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ABSTRACT

Accurately estimating sound sources’ temporal location, spatial location and se-
mantic identity label from multi-channel sound raw waveforms is crucial for an
agent to understand the 3D environment acoustically. Multiple sounds form a
complex waveform mixture in time, frequency and space, so accurately detecting
them requires a representation that can achieve high resolutions across all these
dimensions. Existing methods often cannot do it well because they either extract
hand-engineered features (i.e. STFT, LogMel) that require a great deal of param-
eter tuning work, or propose to learn a single-scale filter bank to process sound
waveforms that has limited time-frequency resolution capability. In this paper,
we tackle this issue by proposing to learn a group of parameterized synperiodic
filter banks. Each synperiodic filter’s length and frequency resolution are inversely
related, hence is capable of maintaining a better time-frequency resolution trade-off.
By alternating the periodicity term, we can easily obtain a group of synperiodic
filter banks, where each bank differs in its temporal length. Convolution of the
proposed filterbanks with the raw waveform helps to achieve multi-scale perception
in the time domain. Moreover, applying synperiodic filter bank to recursively
process a downsampled waveform enables to achieve multi-scale perception in the
frequency domain. Benefiting from the multi-scale perception in both time and
frequency domain advantage, our proposed synperiodic filter bank group learns a
dynamic multi-scale time-frequency representation in a data-driven way. Following
synperiodic filter bank group front-end, we add a Transformer-like backbone with
two parallel soft-stitched branches to learn semantic identity label and spatial loca-
tion representation semi-independently. Experiments on both direction of arrival
estimation task and the physical location estimation task shows our framework
outperforms existing methods by a large margin. Replacing existing methods’
front-end with synperiodic filter bank also helps to improve the performance.

1 INTRODUCTION

The fundamental task for an agent to perceive and interact with the 3D environment is to know the
location and semantic identity of its nearby objects. The location includes spatial location that is either
stationary or moving, temporal location like start time and end time. Vision-based such environment
perception has received large attention in the past decade and we have witnessed huge progress in
tasks such as object detection(Liu et al., 2016; Lin et al., 2014; Yang et al., 2019), classification(He
et al., 2016a) and tracking(Wang et al., 2019). Nevertheless, the sound-based counterpart research
has far lagged behind, despite all the fascinating properties sound signal exhibits. For example,
sound is ubiquitous and insensitive to ambient illumination change, it has no field-of-view (FoV)
constraints and is capable of circumventing physical barriers to perceive scene beyond line-of-sight.
As a complementary sensing approach to vision, sound-based environment perception is of vital
importance for acoustic scene understanding. A typical example is the sound source detection (answer
where is it, when does it happen and what is it), given the recorded multi-channel sound waveforms.

To detect sound sources, we often deploy a spatially-configured microphone array to record an
acoustic environment. Unlike camera or LiDAR scanner that directly captures RGB image or
measures the range distance, sound waveform itself is a highly compressed one-dimensional points
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with high sampling rate, all sound source signals are compressed and mixed into the one-dimensional
data format. Since different sound sources have different frequency property, it is essential convert
waveform into time-frequency representation so that frequencies hidden in the waveform are explicitly
split out. This is often achieved by projecting the raw waveform into various orthogonal frequency
basis. At the same time, a sound source’s spatial location clue lies in inter-channel difference of
recorded waveforms (i.e. phase difference in this work). It is essential to design a neural network that
jointly encodes mono-channel time-frequency representation and inter-channel phase difference from
the raw waveforms in a unified, parameter-frugal and computation-efficient manner. The learned
representation should have elegant resolution in both time, frequency and space domain so that sound
sources can be precisely detected.

However, learning such representation is a tough task. Challenges derive from both theoretical side
and practical side. According to Uncertainty Principle, we cannot achieve the optimal resolution in
time and frequency domain at the same time, but instead keep a trade-off between them. Traditional
hand-engineered sound feature(Davis & Mermelstein, 1980; Cao et al., 2021; Tho Nguyen et al.,
2020; Brandstein & Silverman, 1997) and some recently proposed learnable filter bank(Ravanelli
& Bengio, 2018; Zeghidour et al., 2018) empirically set the same length for all filters, resulting in
human-biased, unadjustable time-frequency resolution map. Some other work(Zeghidour et al., 2021)
correlates filter frequency response and filter length by initializing in mel-scale, but it is not scalable
nor stable because the final initialization depends on the filter number. Moreover, all existing methods
process raw waveform with one-scale filter bank, we argue that the one-scale sound perception
easily leads to incomprehensive sound sources sensing, especially when sound sources have different
frequency property or undergo various spatial motion.

In this paper, we first give comprehensive theoretical analysis on the filter bank impact on its extracted
feature’s time and frequency resolution. Based on the analysis, we propose a simple yet effective
synperiodic filter bank construction strategy in which each filter’s frequency response and length are
correlated by rotating periodicity such that each filter’s length is inversely proportional to its frequency
resolution. The synperiodic filter bank thus internally maintains a better time-frequency resolution
trade-off than traditional fixed-length filter bank. Coupling the filter length with its frequency response
helps us to reduce human intervention in filter bank design. By simply alternating the periodicity
term, we further construct a group of synperiodic filter banks, with which we achieve multi-scale
perception in time domain. At the same time, by applying a synperiodic filter bank to process one
raw waveform as well as its consecutively-downsampled versions, we achieve multi-scale perception
in frequency domain. The multi-scale perception in both time and frequency domain of synperiodic
filter bank enables the neural network to dynamically learn better representation for sound source
detection in a data-driven way. It is worth noting that synperiodic filter bank parameter number is
just linear to filter number (adds up to less than 1% of the whole parameters) and it can be efficiently
implemented as a 1D convolution operator.

Following the aforementioned learnable front-end, we add a Transformer-like backbone network
with two paralleling branches with intermediate soft-parameter sharing to learn sound source’s
semantic and spatial location related representation both jointly and separately. Experiment on
both direction-of-arrival (DoA) task and physical location estimation task shows that our proposed
framework outperforms comparing methods by a large margin. Replacing existing method’s head
with our proposed synperiodic filter bank also improvdes the performance.

2 RELATED WORK

Sound signal processing has been thoroughly studied in traditional digital signal processing area.
The preliminary step of sound signal processing is usually to convert raw waveform into 2D time-
frequency representation. There are two main realms: Fourier transform based and Wavelet based
transform(Sturm, 2007). Traditional sound feature design are motivated influenced by human-auditory
system. For example, they often convert frequency bins into mel-scale to imitate human hearing
system, like MFCC(Davis & Mermelstein, 1980), LogMel(Cao et al., 2021; Grondin et al., 2019), the
filter length is empirically chosen and often a windowing is added to avoid spectrum leakage. For
inter-channel phase difference encoding, it is often recommended to encode in frequency domain due
to the less-computation advantage. Typical phase difference features include GCC-Phat(Brandstein &
Silverman, 1997) and intensity vector(Cao et al., 2021).
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Sound source detection has been previously treated as sound structure(Thrun, 2006) estimation,
sound object detection(He et al., 2021) and sound event detection and localization (SELD) prob-
lem(Adavanne et al., 2018; Thi Ngoc et al., 2021). It involves jointly identifying a sound source’s
semantic label and predicting its spatial location, the two sub-tasks have been thoroughly studied
separately in acoustics(Nandwana & Hasan, 2016; Mohan et al., 2008; Sundar et al., 2020; Vera-Diaz
et al., 2018) and computer vision community(He et al., 2016a). T. Kim et al.(Kim et al., 2019) pro-
vided a review and discussion for raw-audio based event classification. Benefiting from the success of
the traditional hand-engineered sound feature and the large availability of mature image-based deep
neural networks(He et al., 2016a), most work(Grondin et al., 2019; Cao et al., 2021; Grondin et al.,
2019; Adavanne et al., 2018; Thi Ngoc et al., 2021) tackle the task by first extracting hand-engineered
sound feature and then feeding them to mature image-based neural networks. This workflow is
straightforward and often guarantees reasonably good results but it is not end-to-end trainable and
heavily depend on image side which may not be optimal for sound processing. At the same time,
some work(He et al., 2021; Adavanne et al., 2018; Tho Nguyen et al., 2020) have simplified the
problem by assuming no two sound sources of the same semantic label but different spatial location
happen at the same time. This assumption avoids semantic label and spatial location association issue
but may not reflect real scenarios.

In recent years, a bunch of work tried to design neural work to directly learn from raw sound waveform,
ranging from the earlier methods that directly apply stacked layers to process raw waveform(Schneider
et al., 2019; Palaz et al., 2013; Jaitly & Hinton, 2011; Sainath et al., 2013) to the recent frequency-
sensitive filter bank learning methods(Zeghidour et al., 2021; Ravanelli & Bengio, 2018; Zeghidour
et al., 2018; He et al., 2021; Hoshen et al., 2015; Sainath et al., 2015; Luo & Mesgarani, 2019).
The filter bank parameter is initialized in either mel-scale(Ravanelli & Bengio, 2018; Zeghidour
et al., 2021; He et al., 2021; Zeghidour et al., 2018) or as Gammatone filter(Hoshen et al., 2015;
Sainath et al., 2015). SoundDet(He et al., 2021) is the first work to directly learn from multi-channel
raw waveforms to detect sound sources. It designs MaxCorr filter bank to directly convolve with
multi-channel raw waveforms to learn phase difference aware features.

Multi-scale representation has a rich history in computer vision community ((Liu et al., 2016; 2021;
Lin et al., 2016; He et al., 2016b)), in which multi-scale representation strategy has been proposed
to accommodate large object scale variation. For example, SSD(Liu et al., 2016) combines feature
maps of various scale to cover potential objects of various sizes. In addition to spatial multi-scale
representation, feature space multi-scale representation has been explored as well. For example,
He et. al.(He et al., 2016b) incorporate features arising from intermediate layers to boost attribute
recognition. In sound signal processing, Stéphane Mallat(Bruna & Mallat, 2013; Mallat, 2012)
proposed wavelet scattering to obtain multi-scale sound representation by iteratively treating the
proceeding processed sound waveform as new virtual waveform for further process.

3 SOUND SOURCE DETECTION FROM MULTI-CHANNEL RAW WAVEFORMS

3.1 SOUND SOURCE DETECTION PROBLEM DEFINITION

We use a spatially-deployed microphone array, like four closely-bounded microphones in a circular
coplanar configuration, to record an acoustic environment where various sound sources undergo inde-
pendent and unconstrained spatial motion. Recorded multi-channel raw waveforms are represented
as W “ txiptqu

4
i“1, each waveform is 1-d vector of size T sampled at a fixed sampling rate. We

denote K sound sources by S “ tsk “ ptks , t
k
e , spk, slkqu

K
k“1, one single sound source corresponds

to a start time ts, end time te, stationary or moving spatial motion sp and a semantic identity label sl.
Our goal is to learn a representation P that is representative enough to detect sound sources both
spatially and semantically. P is a temporal framewise representation of shape T1 ˆN . We propose
to learn P directly from the raw waveforms via a deep neural network F parameterized by θ,

PT1ˆN “ FpWTˆ4|θq, T1 ! T (1)

A learned elegant representation should have large resolution in both time, frequency and space
domain and exhibit strong capability at addressing three intrinsic challenges: Polyphonicity, sound
sources are mutually independent, they can freely overlap temporally; Time-scale variance, the
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Figure 1: Synperiodic filter bank illustration: Syndistance filter bank (green color) rotates the same
distance in complex plane and thus has the same kernel length, regardless of frequency it carries. Its
time-frequency dynamic resolution map is thus rectangular. our proposed synperiodic filter bank (blue
color) are generated by rotating the same periodicity number. So filter carrying lower frequency has
larger kernel size than those with higher frequency response. As a result, synperiodic filter bank’s
time-frequency dynamic resolution map that is able to achieve a better trade-off than traditional
syndistance filter bank.

temporal duration of different sound sources varies enormously, from seconds to minutes long;
Datasize, sound waveform is sampled with large sampling rate, resulting in large data size.

Sound source presence clue lies in mono-channel time-frequency representation and its spatial motion
clue lies in inter-channel interaction, like phase difference. Our proposed synperiodic filter bank
group jointly encodes time-frequency representation and phase difference from raw waveforms in a
unified way. More detail about phase difference encoding is given in the Appendix A.1.

3.2 MULTI-SCALE SYNPERIODIC FILTER BANK

We denote the general filter bank of M filters by F “ tFipwi, σi, liq “ φpwiq ¨ ωpσiqu
M
i“1. Each

single filter Fi is created by multiplying the frequency-selective filter φpwiq of frequency response
wi (i.e. sinusoidal basis or band-pass basis(Ravanelli & Bengio, 2018)) with a windowing function
ωpσiq. The windowing function has locality property which means it is just active within a local
region controlled by σi (i.e. Gaussian kernel window). Then li points are cropped around the
active region and treated as a frequency-selective filter (usually li ą σi). Existing filter bank differs
in their way of parameter setting, including filters’ frequency response distribution, filter length
length and windowing function. In classic hand-engineered features such as short-time Fourier
transform (STFT) and LogMel feature, all these parameters are empirically chosen. Contrary to STFT,
wavelet transform(Sturm, 2007) inversely correlates window length with frequency response so that
the active region of the filter is internally decided by its frequency response.

Time-Frequency Dynamic Resolution Frequency resolution indicates the ability of discerning two
adjacent frequency bins, time resolution corresponds to the capability of precisely localizing a
sound source in time domain. The resolution in time and frequency domain jointly influence spatial
localization precision because we encode spatial location on top of on pre-extracted time-frequency
representation. According to Uncertainty Principle, however, the frequency resolution ∆f and time
resolution ∆t satisfies ∆f ¨∆t ě C (C is a constant). It means we cannot get optimal resolution
in both time and frequency domain at the same time, but rather keep a trade-off between them:
increasing the resolution in one domain inevitably sacrifices the resolution in the other domain.

Traditional hand-engineered sound feature’s time-frequency resolution map is fixed because all
filter bank construction relevant parameters are empirically chosen. Therefore, its time-frequency
resolution map is evenly divided across both the time and frequency domain (see Fig.1 second last
figure). Relaxing the frequency response and windowing length as trainable(Zeghidour et al., 2021)
helps to achieve a better time-frequency resolution trade-off. The improvement is, however, limited
because it uses one filter bank of the same filter length to process all sound signals (or perceive at
one-scale). We categorize these traditional filter bank as syndistance filter bank to emphasize their
equal temporal length property across all frequency responses.

In this paper, we rethink filter bank design and propose a synperiodic filter bank construction strategy.
Our motivation is based on the fact that high-frequency sound signal can be adequately detected
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with a short filter because its temporal length of one period is small. Conversely, lower frequency
sound signals require wider filters. It thus shows using the same window size for all filters across the
frequency range is not a good choice, a more desirable way is to use narrower window for filters with
higher frequency responses. Under this guidance, we propose a synperiodic filter bank construction
strategy. To better understand the main difference between syndistance filter bank and our proposed
synperiodic filter bank, we can visualize them in complex-valued plane (see Fig.1, left-most), in
which a filter is a complex exponential rotating in the complex plane counter-clockwisely, the rotating
speed corresponds to the frequency it carries. In the complex-valued plane, all syndistance filters
rotate to the same distance. Synperiodic filters, however, rotate to a predefined periodicity ρ, naturally
resulting in narrow window for high-frequency filters and wide window for low-frequency filters.

Synperiodic filter bank lends us three advantages: it first avoids us setting window length for each
filter separately, which is quite empirical and random; second, the constructed filter bank by design
maintains a good time-frequency resolution trade-off; third, by simply varying the periodicity term ρ,
we can easily obtain a group of synperiodic filter bank to process the raw waveform in multi-scale
manner (as we will present in below). Our synperiodic filter bank construction strategy shares similar
idea with Wavelet transform(Sturm (2007)) where it adopts a time shift and “squeezing ratio” to
create achieve multi-scale perception, the difference is that we omit the time shift and instantiate
the squeezing ratio with our proposed synperiodicity strategy. Moreover, synperiodic filter bank is
multi-scale in time and frequency domain and seamlessly works well with convolution operation, and
it is end-to-end trainable. Specifically, our proposed synperiodic filter bank can be represented as,

Fρ
synp “ tfipwi, ρ, liq “ φpwiq ¨ ωpwi, ρqu

M
i“1, where ωpσiq “ ωpwi, ρq (2)

where we can see that the windowing function just depends on the center frequency wi and the
periodicity term ρ. By varying the periodicity term ρ, we can obtain a group of synperiodic filter bank
Fsynp “ tFρ1 ,Fρ2 , ¨ ¨ ¨ ,Fρnu, each group differs in its window size. The comparison between
syndistance and synperiodic filter bank is shown in Fig. 1.

There are many ways to instantiate ωpwi, ρq, as long as we guarantee the window length gradually
reduces as the the frequency response increases. The simplest choice is to treat ωpwi, ρq as a constant,
but we find it either results in too wide window for low-frequency filters or too narrow window for
high-frequency filters. To mitigate this dilemma, we use logarithmic windowing function,

ωpwi, ρq “ 27 ¨ log10pwiq ´ ρ, ρ “ t´6,´11,´16u (3)

We set ρ as r´6,´11,´16s respectively to construct three synperiodic filter banks. The design of
this window function is motivated by mel-scale frequency initialization strategy. By roughly setting
a filter’s bank width to be equal to the distance between its preceding and next frequency location
in frequency domain, converting to time domain we can roughly get a logarithmic scale frequency-
periodicity relationship (see Fig.4 in Appendix). In our implementation, synperiodic filter is created
by multiplying a sinusoidal basis with learnable frequency response initialized in mel-scale by a
Gaussian window with learnable width initialized through the windowing function by Eqn.3. Please
note that each synperiodic filter bank group is initialized with independent learnable frequencies and
window length, they are independently updated during training stage.

3.3 MULTI-SCALE LEARNING IN TIME AND FREQUENCY DOMAIN

We use the previously constructed synperiodic filter bank group to convolve with mono-channel
sound waveform with the same step size and padding strategy, resulting in the same size output
for each single synperiodic filter bank. Since different filter group has different window size, we
naturally achieve multi-scale learning in time domain. It maximally avoids us empirically selecting
one window scale ρ which might not be optimal, but instead uses a group of filter bank to enforce the
neural network to strike a better time-frequency resolution trade-off in a data-driven way.

We further propose a strategy to enable multi-scale learning in frequency domain. The strategy is
hierarchical: given a raw sound waveform with sampling frequency FS , synperiodic filter bank’s
frequency is initialized within the range r0, FS

2 s under Nyquist sampling theorem. If we downsample
the sound waveform by a factor of 2, the resulting waveform can be processed by the lower-half
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Figure 2: Multi-scale learning in frequency domain. Given the raw one channel sound waveform
and pre-constructed synperiodic filter bank, we consecutively downsample the waveform by factor
2x, the newly downsampled waveform is processed by low-half filter bank from the proceeding
filter bank. We can obtain time-frequency representation for on each frequency scale. These time-
frequency representations share the same time length by adjusting step size. The final time-frequency
representation is obtained by max-pooling them together.

filters in each group whose frequency response lies in r0, FS

4 s. This process that 2x-downsampling
the waveform further process the downsampled waveform with filters with lower-half frequency
response can potentially iterate a couple of times (in our case three times), resulting in multi-scale
perception in frequency domain. The figurative illustration is shown by Fig. 2. Multi-scale learning in
frequency domain brings us two extra benefits: 1) from data augmentation perspective, hierarchical
2x downsampling inevitably creates more waveforms, which matters a lot when labelling audio
data is technically hard and time-consuming. 2) from the causality perspective, the adjacent 2x-
downsampling strategy leads to dilated convolution for lower-frequency filters, because applying a
filter to convolve with a downsampled waveform equals to convolve on the original waveform with
dilated convolution (skip-2 connection). The resulting wider field of view (FoV) for lower frequency
filters enables to learn better sound causality along the time axis (see Appendix A.4). In sum, by
using learnable synperiodic filter bank group to process the raw waveform in multi-scale manner, we
achieve a dynamic time-frequency resolution map that naturally maintains a better time-frequency
resolution map fitting for sound source detection in a data-driven way.

Computational Analysis Synperiodic filter bank group introduces very few parameters (less than
1%) because they are parameterized filters. The trainable parameter number increases linearly
w.r.t. synperiodic filter bank number. Their convolution with raw waveforms can also be efficiently
implemented with 1D convolution.

3.4 TANSFORMER-LIKE BACKBONE WITH TWO SOFT-STITCHING BRANCHES

Synperiodic filter bank group generates feature representation of shape rT0, N0, Cs (T0 is much
smaller than the T but is still larger than T1. N0 equals to the filter number and we use 256, C
is channel number). Jointly learning framewise sound source semantic label and spatial location
representation is a multi-task problem(Kendall et al., 2018; Misra et al., 2016). We propose a
Transformer-like backbone with two paralleling and identical branches to learn each sub-task sepa-
rately. To enforce information communication, we add a layerwise information exchange module: for
the intermediate semantic label feature f is and spatial location feature f ig learned by the i-th block,
a learnable weight Wi is introduced to linearly combine them together to get an updated f is and f ig
before feeding them to the next layer, rf is, f

i
gs “ Wi ¨ rf

i
s, f

i
gs. In practice, the Transformer-like

backbone gradually reduces the learned feature’s temporal length but increases the channel dimension
accordingly. Finally we can get the final sound source representation of shape rT1, N s. On top of the
representation, we add trackwise permutation-invariant training (PIT) strategy(Cao et al., 2021) to
trains the whole neural network in an end-to-end manner. The permutation invariant training strategy
helps to address the polyphonicity challenge because it encapsulates a potential sound source’s
semantic label and spatial location within a track, so it won’t be influenced by other sound sources.

4 EXPERIMENTS

We conduct experiments on two tasks: direction of arrival (DoA) and physical location estimation.
DoA estimation requires to decide arrival angle of sound source to microphone array. Physical location
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Table 1: Evaluation result for DoA task. For Segment-based evaluation, we report detection error
ER20˝ , F measure F20˝ under DoA threshold 20˝, and classification dependent localization error
LECD and localization recall LRCD. For event-based evaluation, we report mAP/mAR. The “Input”
column labels are: 0. Raw waveform, 1. Log-Mel, 2. GCC-Phat, 3. Intensity Vector.

Methods Params Input Segment-Based Evaluation Event-based Evaluation
ER20˝ pÓq F20˝ pÒq LEpÓq(˝) LRpÒq mAPpÒq mARpÒq

SELDNet(foa)(Adavanne et al., 2018) 0.5 M 1,3 0.63 0.46 23.1 0.69 0.087 0.152
SELDNet(mic)(Adavanne et al., 2018) 0.5 M 1,2 0.66 0.43 24.2 0.66 0.079 0.140

EIN(foa)(Cao et al., 2021) 26.0 M 1,2 0.30 0.77 8.9 0.84 0.134 0.256
SoundDet(foa)(He et al., 2021) 13.0 M 0 0.25 0.81 8.3 0.82 0.197 0.294

UTSC-Iflytek(foa+mic)(Wang et al., 2020) Ensemble 1,2,3 0.20 0.85 6.0 0.89 - -
SoundSynp(mic) 60.0 M 0 0.19 0.86 5.5 0.91 0.210 0.313
SoundSynp(foa) 60.0 M 0 0.16 0.88 4.3 0.93 0.232 0.327

Figure 3: Qualitative comparison on DoA task. We show detected sound source temporal location (top
row) and azimuth (bottom row). The horizontal axis is time, the vertical axis is semantic label (top)
and azimuth in degree(bottom). Different color indicates different sound source category.

directly localizes a sound source’s physical location (i.e. px, y, zq coordinates). For DoA estimation
task, we use DCASE2020 sound event detection and localization dataset(Politis et al., 2020). It
contains 14 sound sources with azimuth range r´180˝, 180˝s and elevation range r´45˝, 45˝s. Two
recording formats are available: FOA and MIC-array (refer to Appendix for detailed discussion). For
more details about this dataset, please refer to (Politis et al., 2020). For physical location estimation,
we use pyroomacoustics(Scheibler et al., 2018) simulator to simulate the dataset.

4.1 DIRECTION OF ARRIVAL ESTIMATION

We adopt two evaluation metrics: segment-based and event-based metric. Segment-based metric is a
widely adopted evaluation metric(Adavanne et al., 2018; Cao et al., 2021), it couples semantic label
and spatial location together: a semantic-correctly detected sound source needs to be spatially close
enough to its ground truth location in order to be regarded as a true positive detection. Event-based
based metric is newly proposed by(He et al., 2021) to comprehensively evaluate under different
confidence scores. Like object detection from images(Lin et al., 2014), it computes mean average
precision (mAP) and mean average recall (mAR) score.

We call our framework SoundSynp and compare it with four most recent methods: SELD-
Net(Adavanne et al., 2018), EIN(Cao et al., 2021), SoundDet(He et al., 2021) and Utsc-Iflytek(Wang
et al., 2020). SELDNet is the baseline model and it jointly trains sound source’s semantic label
and spatial location with a convolutional recurrent neural network (CRNN)(Chung et al., 2014).
EIN(Cao et al., 2021) is a very recent work. It adopts multi-heads self-attention(Vaswani et al.,
2017) to model temporal dependency and trackwise permutation-invariant training to train the model.
SoundDet(He et al., 2021) directly learns from raw waveform with MaxCorr kernels, followed by an
encoder-decoder neural network. Utsc-Iflytek(Wang et al., 2020) is ranked first in DECASE2020
challenge leaderboard1, it combines MIC and FOA features and ensembles different models like
ResNet(He et al., 2016a) and Xception(Chollet, 2017) to give final prediction.

Implementation Detail The network architecture is shown in table 4 in Appendix material. To
train the neural network, we evenly divide the one minute long four-channel raw waveform into
non-overlapping 4s short snippets. The raw waveform is first normalized to r´1, 1s before feeding
the neural network. We adopt Adam optimizer(Kingma & Ba, 2015) with an initial learning rate
0.0002 in the first 100 epochs and 0.00007 in the following 50 epochs. Batchsize is 16. The loss
combination weight between classification head and regression head is 1 : 2. During training, data

1see this link for leaderboard report.
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augmentation method SpecAugment(Park et al., 2019) is applied. For DoA task, we regress direction
of arrival angle in Cartesian coordinates rx, y, zs. In synperiodic filter bank groups, the filter length is
1025, each group’s filter number is 256 and the step size is 600. Particularly, we have observed the
initialized learnable synperiodic filter banks update its parameters intensively during the very early
several epochs, and then gradually becomes stable. The final learned parameters are close to their
initialization, one group’s learned parameters (like frequency response and filter window length) is
different from those learned by other groups, although they are initialized as the same in the start. We
train each model five times independently and report the average score. The standard deviation is
within 0.04 (for recall) and 0.2˝ for angle, 0.003 for mAP and mAR.

The result is given in Table1, from which we see that SoundSynp achieves the best performance over
all comparing methods by a large margin, under both segment-based and event-based metrics. Both
SELDNet, EIN and UTSC-Iflytek use pre-extracted hand-engineered sound features, such as Logmel,
GCC-Phat and Intensity Vector. SoundDet(He et al., 2021) and SoundSynp are the only two methods
that directly learn from raw waveforms. At the same time, SoundSynp obtains better performance on
FOA than MIC format, the same phenomena has been observed by all other methods. It thus shows
FOA better fits for sound source detection than MIC. It is worth noting that Utsc-Iflytek(Wang et al.,
2020) ensembles different powerful image-based 2D models to detect sound sources. However, our
proposed SoundSynp still outperforms Utsc-Iflytek by a large margin. We don’t report of mAP/mAR
value for Utsc-Iflytek because it is a complex system and no detail about their system is available.

Ablation Study To disentangle the individual contribution of each part of our SoundSynp framework
to the whole performance improvement, we conduct three ablation studies. First, the individual
contribution of Synperiodic filter bank. We replace hand-engineered sound feature head of SELDNet,
EIN and learnable MaxCorr filter bank with our proposed Synperiodic filter bank to test their corre-
sponding performance. It helps to remove the influence of the backbone neural network of different
models and thus helps to get direct comparison of synperiodic filter bank with other front-end.
Second, we replace SoundSynp’s synperiodic filter bank group with widely-used MFCC(Davis &
Mermelstein, 1980) and Log-Mel that is used by SELDNet(Adavanne et al., 2018) and EIN(Cao
et al., 2021), respectively. It disentangles synperiodic filter bank group with Transformer-like back-
bone, thus helps to figure out if the performance gain is simply brought by backbone network.
Third, internally, we test five synperiodic variants: (1) synperiodic filter bank with just multi-
scale perception in frequency domain (SoundSynp MSFreq), (2) just multi-scale perception in time
domain (SoundSynp MSTime), (3) Synperiodic filter bank with frequency responses linearly ini-
tialized in Nyquist frequency range (SoundSynp Linear, compare with our mel-scale initialization),
(4) just one synperiodic filter bank without multi-scale perception neither in time nor frequency
domain (SoundSynp SingleScale). (5) synperiodic filter bank with rectangular band-pass frequency
response initialization (SoundSynp Sinc), like SincNet(Ravanelli & Bengio, 2018) does. The internal
comparison helps us to figure out the necessity of each part of synperiodic filter bank design.

The ablation study result is shown in Table 2. We can observe that: First, using synperiodic filter bank
as a replacement of existing filter bank can help to improve the corresponding performance. Second,
replacing SoundSynp’s synperiodic filter bank with classic hand-engineered features inevitably
reduces the performance under all evaluation metrics, its thus shows learning from pre-extracted
fixed and single-scale sound representation leads to inferior performance than our proposed multi-
scale synperiodic filter bank. Third, the absence of multi-scale perception in either frequency
domain or time domain inevitably reduces the performance. We find sound source semantic label
detection suffers more in single-scale perception in time domain than in frequency domain (see better
performance on ER20˝ , and F20˝ score), which shows frequency domain multi-scale perception is
vital for semantic label estimation. Similarly, we can observe that multi-scale perception in time
domain is vital for sound source spatial location estimation (see better performance on LE and LR
score). Linearly initialized filter bank frequency response reduces the performance, which shows
assigning more filters to the lower frequency range is important. But this conclusion might be
data-dependent because we find DCASE dataset contains many low-frequency sounds like burning
fire and footsteps. Moreover, reducing the synperiodic filter bank group to one groups with just single-
scale perception leads to comparably the worst performance, it thus shows multi-scale perception
in both time and frequency domain is essential for DoA-based sound source detection. Lastly,
SoundSynp Sinc leads to slightly inferior performance than our used mel-scale initialization strategy,
it shows our proposed synperiodic filter bank is a general filter bank that can be adopted to other
frequency sensitive filter bank.
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Table 2: Ablation study report. Internally, we replace SELDNet, EIN and SoundDet head with
synperiodic filter bank (denoted as Synp). Externally, we test different modified SoundSynp versions.

Methods Blocks Segment-Based Evaluation Event-based Evaluation
ER20˝ pÓq F20˝ pÒq LEpÓq(˝) LRpÒq mAPpÒq mARpÒq

SELDNet(foa)(Adavanne et al., 2018) Conv2D, biGRU 0.63 0.46 23.1 0.69 0.087 0.152
SELDNet Synp(foa)(Adavanne et al., 2018) 0.57 0.49 22.1 0.75 0.093 0.165

SELDNet(mic)(Adavanne et al., 2018) Conv2D, biGRU 0.66 0.43 24.2 0.66 0.079 0.140
SELDNet Synp(mic)(Adavanne et al., 2018) 0.61 0.48 23.0 0.70 0.090 0.153

EIN(foa)(Cao et al., 2021) Conv2D, MHSA 0.30 0.77 8.9 0.84 0.134 0.256
EIN Synp(foa)(Cao et al., 2021) 0.27 0.79 8.3 0.87 0.138 0.258
SoundDet(foa)(He et al., 2021) Conv1D, LSTM 0.25 0.81 8.3 0.82 0.197 0.294

SoundDet Synp(foa) (He et al., 2021) 0.22 0.83 7.9 0.85 0.204 0.299
SoundSynp MFCC(foa) Conv2D, MHSA 0.21 0.83 6.9 0.85 0.203 0.301
SoundSynp LogMel(foa) 0.22 0.84 6.8 0.85 0.207 0.308
SoundSynp MSFreq(foa)

Conv2D, MHSA

0.20 0.85 7.3 0.86 0.210 0.284
SoundSynp MSTime(foa) 0.22 0.82 7.0 0.88 0.172 0.282
SoundSynp Linear (foa) 0.21 0.83 8.8 0.83 0.168 0.259

SoundSynp SingleScale(foa) 0.25 0.80 9.0 0.81 0.164 0.246
SoundSynp Sinc(foa) 0.19 0.86 5.2 0.91 0.226 0.316

SoundSynp(foa) Conv2D, MHSA 0.16 0.88 4.3 0.93 0.232 0.327

Table 3: Physical location estimation result report. We set distance threshold 1.0m, which means a
detected sound sources has to lie within this threshold in order to be treated true positive.

Methods Segment-Based Evaluation Event-based Evaluation
ER1.0mpÓq F1.0mpÒq LEpÓq(m) LRpÒq mAPpÒq mARpÒq

EIN(Cao et al., 2021) 0.45 0.71 0.71 0.73 0.114 0.240
EIN Synp(Cao et al., 2021) 0.45 0.72 0.67 0.75 0.117 0.244
SoundDet(He et al., 2021) 0.43 0.67 0.68 0.74 0.118 0.271

SoundDet Synp(He et al., 2021) 0.44 0.69 0.64 0.79 0.123 0.271
SoundSynp 0.35 0.79 0.53 0.83 0.154 0.279

One qualitative comparison is shown in Fig. 3. We can clearly see that SELDNet generates mixed
prediction at different time steps and DoA locations. SoundDet and EIN give non-existing sound
sources (orange color). When multiple sound sources happen at the same time (polyphonicity),
SoundDet and EIN are easily failed to predict the right spatial location (discretized blue and red
color). Our method predicts more spatially and temporally consistent sound sources by maximally
keeping sound source’s continuity and consistency.

4.2 PHYSICAL LOCATION ESTIMATION

We use Pyroomacoustics simulator(Scheibler et al., 2018) to simulate a shoebox like room with
r7m, 5m, 3ms size. Four microphones (24kHz sampling rate) are configured in a plane with 5cm
mutual distance and put in the room center (r3.5m, 2.5m, 1.5ms). We choose three commonly heard
sounds from BBC sound effect site2: cat meowing, baby talking and dog barking. All these seed
sounds last less than 10s. During simulation, we put all seed sound in the plane z “ 1.5m (we
constrain to a plane because we find relaxing z easily leads EIN model to get stuck in a local minima
like r´1,´1,´1s), but with x randomly in r2m, 5ms and y randomly in r1m, 4ms, up to two sounds
can happen at the same time. In sum, we have simulated 500 one-minute recordings (400 for train,
100 for test), with an average of four sounds recorded per recording. For physical location prediction,
we regress the angle and range. The result is in Table 3. We do not report SELDNet result as we
find it doesn’t converge during train. We can see from the table that SoundSynp produces the best
performance than over EIN and SoundDet network. Replacing their front-end with synperiodic filter
bank also improves the performance. It thus shows our proposed SoundSynp is capable of learning
representation for physical-location based sound source detection.

4.3 DISCUSSION AND CONCLUSION

We have proposed a novel learnable sound feature extractor front-end: synperiodic filter bank. It
requires very few parameters and is computational efficient. It extracts feature in multi-scale manner
in both time and frequency domain. Although it shows excellence in detecting sound sources, we
believe it can be used as a general front-end to tackle other sound tasks, like speech processing and
keyword spotting.

2see https://sound-effects.bbcrewind.co.uk/
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A APPENDIX

A.1 SPATIAL LOCATION ENCODING IN FREQUENCY DOMAIN AND RECORDING FORMAT
DISCUSSION

We discuss the detailed spatial location encoding for FOA and MIC sound waveform recording
format. The spatial location encoding is based on 2D feature learned by the Gabor filter bank for
each sound waveform channel, which can be represented as tFi “ pRi, Iiqu4i“1. Ri and Ii are real
part and imaginary part feature of the i-th channel sound waveform, respectively.

FOA format is well-known as first-order Ambisonics (B-format). It contains four channels: omni-
directional, x-directional, y-directional and z-directional components, respectively. The instantaneous
sound intensity vector is often used as spatial location (or phase difference) feature, which can be
computed through the cross-spectrum between the omni-directional channel to the remaining x, y, z-
directional. As a result, we have obtained 3 channel spatial location encoding feature.

IVx “ F˚
0 ¨ F1, IVy “ F˚

0 ¨ F2, IVz “ F˚
0 ¨ F3 (4)

where F˚
0 indicates the conjugate of the omni-directional feature. The three cross-spectrum feature

IVx, IVy and IVz are stacked together and further normalized before serving as the spatial encoding
feature.

MIC format is well-known as tetrahedral microphone array. The four microphones are mounted
in spherical coordinates with four distinct orientations. We treat the four microphones equally and
compute the phase difference between any two microphones. Thus a total of six channels spatial
location feature can be constructed. Specifically, we choose to compute GCC-PHAT(Brandstein &
Silverman, 1997) like cross-spectrum feature. For any two channel m and n, we compute the angle
between the real part and imaginary part of the cross-spectrum.

SL “ anglepF˚
m ¨ Fnq, m ‰ n,m “ 1, 2, 3, 4;n “ 1, 2, 3, 4 (5)

SL indicates the spatial location feature computed by the sound waveform channel m and n. The
anglep¨q equals to a frequency amplitude normalization operation, like the GCC-PHAT(Brandstein &
Silverman, 1997) does. Please note that all the spatial location feature computation operations are
differentiable so the whole neural network becomes end-to-end trainable.

A.2 NETWORK ARCHITECTURE AND TRAINING DETAILS

SoundSynp neural network architecture is given in Table 4. To train the neural network, we evenly
divide the one minute long four-channel raw waveform into non-overlapping 4s short snippets. The
raw waveform is first normalized to r´1, 1s before feeding the neural network. We adopt Adam
optimizer(Kingma & Ba, 2015) with an initial learning rate 0.0002 in the first 100 epochs and 0.00007
in the following 50 epochs. Batchsize is 16. The loss combination weight between classification
head and regression head is 1 : 2. During training, data augmentation method SpecAugment(Park
et al., 2019) is applied. For DoA task, we regress direction of arrival angle in Cartesian coordinates
rx, y, zs. In synperiodic filter bank groups, the filter length is 1025, each group’s filter number is
256 and the step size is 600. Particularly, we have observed the initialized learnable synperiodic
filter banks update its parameters intensively during the very early several epochs, and then gradually
becomes stable. The final learned parameters are close to their initialization, one group’s learned
parameters (like frequency response and filter window length) is different from those learned by other
groups, although they are initialized as the same in the start.

A.3 SYNPERIODIC FILTER BANK FREQUENCY-PERIODICITY RELATIONSHIP DETERMINATION

Mel-scale time-frequency representation has been widely used in both traditional sound feature like
MFCC(Davis & Mermelstein, 1980), LogMel and learnable filter bank(Zeghidour et al., 2021). It
initializes the filter bank in frequency domain, in which high-frequency filter has wider window length.
We transform the filter bank into time domain and can naturally get a roughly logarithmic-scale
frequency-periodicity relationship, in which narrower window width is associated with high-frequency
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Table 4: SoundSynp neural network architecture. The layer follow name@kernelsize, stride
format, and synperiodic filter bank follow name@kernelsize, stride, groups format. FC is fully
connection layer, AvgPool is the average pooling layer, MaxPool is max-pooling layer. B is the batch-
size, T is input waveform time-length. All convolution layers are followed by a batch normalization
layer and Relu activation layer. We represent the neural network architecture on FOA recording
format with sampling rate 24k Hz and label resolution 100 ms. It can be easily adjusted to fit other
cases. Please note that since the backbone neural network has two identical branches, we just show
one branch here.

layer filter num output size
Input: [B,4,T]

Synperiodic Filter Bank Groups
SynperiodicFilterBank@1024,600,3 256 [B, 256, T/600, 21]

Backbone Conv block1
Conv2d@3,1 128 [B, 256, T/600, 128]
Conv2d@3,1 128 [B, 256, T/600, 128]
AvgPool@2,1 None [B, 128, T/600, 128]

Backbone Conv block2
Conv2d@3,1 256 [B, 128, T/600, 256]
Conv2d@3,1 256 [B, 128, T/600, 256]
AvgPool@2,1 None [B, 64, T/600, 256]

Backbone Conv block3
Conv2d@3,1 256 [B, 64, T/600, 256]
Conv2d@3,1 256 [B, 64, T/600, 256]
AvgPool@2,1 None [B, 32, T/600, 256]

Backbone Conv block4
Conv2d@3,1 512 [B, 32, T/600, 512]
Conv2d@3,1 512 [B, 32, T/600, 512]
AvgPool@2,1 None [B, 16, T/600, 512]

Backbone Conv block5
Conv2d@3,1 512 [B, 16, T/600, 512]
Conv2d@3,1 512 [B, 16, T/600, 512]

AvgPool@16,1 None [B, T/600, 512]
Backbone MHSA block1

MHSA@8,1024 512 [B, T/600, 512]
AvgPool@2,1 None [B, T/1200, 512]

Backbone MHSA block2
MHSA@8,1024 512 [B, T/1200, 512]
AvgPool@2,1 None [B, T/2400, 512]

Backbone MHSA block3
MHSA@8,1024 512 [B, T/2400, 512]

FC class num [B, T/2400, class num]
FC class num x 3 [B, T/2400, class num x 3]

Trackwise Permutation Invariant Head
Multi-label Classification None scalar

Location Regression None scalar

filters. We thus set ωpwi, ρq “ 27 ¨ log10pwiq ´ ρ. We plot our synperiodic filter bank window
function and the mel-scale initialized windowing function in Fig. 4, it shows our proposed windowing
function naturally approximates the mel-scale windowing function.

A.4 CAUSALITY IN MULTI-SCALE FREQUENCY DOMAIN PERCEPTION

Fig.5 shows how causality is achieved in multi-scale frequency domain perception.
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Figure 4: The relationship between filter frequency response and the periodicity. Green curve:
our proposed windowing function. Light orange dots: mel-scale initialized frequency-periodicity
relationship.
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Figure 5: Consecutively downsampled waveform has longer time range in the original waveform (top
row). So processing downsampled waveform increases the Causality.

A.5 COMPUTATION TIME REPORT

The computation time of all comparing methods is given in Table 5, from which we can see that our
proposed SoundSynp framework requires between 2x-3x more computation time than SELDNet, EIN
and SoundDet due to its large Transformer-like backbone. However, SoundSynp computation time is
still within a controllable range.
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Table 5: Inference time on Intel(R) Core(TM) i9-7920X CPU. The waveform pre-processing time is
contained for SELDNet and EIN. Each individual computation time is computed by averaging 100
independent inference of 4s sound waveform.

SELDNet EIN SoundDet SoundSynp
1.20 s 2.20 s 1.25 s 3.1 s
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