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Abstract

Semantic segmentation labels each pixel in an image with its corresponding class,
and is typically evaluated using the Intersection over Union (IoU) and Dice metrics
to quantify the overlap between predicted and ground-truth segmentation masks.
In the literature, most existing methods estimate pixel-wise class probabilities,
then apply argmax or thresholding to obtain the final prediction. These methods
have been shown to generally lead to inconsistent or suboptimal results, as they
do not directly maximize segmentation metrics. To address this issue, a novel
consistent segmentation framework, RankSEG, has been proposed, which includes
RankDice and RankloU specifically designed to optimize the Dice and IoU metrics,
respectively. Although RankSEG almost guarantees improved performance, it suf-
fers from two major drawbacks. First, it is its computational expense—RankDice
has a complexity of O(dlogd) with a substantial constant factor (where d rep-
resents the number of pixels), while RankloU exhibits even higher complexity
O(d?), thus limiting its practical application. For instance, in LiTS, prediction
with RankSEG takes 16.33 seconds compared to just 0.01 seconds with the argmax
rule. Second, RankSEG is only applicable to overlapping segmentation settings,
where multiple classes can occupy the same pixel, which contrasts with standard
benchmarks that typically assume non-overlapping segmentation. In this paper, we
overcome these two drawbacks via a reciprocal moment approximation (RMA)
of RankSEG with the following contributions: (i) we improve RankSEG using
RMA, namely RankSEG-RMA, reduces the complexity of both algorithms to O(d)
while maintaining comparable performance; (ii) inspired by RMA, we develop a
pixel-wise score function that allows efficient implementation for non-overlapping
segmentation settings. We illustrate the effectiveness of our method across vari-
ous datasets and state-of-the-art models. The code of our method is available in:
https://github.com/ZixunWang/RankSEG-RMA.

1 Introduction

Semantic segmentation is a fundamental task in computer vision that assigns each pixel in an image
to a specific class, serving as a cornerstone for applications such as autonomous driving [Cordts
et al., 2016, Feng et al., 2020], medical image analysis [Heller et al., 2019, Bilic et al., 2023], and
augmented reality [Ko and Lee, 2020].

Evaluating the performance of segmentation models naturally requires appropriate metrics that
accurately reflect segmentation quality. Specifically, pixel-wise accuracy (Acc) is often biased
toward classes that occupy large image regions and fails to account for false positives [Everingham
et al., 2010, Wang et al., 2023a]. Consequently, the Intersection over Union (IoU) and Dice metrics
have emerged as the standard evaluation measures for semantic segmentation [Cordts et al., 2016,
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Zhou et al., 2017]. However, regardless of the metrics employed, most existing works adhere to a
classification-based segmentation procedure: (i) training-step: training a model to estimate pixel-wise
class probabilities using a strictly proper loss [Gneiting and Raftery, 2007] (e.g., cross-entropy
loss [Mao et al., 2023]); (ii) prediction-step: followed by applying argmax or thresholding to these
probabilities for the final prediction [Chen et al., 2017, Zhao et al., 2017, Xie et al., 2021]. Yet, as
demonstrated by Dai and Li [2023], the prediction-step by argmax and thresholding are inconsistent,
meaning that even with an infinite number of data and perfect probability estimation, those approaches
still cannot achieve optimal performance in terms of IoU and Dice metrics. Therefore, these methods
are typically suboptimal in practical applications.

An alternative direction is designing surrogate loss functions which attempt to optimize IoU or Dice
directly, with the most popular approaches being soft-IoU/Dice loss [Rahman and Wang, 2016, Sudre
et al., 2017, Eelbode et al., 2020] and Lovasz extension loss [ Yu and Blaschko, 2018, Berman et al.,
2018]. However, Lovasz hinge loss has been shown to be inconsistent by Finocchiaro et al. [2022], and
consequently, its empirical performance improvements remain controversial [Ma et al., 2021, Dai and
Li, 2023]. For soft-IoU/Dice loss, the consistency remains unclear. Nevertheless, soft [oU/Dice loss
functions are non-convex, making optimization challenging and unstable in practice. Perhaps for this
reason, soft-IoU/Dice loss is typically used in combination with cross-entropy through ad hoc training
strategies, with final segmentation predictions made using argmax and thresholding operations. These
approaches generally require tuning an additional hyperparameter—the weight between cross-entropy
and soft-IoU/Dice loss, resulting in high computational costs and inconvenience in practice.

To this end, a ranking-based consistent segmentation rule (RankSEG; Dai and Li [2023]) is specif-
ically developed to directly optimize IoU and Dice metrics. Unlike the argmax rule and surrogate
loss functions, RankSEG offers provable consistency and practical performance improvement. Fur-
thermore, compared to surrogate loss functions, RankSEG only modifies the prediction-step and can
serve as a plug-and-play module by directly utilizing a model trained with cross-entropy loss, simply
replacing the argmax operation in prediction-step.

While theoretically sound, their approach exhibits notable limitations: (1) the algorithms are com-
putationally intensive for high dimensional data—with RankDice, the less demanding of the two,
having a time complexity of O(d log d) with a large constant factor, where d is the number of pixels.
For example, it requires 16.33 seconds on the LiTS [Bilic et al., 2023] dataset, compared to only
0.01 seconds by the argmax rule. (2) In multiclass segmentation, the algorithms are only applicable
in overlapping settings where multiple classes can occupy the same pixel, which deviates from
standard benchmarks [Everingham et al., 2010, Cordts et al., 2016], and also restricts the application
of RankSEG in certain scenarios, such as panoptic segmentation [Kirillov et al., 2019].

Contribution. In this paper, we leverage reciprocal moment approximation (RMA) in segmenta-
tion to address the aforementioned disadvantages with the following contributions:

* We propose RankSEG-RMA, which reduces the computational complexity of RankSEG (both
IoU and Dice) to O(d) while preserving comparable performance.

* We develop a pixel-wise score function based on RMA, enabling efficient adaptation to non-
overlapping segmentation settings, in line with standard benchmarks.

* We have theoretically established the quality of the proposed RMA (Theorem 2), and empirical
evidence demonstrate that our method not only outperforms the conventional argmax rule but
also significantly reduces computational costs compared to existing RankSEG algorithms.

2 Background

In this section, we begin by distinguishing between two different definitions of the IoU and Dice
metrics: IoUP/DiceP and IoU/Dice' [Wang et al., 2023a], advocating for the latter in practical
applications. Building upon IoU'/Dice!, we review RankSEG and its approximated algorithms.

For clarity, our discussion starts with binary segmentation, with extensions to multiclass segmentation
presented in Section 3.2. Let X € R 'Y € {0, 1} represent the random variables for an image and
its corresponding segmentation mask, respectively. Consider a dataset {(x;, y;)}}_; consisting of n
realizations. The segmentation function § : R — {0, 1}¢ produces a predicted mask §(x) € {0, 1}4



for a test image x € R%. We denote p;(x) = P(Y; = 1|x) as the conditional probability of pixel j
being a foreground pixel given the image x. Index set {1, - - - ,d} is denoted as [d].

2.1 Dice/IoU metrics and its variations in implementation

Dice/loU metrics are defined based on true positives (TP), false positives (FP), and false negatives
(FN). However, in practical implementations, the calculation of these components (TP, FP, FN) can be
specifically defined at either the dataset or image level, yielding two different metric implementations.
For example, the dataset-level and image-level TP are computed as follows:

TPP(8) = (v, ¥0) T (670x). 1 870x0)) = D yT6(xi), TP = yT6(x).

Specifically, dataset-level TP aggregates values across the entire dataset, while image-level TP is
computed separately for each image. This distinction leads to different averaging strategies when
calculating Dice and IoU metrics. Furthermore, dataset-level and image-level Dice are defined as:

e 2TPP(§) RTINS B 2TP;(9)
Dice”(8) = TPP(3) 1 FPP(3) + FNP(3)’ Dice'(6) = NZTP£(5)+FP£(6)+FN£(6)’

i=1
where FPP, FP! and FNP, FN! are defined analogously at the dataset-level or image-level.

Although ToUP/DiceP are more prevalent in the literature [Everingham et al., 2010, Cordts et al.,
2016], a growing trend [Liu et al., 2023, Kirillov et al., 2023, Wang et al., 2023a] recognizes
IoU!/Dice' as more favorable for two key reasons. Firstly, IoUP/DiceP exhibit a bias toward large
objects [Yang et al., 2022], which dominate the confusion matrix. This is particularly concerning
given the size imbalance in existing datasets [Wang et al., 2023a]. In safe-critical applications,
such as medical image analysis or autonomous driving, failing to detect small but critical objects
can be catastrophic. Secondly, IoU!/Dice! offers statistical information at the image-level. For
instance, the variance of ToU/Dice! quantifies robustness, and the lower quantile measures worst-case
performance [Wang et al., 2023a]. Consequently, we adopt IoU!/Dice! as the focus in this paper.
Notably, these two types of metrics differ significantly at the population level. RankSEG-based
methods are designed to optimize image-level metrics, which in turn may consequently result in
decreased performance on dataset-level metrics.

2.2 RankSEG and its blind approximation

For simplicity, we will omit the dependence on x hereafter, but it is important to note that all following
notations are conditional on X = x. RankSEG [Dai and Li, 2023] establishes a novel segmentation
framework that directly (or consistently) maximizes Dice/loU metrics. Specifically, it first ranks the
pixel-wise class probabilities and then selects the top 7* pixels as segmented pixels, where 7 is
so-called the optimal volume. This framework is primarily motivated by the optimal rule outlined in
the following theorem; a similar result for IoU" is omitted for brevity.

Theorem 1 (The Bayes rule for DiceI-segmentation [Dai and Li, 2023]). Assume thatY; 1 Y;|X. A
segmentation rule §* is a global maximizer of E(Dice'(8)) if and only if 07 = 1(pj > pj,.), where
Jr is the index with the T-th largest probability. The optimal volume T* is given by:

2p;
7" = argmax 7(J;) with w(J;)= E (]> ; (D
r€{0,1,- ,d} jez.i;r T+1—‘7j +1

where J, = {j : Z;l,:l 1(pjs > pj, )} is the index set of the top T conditional probabilities with
Jo=0,andT_; = Zj,# Bj: is a Poisson-binomial random variable with Bj: being a Bernoulli
random variable with success probability p;.

An intuitive interpretation of Theorem 1 is that p;_. serves as an adaptive threshold that varies across
different input images, in contrast to the fixed threshold (0.5) commonly used in binary segmentation
framework. This adaptation, in return, indicates that a fixed threshold framework leads to suboptimal
performance in terms of Dice!. This is illustrated by the following example.

Example. Consider d = 2 with p1 = 0.7, p = 0.4. The Bayes rule produces 6* = (1,1)T, whereas
the conventional thresholding or argmax rule yields § = (1,0)7. Since Dice'((1,1)T) =~ 0.827 >
0.607 ~ Dice!((1,0)T), the thresholding or argmax rule is suboptimal.



Blind approximation (BA). The primary computational bottleneck in RankDice is the optimiza-
tion of the optimal volume. Specifically, computing 7 (7, ) for all 7 € {0,1,--- ,d} in (1) has a
complexity of O(d?). To mitigate this, Dai and Li [2023] proposed RankDice-BA, which replaces
I'_; with I" to make the expectation independent with index j, yielding an approximation for 7 (7, ):

d

m8a(Jr) = E <T+21“+1> (Y pj)= (Z T;?) (> p) (@)

JET- =0 JET-

Fast Fourier transform (FFT) is then used to reduce the overall complexity in evaluating 7ga (77 )
forall 7 € {0,1,--- ,d} to O(dlogd). While this achieves a significant improvement, BA method
still exhibits the following limitations: (1) the constant factor associated with FFT is generally
non-negligible in practice; (2) it is challenging to apply in non-overlapping settings, as shown in
Dai and Li [2023, Lemma 7]; and (3) BA is not readily applicable to RankloU due to the large
approximation errors, which therefore remains O(d?) time complexity. To address these limitations,
we propose a reciprocal moment approximation that further reduces the complexity of both RankDice
and RankIoU to O(d) and enables efficient solution for non-overlapping segmentation.

3 RankSEG-RMA

3.1 Reciprocal moment approximation

We begin by introducing the reciprocal moment approximation, which is a technique for approximat-
ing the reciprocal moment (or negative first moment) of a Poisson-binomial random variable.

Theorem 2 (Reciprocal moment approximation to RankSEG). Let I" be a Poisson-binomial random
variable, then for any T > 1, we have

(EL +7) L <EC+7)7! < (d%lEr+T—1)*1~ 3)

Therefore, we propose the following mrya(J) to approximate 7(J;) in (1):

2
WRMA(jr) = 7'+IEF—|-1(]; Pj), “)

and its approximation error for any set T C [d] and T = |Z| is bounded by:

|mrma (Z) — m(Z)] < 2(ET + 7). ©)

Theorem 2 provides two main results: (i) the RMA approximation form (4) for approximating 7 (.7, ),
inspired by the exchange of expectation and reciprocal in (3); and (ii) a provable error bound that
characterize the quality of the RMA approximation. The primary advantage of using RMA is that
it avoids expanding the reciprocal moment (RM) into a sum of d terms, which is computationally
expensive. Specifically, mrma (J-) converts such a nonlinear expectation into a linear one, allowing
the evaluation of mrma (J-) for all 7 € [d] to be performed in O(1) time, once EI'and . ; p; are
precomputed. In a sharp contrast, evaluating 7 (/7,-) for any 7 € [d] requires O(d) operations each
time. Notably, the first result, (3) in Theorem 2, credited to Dai and Li [2023] and built upon more
fundamental results of reciprocal moments Chao and Strawderman [1972], Wooft [1985], is quite
general and may be of independent interest for other applications.

The approximation error bound (5), particularly when Z = 7, decreases as the expected volume of
predicted mask increases, which typically occurs when d is large. Even for small objects occupying
only a 30 x 30 region in a 256 x 256 image, with an expected volume E(T") = 7 = 1000, the
approximation error remains below 0.1%, which is generally acceptable in practice.

We now summarize RankDice-RMA for binary segmentation in Algorithm 1. RankloU-RMA is
developed analogously in Appendix B, with the same approximation. The first two steps prepare and

store intermediate values for evaluating Trma (7, ) based on an estimated probabilities p. After that,
we identify the optimal volume 7* and make prediction by selecting the top 7* pixels. Neglecting the
sorting operation, the time complexity of the RankDice-RMA and RankloU-RMA is reduced to O(d),
compared to O(dlog d) for RankDice-BA and O(d?) for RankloU. For example, RankDice-RMA
achieves 48x speedup for RankDice-BA in LiTS dataset [Bilic et al., 2023].



Algorithm 1 RankDice-RMA-Binary
Input: Estimated probability map p € [0, 1]d for a given input image.

Output: The predicted segmentation mask s€e {0,1}4.

1: Rank probabilities p in descending order, yielding p;, > --- > pj,.
2: Prepare cumulative sum of top probabilities and mean of Poisson-binomial

d
ijk forT € [d :Zﬁ

3: Compute %RMA(jT) = T—ﬂ’iﬁ for 7 € [d], according to (4).

4: Determine optimal volume 7% = argmax, ¢4 %RMA(jT).
5: Make prediction by SJ = 1(p; > pj..) for j € [d].

3.2 RMA-score for non-overlapping multiclass segmentation

To extend RankSEG to non-overlapping multiclass segmentation, a natural approach is first applying
binary RankSEG to each class independently, and then address any overlaps. As discussed in the
introduction, perfectly addressing overlaps is currently beyond the capabilities of RankSEG, as
the non-overlapping constraint leads to a nonlinear assignment problem [Kuhn, 1955], which is
generally computationally intractable. Therefore, the focus of this section is on utilizing RMA to
solve overlapping pixels provided by RankSEG, ultimately producing non-overlapping segmentation.

N

[ Class A - + Class B - Argmnx prob iRankSEG-RMA —>]

RMA-scores S&d
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(1) Accept non-overlaps V947
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Probability p RankSEG-RMA Prediction

(IoU" = 63.04)

Figure 1: Comparison of Argmax-prob and RankSEG-RMA. (a) Argmax-prob: each pixel is predicted
to the class with the highest probability. (b) RankSEG-RMA: segmentation masks I+ for each class

are obtained independently; non-overlapping parts I are accepted, while overlaps I"Veﬂap are resolved
by applying argmax over RMA-scores.

Our solution draws inspiration from Argmax-prob method, which efficiently resolves non-overlapping
constraint by assigning pixels to their highest-probability classes, that is,

gj = argmaxp., Vj € [d],
ce[C]

where P, ; is the estimated probability of pixel j belonging to class c. This approach is computationally
efficient but does not guarantee optimal performance. One reason is that merely examining probability
values does not accurately reflect how individual pixel assignments contribute to segmentation metrics.
To address this issue, we extend the probability in the argmax framework to a Dice/loU-related score.
Unlike the probability score, our proposed score function is grounded on the Bayes rule in Theorem 1
and can be efficiently computed by RMA. We refer to the score function as RMA-score.



Algorithm 2 RankDice-RMA-Multiclass

Input: Estimated probability map p € [0, 1]CXd
Output: The predicted segmentation mask & € [C]9.

1: /* Obtain overlapping segmentation mask */

2: forc=1toCdo

3: 1. = RankDice-RMA- Binary(p.), I ={j: 1/}0,7 =1}

4: end for

5: /* Resolve overlapping by argmax over RMA-scores */

6: Identify overlapping indices, Z°V!aP = [ J Lo (Zr n I;,')

7: forc =1to C' do

8:  Discard assignments for overlapping pixels .= \ Zoverlap,
9:  Accept prediction for not overlapping pixels, d; for j € I
10: end for

—
—_

: Compute RMA-scores, A, ¢.j via (7) for j € Zoverlap gnd ¢ € [C].
: Resolve overlapping by argmax, 5 = argmax,c(c AC jforje Foverlap_
. Return &

—_ =
W N

To proceed, let fj denote the index set of pixels assigned to class ¢ by RankSEG, Zoverlap —
Uerer (TN Z7) the index set of overlapping pixels, and Z, = Z} \ Z°*r% the non-overlapping
part, as illustrated in Figure 1. We resolve Z°""% to ensure segmentation masks are non-overlapping:

Sj = argmax ﬁcyj, Vj e f""erlap, 6)
ce[C]

where ﬁc’j is increment of Dice-RMA by adding pixel j for class ¢, which is defined as:
2(Pey + Tiez Bei) 251z P

3c, = %RMA(fc u{i}) — %RMA(fc) = = — = = )
’ |Ze| + Fic + 2 |Ze| + Fic +1

N

where [i. = Z?zl De,; represents the estimated mean volume of class c. Intuitively, (6) maximizes
the immediate improvement by choosing the class that yields the highest marginal gain in the Dice-
RMA objective. While this greedy solution does not guarantee a globally optimal assignment over
all overlapping pixels simultaneously, it is computationally efficient and empirically effective for
reducing overlap and improving final segmentation performance.

To summarize, the procedure of RankDice-RMA for multiclass segmentation is presented in Algo-
rithm 2. After applying binary RankDice-RMA, the predicted set fj of each class c is obtained.
The overlapping pixels Zoverlap are then identified, and the assignments for these pixels are discarded.
The non-overlapping pixels fc are assigned to their respective classes. Finally, we compute the

RMA-scores for the overlapping pixels and resolve overlaps by selecting the class with the highest
score. The complexity for addressing overlapping is O(Cd), which is no worse than Argmax-prob.

4 Experiments

4.1 Setup

Datasets. We conduct experiments on five datasets: (1) PASCAL VOC [Everingham et al., 2010],
(2) Cityscapes [Cordts et al., 2016], (3) ADE20K [Zhou et al., 2017], (4) LiTS [Bilic et al., 2023],
and (5) KiTS [Heller et al., 2021]. These datasets cover a diverse range of scenarios, including urban
scenes (Cityscapes), “thing” and “stuff” (PASCAL VOC and ADE20K), as well as medical images
(LiTS and KiTS). The datasets contain between 200 images (LiTS) and 20,000 images (ADE20K),
and the number of classes varies from binary segmentation (LiTS) to over a hundred (ADE20K). We
only segment tumors in LiTS and KiTS, treating them as binary segmentation tasks.

Models. We employ following six segmentation models: (1) UNet [Ronneberger et al., 2015],
(2) DeepLabV3+ [Chen et al., 2018], (3) PSPNet [Zhao et al., 2017], (4) UPerNet [Xiao et al.,



2018], (5) SegFormer [Xie et al., 2021], and (6) CPT [Tang et al., 2025]. The first four models
are CNN-based and utilize backbones such as ResNet [He et al., 2016] or ConvNeXt [Liu et al.,
2022], whereas SegFormer and CPT are transformer-based models. The models are trained using
the cross-entropy loss, and we compare the proposed RankSEG-RMA with the conventional argmax
or thresholding rule for multiclass or binary segmentation, respectively. The training details can be
found in Appendix D.

Evaluation. As discussed in Section 2.1, we evaluate the segmentation models using both
mloU"/mDice! and mIoU¢/mDice®, which are straightforward extensions of binary metric IoU"/Dice'
to multiclass segmentation. The metrics with superscripts ! and € differ when not all classes are
present in every image (see Wang et al. [2023a] for details).

4.2 Overall performance

Table 1: Performance for different prediction methods with various models on PASCAL VOC,
Cityscapes, and ADE20K.

L PASCAL VOC Cityscapes ADE20K

Model Prediction - - - 8 . .
mloU! ‘ mloU® ‘ mDice! | mDice€ | mloU! ‘ mloU® ‘ mDice! ‘ mDice® | mIoU' ‘ mloU°® ‘ mDice! ‘ mDice®

PSPNet Argmax-prob 83.59 72.59 87.69 78.22 71.33 63.38 78.96 71.34 49.78 33.83 56.89 40.36
(ResNet50) RankDice-RMA | 84.21 73.91 88.42 79.75 72.00 64.20 79.68 72.28 50.70 36.30 58.52 43.67
PSPNet Argmax-prob 85.48 75.57 89.18 80.78 73.07 65.89 80.45 73.55 51.32 37.42 58.66 44.44
(ResNet101) | RankDice-RMA | 85.98 76.64 89.74 81.94 73.72 66.53 81.14 74.28 51.57 38.09 59.17 45.29
DeepLabV3+ Argmax-prob 84.19 73.96 88.11 79.31 73.55 65.98 80.80 73.63 49.78 33.83 56.89 40.36

(ResNet50) | RankDice-RMA | 84.79 | 75.26 88.84 80.88 74.05 | 66.68 81.38 74.49 49.82 | 34.28 57.19 40.92
DeepLabV3+ |  Argmax-prob 86.40 | 77.25 89.83 82.08 73.37 | 66.17 80.59 73.71 5253 | 3752 59.57 44.13
(ResNetl101) | RankDice-RMA | 86.80 | 78.14 90.32 83.14 73.92 | 66.68 81.24 74.33 52.64 | 38.14 59.95 44.85

SegFormer Argmax-prob 85.40 | 75.85 89.21 81.13 73.24 | 65.57 80.49 73.16 53.03 | 38.19 60.06 44.83

(MiTB2) RankDice-RMA | 85.85 | 76.01 89.44 81.04 73.81 | 66.41 81.14 74.13 53.67 | 39.09 61.09 46.11

SegFormer Argmax-prob 86.86 | 77.57 90.11 82.15 73.32 | 66.13 80.53 73.65 54.09 | 40.00 61.03 46.50
(MiTB4) RankDice-RMA | 87.28 | 78.59 | 90.56 8322 | 7410 | 67.14 | 81.38 7474 | 5472 | 40.82 | 61.92 41.57
UPerNet Argmax-prob 87.82 79.52 91.03 84.11 75.66 68.83 82.61 76.08 56.94 | 42.86 63.98 49.61

(ConvNeXt) | RankDice-RMA | 88.25 | 80.31 | 9148 8498 | 76.17 | 69.57 | 83.21 7697 | 57.67 | 43.84 | 6493 50.85

CPT Argmax-prob 88.56 80.74 91.62 85.18 75.33 68.39 82.25 75.74 57.85 44.59 64.75 51.27

(Swin-Large) | RankDice-RMA | 88.89 | 81.53 92.01 86.08 75.86 | 69.29 82.85 76.76 58.63 | 45.56 65.83 52.58

Table 2: Performance for different prediction methods with various models on LiTS and KiTS.

Prediction I Model ‘ LiTS ‘ KiTS | Model ‘ LiTS ‘ KiTS ‘

I | ToU! Dice! | ToU'  Dicel || | ToU! Dice! | ToU'  Dicel |
Argmax-prob || peenLabV 3431 42.81 | 5461 47.20 3640  45.18 | 56.03  49.28
RankDice-BA (;ep,;tils; 3611 4504 | 58.00 5057 (Reggjfl g | 3834 4754 | 5910 5208
RankDice-RMA esive 36.12 45.04 | 58.00 50.57 3834 47.54 | 59.10 52.08
Argmax-prod || peepLabvie | 3545 4758 | 6116 54.19 3845 4758 | 5736 51.00
RankDice-BA (;ep Na s 0)+ 40.09 4950 | 63.56 56.22 (Regggt[SO) 4071  50.08 | 60.07 5034
RankDice-RMA esie 40.09 49.50 | 63.56 56.22 40.70  50.07 | 60.07 53.54

Table 3: Time consumption (in seconds) of model forward and different prediction rules with single
A100 GPU. DeepLabV3+ (ResNet50) is used for the medical datasets, while UPerNet (ConvNeXt) is
used for the others. The mean and standard deviation over 10 runs are reported. X indicates that the
method is not applicable due to non-overlapping benchmark setups.

|| Pascal VOC | Cityscapes | ADE20K | LiTS | KiTS

Argmax-prob || 0.05 (£0.01) |  0.22 (£0.01) 0.43 (£0.08) | 0.01 (£0.00) | 0.01 (0.00)
RankDice-RMA || 6.93 (£1.14) | 10.15 (£1.77) |  58.00 (£3.44) | 0.34 (£1.19) | 0.26 (£0.15)
RankDice-BA X X X | 16.33 (£1.19) | 9.99 (+0.15)
Model forward || 40.77 (£5.15) | 175.81 (£3.02) | 324.59 (£13.42) | 14.15 (£0.64) | 11.86 (£0.20)

Results for PASCAL VOC, Cityscapes, and ADE20k are presented in Table 1, while those for LiTS
and KiTS are shown in Table 2. The best performance within each model is highlighted in bold,
while the best across all models is highlighted in . If two performances are very close and both
are the best, we highlight both. Three observations can be drawn from these results.



¢ Our proposed method significantly outperforms the conventional Argmax-prob across all
datasets and models, irrespective of light or heavy backbones, demonstrating its effectiveness
and robustness. For instance, on Cityscapes with SegFormer (MiTB4), RankDice-RMA im-
proves mDice' and mDice® by 0.85% and 1.09%, respectively. In addition, on LiTS with UNet
(ResNet50), RankDice-RMA outperforms Argmax-prob by 2.49% in Dice.

* As shown in Tables 2 and 3, RankDice-RMA achieves significant time efficiency improvements
over RankDice-BA while maintaining similar performance on the LiTS (48x speedup) and KiTS
datasets (38x speedup). Hence, we conclude that RankDice-RMA is a strict improvement
over RankDice-BA. Although RankDice-RMA is slower than Argmax-prob, the absolute time
consumption is negligible compared to the model forward time. In contrast, such argument can
not be applied to RankDice-BA, whose time consumption is comparable to the model forward.

* RankDice-RMA simultaneously boost IoU performance, even though it is originally moti-
vated by the Bayes rule for Dice. Furthermore, RankDice-RMA and RankloU-RMA achieve
nearly identical performance across all experiments (results for RankloU-RMA are omitted for
simplicity), suggesting that the two metrics are closely related and that either RankDice-RMA
or RankloU-RMA can serve as a unified prediction method for both metrics.

4.3 Class-wise performance

To further evaluate the performance of RankDice-RMA, we report class-wise results on PASCAL
VOC in Table 4. Improvements over Argmax-prob are highlighted in green for positive changes and
in red for negative ones. The results indicate that RankDice-RMA consistently enhances performance
across most classes. Two key observations can be made:

» The performance gains are more pronounced for classes with lower baseline performance,
suggesting that RankDice-RMA is particularly effective for difficult classes. For instance,
the Chair class, which exhibits a low IoU of 48.05% under Argmax-prob, is boosted to 50.52%,
an enhancement of 2.47%; whereas the Areoplane class, with a high initial IoU of 90.39%,
only sees a marginal improvement of 0.45%. This trend may result in negative changes for
classes like Bird and Sheep, where Argmax-prob already performs well, leaving limited room
for improvement with the Bayes rule.

 Although the error bound in Theorem 2 implies a larger approximation error for classes with
smaller volume, the results show that RankDice-RMA still achieves substantial performance
gains for these small objects. For example, our analysis indicates that Bottle and Chair
are among the smallest objects in the dataset. Nonetheless, these classes exhibit significant
improvements, possibly because the benefits of the Bayes rule outweigh the approximation error.

Table 4: Class-wise IoU on PASCAL VOC with UPerNet (ConvNeXt).

Prediction | Aecroplane | Bicycle | Bird | Boat | Bottle | Bus | Car | Cat | Chair | Cow
Argmax-prob 90.39 50.33 91.18 81.19 69.21 89.55 78.78 | 92.24 | 48.05 92.47
RankDice-RMA 90.84 51.76 90.86 81.70 71.77 90.31 80.46 | 92.43 | 50.52 92.69
(Improvement) +0.45 +1.43 -0.32 +0.51 +2.56 +0.76 +1.68 | +0.19 | +2.47 +0.22
Prediction | Dining Table | Dog | Horse | Motorbike | Person | Potted Plant | Sheep | Sofa | Train | TV Monitor
Argmax-prob 54.12 93.55 91.21 89.51 82.26 57.11 92.59 | 62.09 | 91.97 77.25
RankDice-RMA 55.28 93.56 91.34 89.80 83.55 59.20 92.54 62.88 | 92.17 78.05
(Improvement) +1.16 +0.01 +0.13 +0.29 +1.29 +2.09 -0.05 +0.79 | +0.20 +0.80

4.4 Worst-case analysis

For safe-critical applications, it is crucial to evaluate the worst-case performance of segmentation
models. In this context, image-level metrics provide more detailed insights than dataset-level
metrics for assessing worst-case scenarios [Wang et al., 2023a]. Without loss of generality, consider
mloU! < mIoU} < --- < mIoU!, denote the sorted image-level mIoU values for 7 images in a test
set. We define the average mloU over those below the lowest g-th quantile as:



By definition, this metric quantifies performance of the worst g-th quantile images. Table 5 presents
the mIoU's and mloU™° results, where UPerNet(ConvNeXt) is used for PASCAL VOC, Cityscapes,
and ADE20K, while DeepLabV3+(ResNet50) is used for LiTS and KiTS. The results demonstrate
that our method also improves the worst-case performance across all datasets.

Table 5: mIoU' and mIoU™° on PASCAL VOC, Cityscapes, ADE20K, LiTS, and KiTS.

Prediction ‘ mloU™ ‘ mloU™
‘ vOC ‘ Cityscapes ‘ ADE20K ‘ LiTS ‘ KiTS ‘ vOoC ‘ Cityscapes ‘ ADE20K ‘ LiTS ‘ KiTS
Argmax-prob 44.80 59.02 24.99 2.13 6.72 | 52.10 61.72 29.54 4.05 8.39
RankDice-RMA | 46.21 59.96 25.56 2.70 8.49 53.17 62.51 30.35 4.81 10.38
(Improvement) +1.41 +0.94 +0.57 +0.57 | +1.77 | +1.07 +0.79 +0.81 +0.76 | +1.89
Image-wise loU
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Figure 2: Image-wise performance and an example of a worst-case segmentation on KiTS. The left
plot presents the IoU for each image, with indices sorted in ascending order according to IoU under
Argmax-prob. The right plot displays the segmentation results for a slice of a worst-case image.

Figure 2 shows image-level IoU for a KiTS validation fold and a worst-case segmentation example.
The left plot shows IoU values for each image. It is evident that our method outperforms Argmax-
prob across most images, especially on difficult cases. The right plot displays segmentation results
for one worst-case image. The tumor consists of two adjacent segments, but Argmax-prob captures
only a small portion of the larger segment and almost misses the smaller one. In contrast, our method
not only produces a more complete segmentation but also successfully identifies the smaller
segment. This example highlights the potential of our method for challenging clinical scenarios.

4.5 Ablation studies

Effect of the RMA-score. We have introduced the RMA-score to address Z°*"% that occurs when
applying RankDice for each class independently. We now demonstrate that the scores are indeed
crucial for improving performance by comparing them with two ad-hoc alternatives in (6):

* Prob-scores. The predicted probability p, ; is directly used as score of pixel j for class c.

* WProb-scores. As inspired by the RMA-scores or intuitive reasoning, classes with more already
predicted pixels should have lower preference when resolving overlaps. Hence, a weighted
version of the predicted probabilities is considered, i.e., 5. ; = P ;/|Zc|-

As shown in Table 6, WProb-scores outperform Table 6: mIoU! of using different scores.
Prob-scores on Pascal VOC and Cityscapes, sup- | Pascal VOC | Cityscapes | ADE20K
porting the intuition to account for predicted

volume. However, WProb-scores underperform Prob-scores 87.83 7375 26.96
B R R R WProb-scores 88.17 75.89 56.75
on ADE20K, indicating that simple weighting RMA-scores 88.25 76.17 57.67

fails when many classes are present. In contrast,
RMA-scores consistently perform best, particularly on ADE20K, where overlapping phenomena are
more complex due to the large number of classes. This superiority is due to that RMA-scores are
derived from the Bayes rule, making them more principled than heuristic methods. These results
support our claim that RMA-scores are essential for improved performance.

Effect of different bounds in RMA. Recall that Theorem 2 provides both lower and upper bounds
under RMA, with the lower bound being preferred for its simplicity. As a complement, we further
find that using the upper bound as an alternative approximation yields same performance. This
suggests that the choice of different bounds does not bother. More importantly, this confirms that
the bounds are tight, aligning with our theoretical analysis in Theorem 2.



5 Conclusion

In this paper, we propose RankSEG-RMA, a novel segmentation algorithm that grounds on the
Bayes rule, and enjoys computational efficiency by using reciprocal moment approximation (RMA).
Extensive experiments across various datasets and models demonstrate that RankSEG-RMA out-
performs the conventional Argmax-prob and significantly reduces computational cost compared to
the existing RankSEG-BA. Nevertheless, two limitations are noteworthy for future improvement.
First, the proposed overlap resolution method predicts each pixel independently, which may not
be optimal; future work could explore more global approaches while maintaining computational
efficiency. Second, our work builds upon the assumption of conditional independence in Bayes rule,
which could be relaxed in subsequent research.
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A Segmentation calibration and RankSEG Framework

Given a training dataset {(x;,y;)}?, wherex; € X, y; € ), aloss function ¢ : Y x Y — R, and a
hypothesis class H = {h : X — Y}, the empirical risk and population risk are defined as:

Ro(h) = %Zé(h(xi),yi) and  Ry(h) = Ex y[((h(X), Y)].
=1

The empirical risk minimizer h,, = argming, 4, ﬁg (h) is used for making predictions. However, it is
often the case that the target loss function is neither differentiable and nor convex, such as the zero-one
loss in classification or the negative of IoU'/Dice! in our case, making direct optimization infeasible.
Therefore, a surrogate loss function ¢ : Z x Y — R, combined with a surrogate hypothesis class
F ={f:X — Z} and a decoding function (also known as link function) d : Z — }, is typically
employed:
fn= argmin’l/édj and h, =do f,.

fer
Note that the surrogate loss is designed to be easier to optimize than the original loss, the output
space of the surrogate hypothesis may not align with the label space, and the decoding function maps
the surrogate prediction back to the original label space. The desired property of the surrogate loss is
calibrated, as specified in Definition A.1.
Definition A.1 (Calibration). A surrogate loss ¢, associated with a decoding function d, is calibrated
with respect to a target loss ¢ if, for any distribution over X’ x ) and any sequences { f, }nen C F,
the following holds:

(Rqs(fn) — }2;_7'\’,4)(]")) = (R@(doﬁl) — ég%RZ(hO as n — oo.

For example, hinge loss with sign as decoding function and cross entropy loss with argmax as
decoding function are calibrated with respect to zero-one loss in binary classification and multiclass
classification, respectively [Lin, 2004, Zhang, 2004, Bartlett et al., 2006, Tewari and Bartlett, 2007,
Mao et al., 2023].

In general, there are two principled approaches to achieving calibration or consistency: (1) designing
a consistent surrogate loss function and making predictions via a suitable decoding function [Bartlett
et al., 2006, Tewari and Bartlett, 2007], and (2) directly deriving the Bayes rule for target metrics and
plugging in the estimated probabilities for prediction [Nowozin, 2014, Dembczynski et al., 2013, Dai
and Li, 2023].

RankSEG [Dai and Li, 2023] belongs to the latter category. It does not require a carefully designed
surrogate loss function and can be directly applied to models trained with cross-entropy loss; however,
the decoding step is more involved. Nevertheless, Dai and Li [2023] demonstrate a ranking property
of the Bayes rule, stating that the optimal prediction is to select the top 7* pixels with the highest
conditional probabilities, which significantly simplifies the decoding step.
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B RankloU-RMA

Theorem B.1 (The Bayes rule for IoUI-segmentation [Dai and Li, 2023]). Assume thatY; L Y;|X.
A segmentation rule §* is a global maximizer of E(IoU'(8)) if and only if 67 = 1(pj > pj,.), and
Jr is the index with T-th largest probability. The optimal volume T* is given by:

1
7" = argmax v(J;) with v(J;)= pi | E (> (8)
re{0,1,--- ,d} jezj:, / T+T_7

where J. = {j : Z;—l,:l L(pjs > pj,)} is the index set of the top T conditional probabilities with
Jo =0, and 'y = Zj,ng Bj: is Poisson-binomial random variable with B, being a Bernoulli
random variable with success probability p;.

According to Theorem B.1, the Bayes rule for IoU! shares substantial similarity with that of Dice,
both of which consist of two parts: (1) ranking the conditional probabilities and (2) selecting the
top 7" pixels as positives. The primary difference lies in the computation of score functions when
determining of the optimal volume 7*, which is tailored to the respective metric. The consistency of
RankSEG [Dai and Li, 2023, Lemma 10] is established by plugging in the estimated probabilities
Dj(x;60), where 6 is the model parameter trained by minimizing a strictly proper loss [Gneiting and
Raftery, 2007].

Note that replacing I'_ 7, with I" in Theorem B.1 leads to large approximation error, especially when
7 is large. Therefore, Blind approximation is no longer applicable in this case. However, RMA
technique can still be employed to approximate v(J;):

1
J.) = o 9
VA () jzejf’f T+ET-7,) ®

Based on this, we develop RankloU-RMA for binary segmentation, as described in Algorithm 3. This
algorithm is highly similar to RankDice-RMA, with the only difference being the use of the target

function 7 (/7).

Algorithm 3 RankloU-RMA-Binary
Input: Estimated probability map p € [0, 1]%.
Output: The predicted segmentation mask & € {0, 1},
1: Rank probabilities p in descending order, yielding p;, > --- > pj,.
2: Prepare cumulative sum of top probabilities and mean of Poisson-binomial

T d
Gr=Y _pj, forreld, a=>_ p;
k=1

3: Compute Dgpa (Jy) = % for 7 € [d], according to (9).

4: Determine optimal volume 7% = argmax, ¢4 ﬁRMA(fT).
5: Make prediction by &; = 1(p; > p;.. ) for j € [d.

In order to extend RankIoU-RMA to non-overlapping multiclass segmentation, it suffices to use the
following RMA-scores for IoU, followed by an argmax to resolve overlaps:

DPe,j + ZkEfC DPe,k Zkefc Pe,k

|IC| + (//Zc - ﬁc,j - Zkefc ﬁc,k) ‘IC‘ + (ﬁc - Zkei 156,19)
(10)

where fc is the index set of pixels assigned to class ¢ and i, = 2?21 De,j- The second term in

Qo = 0(Z.U{j}) — 9(Z.) =

(10) approximates the IoU when predicting mask by fc, while the first term approximates the IoU
when pixel j is further included. Similarly, Algorithm 4 can be obtained by simply replacing the
RMA-scores used in RankDice-RMA-Multiclass.
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Algorithm 4 RankloU-RMA-Multiclass

Input: Estimated probability map p € [0, 1]CXd
Output: The predicted segmentation mask & € [C]9.

1: /* Obtain overlapping segmentation mask */

2: forc=1toCdo

3: 1. = RankIoU-RMA- Binary(p.), I ={j: 1/)07 =1}

4: end for

5: /* Resolve overlapping by argmax over RMA-scores */

6: Identify overlapping indices, Z°ver!2p = | J ke (Z+ N fj)

7: forc =1to C do .

8:  Discard assignments for overlapping pixels, I I+ \ Zoverlap,
9:  Accept prediction for not overlapping pixels, 5 =cforj e I
10: end for

—
—

: Compute RMA-scores, Qe j via (1()) forj € Zeverlap and ¢ € [C}
: Resolve overlapping by argmax, 6 = argmax,c|¢j Q. jforje Toverlap

—_
[\

: Return S

—_
|95}

C Proof of Theorem 2

The following two lemmas are used in the proof of (3) in Theorem 2.

Lemma C.1 (Chao and Strawderman [1972]). Let a € R and X be a random variable such that
X + a > 0 a.s. Define the probability generating function of X as G x (t) = E(tX) for0 <t < 1.

Then,
E Gx (u)t* tdt.
(X + a) / x(

Lemma C.2 (Wooff [1985]). Let A ~ Bin(d, p) be a binomial random variable. Then, for any
a > 0, the following inequalities hold:

E L < 1
Ad+a) = (d+1p+a—1

Note that binomial random variable A ~ Bin(d, p) and Poisson-binomial random variable I" ~
PB(p1,ps,- -, pa) have probability generating functions:

Ga(t)=(1-p+pt)* and Gr(t) =[]0 - p;+pst)-

j=1
Now we are ready to prove Theorem 2.
Proof. We first prove (3). The lower bound that (ET'+7)~! < E(I"'+7)~! follows from the Jensen’s
inequality. Let A ~ Bin(d, p), where p = d~! Z;l=1 p;. To prove the upper bound, we have:

d

1 ! T—1 ! T—1
E(F+r)*/0 t Gp(t)dt—/o t [T = +pt) | dt

1 1
1
<[ v '1-p ‘tddt:/tT_lG t)dt = B(———
< [ eta=peamti= [ roGamd =BG
1
<|l— .
_<(d+1)p+71>

The first and last equalities follow from Lemma C.1. The first inequality is due to the arithmetic and
geometric means inequality, and the last inequality follows from Lemma C.2.
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To proceed with (5), we first establish an error bound for RMA. Let I' be a Poisson-binomial random
variable and let v > 1. Then, we have:

1
ET+7) ' —(BL+7)7' < (d%EF +7-1)" = (Bl +7)!
1

<@L 47 =) = (B0 4 7)™ = o Er )

For any Z C [d], the error bound of RankDice-RMA is then given by:

< (BT +7)72. (11)

1 1
) — (D] < 2p; |E -
|TRMA (Z) — 7( )|7JEZI Dj (T+F—j+1) 7-—|-EF+1’

1 1 1 !

=2 B 1) " ryEr T1 s yEr 71 TYEL 1‘

jET T+l + TR+ TR THELE

1 1 1 !

< 2p; |E - N

_jez; r (T-I-Pfjﬂ‘l) T+EPJ‘+1‘+ T+EM;+1 74+EM+1

<3 2, o+ by
= T\(T+Er_;+1)2  (r+El_;+1)(t+El+1)
_ o 2pi(1+p;
<> % R _ ger?idp) 2
= (1 +ED)2 (7 +EI)2 (r +EI)2 T+ ET

Here, the third inequality follows from (11). The last inequality is because > ;.7 p; < |Z| = 7 and
ZjeIp? < ZjEij =Kl 0

D Training Details

The training settings mainly follow Wang et al. [2023a,b]. For Pascal VOC, Cityscapes and ADE20K,
AdamW optimizer with a weight decay of 0.01 is used. The learning rate starts from le — 6 and
linearly warms up during the first 1% iterations to the initial learning rate 6e — 5. The learning rate is
then decayed in a “poly” policy with an exponent of 1. The number of warm-up iterations is 400 for
Pascal VOC and Cityscapes, and 800 for ADE20K. The total number of training iterations is 40,000
for Pascal VOC and Cityscapes, and 80,000 for ADE20K. Data augmentations including (i) random
scaling in the range of [0.5, 2.0], and (ii) random horizontal flipping with a probability of 0.5.

For LiTS and KiTS, we train the models using SGD with an initial learning rate of 0.01, momentum of
0.9, and weight decay of 0.0005. The learning rate is decayed in a “poly” policy with an exponent of
0.9. The batch size is 8 and the number of epochs is 60. These two datasets are originally multi-class
segmentation tasks, but we convert them into binary segmentation by only treating the tumor as
foreground. This is because we want to compare our method with RankDice-BA, which is only
applicable to binary segmentation. Furthermore, since LiTS and KiTS do not include designated test
sets, we employ 5-fold cross-validation to evaluate performance, following existing literature [Qin
etal., 2021].

E Additional Results

E.1 Statistical Significance Test

To validate the statistical signifi-

Table 7: Mean performance in mloU' and p-values from cance of the performance improve-
t-tests between RankDice-RMA and Argmax-prob. ment achieved by RankDice-RMA
| Pascal VOC | Cityscapes | ADE20K over Argmax-prob, we conduct 10

Argmax-prob | 87.80 = 0.12 | 75.63 + 0.04 | 56.88 = 0.09 andepenclfm runs I‘}’gh fllfferen{/g‘g'
RankDice-RMA | 88.16 £ 0.11 | 76.11 +0.07 | 57.67 £ 0.11 om seeds using UPerNet on ’
Cityscapes, and ADE20K datasets.

p-value | 1126 | 230e-13 | 5.96e-13
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We report mean and standard devia-
tion of mloU!, along with the p-values from t-tests, as shown in Table 7. The results indicate that the
improvements are statistically significant, with p-values far below 0.01 across all datasets.

More importantly, our method not only achieves a substantial improvement in the sense of mean
performance, but also consistently outperforms Argmax-prob in every single run. For example, the
results of the ten runs on ADE20K are presented in Table 8. This consistency arises because our
method is deterministic and introduces no inherent randomness. It is applied to trained models by
simply replacing Argmax-prob in the prediction step. Consequently, the comparison is highly stable
as they share the same model.

Table 8: mIoU" of 10 independent runs on ADE20K.

Run | 1 2 3 4 5 6 7 8 9 10

Argmax-prob 56.84 56.86 5693 57.01 5677 5694 5701 5680 56.84 56.77
RankDice-RMA | 57.56 57.66 57.71 57.86 57.59 57.73 57.84 5759 57.68 57.52

E.2 More Qualitative Visualizations

Ground truth Argmax-prob RankSEG-RMA

Ground truth Argmax-prob

m

Ground truth

<

Argmax-prob

Figure 3: Qualitative visualizations on Pascal VOC. From left to right: input image, ground truth,
prediction by Argmax-prob, and prediction by RankSEG-RMA. The key differences are highlighted
in red boxes.

We provide additional qualitative visualizations in Figure 3 to compare the proposed RankSEG-RMA
with the conventional Argmax-prob method, offering further insights into how our approach enhances
segmentation quality. As highlighted by the red boxes in the figure, RankSEG-RMA outperforms
Argmax-prob primarily in capturing complete regions of challenging objects and in detecting small
objects.

For instance, in the first row, where the buses are partially occluded, Argmax-prob only sparsely
identifies a small portion of the buses, whereas RankSEG-RMA achieves more complete segmentation.
In the second example, Argmax-prob fails to detect the small bottles on the table, but RankSEG-RMA
successfully identifies them. Similarly, in the third example, Argmax-prob completely misses one
human face, while RankSEG-RMA detects it. These examples, together with the discussions in
Sections 4.3 and 4.4, demonstrate that RankSEG-RMA is particularly effective for segmenting small
and challenging objects.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in our abstract and introduction that proposed RankSEG-
RMA significantly reduce computation cost and enable non-overlapping segmentation
accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are clearly stated in the corresponding theorems. The proofs
are provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The implementation details are provided in Section 4 and Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets we used are open-source datasets. The code is available in
https://anonymous.4open.science/r/RankSEG-RMA-4C14.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The implementation details are provided in Section 4 and Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 3 provides the standard deviation of 10 runs. Other experiments do not
suffer from randomness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The time consumption and used resources are provided in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have ensured that our research conforms to the code of ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not pose such a risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all external sources of assets and their licenses permit our use case.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

23



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used for method development. They are only used for writing
polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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