mitigations instead. We ad-
dress the second requirement by checking the inventory



of software-based mitigations against LITF present on the
system via timing side channels.

First, we measure memory access latency before and af-
ter a VM guest-to-host context switch, to determine whether
the hypervisor implements L1D flushing. We prime the L1
data cache by accessing a set of addresses that neither evict
other addresses in the same cache set nor incur prefetching
by the memory controller. By triggering a VM exit path
that does not trash the L1 data cache and measuring the
addresses’ subsequent access latency, we can tell whether
the cache was flushed.

Next, we build upon prior work [51]] to detect SMT
using a port-contention side channel. Modern CPUs contain
a number of execution ports that process micro-operations
that originate from instructions executed on either of the
CPU’s logical cores (vCPUs). As the ports are shared by
the vCPUs, contention can lead to an increased instruction
execution latency for one vCPU if the other vCPU occu-
pies the same ports. Thus, we determine whether SMT is
enabled by measuring the instruction latency of a particular
contention-sensitive workload that runs on both vCPUs of
a physical core against a single-vCPU baseline.

Concerning core scheduling, in our experiments on pro-
prietary cloud environments, we found that it is common to
implement a scheduling policy that dictates only processes
of the same VM can co-locate on the same physical core.
As two different VMs will never be co-located, we decide
not to test for basic core scheduling.

5.3. Gadget Base Discovery

LITF can leak data from any physical address as long
as the data at that address resides in the L1 data cache. To
make sure sensitive data from the hypervisor is loaded into
the L1 data cache, we want to use the half-Spectre gadget in
Listing [2]to speculatively perform an out-of-bounds memory
access. However, since the physical address of the data is
unknown, we cannot extract it from the cache. We now
explain how we solve this and build our arbitrary host
physical memory read primitive.

The half-Spectre gadget accesses an array in mem-
ory by taking the address of index (offset) zero of the
array (i.e., the gadget’s base) v and adding an attacker-
controlled offset (index) z. While v is unknown, we know
that v = &map—phys_map. By making use of the page
alignment of the map object, which is dynamically allocated
upon the creation of our VM, we elect to brute force its
physical address. To do so, we continually trigger the half-
Spectre gadget with offset zero (i.e., dest_id = 0) to
bring the start of the phys_map structure into the L1 data
cache. Using L1TF on the sibling vCPU, we stride at page
granularity through physical memory, guessing the base’s
physical address p. The beginning of the phys_map array
holds a pointer to a kvm_lapic structure for each vCPU
of the VM, which in our case is two pointers. From here,
we know we have correctly guessed the physical address of
the two pointers if we leak them using L1TF.

static int _ pv_send_ipi (unsigned long *ipi_bitmap,
struct kvm_apic_map *map,
struct kvm_lapic_irq +irq,
u32 min)

int i, count = 0;
struct kvm_vcpu xvcpu;

©® N B W —

9 if (min > map->max_apic_id)

10 return 0;

1

12 for_each_set_bit (i, ipi_bitmap,

13 min ((u32)BITS_PER_LONG,

14 (map->max_apic_id - min + 1))) {

15 if (map->phys_map[min + 1i]) {
16 o

Listing 3: The architectural gadget we use to help locate the
half-Spectre gadget’s base.

The discovery of the physical address p of our gadget’s
base yields an arbitrary host physical memory read primi-
tive. Since the base is kmalloc’d and hence points inside
the host’s direct map, passing a (possibly) negative offset
x to the half-Spectre gadget lets it speculatively load from
address p+ x through the direct map (as the linear mapping
of the direct map means it matches v 4 x).

While the accessed array is located in the host kernel’s
direct memory map for this particular half-Spectre gadget,
for another it may not be. In that case, we must find the gad-
get’s base mapped in the direct map at v’ by speculatively
trying different values of = for our out-of-bounds memory
access at v+x. We can verify whether we encounter the base
in the direct map at v’ by checking the leaked data using
LITF and seeing whether it corresponds to the leaked data
from v. Using the knowledge of the base’s physical address,
the attacker would know the base’s offset in the physical
memory page, allowing them to search through memory at
a page-sized stride; regardless, this step requires additional
optimization to be practical.

As we discussed prior in Section the throughput
of the half-Spectre gadget is very low. To compensate, we
optimize our approach by firstly not leaking the entirety
of the pointers, and secondly by employing an alternative
half-Spectre gadget that, while not exploitable due to its par-
ticular data flow, can consistently load our actually targeted
gadget’s base address into cache. We show this architectural
gadget in Listing [3]

5.4. Host Targeting

Next, using the arbitrary physical memory read primitive
we acquired, we fully leak the two previouly mentioned
kernel pointers that are at the beginning of the phys_map.
We know from manual analysis that these two pointers point
to structures that start with easily recognizable data in the
host kernel’s direct map; we refer to them as direct map
pointers. Now, we aim to break KASLR in the host kernel by
finding the physical address of the data one of the pointers
points to.

As the direct map is backed by 1 GB pages in memory,
we know the lower 30 bits of the physical addresses of
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Figure 3: Example of a pointer chase in our exploit chain. As we can translate a (virtual) pointer to a physical address, we
leak the data to which the pointer points, essentially dereferencing it. From the kvm_lapic struct, we leak consecutive
pointers to other structs until we find the host’s root page table (pgd, Page Global Directory).

the pointers (because the pointer is a virtual address, and
the direct map is linearly mapped into virtual memory). We
can brute-force the remaining few physical address bits by
leaking from every possible physical address and checking
whether the leaked data matches the data we are looking for.
Once we have found the physical address that corresponds
to one of the pointers, we can subtract the physical address
from the pointer to find the virtual address of the start of
the host’s direct map; this gives us the ability to translate
direct map pointers into physical addresses—allowing us to
leak data from any kernel direct map pointer using L1TF.

Though we now have the ability to leak data from any
kernel direct map pointer, we do not have any knowledge
about the layout of the host’s memory, and thus do not know
the location of interesting data to leak. Hence, we choose to
perform pointer chasing on the pointers we have access to
through kernel structures in search of the desired sensitive
data. By continuously dereferencing pointers and finding
new pointers to chase to more data structures in the host
kernel, we can eventually end up at valuable structures that
contain e.g., root page tables, heap memory mappings, etc.
One could, in essence, view the majority of the exploit chain
as one long pointer chase throughout the host’s physical
memory.

As we show in Figure [3] we take our own vCPU’s
kvm_lapic structure (which we know exists at the begin-
ning of phys_map) and do a pointer chase from it through
the host kernel, only using direct map pointers, in search
of interesting structures to leak. In particular, we discover
or own kvm_vcpu structure, which represents our vCPU,
our task_struct, describing the host process running
our VM, and the VM’s address space information in its
mm__struct. From the latter structure, we leak the location
of our task’s root page table. With it, we can translate
arbitrary host virtual addresses to physical addresses by
performing a page table walk using our leakage primitive.
Now, rather than being limited to direct map pointers, we
are able to leak data from any kernel pointer in the host
system.

5.5. Guest Targeting

With the ability to chase any kernel pointer in the host
and leak data from it, we now aim to find a victim VM. We
start by looking at our own task_struct, which is part
of a linked list of all tasks in the host; from it, we can leak
the process ID and command, i.e., the name of the task, for
all processes running on the host. From the task name, we
can make an educated guess on which process is in charge
of running another VM. Having selected a task that runs a
VM, we locate the structures that represent its (open) files,
and find the file that KVM hands out to represent the VM.
Using it, we discover the victim VM’s metadata: the kvm
and kvm_vcpu structs.

From the metadata, we leak the root of the victim VM’s
extended page tables, as well as the current value of its CR3
register, which is a physical address at which the root page
table used by the guest itself resides; this root page table
can thus be of any given process currently running in the
guest.

Together, these enable us to perform a two-dimensional
page table walk, translating guest virtual addresses to host
physical addresses. With that, we can now chase pointers
within the guest VM’s kernel and leak their data via L1TF.

However, we do not yet know where to start our pointer
chasing to discover interesting structures. For that, we need
to break KASLR in the guest kernel. Using the root page
table we leaked earlier, we read the kernel’s address space
layout, which is possible because every process maps the
upper kernel range of the virtual address space, and find the
start of the kernel’s text and the start of the guest kernel’s
direct map. With the former, we can start our pointer chase
in the guest kernel, while with the latter we can skip most of
the costly page table walks in the case of (common) guest
pointers inside the direct map.

5.6. Data Extraction

Armed with knowledge of the victim guest’s kernel
layout, we start by leaking its init_task struct, and from
there traverse its tasks to find a promising victim process
handling sensitive data. If the targeted victim process runs
as a system service, we can apply a further optimization: We



first find systemd as the first child of swapper, and then
only traverse the children of systemd to locate the victim
process. We note that a similar optimization is possible for
the prior phase in the attack where we locate the victim
VM: by abusing the tree structure of the process tree, one
could search for the victim VM inside the host kernel more
efficiently. However, we did not implement this.

After we located the victim process, we leverage knowl-
edge about the target’s process layout to continue the attack.
Consider Nginx as example. By inspecting its mm_struct,
we recover its root page table and the virtual address of the
start of its heap memory; using the former, we determine the
physical address of the latter to enable data leakage from
Nginx’s heap. Using the knowledge that Nginx stores its
private key at a static location on its heap, we leak the two
prime numbers that comprise the RSA key and reconstruct
the private key using the RSA protocol. Note that, even
if we did not know the key’s location, it can be brute-
forced since the two prime numbers are surrounded by two
“magic” numbers (PEM-format tags), making it easy for us
to recognize them.

For the purpose of reliability, we implement an addi-
tional check to ensure that we leak all 2048 bits of Nginx’s
key correctly. To do so, we exploit the sparsity of prime
numbers: if we make an error during key leakage, the
resulting (large) number will with a very high likelihood
not be prime. Hence, by checking if the leaked number is a
prime number, we are able to verify our leakage results.

6. End-to-End Exploit

6.1. Experimental Setup

To evaluate our L1TF Reloaded exploit, we select three
platforms as our testbeds. First, we use a 6.13 host base
Linux kernel on a local Skylake CPU system to host our
malicious VM. Second, we rent a dedicated host system
of the N1 instance type from the Google Compute Engine
(GCE) part of the Google Cloud Platform (GCP) [27];
these instances are reported to run on Sandy Bridge, Ivy
Bridge, Haswell, Broadwell, or Skylake CPUs—which are
all vulnerable to L1TFE. Third, we rent a dedicated host
system of the C5 instance type at Amazon Web Services
(AWS) [28]]; these instances are reported to run on Skylake
and Cascade Lake CPUs—of which only the former is
vulnerable to L1TF. We note that we did not have any issue
acquiring a machine backed by a vulnerable Skylake CPU
on AWS for our experiments.

Next, for the proprietary cloud instances, we determined
that these systems are vulnerable to L1TF by first selecting
the instance type corresponding to a vulnerable Intel CPU
(e.g., Skylake) as per the above, and then verifying the
processor type through microarchitectural measurements.
We then profile the host system for present mitigations, and
find that L1D flushing and SMT are enabled. This means
that our attack will not be impeded by any mitigations
present, as SMT is not disabled, and we can assume that

EPT is also available (as disabling it is not cost effective in
cloud environments).

Our end-to-end attack is specifically tailored to target
KVM-based hypervisors, which we know are active in the
GCE and AWS clouds. However, since the L1TF vulnerabil-
ity is a CPU bug (and is thus present on all systems running
on such CPUs), and a half-Spectre gadget is a common code
pattern that is not unique to Linux, the L1TF Reloaded
attack technique should work on any host system with a
controllable hypervisor gadget. That is, as long as the host
CPU is vulnerable to L1TF, and the attacker can find and
control a usable half-Spectre gadget in the hypervisor to
load any desired data into the L1 data cache.

Given that our attack evaluation occurs on a dedicated
host system (to ensure no actual cloud customer is at risk),
we ourselves must create a victim VM to perform our
exploitation efforts against. To establish a representative
target, we spawn a victim VM on the host system that runs
an Nginx web server, and aim for our attacker to leak the
victim’s private RSA key of its TLS certificate. With this
certificate, the attacker would be able to impersonate the
web server to any desired malicious ends. Note that the
attack works against any in-memory guest secret; we picked
this particular one to show concretely how we can leak a
high-value target.

6.2. Host Kernel Reverse Engineering

To discover the data we need to leak to implement our
end-to-end exploit, we perform pointer chasing through ker-
nel structures on the host kernel. However, we as an attacker
have no a priori knowledge concerning the exact host kernel
version used, its configuration, and possible patches that
a cloud vendor may have implemented in the production
environment. In order to perform the required pointer chase
through the host kernel, we need to determine the offsets
of some specific fields in the structures we traverse. This
requires some manual reverse-engineering efforts.

On an up-and-running mainline base Linux host kernel,
we dump all the relevant data structures at runtime. Next, on
an unknown proprietary cloud version of Linux, we use our
leakage primitive to recover (parts of) the same data struc-
tures. Since we have acquired the offsets for the structures
in the base Linux kernel already, we can compare the leaked
data and make educated guesses about where the unknown
kernel’s data resides. We illustrate the aforementioned with
a simple example in Figure

Not all structures are straightforward to reverse engineer,
however. Some structures have fields we aim to target that
are thousands of bytes removed from their position in the
base Linux kernel, and others are annotated with random-
ization compiler attributes; these require more manual effort
to reverse and in some cases pointer chases to discover.
Regardless, we were able to determine all offsets required
to start the attack on both the GCE and AWS clouds.
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Figure 4: Example of reversing the offset of struct
kvm_lapic’s vepu field (highlighted for mainline Linux),
by leaking the kvm_lapic’s data on GCE and AWS. The
obvious (and correct) guess here for both AWS and GCE is
0x98.

6.3. Chasing-and-Checking Pointers

Potentially, the leakage primitive may be unreliable, and
the leaked values could contain errors. As a result, if only a
single error transpires during the exploit’s chain of pointer
chases, the attack fails. To overcome this issue, we do a
sanity check after every a few pointer chases, where we
consider whether the new location we arrived at is consistent
with what we expect; we refer to this as chasing-and-
checking. A simple example can be given by chasing down
a doubly linked list: after every traversal of the next pointer,
you also leak the previous pointer, and check that it indeed
points to your previous location. We do this throughout the
exploit, with different checks tailored to different places
throughout the exploit’s long chase.

6.4. Implementation

We implemented a prototype of our end-to-end exploit
in C. On the host system, it runs in a VM with Linux kernel
6.12.4 with the patch from Section applied. Our proto-
type, at a high level, consists of two separate components:
one that triggers the half-Spectre gadget to load data into L1
data cache, and one that utilizes L1TF to leak the data from
the same L1 data cache on a sibling SMT core. Both parts
run simultaneously on different vCPUs of the same physical
core in the host system. This follows from the scheduling
policy we found is active for both GCE and AWS hosts,
where a guest VM occupies all vCPUs of the physical core
it is scheduled on.

We will release the code of our prototype in correspon-
dence to the coordinated disclosure with the targeted cloud
provider parties — Google and AWS.

6.5. Performance Evaluation

Leakage Primitive. Using our leakage primitive, we suc-
cessfully leak bytes of memory on a local Skylake server
running mainline 6.13 host Linux as its host kernel, as well
as on a AWS C5 node and a GCE N1 node. To evaluate the
reliability of our leakage primitive, we set up an experiment
that measures its leakage rate and accuracy, for leaking
chunks of both 8 bytes and 256 bytes, representative of

—e— GCE - 8 bytes

GCE - 256 bytes
—e— Mainline Linux & AWS - 8 bytes
—e— Mainline Linux & AWS - 256 bytes

Byte error rate (%)

Time spend per byte (seconds)

Figure 5: The byte error rate, i.e., the chance of a byte
being leaked incorrectly, as a function of the time we spend
leaking each byte. Our measurements on mainline Linux and
AWS were so similar that we merged their data points.

leaking pointers and leaking a 2048 bit private RSA key.
The results are shown in Figure 5] The virtual line indicates
the setting used in our exploit: about 1 B/s, resulting in
roughly a 95% accuracy on mainline Linux and AWS, and
a 50% accuracy on GCE. We confirm with Google that this
reduction in accuracy on GCE machine instances is caused
by a defense they implement that is not public; at the time of
writing, they were not able to share any further information
about said defense. As we show in this paper, this reduced
accuracy is not a fundamental problem, as we are still able
to launch our end-to-end attack and leak sensitive guest data
successfully.

Experimental Results. The full exploit chain only works
on mainline Linux in a local setup and machine instances
in the Google cloud (GCE) of type N1. On the C5 machine
instances of AWS, defenses in depth ensure that sensitive
data is unmapped from the host system, meaning we can
only leak non-sensitive data from the hypervisor. To evaluate
our exploit in the most realistic and representative setting,
we assess its operation on GCE specifically. In our setup,
one dedicated host runs two VMs: one (idle) 2-vCPU victim
VM running Nginx, and one 2-vCPU attacker VM. Whereas
we developed the exploit on one GCE dedicated host, at-
tacking a Ubuntu 24.04 victim running the corresponding
default Nginx web server, for the evaluation we spawned
an additional five dedicated hosts with the default VM GCE
suggests (Debian 12 Bookworm) as a victim, and its default
Nginx.

We ran the exploit for total of 28 runs on the afore-
mentioned six different physical hosts, out of which 25
completed successfully. Each successful exploit run leaked
the entire private key correctly.

More specifically, among the successful exploit runs, the
average run time was 14.2 hours (standard deviation: 16.2
hours), which was spent as follows:



Find Gadget Base: 10.9h (76.3%)

Find Victim VM in Host: 2.6h (18.3%)
Find Victim Nginx in Guest: 0.3h (2.2%)
Leak Nginx’s TLS key: 0.4h (3.2%)

Note the large standard deviation: the initial step of finding
the gadget’s base can take half an hour if we are lucky, or
3 days if we are not.

The aforementioned evaluation of the exploit chain was
performed on dedicated hosts that were mostly idle. Now,
we aim to verify whether the attack also works as effectively
when large amounts of system noise are present, as it would
be on a real shared cloud. To do so, we must put the
system under extreme memory (i.e., cache) pressure, and
perform intensive I/O operations continuously. Note that
CPU-intensive workloads on other cores do not influence
the attack, whereas one could possibly make the argument
that many interrupts from I/O could disrupt the exploit’s
flow/synchronization, or that cache pressure could disrupt
its cache side channel used to exploit L1TF.

For this experiment, we fill one entire dedicated host
with the maximum number of vCPUs, out of which a third is
constantly copying hundreds of gigabytes of files (disk 1/O),
a third is constantly downloading huge files from an external
server (network I/O), and the last third is pressuring the
memory subsystem. In particular, the last one third consists
of 32 vCPUs, of which 16 are trashing the (last-level) cache
by traversing their own 1 GB of memory in a tight loop, and
16 are triggering large amounts of cache-coherency traffic by
simultaneously reading and writing to 128 shared cachelines
in a tight loop. Lastly, from an external server, we access
the victim Nginx web server 100 times per second.

First, we repeated the experiment that produced the re-
sults in Figure 5] and found no significant differences. Next,
we repeated the exploit on GCE 10 times, which succeeded
all 10 runs by leaking the key correctly every time. For these
runs, the average run-time was 15.2 hours (with a standard
deviation of 9.9 hours) — showing no significant change from
the runs on the idle system. From this, we conclude that our
exploit is robust under extreme system noise.

7. Mitigations

With the L1TF Reloaded attack described in this paper,
we demonstrated that LITF—7 years after its discovery—
can still be used to leak sensitive data from other VMs
in a host system, despite the commonly deployed software
mitigations in software.

7.1. Deployed Mitigations

Fully mitigating L1TF on vulnerable CPUs, as described
earlier (Section @]) requires disabling either SMT or EPT,
in combination with L1D flushing on every vmresume.
However, both the former mechanisms remain active by
default in Linux, as they can significantly affect the perfor-
mance of a system [52]]. The commonly enabled software
countermeasures are L1D flushing and core scheduling,

which, as mentioned previously, do not mitigate the guest-
to-host attack scenario, and thereby do not impede our attack
by themselves if we assume that the hypervisor can be made
to load sensitive data (as we did using a half-Spectre gadget).

Our evaluation of the attack on the AWS cloud showed
that some cloud vendors implement defenses in depth that
mitigate our guest-to-guest exploit. Namely, we discover
that the hypervisor of the AWS machine instances imple-
ments security countermeasures that ensure any sensitive
guest data is not present in the host. These include, as per
AWS, eXclusive Page Frame Ownership (XPFO) [53]], [54]
and process-local memory [55]. This, in combination with
the existing L1D flushing and core scheduling mitigations,
leaves us unable to leak any guest data from the system
using L1TF and the half-Spectre gadget, only allowing us
to leak non-sensitive data from the host.

As long as transient execution vulnerabilities are not
addressed comprehensively (in software), novel or yet-to-
be-practical combinations of their exploitation may still be
discovered, and when they do the risk remains that the
defenses deployed by a cloud provider are not sufficient to
stop them (as was the case here for GCE).

7.2. Possible Defenses

The guest-to-host attack scenario has been known to be
theoretically possible, as shown by prior acknowledgements
in the Linux kernel documentation [52]]. For this reason,
several defensive measures have been proposed that range
from highly targeted to more generalized approaches. Since
replacing all vulnerable CPUs and hardening our microar-
chitectures against transient execution attacks fully is unre-
alistic, we discuss some of these approaches as mitigations
against our attack.

Half-Spectre Gadget Scanning. One straightforward strat-
egy is to remove all half-Spectre gadgets from the host
kernel. If no gadgets exist, the attack we describe in this
paper is no longer possible. However, as the code pattern
that constitutes them is simply an array access with a bounds
check on its index—an extremely common operation—it
is not likely that one can completely avoid introducing
them into code. In addition, automated Spectre gadget scan-
ners [12], [56], [57], [58], [59]], [60] cannot guarantee that
all potential gadgets can be found, and in many cases do not
offer an analysis of their potential exploitability. Therefore,
to safeguard against our guest-to-host attack, we need to
guarantee sensitive data is inaccessible to the hypervisor
despite the presence of half-Spectre gadgets in the host.

Strict Core Scheduling. To block guest-to-host attacks, a
hypervisor could implement a stricter form of core schedul-
ing. This defensive measure entails effectively disabling
SMT during critical sections of execution. In our case, that
would mean that whenever a process on one vCPU enters
the hypervisor context, its sibling vCPU is suspended; only
when the former exits the hypervisor context will the latter
return to its prior guest execution. This avoids the situation



in which SMT sibling cores run in different security do-
mains, preventing vulnerabilities such as L1TF from leaking
sensitive data when combined with L1D flushing [[61]. Un-
fortunately, this strategy suffers from poor performance [62]].

Kernel Core Isolation. Next, we consider kernel core iso-
lation as proposed by Quarantine [63]]. The authors describe
isolating privileged and unprivileged execution on different
physical cores, which become privileged and unprivileged
cores. As a result, guests will run only on their own unpriv-
ileged cores, and will never be co-located with the kernel;
any privileged operation, such as a VMEXIT, will be dele-
gated to a privileged core. This prevents both the guest-to-
guest and guest-to-host attack scenarios, as different security
domains are always isolated to separate physical cores. To
circumvent this measure, a cross-core transient execution
attack is required. Though Quarantine is a comprehensive
mitigation against all on-core leaking transient execution at-
tacks, it is not reported how it performs when the hypervisor
runs more than a single virtual machine.

Address Space Isolation. By default, the Linux kernel
contains a direct map: a section in virtual memory that is
a linear one-to-one mapping to physical memory. Because
all memory is accessible via the kernel’s direct map, all
guest VM memory is thus accessible to the hypervisor and
vulnerable to guest-to-host attacks, as we showed with our
attack. Address space isolation (ASI) is a defense-in-depth
that tackles this issue by creating restricted address spaces
that unmap pages that could contain sensitive data, such as
the memory of a VM; when a guest VM’s memory is no
longer mapped in the host kernel, then the hypervisor cannot
access it either architecturally or speculatively. Compared to
the similar defense XPFO [53]], [[54], ASI is more generic,
as the former exclusively unmaps in-use user memory pages
from the kernel’s direct map.

Taking the different proposals and implementations of
ASI for KVM [62], [|64], [65] as an example, kernel address
spaces under ASI are restricted to only contain mappings
of code and data that are not sensitive. When the kernel
does need to access sensitive data, a page fault is trig-
gered in which it switches back to the full kernel address
space, enabling the application of (expensive) mitigations
only when necessary. In the case of L1TF, the kernel can
suspend all sibling vCPUs to ensure no untrusted guest code
runs on the same core while it switches to the full kernel
address space and loads sensitive data into the L1 data
cache; in combination with core scheduling, this protects
against guest-to-guest and guest-to-host attacks. Currently,
development is ongoing for an ASI implementation in the
Linux kernel [[65], and it is already partially deployed on
Google Cloud’s hypervisor and is planned to be deployed
fleet-wide from 2025 onward [65]], [66]].

Secret-Free Hypervisor. Going a step further than ASI, a
secret-free hypervisor creates several address spaces with
different levels of secrecy, which are combined into a min-
imal per-vCPU address space that does not contain any

secrets [61]. Implementing a hypervisor with this defense-
in-depth makes the guest-to-host attack pointless, as the
hypervisor no longer has access to secret data. As this
approach is similar to address space isolation, it still requires
core scheduling to mitigate guest-to-guest attacks.

The reported overhead of the existing secret-free hy-
pervisor work is comparable to a baseline without any
mitigations, only encountering a significant performance
pentalty when a core has to switch context to a different
CPU. However, the performance impact of enabling core
scheduling on a secret-free hypervisor is not discussed.

8. Discussion

Applicability to Other Cloud Environments. With our
end-to-end attack, we show that a combined exploitation of
LITF and a half-Spectre gadget in the hypervisor can leak
data from guest VMs on a host system, and is practical in
realistic commercial cloud settings. In particular, our attack
can leak non-sensitive host data from C5 cloud instances
of AWS, and that it can leak sensitive guest data from all
VMs in the system on N1 cloud instances of GCE. While
the gadgets used in this paper are specific to KVM (and thus
KVM-based proprietary hypervisors), other hypervisors are
likely to expose similar half-Spectre gadgets, enabling this
attack. As long as L1TF is not mitigated in hardware, and
the hypervisor can be made to load arbitrary data into the
L1 data cache, an attacker can leak arbitrary host and/or
guest VM data. As older CPUs vulnerable to L1TF are still
part of the fleets of many commercial cloud providers and
half-Spectre gadgets consist of code patterns common in
virtually all software, cloud providers other than AWS and
Google could be at risk.

Prevalence of L1TF Vulnerable CPUs. A main require-
ment for our attack is that the host system’s CPU is affected
by LITF, a vulnerability known for 7 years with hard-
ware mitigations implemented in newer CPUs. Yet, cloud
providers expect long life times of their hardware, leading
to a substantial number of hosts in their fleet where L1TF
requires mitigation in software. Unfortunately, public data
on fleet composition or instance popularity is not available
for major cloud providers. Thus, we cannot accurately de-
termine how many systems would be affected by our attack.
However, to estimate the prevalence of vulnerable sys-
tems, we inspect the specification of rentable instance types
in public clouds as proxy. For AWS general purpose EC2
instances, out of 10 Intel-based instance types, 4 may be
backed by L1TF affected CPUs [28]]. Similar, out of 20 Intel-
based instance types available in GCE, 4 may use according
CPUs [27]. Hence, we expect that a substantial amount of
L1TF-affected CPUs are actively in-use to this day.

9. Related Work

In this section, we discuss work related to the profiling
of CPU microachitectures and mitigations, and the use of
L1TF in transient execution attacks.



9.1. Profiling CPUs and Detecting Mitigations

Prior work has shown the possibilities of identifiying
CPU microarchitectures and information about microarchi-
tectural components in non-native attack scenarios, such as
web browsers. For instance, Trampert et al. [67] present
side-channel-related benchmarks that reveal CPU properties
relevant to transient execution attacks, such as cache sizes
or cache associativities, from the browser. Similarly, Saito
et al. [68]] show methods that help determine, among others,
the number of CPU cores, presence of SMT, and CPU family
type. While the aforementioned work focuses on browsers,
we in our work target a virtualized attack scenario.

Rather than investigate the microarchitectural properties
of a CPU directly, other work aims to directly determine
a system’s susceptibility to particular transient execution
attacks. GhostBuster [69], for example, evaluates existing
tools that check a system’s vulnerability against transient
execution attacks. The authors classify such tools into two
categories: information gathering tools, which rely on sys-
tem information sources such as CPUID and MSRs to map
available mitigations [70], [71], and empirical tools, which
emulate specific attacks to determine whether the transient
execution attack is possible (and thus not mitigated) [45],
[72]. For tools in the latter class, they note that one can use
either performance monitoring counters [72]] or side-channel
attacks [45]] to do so. In general, both classes of tools do not
consider the virtualized attack scenario, as there CPUID and
MSR access can be emulated and performance monitoring
counters are rarely virtualized.

9.2. L1TF

The Foreshadow attack [7], [13], later described by
Intel as L1 Terminal Fault (or L1TF) [38], [39], demon-
strated that transient execution attacks could not only breach
the user-kernel boundary [2]], but also security boundaries
such as Intel SGX [7] and the separation between virtual
machines [13], [73]. This led to the implementation of
mitigations such as core scheduling [15], [42] and L1D
flushing [38]], [41] to prevent LITF as it was originally
described.

Prior work showed how one could exploit L1TF despite
the aforementioned mitigations [24]], [25], [26]. Manthey
et al. found half-Spectre gadgets in the Xen hypervisor,
and described how they could potentially be exploited in
tandem with L1TF [24]; specifically, to use the gadget to
bring data into the cache on one hyperthread while LITF
is used on another to read the cached data. As a follow-up
to the aforementioned, Stecklina demonstrated this attack
by introducing an artifical half-Spectre gadget, showing
how it bypasses the mitigations against L1TF in the Linux
kernel [26]. While this was a synthetic attack that served
to validate the deployed defenses, we implement the first
end-to-end attack that exploits this combination of transient
execution vulnerabilities on unmodified hypervisors. Next,
Schwarzl et al. [25] show an attack on a Linux kernel

without retpoline [74], where the attacker exploits attacker-
controlled addresses remaining in general-purpose regis-
ters and their speculative dereferences in the kernel upon
interrupt-induced context switches. In this manner, data from
the L3 data cache is loaded into the L1 data cache, and
can be leaked using L1TF. Whereas we in our attack trick
the hypervisor into loading any desired sensitive data, the
attacker here has no control over what data the host accesses,
and relies on the host continuously accessing sensitive data
to ensure it remains in the shared L3 cache.

10. Conclusion

In this paper, we have shown how two different transient
execution vulnerabilities, L1TF and half-Spectre gadgets,
can be combined into a powerful attack primitive. A ma-
licious VM can bypass existing mitigations against guest-
to-guest leakage attacks by using a half-Spectre gadget in
the hypervisor. The gadget in the hypervisor lets it act as a
confused deputy, loading host physical memory into the L1
data cache. On a sibling SMT core, the malicious VM can
then use L1TF to leak the host physical memory from L1
data cache, potentially leaking memory from other guests
on the system. With that, we demonstrate an end-to-end,
guest-to-guest attack on base Linux and GCP cloud instance
machines that leaks a private key from an Nginx web server
running in a victim VM in an average time of 14.2 hours.

With our attack, we demonstrate that mitigating transient
execution vulnerabilities in isolation is not effective when
their exploitation can be combined to not only circumvent
existing defenses but yield powerful attack primitives. Miti-
gations such as XPFO [53], [54] and process-local mem-
ory [55] (as shown by AWS), and proposed mitigations
such as address space isolation [62], [64], [65]], [75] or a
secret-free hypervisor [[61], would have prevented this attack
from occurring. However, not comprehensively addressing
transient execution vulnerabilities leaves room for novel
combinations of exploitation to rear their heads.

Availability. We will make the prototype of our attack
publically upon acceptance of this paper.
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