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Abstract

Multimodal VAEs have recently received signif-
icant attention as generative models for weakly-
supervised learning with multiple heterogeneous
modalities. In parallel, VAE-based methods have
been explored as probabilistic approaches for clus-
tering tasks. Our work lies at the intersection
of these two research directions. We propose
a novel multimodal VAE model, in which the
latent space is extended to learn data clusters,
leveraging shared information across modalities.
Our experiments show that our proposed model
improves generative performance over existing
multimodal VAEs, particularly for unconditional
generation. Furthermore, our method favorably
compares to alternative clustering approaches, in
weakly-supervised settings. Notably, we propose
a post-hoc procedure that avoids the need for our
method to have a priori knowledge of the true
number of clusters, mitigating a critical limitation
of previous clustering frameworks.

1. Introduction
Multimodal VAEs are powerful generative models for
weakly-supervised learning with multiple modalities, with
relevant applications in segmentation tasks or data integra-
tion (Lee & van der Schaar, 2021; Dorent et al., 2019) in
the healthcare domain. They have the advantage of being
able to handle numerous modalities efficiently, thanks to
recently proposed scalable approaches (Wu & Goodman,
2018; Shi et al., 2019; Sutter et al., 2020; 2021; Hwang et al.,
2021; Palumbo et al., 2023). Multimodal VAEs have been
explored for generative tasks, succeeding in cross-modal
generation (Hwang et al., 2021; Palumbo et al., 2023) de-
spite less remarkable results in unconditional generation
(Palumbo et al., 2023).
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A parallel line of research focuses on VAE-based genera-
tive methods for clustering tasks (Jiang et al., 2016; Dilok-
thanakul et al., 2016). In particular deep variational clus-
tering methods have been investigated in medical scenarios
(Manduchi et al., 2022), being particularly suitable as they
enable integration of domain knowledge from clinicians
through prior probabilities (Manduchi et al., 2021). Other
works use VAE-based methods to learn interpretable repre-
sentations for clustering time-series (Fortuin et al., 2019).

With this work, we position ourselves at the intersection
of these two lines of research by proposing a variational
generative approach for clustering in a multimodal setting.
In particular, we introduce a novel multimodal VAE model,
called Clustering Multimodal VAE (CMVAE). The pro-
posed model incorporates recent advancements for mul-
timodal VAEs (Palumbo et al., 2023), and is designed to
effectively model data clusters in the latent space. In our
experiments, we show that our method represents an im-
provement over existing multimodal VAEs, particularly for
unconditional generation, where existing methods struggle
to achieve satisfactory results. Importantly, we evaluate the
performance of CMVAE for clustering in weakly-supervised
settings, highlighting its effectiveness where unimodal ap-
proaches fail to achieve adequate performance. In a realistic
setting, our approach shows significant improvements com-
pared to alternative scalable weakly-supervised methods.
Furthermore, unlike most existing approaches whose per-
formance relies on the knowledge of the true number of
clusters at training time, CMVAE can effectively infer the
number of clusters at test time.

2. Related work
Multimodal VAEs Multimodal VAEs extend the well-
known VAE framework (Kingma & Welling, 2014) to han-
dle data consisting of multiple modalities, leveraging the
pairing across modalities as weak supervision. While early
approaches (Suzuki et al., 2017; Vedantam et al., 2018)
faced scalability challenges due to inference requiring a sep-
arate encoder network for each subset of modalities, more
recent scalable approaches (Wu & Goodman, 2018; Shi
et al., 2019; Sutter et al., 2020; 2021; Hwang et al., 2021)
assume the joint encoder decomposes in terms of unimodal
encoders. Despite promising applications (Lee & van der
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Schaar, 2021; Dorent et al., 2019), recent work (Daunhawer
et al., 2022) shows that the main formulations of multi-
modal VAEs suffer from important limitations, involving a
trade-off between generative quality (the similarity of gen-
erated samples to real ones) and generative coherence (the
semantic consistency across modalities). Previous attempts
to enhance the performance of multimodal VAEs involved
additional regularization terms (Sutter et al., 2020; Hwang
et al., 2021), or mutual supervision (Joy et al., 2022), while
recently Palumbo et al. (2023) proposed to incorporate the
idea of separate shared and private subspaces from previous
works (Sutter et al., 2020; Lee & Pavlovic, 2021; Wang
et al., 2016) and design an ELBO that exploits auxiliary
distributions to facilitate the estimation of cross-modal like-
lihood terms. The resulting MMVAE+ model achieves both
high generative quality and high generative coherence.

Variational approaches for clustering Previous work
proposes VAE-based unimodal clustering approaches such
as GMVAE (Dilokthanakul et al., 2016) and VaDE (Jiang
et al., 2016). Later, these models have been extended to
condition on pair-wise prior constraints (Manduchi et al.,
2021). However, they lack multi-modality support.

Clustering with weak- or self-supervision While cluster-
ing approaches for weakly-supervised data have been inves-
tigated, they are not designed to scale to a large number of
modalities (Alwassel et al., 2020; Chen et al., 2021; Zhou
& Shen, 2020). Therefore, to benchmark our method, we
compare with an existing well-known multi-view approach,
CMC (Tian et al., 2020). CMC maximizes mutual informa-
tion between different views with a contrastive loss, and can
be extended for clustering by training a K-means model on
the learned representations. It is adapted to multi-modality
by providing separate encoders for separate modality types.
Note that the key feature for why this model is chosen for
comparison is its ability to handle numerous modalities, not
present for other existing multimodal approaches.

3. Method
3.1. A scalable VAE objective for modelling latent

clusters in multimodal data

We assume data consisting of M modalities X :=
x1, . . . ,xM is generated according to the following pro-
cess. For each datapoint xi

1, . . . ,x
i
M where i ∈ {1, . . . , N}

and N is the dataset size, a cluster assignment ci is drawn
from a categorical distribution pπ(c) with probabilities
π = π1, . . . , πK where K is the number of clusters. Then
the M modalities are drawn according to xi

1, . . . ,x
i
M ∼

pθ1(x1|wi
1, z

i), . . . , pθM (xM |wi
M , zi) where the shared

encoding zi ∼ p(z|ci) is generated conditioning on clus-
ter assignment, while modality-speficic encodings wi

1 ∼
p(w1), . . . ,w

i
M ∼ p(wM ) are drawn from prior distribu-

tions. The resulting generative model is pΘ(X,W , z, c) =

pπ(c)p(z|c)
∏M

m=1 pθm(xm|wm, z)p(wm), where priors
and likelihoods are assumed to belong to a specific fam-
ily of distributions, e.g. Gaussian or Laplace, and likeli-
hoods are parameterized by neural networks. Note that
the shared encoding z and modality-specific encodings
w1, . . .wM =: W are assumed to be independent.

To obtain a tractable objective, variational encoders
qΦz (z|X), qϕw1

(w1|x1), . . . , qϕwM
(wM |xM ), q(c|z,X)

are introduced to approximate posterior inference for
each of the latent variables. In line with our generative
assumptions, the shared and modality-specific encoders
are assumed to be conditionally independent given the
observed data. As in previous approaches (Shi et al., 2019;
Palumbo et al., 2023), to achieve scalability in the number
of modalities, we model the joint encoder as a mixture
of experts qΦz (z|X) = 1

M

∑M
m=1 qϕzm

(z|xm). In our
objective, we incorporate two key ideas from previous
related work. First, to accurately model both shared and
modality-specific information in separate latent subspaces
without conflicts, as in (Palumbo et al., 2023) we use
auxiliary distributions for private features to estimate
cross-modal reconstruction likelihoods, leading to our
proposed CMVAE objective

L(X) =
1

M

M∑
m=1

E q(c|z,X)
qϕzm

(z|xm)

qϕwm
(wm|xm)

[
Gπ,Φz,ϕwm ,Θ(X, c, z,wm)

]

where

Gπ,Φz,ϕwm ,Θ(X, c, z,wm) = log pθm(xm|z,wm)

+
∑
n̸=m

logEw̃n∼p(wn)[pθn(xn|z, w̃n)]

+ log
pπ(c)pθ(z|c)p(wm)

qΦz (z|X)qϕwm
(wm|xm)q(c|z,X)

Furthermore, we adopt the formulation for the approximate
posterior of cluster assignment given a latent code z pro-
posed by (Jiang et al., 2016), and assume q(c|z,X) =

p(c|z) = p(c)p(z|c)∑K
c′=1

p(c′)p(z|c′)
. Note that expectations with re-

spect to qΦz (z|X), qϕw1
(w1|x1), . . . , qϕwM

(wM |xM ) are
approximated via sampling while the expectation with the
respect to q(c|z,X) can be computed exactly since c as-
sumes a discrete finite set of values. Our objective can also
be framed as the MMVAE+ ELBO objective from (Palumbo
et al., 2023), with a mixture prior distribution and our spe-
cific choice for the approximate posterior q(c|z,X). This
in turn validates our proposed objective as an ELBO.

2



Deep Generative Clustering with Multimodal Variational Autoencoders

Algorithm 1 Post-hoc selection of optimal latent clusters

Input: pπK (c), p(z|c), qϕz1
(z|x1) . . . , qϕzM

(z|xM ) from
trained CMVAE model with K > K̄, data X1:N

Output: pπ
K̂

, with πK̂ s.t.
∑K

k=1 1πk ̸=0 = K̂
for k = K to 2 do

for xi
1, . . ., xi

M in x1:N
1 , . . ., x1:N

M do
zi
1, . . . ,z

i
M ∼ qϕz1

(z|xi
1), . . . , qϕzM

(z|xi
M )

for m = 1 to M do
p(c|zm) =

pπk
(c)p(zm|c)∑k

c′=1
pπk

(c′)p(zm|c′)

end for
cias = assignc(p(c|z1), . . . , p(c|zM ))

hi
k = 1

M

∑M
m=1 H̄(p(c|zm))

end for
hk = 1

N

∑N
n=1 h

n
k

πk−1 = computeπ(c
1:N
as ,πk)

end for
pπ

K̂
where K̂ = argmink(h1, . . . , hk, . . . , hK)

3.2. Entropy of posterior cluster assignment distribution
for post-hoc learning of the number of clusters

A critical limitation of most existing methods for clustering
is the reliance on prior knowledge of the number of clusters
in the data. This can result in either highly complex model
selection procedures, or in failure in settings where a proxy
for this information cannot be obtained. Training CMVAE
requires assuming a K value for the number of clusters mod-
eled. However, K may differ from the true unknown number
of clusters K̄ of the true generating process. Specifying
K > K̄ leads to learning pπ(c) where multiple latent clus-
ters, corresponding to the same true cluster, are allocated
positive probability. Recovering the true number of clus-
ters means obtaining pπ̄(c) where

∑K
k=1 1π̄k ̸=0 = K̄, i.e.

exactly K̄ clusters have positive prior probability. To this
end, we design a post-hoc procedure to learn the true num-
ber of clusters given a trained instance of our model with
over-specified number of clusters, i.e. K > K̄, described in
the pseudocode in Algorithm 1.

In a nutshell, the procedure iterates over the dataset: clusters
are ranked by counting the data points each one is assigned
to, and the average normalized entropy of p(c|z), which is
the posterior distribution of clusters assignments, is com-
puted. Note that cluster assignments are determined by
majority voting between modalities. Then the latent clus-
ter with the least number of samples assigned is set null
prior probability at the next iteration (other probabilities
are recomputed accordingly to maintain a valid probability
distribution). Iteratively, the latent clusters are effectively
pruned, keeping the average normalized entropy of p(c|z)
as a metric to select the optimal set of latent clusters to
model the data. This procedure aims to find K̂ = K̄, i.e. re-
cover the true number of clusters. H̄ in Algorithm 1 denotes
normalized entropy. The procedure is fully unsupervised,
and does not affect the unsupervised nature of our method.

4. Experiments
We test the performance of CMVAE, in comparison with
alternative approaches, in two challenging experimental
settings. The first setting is the PolyMNIST dataset (Sut-
ter et al., 2021), which is a synthetic five-modality dataset
depicting MNIST (LeCun et al., 2010) digits with modality-
specific backgrounds. As a second experimental setting, we
introduce a variation of the CUB Image-Captions dataset
(Wah et al., 2011; Reed et al., 2016), conceived to test mul-
timodal clustering methods in a realistic scenario, which we
name CUBICC dataset. The original CUB Image-Captions
dataset consists of images of birds paired with matching
descriptive captions, and to adapt it to benchmark clustering
approaches we group sub-species of birds in the original
dataset in a single species. Details for the datasets are in
Appendix A.1.

4.1. PolyMNIST: generative capabilities and
multimodal clustering performance

As a first experimental setting, we test the CMVAE on the
PolyMNIST dataset. First, we compare its generative capa-
bilities with alternative multimodal VAEs, then moving to
benchmark its clustering performance.

Section 4.1 compares the performance of CMVAE with
alternative multimodal VAEs, in terms of generative qual-
ity and generative coherence, for both unconditional and
conditional generation. Results show that CMVAE outper-
forms all existing multimodal VAEs for both conditional and
unconditional generation. While the advancement for condi-
tional generation is moderate, CMVAE improves over other
models by a significant margin in unconditional generation,
particularly for unconditional coherence, which for existing
methods represents a critical performance weakness.

Furthermore, we look at clustering results for our method,
in this multimodal setting. As described in 3.2, we apply a
post-hoc procedure to learn the optimal number of clusters,
showing its effectiveness in Figure 2. Quantitative results in
Table 1c show CMVAE can accurately model latent clusters
in the data. In this setting, unimodal clustering approaches
fail to achieve good performance: we find they rather model
background features, which are prominent pixel-wise in
the images, instead of the relevant digit content. To not re-
strict ourselves to only variational approaches for unimodal
clustering, we include in the comparison the well-known
DeepCluster (Caron et al., 2018). See more details about
unimodal approaches and results in Appendix A.4. On the
other hand, weak-supervision plays a fundamental role in
this setting, as also confirmed by the results for CMC. Not
surprisingly, CMVAE achieves comparable yet not superior
performance to CMC in this setting, as it closely resem-
bles a multi-view setting for which these approaches are
conceived. However, for more heterogeneous modalities,
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(a) Unconditional generation
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(b) Conditional generation

PolyMNIST

NMI ARI
VaDE 0.41 (±0.04) 0.34 (±0.05)

DeepCluster 0.18 (±0.06) 0.12 (±0.03)
CMC 0.97 (±0.01) 0.97 (±0.01)

CMVAE 0.97 (±0.01) 0.97 (±0.00)

(c) Quantitative clustering results on PolyMNIST

Figure 1 (a),(b): Generative performance comparison of CMVAE with multimodal VAEs on PolyMNIST. Three independent
runs for each model, with different symbols denoting different values of the β hyperparameter. In both plots, generative
coherence is measured on the y-axis (higher is better), while on the x-axis generative quality is assessed via the FID-score
(lower is better). Therefore optimal performance is at the top-right corner of each plot. Table 1 (c): Quantitative clustering
performance comparison on PolyMNIST.
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Figure 2: Post-hoc optimal latent cluster selection with the procedure in Algorithm 1. (Left) Evolution of the entropy term
(y-axis) as clusters (x-axis) are pruned.The minimal entropy recovers the true number of clusters. The trends for test NMI
(Center) and ARI (Center) support the validity of our procedure, with best results reached at minimal entropy value.

Figure 3: Qualitative results for CMVAE on the CUBICC
dataset. For each row, three samples for both modalities are
sampled from a different latent cluster.

the gap in performance between the two methods, is highly
significant, as shown in the next section.

4.2. CUBICC
With this dataset we test the performance of CMVAE in a
realistic multimodal scenario. Qualitative results in Figure 3
for unconditional generation show that CMVAE is able to
exploit multiple modalities to model latent clusters also
in a complex real-world setting. Note that this level of
generative quality and semantic coherence for unconditional

CUBICC

NMI ARI
VaDE 0.14 (±0.01) 0.07 (±0.01)

DeepCluster 0.16 (±0.03) 0.03 (±0.01)
CMC 0.33 (±0.02) 0.07 (±0.01)

CMVAE 0.53 (±0.04) 0.44 (±0.09)

Table 2: Quantitative clustering results for CUBICC.

generation favorably compares with previous results for
multimodal VAEs in this setting (see Palumbo et al. (2023)).
Quantitative results for clustering in Table 2 validate the
effectiveness of CMVAE in this multimodal challenging
setting, where it outperforms both unimodal and alternative
weakly-supervised approaches.

5. Conclusion
In this work we introduce CMVAE, a novel multimodal
VAE, which combines recent advances for multimodal VAEs
with clustering capabilities. Our experiments show that
CMVAE outperforms existing multimodal VAEs in gener-
ative performance, particularly for unconditional genera-
tion. Additionally, CMVAE favorably compares to both
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unimodal and alternative weakly-supervised scalable ap-
proaches for clustering, outperforming these approaches in
realistic datasets. Notably, we introduce and validate a post-
hoc procedure to prune latent clusters based on the average
normalized entropy of posterior cluster assignments.
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A. Experimental and implementation details
A.1. Datasets

In this section, we provide detailed information about the datasets used in this study. Firs, we describe the PolyMNIST
dataset (Sutter et al., 2021), which is a synthetic and challenging dataset comprising five image modalities. Each modality
depicts MNIST (LeCun et al., 2010) digits patched with random crops from five distinct background images, with one
background image associated to each modality. Figure 4a visually illustrates examples of the dataset. Notably, the digit
label is the only shared information across modalities, while the background features and the handwriting style of the digits
are modality-specific for each data point.

As a second experimental setting, we introduce the CUBICC dataset, a variation of the CUB Image-Captions dataset (Wah
et al., 2011; Reed et al., 2016). The CUB Image-Captions dataset consists of images of birds paired with corresponding
descriptive captions. We modified this dataset to evaluate multimodal clustering methods in a realistic scenario. Our
modified version, named CUBICC, involves grouping sub-species of birds into a single species category. As a result, the
CUBICC dataset consists of nine classes, with each class representing a different bird species. Figure 4b provides an
example illustration of the dataset. The grouping of sub-species into a single class introduces significant variability within
each class, posing a considerable modeling challenge. It is worth noting that previous studies have evaluated multimodal
VAEs on the original CUB Image-Captions dataset using pre-trained ResNet features (Shi et al., 2019; 2021), or generating
directly in the data space. The latter more challenging setting (Daunhawer et al., 2022) is the one considered in this work.
Only recent approaches have proved to be successful in this more demanding setting (Palumbo et al., 2023).

(a) PolyMNIST dataset: Each column is a single data point
in this dataset, which consists of five image modalities with
matching digit labels. Each row showcases samples from a
given modality.

(b) CUBICC dataset: Example of the variability within a single bird
class, jay. The image and its corresponding caption are arranged in a
stacked manner, with the image positioned above the caption.

Figure 4: Illustrative samples for our considered experimental settings, PolyMNIST in (a) and CUBICC in (b).

A.2. Implementation details

To implement all multimodal VAEs (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2020; 2021; Hwang et al., 2021;
Palumbo et al., 2023) included for comparison in terms of generative performance we follow the recommendations in
Palumbo et al. (2023) for training these models on the PolyMNIST dataset. In particular, we use the same ResNet encoder
and decoder networks for all compared models. CMVAE is trained for 250 epochs on this dataset, with 1e− 3 learning rate.
As for the MMVAE+, CMVAE is set to have a shared latent space of 32 dimensions and modality-specific latent spaces of
32 dimensions in this setting. As for CMVAE on the CUBICC dataset, we use ResNet and convolutional encoder/decoder
networks for the image and text modalities respectively, training the model with a 10-sample version of our objective and
resorting to the DReG estimator for gradient (Tucker et al., 2019). We set 64 dimensions and 32 dimensions for shared and
modality-specific latent spaces respectively.
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For the methods reported as baseline comparisons for clustering tasks, we ensure compatibility with the encoder networks
and shared latent space size adopted by CMVAE for a fair comparison. We follow best practices in their original work for
training, but without resorting to any pre-training procedures, again for a fair comparison with CMVAE. For PolyMNIST
CMVAE is trained with K = 40, before the post-hoc procedure shown in Figure 2 is applied. This shows that our method
can recover the true number of clusters even with a largely overspecified K for training.

Experimental results across the paper are reported averaging for three independent runs and we report standard deviations.

A.3. Generative qualitative clustering results on PolyMNIST

Figure 5 showcases the generative and clustering capabilities of CMVAE, organized according to each modality. The results
demonstrate that CMVAE effectively captures the true clusters present in the data by focusing on the meaningful digit
content rather than the dominant background features. It successfully generates high-quality samples that exhibit semantic
coherence within each cluster. Conversely, unimodal clustering approaches struggle to achieve satisfactory performance in
this context.

Figure 5: Generative qualitative examples of the clustering capabilities of CMVAE on PolyMNIST dataset. Each column
corresponds to the generated samples of one of the five modalities, while each row reports three generation results for a
different latent cluster.

A.4. Unimodal clustering approaches

Here we show additional results for the comparison of our proposed CMVAE with existing unimodal clustering approaches,
namely VADE (Jiang et al., 2016) and DeepCluster (Caron et al., 2018). DeepCluster requires a prior selection of clusters
for multi-class classification. Since previous research has shown that a larger number of clusters than the actual classes
might yield better results, to replicate their experiments we consider 100, 35, and 10 clusters for the PolyMNIST dataset, and
100, 35, and 9 clusters for the CUB images. Additionally, we examine the performance of VADE using different values of
the parameter β, specifically 1.0 and 2.5. In this section, we present the results for each individual modality in PolyMNIST,
and for the image modality in the case of CUBICC, using these methods.

Overall, the performance varies significantly depending on the modality. Notably, in PolyMNIST, the prominence of the
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background plays a crucial role, affecting the task’s difficulty level. Multi-modality in CMVAE helps to overcome these
challenges by learning a shared representation space. Regarding DeepCluster, a larger Normalized Mutual Information
(NMI) is observed when using a higher number of clusters. However, the Adjusted Rand Index (ARI) performs better when
the true number of clusters is considered. VADE exhibits improved results with a β value of 2.5. For both PolyMNIST
and CUBICC the unimodal clustering results reported in the main text are for K equal to the true number of clusters, and
choosing the best-performing modality.

PolyMNIST
m0 m1 m2 m3 m4

VADE β=2.5 NMI 0.0381 (±0.0134) 0.1683 (±0.0308) 0.0725 (±0.0416) 0.4062 (±0.0444) 0.0122 (±0.0074)
ARI 0.0174 (±0.0070) 0.0979 (±0.0242) 0.0411 (±0.0263) 0.3430 (±0.0516) 0.0072 (±0.0040)

DeepCluster K=10 NMI 0.0317 (±0.0054) 0.1690 (±0.0156) 0.0476 (±0.0064) 0.1848 (±0.0630) 0.0075 (±0.0028)
ARI 0.0134 (±0.0029) 0.1025 (±0.0105) 0.0252 (±0.0014) 0.1160 (±0.0344) 0.0030 (±0.0015)

Table 3: Baseline results for unimodal clustering on PolyMNIST dataset.

PolyMNIST
m0 m1 m2 m3 m4

VADE β=1.0 NMI 0.0173 (±0.0018) 0.1342 (±0.0451) 0.0108 (±0.0100) 0.3921 (±0.0135) 0.0016 (±0.0008)
ARI 0,0072 (±0.0008) 0.0824 (±0.0406) 0.0068 (±0.0061) 0.3262 (±0.0145) 0.0008 (±0.0006)

VADE β=2.5 NMI 0.0381 (±0.0134) 0.1683 (±0.0308) 0.0725 (±0.0416) 0.4062 (±0.0444) 0.0122 (±0.0074)
ARI 0.0174 (±0.0070) 0.0979 (±0.0242) 0.0411 (±0.0263) 0.3430 (±0.0516) 0.0072 (±0.0040)

DeepCluster K=10 NMI 0.0317 (±0.0054) 0.1690 (±0.0156) 0.0476 (±0.0064) 0.1848 (±0.0630) 0.0075 (±0.0028)
ARI 0.0134 (±0.0029) 0.1025 (±0.0105) 0.0252 (±0.0014) 0.1160 (±0.0344) 0.0030 (±0.0015)

DeepCluster K=35 NMI 0.0881 (±0.0091) 0.2369 (±0.0221) 0.1017 (±0.0103) 0.1520 (±0.0374) 0.0360 (±0.0073)
ARI 0.0296 (±0.0054) 0.0981 (±0.0160) 0.0400 (±0.0055) 0.0554 (±0.0209) 0.0094 (±0.0030)

DeepCluster K=100 NMI 0.1075 (±0.0160) 0.2676 (±0.0308) 0.1295 (±0.0086) 0.2123 (±0.0201) 0.0444 (±0.0064)
ARI 0.0204 (±0.0032) 0.2553 (±0.3531) 0.0219 (±0.0026) 0.0381 (±0.0072) 0.0046 (±0.0009)

Table 4: Baseline results for unimodal clustering on PolyMNIST dataset. Including ablation of beta and number of clusters.

CUB-Images
VADE β=1.0 NMI 0.1361 (±0.0115)

ARI 0.0704 (±0.0072)
DeepCluster K=9 NMI 0.1611 (±0.0335)

ARI 0.0335 (±0.0109)

Table 5: Baseline results for unimodal clustering on images from CUBICC dataset.

CUB-Images
DeepCluster K=9 NMI 0.1611 (±0.0335)

ARI 0.0335 (±0.0109)
DeepCluster K=35 NMI 0.3207 (±0.0149)

ARI 0.0205 (±0.0082)
DeepCluster K=100 NMI 0.4659 (±0.0143)

ARI 0.0094 (±0.0085)

Table 6: Baseline results for unimodal clustering on images from CUBICC dataset. Including ablation of number of clusters.
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