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Abstract
Chain-of-Thought (CoT) prompting enhances
mathematical reasoning in large language models
(LLMs) by enabling detailed step-by-step solu-
tions. However, due to the verbosity of LLMs, the
resulting reasoning chains can be long, making
it harder to verify the reasoning steps and trace
issues resulting from dependencies between the
steps that may be farther away in the sequence
of steps. Importantly, mathematical reasoning
allows each step to be derived from a small set
of premises, which are a subset of the preceding
steps in the reasoning chain. In this paper, we
present a framework that identifies the premises
for each step, to improve the evaluation of reason-
ing. We restructure conventional linear reason-
ing chains into Premise Augmented Reasoning
Chains (PARC) by introducing premise links,
resulting in a directed acyclic graph where the
nodes are the steps and the edges are the premise
links. Through experiments with a PARC-based
dataset that we built, namely PERL (Premises
and ERrors identification in LLMs), we demon-
strate that LLMs can reliably identify premises
within complex reasoning chains. In particular,
even open-source LLMs achieve 90% recall in
premise identification. We also show that PARC
helps to identify errors in reasoning chains more
reliably. The accuracy of error identification im-
proves by 6% to 16% absolute when step-by-
step verification is carried out in PARC under
the premises. Our findings highlight the utility
of premise-centric representations in addressing
complex problem-solving tasks and open new av-
enues for improving the reliability of LLM-based
reasoning evaluations.
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1. Introduction
Chain-of-thought reasoning enhances problem solving by
breaking down complex tasks into a series of logical steps,
improving the accuracy and clarity of decision-making pro-
cesses. There has been a well-documented success of the
reasoning capabilities of large language models (LLMs)
with chain of thought (CoT; (Wei et al., 2023)) across ap-
plications such as embodied reasoning (Gao et al., 2023;
Philipov et al., 2024), code generation (Jiang et al., 2024),
and mathematical and scientific reasoning (Imani et al.,
2023; Ahn et al., 2024). However, the corresponding evalua-
tion methods and metrics have a significant limitation: they
focus solely on the correctness of the final answer, neglect-
ing intermediate reasoning processes and rationales that
contribute to it. Although the final answer serves as a proxy
for the reasoning capability, it is not sufficient to judge the
reasoning performance of the model. Hence, evaluating
the final answer provides a narrower view of the reasoning
capabilities. Since the intermediate reasoning process is
equally important as getting the correct final answer (Huang
& Chang, 2023; Golovneva et al., 2023; Prasad et al., 2023),
a comprehensive evaluation of the reasoning chains is cru-
cial to holistically understanding the reasoning capabilities
of LLMs.

Evaluation of a reasoning chain has been studied in litera-
ture in the context of self-verification (Weng et al., 2023).
Previous work has shown that LLMs struggle to find rea-
soning errors in chain-of-thought traces without the help
of external verifiers (Stechly et al., 2024; Wu et al., 2024;
Tyen et al., 2024), casting doubt on the overoptimism of
LLMs’ self-critique abilities. Existing research focusing on
the evaluation of reasoning chains in LLMs can be broadly
categorized into reference-based and reference-free meth-
ods. Reference-based methods, which rely on the avail-
ability of a ground truth reasoning chain (Welleck et al.,
2021; Han et al., 2024; Tian et al., 2021), are reliable but
are constrained by the significant cost of human annota-
tions, restricting their application. In contrast, reference-
free methods (Prasad et al., 2023; Golovneva et al., 2023;
Zhu et al., 2024) bypass the need for annotations, but suffer
from two major drawbacks: (1) most such works assign
only a chain-level score rather than localizing specific er-
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Linear Reasoning Chain

Step 1: given a=10 and
b=20, a+b=30

Step 2: ab=200

Step 3: given ab=200
and a=100, a^b=10000

Step 4: given ab=600
and b=20, ab^2=12000

Wrong Step Accumulation ErrorCorrect step

Step 5: mean = (30 +
200 + 10000 + 12000)
/4 = 5557.5

Premise Links

Premise Augmented Reasoning Chain (PARC)

Question: 
given a=10 and b=20, what are the mean of the following a+b, ab, a^b, ab^2

Step 1: given a=10 and b=20, a+b=30

Step 2: ab=200

Step 3: given ab=200 and a=100, a^b=10000

Step 4: given ab=600 and b=20, ab^2=12000

Step 5: mean = (30 + 200 + 10000 + 12000)
/4 = 5557.5❌

❌

❌

Question

❌

Figure 1. Comparison between a Linear Reasoning Chain (LRC) and our proposed PARC (Premise-Augmented Reasoning Chain). The
LRC (left), is linear and there no explicit premise link between steps. In PARC (right), premise links are explicitly established, enabling
better identification of correct and incorrect steps. Accumulation errors can be traced back to faulty premises. Establishing these premises
helps improve error detection with LLMs.

rors, and (2) they often need fine-tuning of task-specific
models, restricting their generalizability. One workaround
could be using formal proof assistants like Lean (Moura &
Ullrich, 2021), which natively support the verifiability of
generated proofs (Yang et al., 2024; 2023; Murphy et al.,
2024), but this requires a challenging auto-formalization of
natural language text (Wu et al., 2022) and often assumes
the solution is already known for proof construction.

In our work, we focus on reference-free verification of LLM
reasoning chains in the context of mathematical reasoning.
Mathematical problem solving requires a series of deductive
reasoning steps, where each step is performed under a small
set of premises. We hypothesize that a step in a reasoning
chain should be verified only under its premises. Previous
work has shown that having unnecessary context hurts the
performance of LLMs for solving math word problems (Shi
et al., 2023). Thus, by excluding irrelevant context from
the verifier, we make the verification of a reasoning step
only conditioned on its premises, addressing the known
susceptibility of LLMs to errors under distractors.

We restructure conventional linear reasoning chains (LRCs)
into PARC (Premise-Augmented Reasoning Chains), by
identifying the premises of each step. Identifying those
premises improves the traceability of a reasoning chain. We
create a corresponding dataset, called PERL (Premises and
ERrors identification in Language models) to test LLMs’
capability in identifying premises as well as the effective-
ness of premise augmentation in annotating both premises
and errors. Additionally, we refine the error taxonomy (as
proposed in (Golovneva et al., 2023)) for mathematical rea-
soning by introducing a new category: “accumulation error.”
This error arises when a reasoning step is correct in isola-
tion but is derived from flawed premises (refer to step 5 in
Fig.1), resulting in error propagation throughout the chain;
while such errors are common, existing work (Lightman
et al., 2023; Zheng et al., 2024; Daheim et al., 2024) has

not addressed them beyond discarding all subsequent steps
once the first mistake appears. Distinguishing accumulation
errors from inherently flawed steps (mathematical errors
or logical inconsistencies) is crucial for a holistic evalua-
tion of CoT traces. Moreover, establishing explicit premise
links between steps allows each step to be verified only un-
der its premises which reduces irrelevant information for
each verification step, thus improving the error detection for
mathematical problem solving.

Our main contributions are as follows:

• We demonstrate that off-the-shelf LLMs can detect
premises for a given step with high accuracy for mathe-
matical reasoning, enabling the conversion of a Linear
Reasoning Chain (LRC) to a Premise-Augmented Rea-
soning Chain (PARC).

• We establish that verifying each step under its corre-
sponding premises increases the accuracy of identify-
ing errors and their types.

• We propose a refined error taxonomy for mathemati-
cal reasoning, introducing the notion of accumulation
errors for steps that are locally correct but inherit up-
stream errors.

• We introduce and will release PERL, a dataset of rea-
soning chains annotated with premises and error types,
to facilitate broader research on premise-centered rea-
soning verification.

The rest of the paper is structured as follows: in Section 2,
we discuss relevant prior work in context of mathematical
reasoning and verification of reasoning chains with LLMs.
Section 3 introduces the research questions, alongside the
necessary background as well as mathematical definition of
premises, conversion of LRC to PARC, as well as how we
identify errors with premises. Section 4 details PERL, our
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dataset to show effectiveness of the framework, and lastly,
in section 5 we discuss the results and insights from our
experiments. 1

2. Related work
Math Reasoning with LLMs. Mathematical and scien-
tific reasoning tasks have become a primary testbed to
assess the capabilities of large language models (LLMs)
(Hendrycks et al., 2021a; Arora et al., 2023; Wang et al.,
2024). Solving these tasks requires complex planning, recall
of relevant formulae, and grounding the solution to the given
problem (Arora et al., 2023). A widely adopted approach to
improve the reasoning of LLMs is to generate intermediate
rationales, commonly known as chain-of-thought (CoT),
before predicting a final answer (Wei et al., 2023). Recent
work explores alternative structures for organizing these
solutions, including Tree-of-Thoughts (Yao et al., 2023) and
Graph-of-Thoughts (Besta et al., 2024).

Evaluation of Chain-of-Thoughts. Although generating
rationales can significantly improve model reasoning, sys-
tematically evaluating these explanations remains a chal-
lenge. Traditional metrics focused on word overlap or em-
bedding similarity (Celikyilmaz et al., 2021; Reiter, 2019)
fail to capture logical soundness, especially for step-by-step
deductions. To address this gap, methods such as Roscoe
(Golovneva et al., 2023), Receval (Prasad et al., 2023), and
Socreval (He et al., 2024) offer reference-free evaluation
frameworks that assess correctness and identify various cat-
egories of errors. However, these methods generally provide
a single chain-level score and offer limited explainability,
making it difficult to pinpoint specific error types in individ-
ual reasoning steps. In contrast, our proposed framework
provides a natural language characterization of the correct-
ness of each step, providing fine-grained insights into the
precise nature of errors.

Verifiers for Math Reasoning. Verifiers have proven ef-
fective in enhancing LLM-based reasoning. Uesato et al.
(2022) and Lightman et al. (2023) demonstrate that pro-
viding reward signals for intermediate steps can stabilize
training and improve final performance. Deductive Beam
Search (Zhu et al., 2024) similarly incorporates a trained
verifier to refine model outputs during inference, leading to
higher accuracy for the final task. While these studies high-
light the benefits of verifiers, a clear strategy for training a
robust verifier, one that generalizes across diverse problem
formats, remains elusive. The closest existing effort, Ling
et al. (2023), requires models to encode premises in a partic-
ular “natural program” style, which constrains applicability

1Our code and data is available on https://github.com
/SagnikMukherjee/PARC

to general chains-of-thought. In contrast, our method treats
premise extraction as a standalone step and refrains from
making strong assumptions about how the reasoning chain
is structured.

3. Method
In this work, we explore how the establishment of premise
links improves the identification of errors in reasoning
chains with LLMs. Our approach works in two steps. First,
we identify premises for each step and augment a linear rea-
soning chain (LRC) to convert it into a Premise Augmented
Reasoning Chain (PARC). And then verify each step in the
PARC under its premises only. Lastly, we do a graph traver-
sal to identify steps that are logically correct but have faulty
premises to identify accumulation errors. In particular, we
are interested in the following research questions.

RQ 1 Given a sequential step-by-step answer to a math
word problem, can LLMs identify premises for each step?

RQ 2 Given premise annotations, can LLMs identify errors
in reasoning more faithfully?

RQ 3 Can LLMs perform the entire process end-to-end, i.e.,
given a reasoning chain, can they identify premises for each
step and detect errors?

3.1. Premise Augmented Reasoning Chains (PARC)

Let q represent the question, �̂� the predicted answer, 𝑎 the
ground truth answer, and r≤t = [𝑠1, 𝑠2, . . . , 𝑠𝑡 ] the gener-
ated reasoning chain composed of 𝑡 intermediate steps 𝑠𝑖 ,
leading to �̂�. Using CoT reasoning, the predicted answer
�̂� is derived by first generating a reasoning chain r≤t. The
probability distribution for �̂� can be expressed as:

PLM (�̂� | q) = PLM (�̂� | r≤t) × PLM (r≤t | q),

where the reasoning chain R can be decomposed into inter-
mediate steps as:

PLM (r≤t | q) = PLM (𝑠1 | q) ×
𝑡−1∏
𝑖=1

PLM (𝑠𝑖+1 | q, 𝑠𝑖).

Our objective is to identify errors in the intermediate steps
𝑠𝑖 of the reasoning chain r≤t.

The premises for a step s𝑖 are defined as the necessary and
sufficient subset of prior steps, denoted as

P𝑖 ⊆ {𝑠 𝑗∀ 𝑗 < 𝑖},

satisfying the following properties:

1. Verifiability: The correctness of 𝑠𝑖 is verifiable based on
P𝑖 alone:

F (𝑠𝑖 | P𝑖) = 1.
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2. Minimality: The set P𝑖 is minimal such that removing
any element s 𝑗 ∈ P𝑖 results in 𝑠𝑖 becoming unverifiable:

F (𝑠𝑖 | P𝑖 \ {𝑠 𝑗 }) = 0, ∀𝑠 𝑗 ∈ P𝑖 . (1)

Given premises P𝑖 for a step s𝑖 , we convert a linear reason-
ing chain into a PARC, where each step s𝑖 is augmented
with its premises P𝑖 . F is a function that estimates whether
a step is verifiable or not.

r≤t
′ = [(𝑠1,P1), (𝑠2,P2), . . . , (𝑠𝑡 ,P𝑡 )],

where r≤t
′ represents the transformed reasoning chain.

3.2. Progressive Premise Mapping

To transform a reasoning chain r≤t = [𝑠1, 𝑠2, . . . , 𝑠𝑡 ] into a
premise-augmented reasoning chain (PARC), each step 𝑠𝑖
must be explicitly linked to its premises P𝑖 . We explore two
approaches to identify these premises: Aggregative Premise
Mapping and Dyadic Premise Mapping.

3.2.1. AGGREGATIVE PREMISE MAPPING

In the Aggregative approach, the premises for each step s𝑘
are collectively identified by querying an LLM with the
complete reasoning context up to the step. For a given
question q, the reasoning chain so far r<k, and the next step
𝑠𝑘 , the LLM is prompted to output P𝑘 .

3.2.2. DYADIC PREMISE MAPPING

In the Dyadic approach, the task of identifying premises is
reformulated as a pairwise evaluation. Instead of querying
the LLM to identify all premises P𝑘 for 𝑠𝑘 at once, we
evaluate whether each individual step 𝑠𝑖 (where 𝑖 < 𝑘)
serves as a valid premise for 𝑠𝑘 . For each pair (𝑠𝑖 , 𝑠𝑘), the
LLM is queried to compute:

I(𝑠𝑘 | 𝑠𝑖) =
{

1, if 𝑠𝑖 is a valid premise for 𝑠𝑘 ,
0, otherwise.

The premises for 𝑠𝑘 are then given by:

P𝑘 = {𝑠𝑖 | F (𝑠𝑘 | 𝑠𝑖) = 1, ∀𝑖 < 𝑘}.

3.3. Error Identification

Next, we present our setup for error identification and how
premises play a significant role in this task. We introduce a
taxonomy of error types that occur in math reasoning with
LLMs and then describe our approach to identify them.

3.3.1. TYPES OF ERROR

Traditionally, prior research has predominantly focused on
identifying native errors, which refer to inaccuracies inher-
ent to individual reasoning steps. These errors often arise

Algorithm 1 Constructing and Evaluating PARC
Input: 𝑅 = [𝑠1, 𝑠2, . . . , 𝑠𝑡 ]
// Step 1: Premise Extraction
for 𝑘 = 1 to 𝑡 do
P𝑘 ← EXTRACTPREMISE(𝑠𝑘 , {𝑠1, . . . , 𝑠𝑘−1})

end for
𝑅′ ← [(𝑠1,P1), . . . , (𝑠𝑡 ,P𝑡 )]
// Step 2: Error Detection
for 𝑘 = 1 to 𝑡 do
E (1)
𝑘
← ISMATHEMATICALERROR(𝑠𝑘)

E (2)
𝑘
← ISLOGICALLYINCONSISTENT(𝑠𝑘 ,P𝑘)

E𝑘 ← E (1)𝑘
∨ E (2)

𝑘
end for
// Step 3: Accumulation Error Detection
for 𝑘 = 1 to 𝑡 do

if 𝑠𝑘 is correct then
for 𝑠 𝑗 ∈ P𝑘 do

if 𝑠 𝑗 is incorrect then
E𝑘 ← ACCUMULATIONERROR
break

end if
end for

end if
end for
𝑅′ ← [(𝑠1,P1, E1), . . . , (𝑠𝑡 ,P𝑡 , E𝑡 )]

from issues such as incorrect mathematical calculations (de-
fined as Mathematical Error), logical irregularities (defined
as logical inconsistencies) and are evaluated independently
of the broader reasoning context. Although significant, this
focus on native errors tends to overlook another critical
category of errors, called accumulation errors.

An accumulation error occurs when a reasoning step is valid
in isolation but is built upon one or more erroneous premises
from earlier steps. Unlike native errors, accumulation errors
emerge from the compounding effects of prior inaccura-
cies, propagating through sequential steps. Formally, in the
context of the reasoning chain, a step 𝑠𝑖 is classified as:

1. Correct, if it contains no logical or mathematical errors,
and is performed under premises that are also correct

2. A native error if it contains an inherent discrepancy (e.g.,
a miscalculation or logical inconsistency)

3. An accumulation error if 𝑠𝑖 is logically valid, but at least
one of its premises is incorrect.

By addressing both native and accumulation errors, we can
achieve a more comprehensive understanding of error dy-
namics in sequential reasoning processes.

3.3.2. ERROR IDENTIFICATION

Baseline. In the baseline approach, a large language
model (LLM) is used in a zero-shot setting to classify the
reasoning steps. For a given question q, the reasoning chain
so far 𝑟<𝑘 , and the next step proposed 𝑠𝑘 , the model is
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At constant temperature, the pressure of a sample of gas is inversely proportional to its volume. I have some hydrogen in a 3.67 liter container
with a pressure of 4 kPa. If I move all of it to a 1.835 liter container at the same temperature, what will the new pressure be in kPa?

Mathematical
Error

Accumulation
Error

Step 1: We can use the formula for inverse proportionality between pressure (P)
and volume (V) of a gas at constant temperature, which is given by: P ∝ 1/V

Step 2: We can rewrite this as an equation by introducing a constant of
proportionality (k): P = k / V

Step 3: Given that the initial pressure (P1) is 4 kPa and the initial volume (V1) is
3.67 liters, we can write: P1 = k / V1, 4 = k / 3.67

Step 4: To find the value of k, we can multiply both sides by 3.67: k = 4 * 3.67, k =
14.68

Step 5: Now that we have the value of k, we can use it to find the new pressure
(P2) when the volume (V2) is 1.835 liters: P2 = k / V2, P2 = 14.68 / 1.835

Step 6: To find the new pressure, we can divide 14.68 by 1.835: P2 = 7.98 kPa

Step 7: Therefore, the new pressure of the hydrogen in the 1.835 liter container
will be approximately 7.98 kPa.

Solution Baseline Verifier Our Verifier

Figure 2. An example where the baseline method fails to detect errors, while our verification method with established premise links
successfully identifies the mathematical error in step 6, and the accumulation error in step 7.

queried to assign an error type E𝑘 for 𝑠𝑘 according to the
predefined error taxonomy (Correct / Mathematical Error /
Logical Error / Accumulation Error): The model processes
the entire context (q, 𝑟<𝑘 , 𝑠𝑘) and generates a classification
directly. The zero-shot prompt explicitly defines all error
types to guide the classification.

Proposed Approach. Our proposed approach refines the
classification process by situating each reasoning step s𝑘
explicitly within the context of its premises P𝑘 . Algorithm
1 illustrates the overall pipeline of conversion of LRC to
PARC and step-by-step error classification. The prompts for
the following are reported in Appendix 16 and 17.

1. Mathematical Error: To detect mathematical errors,
we prompt an LLM to assess whether 𝑠𝑘 contains a mathe-
matical error by analyzing the step in isolation, excluding
the broader reasoning chain.

2. Logical Inconsistency: For the detection of logical
inconsistencies, we restrict the evaluation to the premises P𝑘
of the reasoning step 𝑠𝑘 . The LLM is prompted to determine
whether 𝑠𝑘 is logically consistent with its premises. This
ensures that the step’s validity is evaluated in the context
of the dependencies defined by P𝑘 , without considering
unrelated parts of the reasoning chain.

3. Accumulation Error: After identifying native errors,
accumulation errors are identified by analyzing the depen-
dency graph of the reasoning chain. The premises P𝑘 form
directed edges in the graph, where each step depends on
its premises. A Depth-First Search (DFS) traversal is per-
formed, and a step 𝑠𝑘 is classified as an Accumulation Error
if it satisfies the following criteria: 1. 𝑠𝑘 itself is classified
as correct, and 2. At least one premise 𝑠 𝑗 ∈ P𝑘 (where
𝑗 < 𝑘) is classified as incorrect.

4. PERL: Premises and ERrors identification
in Language models

In order to test the ability of LLMs to identify premises and
error categories, we designed a testbed. We used existing
datasets of math word problems to create PERL, our testbed
for step-level premise and error annotations.

Generating Reasoning Chains: In order to generate the
reasoning chains, we used two popular benchmarks (i)
GSM8K (Cobbe et al., 2021), a collection of 8,500 grade
school math word problems, and (ii) MATH (Hendrycks
et al., 2021b), a dataset of 12,500 challenging competi-
tion level math word problems. In addition, we use the
(iii) Orca-Math dataset by Mitra et al. (2024), a synthetic
dataset of 200K math problems alongside solutions written
by GPT4Turbo, and the (iv) MetaMathQA dataset by (Yu
et al., 2023). We first randomly sampled 1000 examples
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Model Name
GSM8K MATH Orca Math MetaMathQA

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama 3.1 8b 65.64 89.33 75.66 51.00 82.40 62.94 54.65 79.77 64.85 53.92 81.42 64.75
Llama 3.1 70b 81.26 97.55 88.65 69.80 96.82 81.11 71.05 96.73 81.91 73.10 96.46 83.05

Qwen 2.5 7b 67.42 63.53 65.36 55.87 59.73 57.70 63.08 72.64 67.05 55.54 61.66 58.14
Qwen 2.5 32b 84.07 95.35 89.34 72.56 88.55 79.74 74.27 90.63 81.62 75.57 90.89 82.49

GPT4o-mini 72.54 86.18 78.75 57.72 69.29 62.96 60.12 73.96 66.31 60.77 76.70 67.71
GPT-4o 85.93 94.42 89.96 69.40 89.78 78.28 71.12 92.17 80.79 75.49 90.37 81.85

Table 1. Precision, Recall and F1 scores for premise identification under the Aggregative approach. Note that ideally this needs to be a
high recall system, because missing even a single premise step could hurt the verifiability of the reasoning chain.

Model Name
Positives Negatives Synthetic Negatives

Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT4o-mini
Aggregative 74.93 84.81 79.56 70.85 87.01 78.10 71.84 86.73 78.59

Dyadic 75.04 82.82 78.74 64.57 71.12 67.68 55.18 53.98 54.57

GPT4o
Aggregative 89.38 93.66 91.47 84.97 94.95 89.69 83.43 94.65 88.72

Dyadic 75.32 99.01 85.55 67.70 92.68 78.25 67.27 79.42 72.84

Table 2. Precision, Recall and F1 scores for the premise mapping task for the GSM8K dataset under the aggregative and dyadic approaches.
We saw a consistent drop in F1 score for the dyadic approach, in spite of it being computationally more expensive.

from the GSM8k and MATH test split and the Orca-Math
and MetaMathQA training split (since these are training
datasets). We began by using the open weight Large Lan-
guage Model Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
to generate step-by-step reasoning chains. Next, we catego-
rized the reasoning chains as positive or negative, depending
on whether the final answer matches the ground-truth an-
swer. Next, we randomly sampled 50 positive (correct)
and 50 negative (incorrect) reasoning chains. To expand
our dataset, we employed GPT-4o to systematically intro-
duce mathematical or logical errors into the correct reason-
ing chains, creating additional synthetic negative examples
(since prior work also focused on such synthetic negatives).
When introducing errors, we ensured that the subsequent
steps were appropriately modified to reflect the impact of
the initial error. In contrast with existing works such as
Golovneva et al. (2023), where the perturbation in a step is
not followed up in subsequent steps, our synthetic negatives
are more realistic.

Premise and Error Annotation: Next, for each step in
the reasoning chain, we identified the ground truth premises
for each step using the OpenAI o1-Preview model (OpenAI
et al., 2024). Then, we use the same o1-Preview model
to map each step to the predefined taxonomy of errors or
mark it as correct, to create ground-truth error annotations.
Upon obtaining the annotated data sets, 2 authors manually
went through 10% of the generated data points to identify
the discrepancy between the human annotations and the
annotations done by the o1 model. Manual inspection of
71 samples showed that, in the case of premise annotations,

only 4 out of 71 had a discrepancy and 5 out of 71 had
issues in error annotations. For premise identification, the
discrepancy typically indicates additional steps as premises.
However, for error annotation, the annotation errors do not
have a clear pattern and manifest themselves in forms of
misclassification of the correctness of the step. The prompts
used to generate the annotations of the premises and errors
are in Appendix A.3. A detailed summary of the dataset
statistics can be found in Appendix A.2

5. Results and Discussion
For detailed information on our experimental setup, includ-
ing model configurations and implementation details, refer
to Appendix A.1.

5.1. Premise Mapping

In this section we try to answer RQ1 - “Can LLMs identify
premises to convert a Linear Reasoning Chain to a PARC?”

Metrics: For identification of premises, we use precision,
recall, and F1 score as metrics. However, we would want to
highlight to the reader that the most important metric here
is Recall. Since marking an extra step as a premise will not
hurt the verifiability of the step, missing one will hurt its
verifiability and all subsequent steps that rely on this step as
a premise. Further, we note that some reasoning chains have
a higher number of reasoning steps compared to others. In
order to ensure robustness of the metrics, we first compute
them at the level of each data point and later average the

6



Premise-Augmented Reasoning Chains Improve Error Identification in Math Reasoning with LLMs

metrics across the dataset. We tried two approaches for the
task of premise mapping.

Aggregative Approach: Table 1 contains the results of
the Aggregative approach for a suite of models and datasets.
From the table, it is evident that LLMs are efficient in iden-
tifying premises for a given step. In particular, Llama 3.1
70b (Grattafiori et al., 2024), Qwen 2.5 32b (Qwen et al.,
2025) and GPT4o are very efficient in this task, all having a
recall greater than 90%. It also shows that these models can
convert an LRC to a PARC with high accuracy.

We note that the scale of the model is an important factor.
The increase in recall varies from 8.2% to 32.2% when
we scale up for the same model class, and the pattern is
consistent. Tables 9, 10, 12 and 11 in the appendix contain
the detailed metrics across the splits Positive, Negative and
Synthetic negatives for GSM8K, MATH, OrcaMath and
MetaMathQA respectively.

Dyadic Approach: Table 2 provides a comparative analy-
sis of precision, recall, and F1 scores for the GSM8K dataset
using two models for the aggregative and dyadic approaches.
This approach causes the LLM to be more biased to mark
a step as a premise, causing precision to drop significantly.
In addition, this approach has a time complexity of 𝑂 (𝑛2),
where 𝑛 is the number of reasoning steps. Note that for
almost all cases the precision drops, and the change in recall
gives a mixed view on how this approach might be helpful.

Our analysis revealed that this methodology often led the
model to incorrectly classify second- or higher-order de-
pendencies as premises, even when the current step did not
directly rely on them. This misclassification contributed to
the observed degradation in precision.

5.2. Error Identification

In this section, we address RQ2 and RQ3, i.e. is error
identification more robust when we only use the premises
for a given step as context. We explain the experimental
setup for error identification for the baseline, as well as our
approach, in the previous sections. For the identification of
errors under premises, we consider two settings. For the first
one, we use the oracle premise annotation (from the ground
truth). For the second, we first identify the premises with
the LLMs and then use those premises for the identification
of errors. Note that in the previous section we established
that LLMs can identify premises with a high recall, and in
this experiment, we exploit that. The prompts we used for
our experiments are shared in Appendix A.5.

Metrics: For this task, we report the average accuracy
for the identification of error types for each step. In our
analysis, we observe that the boundaries between the error
types Mathematical Error and Logical Inconsistency are

quite thin, and models often classify one as the other, so
we merge these two error categories into a single error type
Error, while keeping Accumulation Error separate. Further-
more, since an early erroneous step for a solution containing
multiple steps could cause the number of errors to skew
toward accumulation errors, we first normalize the accuracy
by the number of steps in a datapoint, and later normalize
across the dataset.

Results: Table 3 presents the experimental results for the
error identification task. We evaluate performance under
two setups: under complete context as input (Full Context),
on the other hand, the Model Premises setup denotes the
end-to-end approach, wherein the model is tasked with first
identifying the relevant premises and subsequently utilizing
them. All models are provided with the question and the
solutions generated up to the current step and are tasked
with predicting the error type observed in the current step.

Premises Help Error Identification : It is evident from
Table 3, that providing only the premise steps as context (in-
stead of providing the full context) improves the accuracy of
error detection with LLMs. Figure 2 shows one such exam-
ple, where the baseline approach (using an LRC, and error
detection performed in the full context) could not identify
errors, but our approach was able to successfully identify
the mathematical and accumulation errors. Our results show
that the models are not as biased towards marking a step as
correct, when given a more precise context (no distractor).
Hence, upon providing only the premises, identification of
errors becomes much more robust. However, it is important
to note that this also comes at the cost of a drop of accuracy
for correct steps, this can be observed from comparing the
Pos column for Full context and Model Premises. However,
this accuracy drop is much smaller for larger models. In
addition, our approach impacts larger and more capable
models more than smaller models.

Models Struggle With Error Detection, Especially Accu-
mulation Errors: We find that, while capable of identifying
correct steps, all models struggle with identifying errors.
This can be attributed to the fact that models are inherently
biased toward marking a step as correct. This issue was also
pointed out by Ling et al. (2023). Identifying errors with
directly connected premises as context yields significantly
better performance than simply providing the full context.
Moreover, models struggle to identify accumulation errors.
Table 5 contains the accuracies across error types in the neg-
ative split of GSM8K. Note that, in full context, accuracy is
quite high for correct steps, but lower for erroneous steps
(mathematical and logical errors), and significantly lower
for accumulation errors. However, in our approach, the
identification of errors becomes significantly robust, with a
minor drop in performance in identifying correct steps.
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Model
GSM8K MATH Orca Math MetaMathQA

Neg Syn Pos Avg Neg Syn Pos Avg Neg Syn Pos Avg Neg Syn Pos Avg
Llama 3.1 8b
Full Context 48.87 57.68 91.9 58.6 46.91 60.29 90.61 60.2 43.26 51.2 96.7 55.06 50.47 55.15 95.17 59.45
Model Premises 54.61 76.74 65.44 64.53 52.16 59.83 50.96 54.88 55.57 59.82 67.36 59.22 54.52 69.13 62.63 61.78

Llama 3.1 70b
Full Context 58.35 77.03 98.61 71.37 55.55 72.83 96.24 69.77 50.33 64.25 96.74 63.52 55.59 73.13 97.93 69.49
Model Premises 74.51 86.22 94.69 81.92 70.94 79.29 77.91 75.45 64.95 72.28 93.37 72.52 65.69 82.74 89.71 76.52

Qwen 2.5 7b
Full Context 40.88 54.13 100 54.94 40.47 53.60 98.07 56.26 41.20 53.69 100 55.85 43.36 53.18 99.39 56.26
Model Premises 53.03 78.40 90.37 69.73 58.47 66.87 82.72 65.96 52.07 71.12 84.28 65.38 54.98 73.87 91.02 68.43

Qwen 2.5 32b
Full Context 46.76 69.26 99.8 63.56 49.58 66.5 98 65.11 49.44 63.01 99.5 63.06 49.7 67.8 99.6 65.02
Model Premises 65.58 86.34 96.95 79.37 68.61 76.96 88.71 75.57 61.89 69.24 95.25 70.26 62.18 85.60 97.32 77.40

Qwen 2.5 72b
Full Context 47.48 67.17 100 63.11 53.19 67.87 99.79 67.52 50.41 60.33 100 62.50 47.31 63.59 99.05 62.20
Model Premises 69.87 85.12 96.38 80.56 69.51 79.92 90.84 77.28 69.45 71.34 94.19 74.41 64.73 85.52 98.12 78.53

GPT4o-mini
Full Context 52.68 73.14 95.02 66.68 50.41 62.39 93.4 63.03 55.22 61.18 98.6 64.59 51.52 65.42 97.35 64.47
Model Premises 58.25 80.81 86.72 72.33 65.84 72.4 71.88 69.45 61.18 72.48 85.94 69.93 57.04 81.63 91.15 72.51

GPT-4o
Full Context 53.81 75.3 98.33 68.52 50.9 68.41 98.57 66.52 59.55 65.75 100 68.55 56.26 71.72 99.3 69.41
Model Premises 65.23 86.67 99.76 79.82 70.12 76.67 91.84 76.45 66.33 71.74 93.14 72.96 67.28 88.19 89.85 79.41

Table 3. Accuracy for Error identification of various models under Full Context (baseline) and Premises settings across different datasets.
Note that Neg, Syn and Pos means Negative, Synthetic Negatives and Positive splits of our PERL, as explained earlier. For each dataset,
we highlighted the models that benefit the most from the PARC.

Model GSM8K MATH Orca-Math MetaMath

Llama 3.1 70b
Oracle Premises 81.46 74.68 73.45 76.05
Model Premises 81.92 75.45 72.52 76.52

Qwen 2.5 72b
Oracle Premises 80.58 79.50 74.87 79.49
Model Premises 80.56 77.28 74.41 78.53

GPT-4o
Oracle Premises 78.74 76.79 75.56 82.88
Model Premises 79.82 76.45 72.96 79.41

Table 4. Comparison of Error identification under oracle premises
vs model generated premises. Since these models have high recall
in premise identification, we observe that the error identification
accuracy is comparable.

Synthetic Negatives are Easier: The average performance
of all models on synthetically generated negatives is consis-
tently higher compared to the performance on true negatives
(evident from comparing the Neg and Syn columns in Table
3). This observation highlights an important insight: per-
turbing reasoning chains does not serve as a reliable proxy
for evaluating a model’s ability to identify genuine errors in
reasoning. While prior work has focused on such synthetic
negatives, it might provide an overoptimistic view of LLMs’
ability to detect errors.

Oracle Premises vs Model Generated Premises: In Table
4, we present results of an ablation, where instead of provid-
ing the model generated premises, we provide the ground
truth premises (oracle premises from PERL). As anticipated,

Model Correct Error Acc. Error Avg

Llama 3.1 70b
Full Context 96.79 60.87 12 58.35
Oracle Premises 90.18 75.25 55.63 74.41
Model Premises 88.78 75.25 57.54 74.51

GPT-4o
Full Context 95.75 48.2 13.2 53.81
Oracle Premises 96.83 60.02 41.79 67.03
Model Premises 94.15 55.13 44.91 65.23

Table 5. Error identification accuracy for each type of steps in
ground truth. Acc. Error means Accumulation Errors

the accuracy of error identification improves when oracle
premises are provided. However, it is noteworthy that for
most models, the performance remains comparable to that
achieved with oracle premises. This can be attributed to the
fact that all these models can identify premises with a recall
of higher than 90.

5.3. Experiments on ProcessBench

Beyond the PERL dataset, we also evaluate our framework
on ProcessBench (Zheng et al., 2024), a benchmark that
contains human-annotated stepwise labels for mathemati-
cal solutions. Unlike PERL, ProcessBench only includes
annotations up to the first incorrect step in each solution.
Consequently, once an error is encountered, all subsequent
steps in the chain are implicitly treated as unverified, without
fine-grained annotation of further mistakes.
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Model Method Correct Wrong F1 Delta

Qwen 2.5 7B Baseline 66.3 36.7 47.2
Ours 60.1 38.6 47.0 -0.2

Qwen 2.5 32B Baseline 97.9 43.0 59.8
Ours 95.9 55.1 70.0 +10.2

Qwen 2.5 72B Baseline 98.4 61.4 75.6
Ours 97.8 59.7 74.1 -1.5

Llama 3.1 8B Baseline 17.1 36.7 23.3
Ours 33.7 37.8 35.6 +12.3

Llama 3.1 70B Baseline 77.7 57.5 66.1
Ours 89.6 70.0 78.6 +12.5

Table 6. Performance comparison on GSM8K with Baseline vs.
Ours for each model.

Model Method Correct Wrong F1 Delta

Qwen 2.5 7B Baseline 46.0 25.4 32.7
Ours 45.6 41.2 43.3 +10.6

Qwen 2.5 32B Baseline 90.0 22.4 35.9
Ours 86.9 53.9 66.5 +30.7

Qwen 2.5 72B Baseline 88.5 33.7 48.8
Ours 86.7 53.9 66.5 +17.7

Llama 3.1 8B Baseline 5.6 19.1 8.7
Ours 11.0 27.5 15.7 +7.1

Llama 3.1 70B Baseline 32.4 32.8 32.6
Ours 61.6 55.4 58.3 +25.7

Table 7. Performance comparison on MATH with Baseline vs.
Ours for each model.

Experimental Setup. We focus on the step-level error
identification task, following the protocol used by Zheng
et al. (2024). Specifically, for correct solutions (i.e., ones
where the final answer is correct), every step is marked as
correct. For incorrect solutions, the task is to identify the
first incorrect step in the chain; all subsequent steps are
automatically deemed irrelevant by the benchmark’s rules.
We adopt the same prompting strategy as in our previous
experiments, with LLMs classifying each step as correct or
incorrect.

Results and Observations. Our findings on Process-
Bench align with the trends we observe on PERL. Premise-
augmented verification continues to outperform verification
conducted in the full reasoning chain. We see consistent
gains from evaluating each step under its extracted premises
and classifying its correctness accordingly. This further
strenghtens our previous findings.

6. Conclusion
In this paper, we introduced a framework to enhance the
evaluation of mathematical reasoning chains in large lan-
guage models by transforming Linear Reasoning Chains
into Premise Augmented Reasoning Chains. Through exper-
iments with our annotated dataset, PERL, we empirically
show that error identification under premises in PARC is

more reliable and has higher accuracy than error identifica-
tion under full context in LRC. We also show that LLMs
can convert an LRC to PARC with no additional guidance,
and then can do error identification under the premises in
PARC. Further, we show that accumulation errors are partic-
ularly challenging to detect, and our method improves their
identification by verifying each step under its premises.
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A. Appendix
A.1. Experimental Details

Model For the Llama model (Grattafiori et al., 2024), we
used vLLM (Kwon et al., 2023) for model serving and
AzureOpenAI for the GPT4o and GPT4-o1 (OpenAI, 2024)
models. To ensure reproducibility, all generations were
performed with a temperature=0. For all models, we used
their instruct variant.

A.2. Data statistics

This results in a total of 607 reasoning chains with 203 posi-
tives, 214 negatives, and 190 synthetic negatives. In total,
we have 2,134 steps annotated as Correct, 321 steps as Math-
ematical Error, 443 steps as Logical Inconsistency, and 741
steps as Accumulation Error, indicating that native and ac-
cumulation errors appear at almost equal rates. Additionally,
we model each chain-of-thought as a directed acyclic graph
(PARC) based on the step-level premise annotations. Across
607 PARCs, each chain contains on average 7.30 steps, rep-
resenting the length of the chain-of-thought; 11.27 premises,
corresponding to the total premise references across steps;
and 10.42 edges linking premises to conclusions. The av-
erage depth of the PARC is 6.02, measuring the longest
path of dependencies, while the maximum width is 1.90,
quantifying how many steps can appear at the same layer in
the PARC. Finally, the branching factor is 1.37, which is the
ratio of edges to nodes, indicating that each step typically
spawns fewer than two subsequent steps on average.

A.3. Prompt for Error Annotation with O1

You are an expert mathematical reasoning analyzer. Your
task is to analyze mathematical solutions and generate de-
tailed error annotations in a specific JSON format. For each
solution provided, you must carefully examine the reasoning
chain and individual steps to identify any errors or issues.

Response Format

Your response must be a valid JSON object following ex-
actly this structure:

{
"error_annotations": {

"chain_level": {
"has_errors": boolean,
"errors": [

{
"error_type": string,
"error_description": string

}
]

},
"step_level": [

{
"step_number": ,
"has_error": boolean,
"errors": [
{
"error_type": ,
"error_description":

}
]

}
]

}
}

Chain-Level Error Types

1. “Missing Steps”
Definition: Solution lacks crucial concluding steps or final
answer derivation
Examples:
- Not showing the final calculated value
- Missing the ultimate conclusion
- Failing to complete the proof
Impact: Makes the solution incomplete or inconclusive

2. “Planning Error”
Definition: The reasoning takes an invalid or fundamentally
incorrect approach
Examples:
- Using inapplicable theorems or methods
- Solving for incorrect variables
- Taking an approach that cannot possibly lead to a solution
Impact: Makes the entire solution path invalid
- Note: Valid but longer approaches (e.g., integration by
parts instead of a substitution trick) should NOT be marked
as errors

Step-Level Error Types

1. “Logical Inconsistency”
Definition: Steps that violate logical principles or make
unjustified conclusions
Examples:
- False equivalences
- Invalid deductions
- Unsupported assumptions
- Note that incorrect use of previous information (exam-
ple the step uses a wrong value of a variable) is a Logi-
cal Inconsistency
Impact: Breaks the logical flow of the solution

2. “Mathematical Error”
Definition: Incorrect calculations, misuse of formulas, or
mathematical operations
Examples:
- Arithmetic mistakes
- Incorrect algebraic manipulations
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Method
GSM8K MATH Orca Math MetaMathQA

Neg Syn Pos Avg Neg Syn Pos Avg Neg Syn Pos Avg Neg Syn Pos Avg

Full Context
Llama 3.1 8b 48.87 57.68 91.9 58.6 46.91 60.29 90.61 60.2 43.26 51.2 96.7 55.06 50.47 55.15 95.17 59.45
Llama 3.1 70b 58.35 77.03 98.61 71.37 55.55 72.83 96.24 69.77 50.33 64.25 96.74 63.52 55.59 73.13 97.93 69.49
Qwen 2.5 7b 40.88 54.13 100 54.94 40.47 53.60 98.07 56.26 41.20 53.69 100 55.85 43.36 53.18 99.39 56.26
Qwen 2.5 32b 46.76 69.26 99.8 63.56 49.58 66.5 98 65.11 49.44 63.01 99.5 63.06 49.7 67.8 99.6 65.02
Qwen 2.5 72b 47.48 67.17 100 63.11 53.19 67.87 99.79 67.52 50.41 60.33 100 62.50 47.31 63.59 99.05 62.20
GPT4o-mini 52.68 73.14 95.02 66.68 50.41 62.39 93.4 63.03 55.22 61.18 98.6 64.59 51.52 65.42 97.35 64.47
GPT-4o 53.81 75.3 98.33 68.52 50.9 68.41 98.57 66.52 59.55 65.75 100 68.55 56.26 71.72 99.3 69.41

Oracle Premises
Llama 3.1 8b 57.02 82.64 74.61 69.26 54.58 60.94 51.65 56.47 57.43 60.61 59.48 59.09 52.65 68.48 60.51 60.37
Llama 3.1 70b 74.41 85.12 94.69 81.46 68.55 79.88 78.11 74.68 66.78 72.65 93.37 73.45 63.31 83.15 92.16 76.05
Qwen 2.5 7b 52.40 79.37 89.56 69.74 56.86 70.23 79.85 65.96 55.01 66.66 76.65 63.39 56.32 77.06 91.94 70.45
Qwen 32b 66.57 88.64 96.95 80.76 69.24 82.26 89.32 77.98 63.58 69.88 96.31 71.4 59.84 85.74 96.87 76.38
Qwen 2.5 72b 69.48 86.34 98.98 80.58 72.98 81.10 91.03 79.50 69.76 72.77 93.24 74.87 66.23 86.21 98.06 79.50
GPT4o-mini 63.83 85.77 91.29 76.16 65.86 74.99 78.41 71.71 64.03 72.66 83.56 70.74 58.77 85.11 91.44 74.73
GPT-4o 67.03 87.2 94.76 78.74 70.32 77.3 90.65 76.79 71.19 73.69 92.15 75.56 72.76 88.95 94.82 82.88

Model Premises
Llama 3.1 8b 54.61 76.74 65.44 64.53 52.16 59.83 50.96 54.88 55.57 59.82 67.36 59.22 54.52 69.13 62.63 61.78
Llama 3.1 70b 74.51 86.22 94.69 81.92 70.94 79.29 77.91 75.45 64.95 72.28 93.37 72.52 65.69 82.74 89.71 76.52
Qwen 2.5 7b 53.03 78.40 90.37 69.73 58.47 66.87 82.72 65.96 52.07 71.12 84.28 65.38 54.98 73.87 91.02 68.43
Qwen 32b 65.58 86.34 96.95 79.37 68.61 76.96 88.71 75.57 61.89 69.24 95.25 70.26 62.18 85.60 97.32 77.40
Qwen 2.5 72b 69.87 85.12 96.38 80.56 69.51 79.92 90.84 77.28 69.45 71.34 94.19 74.41 64.73 85.52 98.12 78.53
GPT4o-mini 58.25 80.81 86.72 72.33 65.84 72.4 71.88 69.45 61.18 72.48 85.94 69.93 57.04 81.63 91.15 72.51
GPT-4o 65.23 86.67 99.76 79.82 70.12 76.67 91.84 76.45 66.33 71.74 93.14 72.96 67.28 88.19 89.85 79.41

Table 8. Detailed results for error identification for all dataset and models

Model Name
Positives Negatives Synthetic Negatives

Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama 3.1 8b 67.80 89.91 77.31 65.03 91.31 75.96 64.08 86.76 73.71
Llama 3.1 70b 83.49 97.09 89.78 80.36 98.87 88.66 79.92 96.68 87.51

Qwen 7b 69.94 62.85 66.21 66.14 67.60 66.86 66.18 60.15 63.02
Qwen 32b 85.98 93.49 89.58 83.78 96.95 89.88 82.45 95.61 88.54

GPT4o-mini 74.93 84.81 79.56 70.85 87.01 78.10 71.84 86.73 78.59
GPT-4o 89.38 93.66 91.47 84.97 94.95 89.69 83.43 94.65 88.72

Table 9. Precision, Recall and F1 score for premise identification with GSM8K

Model Name
Positives Negatives Synthetic Negatives

Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama 3.1 8b 53.98 82.36 65.22 46.39 82.43 59.37 52.63 82.42 64.24
Llama 3.1 70b 71.13 95.82 81.65 67.82 97.16 79.88 70.46 97.47 81.80

Qwen 7b 59.40 60/30 59.85 48.82 56.02 52.17 59.40 62.87 61.09
Qwen 32b 74.57 87.30 80.43 69.98 87.31 77.69 73.13 91.04 81.11

GPT4o-mini 57.58 66.57 61.75 54.42 69.01 60.85 61.18 72.29 66.27
GPT-4o 69.76 90.19 78.67 66.95 87.16 75.73 71.48 91.99 80.45

Table 10. Precision, Recall and F1 score for premise identification in MATH

- Wrong formula application
- Note that Mathematical Error can only appear when there
is an error in calculation
Impact: Produces incorrect numerical or algebraic results

3. “Accumulation Error”
Definition: Errors that propagate from previous incorrect
steps

Examples:
- Using wrong intermediate results
- Building upon previously miscalculated values
Impact: Compounds previous mistakes into larger errors

4. “Other”
Definition: Any error that doesn’t fit into the above cate-
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Model Name
Positives Negatives Synthetic Negatives

Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama 3.1 8b 58.94 84.52 69.45 44.14 76.76 56.05 58.67 82.99 68.74
Llama 3.1 70b 77.82 97.37 86.50 65.18 96.13 77.69 76.29 95.88 84.97

Qwen 7b 58.05 59.09 58.57 48.72 66.48 56.23 59.86 59.41 59.63
Qwen 32b 78.73 91.60 84.68 69.89 88.99 78.29 78.09 92.07 84.50

GPT4o-mini 65.06 76.92 70.50 51.74 73.81 60.84 65.52 79.37 71.78
GPT-4o 79.91 92.51 84.68 67.13 88.11 76.26 79.42 90.49 84.62

Table 11. Precision, Recall and F1 score for premise identification with MetaMathQA.

Model Name
Positives Negatives Synthetic Negatives

Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama 3.1 8b 56.02 80.12 65.94 52.60 78.92 63.13 55.31 80.26 65.49
Llama 3.1 70b 72.82 96.83 83.13 68.15 96.42 79.86 72.17 96.93 82.74

Qwen 7b 62.33 61.81 62.07 68.15 96.42 79.86 58.75 59.69 59.22
Qwen 32b 77.73 91.18 83.92 71.55 89.55 79.54 73.55 91.16 81.41

GPT4o-mini 63.24 75.36 68.77 57.36 73.38 64.39 59.75 73.13 65.77
GPT-4o 73.90 92.63 83.92 66.97 92.87 77.92 72.50 91.02 80.53

Table 12. Precision, Recall and F1 score for premise identification in OrcaMath

gories Examples:
- Notation mistakes
- Unclear explanations
- Formatting issues
Impact: Varies depending on the specific error

Analysis Requirements
1. Examine each step against mathematical principles and
theorems
2. Verify all calculations and mathematical operations
3. Check for proper use of definitions and formulas
4. Ensure logical flow between steps
5. Compare against the provided ground truth answer
6. Consider the completeness of the solution

Important Notes
- Provide ONLY the JSON output, no additional text or
explanations
- Every step in the solution must have a corresponding entry
in step level array
- Keep error descriptions clear, specific, and mathematically
precise
- Use empty arrays for errors when no errors exist
- Ensure your response is always valid JSON that matches
the exact format specified
- Each error must have both an error type and a correspond-
ing detailed error description
- Error descriptions should be specific to the mathematical
context of the problem
- Do NOT penalize valid but verbose approaches (e.g.,
breaking down algebra into multiple steps)
- Do NOT mark alternative solution methods as errors
unless they are genuinely invalid

- Focus on correctness rather than elegance or brevity

Workflow
1. Read and understand the problem statement
2. Analyze the reasoning chain step-by-step
3. Check for chain-level errors
4. Analyze each step for specific errors
5. Verify all premises and justifications
6. Ensure completeness of the solution

A.4. Prompt for Premise Annotation with O1

The system prompt and the instruction for the O1 model for
identifying premises for a given step is shared in Table 13

A.5. Prompt for Error identification

The prompts used for the baseline approach are shared in
Appendix 14 and 15 . The evaluation for our error identifi-
cation with premises are done with the prompts outlined in
Tables 16 and 17,
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Instruction:
Given this math word problem and its solution steps, identify the key premises and their relationships.
Problem: {problem[’question’]}
Solution Steps:
{chr(10).join(problem[’steps’])}
Return your analysis in this exact JSON format:
{json template}
Critical Rules for Premises:
1. A step can NEVER use itself as a premise. For example, Step 3 cannot use any premise labeled as [3,
”...”].
2. Premises can only come from:
- Step 0 (problem statement and fundamental mathematical principles)
- Previous steps (steps with lower index)
3. Any intermediate calculations or logical steps within a single step should be part of that step’s
reasoning, not treated as separate premises.
4. Mathematical principles (like properties of operations) should be treated as part of Step 0.

Additional Requirements:
1. Start with Step 0 containing the problem statement.
2. For each step after 0, copy the EXACT text from the student’s solution into ‘original step‘.
3. Show clear reasoning for how premises lead to conclusions.
4. Return ONLY valid JSON with no additional text.
5. Do not use any special characters like &, ¡, ¿, etc.
6. Do not add any additional text for formatting it (e.g., ”json”), just output the raw JSON.
7. Maintain the exact same number of steps as in the original solution.

Remember:
- Each step’s premises must strictly come from either the problem statement (Step 0) or previous steps.
Never from the current step.
- Keep each step atomic—do not split steps into multiple substeps even if they contain multiple
calculations.
- The number of steps in your output (excluding Step 0) must match exactly with the number of steps in
the student’s solution.

System Prompt:
You are an expert in mathematical reasoning. Your task is to analyze solution steps and output a JSON
object containing:
1. The premises used in each step.
2. The conclusion reached.
3. The reasoning that connects premises to conclusions.

Output MUST be valid JSON with no additional text or explanation.

Table 13. System prompt and instruction for the O1 model to identify premises for a given step
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Instruction:
Question: {question}
Solution so far: {solution}

1. “Logical Inconsistency”
- Definition: Steps that violate logical principles or make unjustified conclusions
- Examples:
- False equivalences
- Invalid deductions
- Unsupported assumptions
- Note that incorrect use of previous information (example the step uses a wrong value of a variable) is a
Logical Inconsistency
- Impact: Breaks the logical flow of the solution

2. “Mathematical Error”
- Definition: Incorrect calculations, misuse of formulas, or mathematical operations
- Examples:
- Arithmetic mistakes
- Incorrect algebraic manipulations
- Wrong formula application
- Note that Mathematical Error can only appear when there is an error in calculation
- Impact: Produces incorrect numerical or algebraic results

3. “Accumulation Error”
- Definition: Errors that propagate from previous incorrect steps
- Examples:
- Using wrong intermediate results
- Building upon previously miscalculated values
- Impact: Compounds previous mistakes into larger errors

4. “Other”
- Definition: Any error that doesn’t fit into the above categories
- Examples:
- Notation mistakes
- Unclear explanations
- Formatting issues
- Impact: Varies depending on the specific error

Statement to analyze: step
Format your response as: Reasoning: [detailed analysis of the statement’s validity] Verdict: [CORRECT,
Mathematical Error, Logical Inconsistency, or Accumulation Error]

Table 14. Baseline error identification Instruction
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System Prompt:
You are a helpful AI assistant that analyzes mathematical solution steps. Your task is to determine if
each statement is COMPLETELY correct by carefully analyzing its validity. Focus ONLY on whether
the current step is valid - do not consider whether it helps reach the final answer or whether better steps
could have been taken. Mark a statement as CORRECT unless you find a specific error.

Table 15. Baseline error identification System prompt

System Prompt:
Your task is to determine whether a given sentence contains any mathematical errors. For mathematical
error, check if the sentence contains mathematical calculations (arithmetic or algebraic), and whether
they are incorrect. If there are such errors, mark the sentence as ”mathematical error” - Mathematical
errors can only come from incorrect results of mathematical operations If no such errors exist, mark it
as ”correct”.
Note: mathematical error can only come from incorrect numerical or algebraic calculations (i.e. wrong
multiplication, wrong addition etc.) if there are no numerical or algebraic calculations done, you can
mark it as correct
Instruction :
Statement to analyze:
step
Format your response as:
Reasoning: [detailed analysis of the statement’s validity]
Verdict: [correct or mathematical error]

Table 16. Math error identification instruction

System Prompt:
You are provided with a math question, a statement which is a step in the solution to the question and
the premises to this steps (the question is also a premise). Your task is to identify whether the step
follow naturally from the premises or not. If the current step contradicts the premises, mark is as a
logical inconsistency If the step can be directly inferred from the premises, mark it as correct. You
should not check whether the premises are correct, assume they are correct. Only check the sentence
given.
Instruction :
Given Premises:
Question: {question}
Previous steps as premise: {premises}
Statement to analyze: {step}
Guidelines:
1. for logical inconsistency check if the step was performed under misinterpretation of the premises,
made invalid deductions or had unsupported assumptions
2. Don’t check for correctness of the premises, your only task is to check correctness of the given
sentence
Format your response as: Reasoning: [detailed analysis of the statement’s validity] Verdict: [correct,
logical inconsistency]

Table 17. Logical error identification instruction
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Instruction:
You are provided with a question, a partial solution, and the next step in the solution.
Your task is to identify the steps that serve as premises for the given next step.
A step qualifies as a premise if the next step directly relies on information from that step. Based on the
identified premises, the correctness of the next step should be fully verifiable.
Question (Step 0):
{question}
Solution so far:
{solution}
Next step to analyze:
{step}
For the step above, identify which previous steps (including Step 0 - the question) are premises and
explain why each one is necessary. Remember:
1. A step cannot be a premise to itself
2. The question (Step 0) can be a premise if used directly
Generate ONLY the premises and nothing else.
Format your response with one premise per line as:
Step X: [explanation of why this step is necessary for the current step]

Table 18. Prompt for evaluating models in the premise identification task (zero shot)
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