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ABSTRACT

Large Language Models (LLMs) have achieved remarkable success, yet recent
findings reveal that their deeper layers often contribute minimally and can be
pruned without affecting overall performance. While some view this as an op-
portunity for model compression, we identify it as a training shortfall rooted in
the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that
Pre-LN, commonly employed in models like GPT and LLaMA, leads to dimin-
ished gradient norms in its deeper layers, reducing their effectiveness. In contrast,
Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper
layers but suffers from vanishing gradients in earlier layers. To address this, we
introduce Mix-LN, a novel normalization technique that combines the strengths
of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the
earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradient
norms across layers. This allows all parts of the network—both shallow and deep
layers—to contribute effectively to training. Extensive experiments with various
model sizes demonstrate that Mix-LN consistently outperforms both Pre-LN and
Post-LN, promoting more balanced, healthier gradient norms throughout the net-
work, and enhancing the overall quality of LLM pre-training. Furthermore, we
demonstrate that models pre-trained with Mix-LN learn better compared to those
using Pre-LN or Post-LN during supervised fine-tuning, highlighting the critical
importance of high-quality deep layers. By effectively addressing the inefficien-
cies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing
model capacity without increasing model size. Our code is submitted.

1 INTRODUCTION

Large Language Models (LLMs) have ushered in a new era of artificial intelligence by demonstrating
unprecedented capabilities in understanding and generating human-like text (Brown, 2020; Achiam
et al., 2023; Touvron et al., 2023; Dubey et al., 2024). Trained on vast datasets that span multiple
languages and topics, LLMs are driving advancements across industries and academia, enhancing
human-computer interactions, and fostering innovation in previously unimaginable ways.

Recent studies reveal a critical observation regarding the effectiveness of deeper layers in LLMs,
particularly those beyond the middle layers. It has been shown that these deeper layers can often
be pruned significantly (Yin et al., 2023), or even removed entirely (Gromov et al., 2024; Men
et al., 2024), without notably affecting the model’s overall capabilities. Moreover, Li et al. (2024)
demonstrated that deeper layers contribute minimally to performance during fine-tuning, further
questioning their importance. Unfortunately, this finding has been largely overlooked by the research
community, where many see it primarily as an opportunity for model compression (Siddiqui et al.,
2024; Zhong et al., 2024; Sreenivas et al., 2024), rather than recognizing it as a potential shortfall in
the training process.

In this paper, we seek to challenge the prevailing notion that deeper layers in LLMs are of lesser
significance. The training of LLMs is extraordinarily resource-intensive, often requiring thousands
of GPUs or TPUs and several months of computation on vast datasets. For example, the training of
GPT-3 reportedly incurred millions of dollars in computational costs. The underutilization of deeper
layers leads to inefficiencies, squandering resources that could otherwise be leveraged to enhance
model performance. Ideally, all layers in a model should be well-trained, with sufficient diversity

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Attention

FFN

(a) Post-LN (b) Pre-LN

Layer Norm

Layer Norm
Attention

FFN

Layer Norm

Layer Norm
Layer Norm

Attention

Layer Norm

FFN

Layer Norm

Attention

Layer Norm

FFN

(c) Mix-LN

Post-LN

Pre-LN

Figure 1: (a) Post-LN layer; (b) Pre-LN layer; (c) Mix-LN layer.

in features from layer to layer, to maximize the utility of the network’s parameters (Yang et al.,
2023). This makes it crucial to investigate the root causes of this underutilization and to develop
strategies that fully capitalize on the potential of deeper layers, ensuring that the overall architecture
is optimized for both performance and efficiency.

We hypothesize that the inefficiency of deeper layers in LLMs primarily stems from the choice of
Layer Normalization. Specifically, Pre-Layer Normalization (Pre-LN) (Dai, 2019; Baevski & Auli,
2018) tends to produce smaller gradients in deeper layers, thereby diminishing their effectiveness,
while Post-Layer Normalization (Post-LN) (Ba, 2016) results in larger gradients in deeper layers
but leads to gradient vanishing in earlier ones. Most state-of-the-art LLMs, like GPT, LLaMA,
and Mistral, employ Pre-LN, which contributes to the widespread assumption that deeper layers are
inherently less effective.

To validate this conjecture, we conduct experiments with the following two categories of LLMs and
compare the effectiveness of layers across different depths in Pre-LN models and Post-LN models.

• Open-weight large-scale LLMs: We select LLaMa2-7B (Touvron et al., 2023) as a representative
Pre-LN model and BERT-large (Devlin, 2018) as a Post-LN model to evaluate the quality of their
layers. Our findings confirm that the deeper layers of LLaMa2-7B exhibit high similarity, with
their removal leading to minimal impact compared to the early layers. In stark contrast, BERT
shows higher similarity among its first half, which contributes less to the model’s output.

• In-house small-scale LLMs: To control for irrelevant confounding variables, we conduct a sec-
ond set of experiments by training small-scale LLMs ourselves, ensuring that the only difference
between the models is the choice of layer normalization. Consistent trends are observed in these
experiments, reinforcing our earlier observations.

Building on these insights, we propose a novel normalization technique, dubbed Mix-LN, which
synergizes Pre-LN and Post-LN to achieve more balanced and healthier gradient norms across the
network. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers. The
rationale behind this is that Post-LN enhances gradient flow in the deeper layers, while Pre-LN
stabilizes gradients in the earlier layers. By employing Post-LN in the initial layers and Pre-LN
in the later layers, Mix-LN promotes healthier gradient norms in the middle and deeper layers,
fostering more balanced training across the entire network and ultimately improving the model’s
overall performance.

Our extensive experiments, spanning models from 70M to 1B parameters, demonstrate that Mix-LN
consistently outperforms Pre-LN, Post-LN, and their variants. Mix-LN not only avoids the training
instability associated with Post-LN but also significantly improves the quality of deeper layers com-
pared to Pre-LN, leading to better pre-training performance. Additionally, models pre-trained with
Mix-LN demonstrate superior learning during supervised fine-tuning compared to those trained
with Pre-LN or Post-LN, underscoring the importance of high-quality deep layers in LLMs.
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2 HYPOTHESIS EVALUATION

In this section, we will evaluate our hypothesis that the inefficiency of deeper layers in LLMs stems
from the choice of Pre-LN. The evaluation details are described as follows.

2.1 PRELIMINARIES: LAYER NORMALIZATION AND ITS GRADIENT

Figure 1 (a) and (b) illustrate Post-LN and Pre-LN Transformer architectures, respectively. Formally,
let us define x as the input, F(x) as either a FFN layer or a multi-head attention layer, and LN(·) as
the layer normalization. Post-LN applies LN(·) after the residual addition:

Post-LN(x) = LN(x+ F(x)). (1)

In contrast, Pre-LN applies LN(·) before the residual addition:

Pre-LN(x) = x+ F(LN(x)). (2)

It is well-known that shallow layers of Post-LN suffer from the gradient vanishing problem (Liu
et al., 2020; Wang et al., 2024). Following Takase et al. (2022), we can calculate the derivatives of
Equations (1) and (2), as follows:

∂Post-LN(x)

∂x
=

∂LN(x+ F(x))

∂(x+ F(x))

(
I +

∂F(x)

∂x

)
, (3)

∂Pre-LN(x)

∂x
= I +

∂F(LN(x))

∂LN(x)

∂LN(x)

∂x
, (4)

where I is the identity matrix. LN normalizes its input using the mean µ and standard deviation
σ, LN(x) = x−µ

σ . The derivative of LN(x) introduces a scaling factor 1
σ term that accumulates

as
∏L

l=1
1
σl

over multiple layers L, which will reduce the gradient’s magnitude if σ > 1, which is
often the case for Transformers1. Therefore, According to Eq. 3, such accumulation of gradient
attenuation will cause gradient vanishing for the early layers of Post-LN. In contrast, Eq. 4 shows
that the derivative of the residual connection is isolated from the term related to the derivative of
LN, which prevents the vanishing gradient in early layers. On the other hand, Xiong et al. (2020)
theoretically proved that the gradient norm of the LN depends on the norm of input as follows:∥∥∥∥δLN(x)

δx

∥∥∥∥
2

= O

( √
d

||x||2

)
, (5)

where d is the output dimension. Since Pre-LN does not normalize the residual connections, the
output variance in Pre-LN models increases as the layers deepen, which in turn leads to diminished
gradient norms in the deeper layers.

2.2 EVALUATION SETUP

Methods: Our evaluation methodology involves a comparative analysis of two models—one utiliz-
ing Pre-LN and the other employing Post-LN. By empirically assessing the effectiveness of layers
across different depths in each model, we expect to see that Pre-LN models will exhibit a decrease
in the effectiveness of deeper layers, whereas Post-LN models will show sustained or even improved
quality in deeper layers.

LLM Models: To rigorously evaluate our hypothesis, we conduct experiments on two distinct cate-
gories of LLMs: (i) Open-weight large-scale LLMs and (ii) In-house small-scale LLMs. In the open-
weight category, we select LLaMa2-7B (Touvron et al., 2023) as a representative Pre-LN model and
BERT-large (Devlin, 2018) as a Post-LN model. However, these open-weight models differ not only
in normalization but also in other factors such as training data, activation functions, and context
length, complicating our ability to isolate the impact of normalization alone. To control for these
confounding variables, we conduct a second set of experiments by training small-scale LLMs from
scratch ourselves. The goal is to ensure that the only difference between the models is the choice
of layer normalization. Specifically, we train LLaMa-130M models on the C4 dataset with either

1We also observe this in our experiments.
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Pre-LN or Post-LN, using RMSNorm (Zhang & Sennrich, 2019) and SwiGLU activations (Shazeer,
2020), following Lialin et al. (2023b); Zhao et al. (2024). Please refer to Appendix A for more
training configuration details.

Evaluation Metrics: A critical challenge in validating our hypothesis lies in defining and selecting
robust metrics that capture the effectiveness of individual layers. In this study, we employ two
metrics: (i) Angular Distance and (ii) Performance Drop, which provide a meaningful evaluation
of the role and contribution of each layer. In addition, we report the gradient norm of each layer to
demonstrate the effect of different layer normalization on the gradient flow.

(i) Angular Distance d(xℓ, xℓ+n) is used in Gromov et al. (2024) to measure the angular distance
between the input to layer ℓ and the input to layer ℓ+ n on a neutral pre-training dataset. Formally,
assuming xℓ

T is the input to the layer ℓ, and xℓ+n
T is the input to the layer ℓ+ n, the angular distance

between layers ℓ and and its subsequent nth layer, i.e., ℓ+ n, on a single token T is given by

d(xℓ, xℓ+n) =
1

π
arccos

(
xℓ
T · xℓ+n

T∣∣∣∣xℓ
T

∣∣∣∣ ∣∣∣∣xℓ+n
T

∣∣∣∣
)

(6)

where || · || denotes the L2-norm, and the factor of 1/π scales d(xℓ, xℓ+n) to the range [0, 1]. To
eliminate the effect of randomness, the angular distance reported in this paper is averaged over
256K tokens from the C4 dataset. A smaller value of d(xℓ, xℓ+n) indicates a shorter distance,
meaning that the two vectors are more similar. Layers whose representations are extremely similar
to their neighboring layers mean that they can be easily removed, and therefore their weights are
less effective. Ideally, representation should change substantially from layer to layer in order to
most effectively make use of the parameters of a network (Yang et al., 2023; Gromov et al., 2024).

(ii) Performance Drop ∆P (ℓ) refers to the difference in the performance of an LLM before and after
pruning the layer ℓ. It quantifies the performance degradation caused by the removal of that layer.
Formally, it can be defined as follows:

∆P (ℓ) = P
(ℓ)
pruned − Poriginal (7)

where Poriginal is the performance of the model without any pruning, P (ℓ)
pruned is the performance

of the model after pruning layer ℓ. A smaller value of ∆P (ℓ) indicates that removing the layer
causes minimal change to the model’s output, suggesting the layer is less important. Specifically,
for LLaMA2-7B, we choose the commonly used MMLU (Hendrycks et al., 2020) as the evaluation
task; for BERT-large, we opt for SQuAD v1.1 (Rajpurkar, 2016) as the evaluation task. Given
the limited capacity of our in-house trained LLMs, we choose ARC-e (Clark et al., 2018) after
supervised fine-tuning, instead of MMLU, for performance drop.

2.3 EVALUATION RESULTS

2.3.1 OPEN-WEIGHT LARGE-SCALE LLMS

Figure 2-(a, c) illustrate the metric values for BERT-Large. Both metrics indicate that, as a Post-LN
model, the early layers of BERT-Large are less effective compared to the deeper layers. As shown in
Figure 2-a, the first half of BERT-Large tends to have a smaller angular distance (more yellow) from
neighboring layers than the second half. In particular, layers 3, 4, 9, 10, and 11 show a very high
similarity to their subsequent layers. In Figure 2-c, the performance drop on SQuAD of removing
an early layer is significantly smaller than the impact of removing a deeper layer. Intriguingly,
removing layers 2 and 2 can even improve the performance.

In contrast, Figure 2-(b, d) display the metric values for LLaMa2-7B. As a Pre-LN model, the
angular distance between neighboring layers decreases gradually (from purple to yellow) from the
top layers to the 30th layer as illustrated in Figure 2-b. Notably, the deeper layers (20th to 30th)
exhibit extremely small angular distances to their adjacent layers. This trend is consistent with the
MMLU performance in Figure 2-d, where the removal of deeper layers results in almost negligible
accuracy loss while removing early layers causes a substantial drop in accuracy.

In summary, we observe that the least effective layers in LLaMa2-7B are located in the deeper
layers, whereas the early layers in BERT-Large are less effective than the deeper layers. The results
from the category of open-weight large-scale LLMs strongly support our hypothesis, demonstrating
a clear alignment with our expectations.
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Figure 2: Results of open-weight large-scale LLMs. Angular Distance (a, b): Each column rep-
resents the angular distance from the initial layer ℓ (x-axis) and its subsequent nth layer (y-axis).
The distance is scaled to the range [0, 1], where yellow indicates smaller distances and purple indi-
cates larger distances. Performance Drop (c, d): (c): SQuAD v1.1 performance drop of removing
each single layer from BERT-large; (d): MMLU accuracy drop of removing each single layer from
LLaMa2-7B.

2.3.2 IN-HOUSE SMALL-SCALE LLMS

Figure 3 illustrates all metric values for two LLaMa-130M models, where the only difference be-
tween them is the choice of layer normalization.

Figures 3-(a, b) show the Angular Distance for Post-LN and Pre-LN, respectively. Without the
effects of other compounding factors, this comparison provides a clearer distinction between Post-
LN and Pre-LN compared to open-weight large-scale LLMs. In Post-LN models, the most similar
layers are concentrated in the early stages, with the first three layers showing particularly low dis-
tance. As the depth increases, the layers become increasingly distinctive. In contrast, the Pre-LN
LLaMa-130M exhibits a gradual decrease in angular distance as depth increases, leading to highly
similar deep layers. Figures 3-(d, e) further confirm this with the Performance Drop metric: re-
moving early layers (e.g., 0-7 layers) in Post-LN results in minimal performance loss, while deeper
layers (especially layers 9-11) are critical to preserving the original performance. However, Pre-LN
LLaMa-130M exhibits the opposite trend, where removing most layers after the first layer causes
negligible performance loss, indicating that they contribute little to the model’s output.

Figure 3-(c) shows the gradient norm of each layer for Post-LN and Pre-LN at the beginning of
the training. The results perfectly align with our expectations: Post-LN leads to larger gradients in
deeper layers but suffers from severe gradient vanishing in early layers, whereas Pre-LN maintains
healthy gradient flow in early layers but diminishes in later layers.

With the consistent findings from both open-weight LLMs and our in-house LLMs, we can conclude
that the widespread use of Pre-LN in LLMs is the root cause of the ineffectiveness of deep layers.

3 MIX-LAYER NORMALIZATION (MIX-LN)

Having validated our hypothesis that the use of Pre-LN is the root cause of the ineffectiveness of
deeper layers, we propose Mix-Layer Normalization (Mix-LN), a novel normalization strategy
designed to enhance the effectiveness of both middle and deeper layers in LLMs.

5
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Figure 3: Results of in-house small-scale LLaMa-130M. Angular Distance (a, b): Each column
represents the angular distance from the initial layer ℓ (x-axis) and its subsequent nth layer (y-
axis). The distance is scaled to the range [0, 1], where yellow indicates smaller distances and purple
indicates larger distances. Performance Drop (c, d): ARC-e performance drop of removing each
single layer from LLaMa-130M. Gradient Norm (e): Gradient norm of each layer in LLaMa-130M.

The key idea behind Mix-LN is to leverage the strengths of both Pre-LN and Post-LN. Post-LN has
been shown to improve the effectiveness of deeper layers, while Pre-LN is more effective for earlier
layers. Therefore, we propose to apply Post-LN to the initial layers and Pre-LN to the later layers,
ensuring that the middle and deeper layers benefit from the advantages of both methods.

Formally, for an LLM with L layers, we apply Post-LN to the first ⌊aL⌋ layers and Pre-LN to the
remaining ⌈(1 − a)L⌉ layers, where a ∈ [0, 1] is a hyperparameter controlling the transition point
between the two normalization strategies. The functions ⌊·⌋ and ⌈·⌉ denote the floor and ceiling
operations, respectively. Although the final layers may still experience smaller gradients due to the
use of Pre-LN, the negative impact is substantially mitigated because the number of layers employ-
ing Pre-LN is reduced from L to ⌈(1 − a)L⌉. This reduction improves gradient flow in the deeper
layers, enhancing their effectiveness. Additionally, we expect that Mix-LN can alleviate training
instability issues caused by Post-LN (Nguyen & Salazar, 2019; Wang et al., 2024), as reducing the
number of layers using Post-LN leads to a smaller accumulation of gradient attenuation, according
to the analysis in Section 2.1.

4 MAIN EXPERIMENTAL RESULTS

4.1 LLM PRE-TRAINING

In this section, we verify the effectiveness of Mix-LN by comparing it with various common nor-
malization techniques, including Post-LN (Nguyen & Salazar, 2019), DeepNorm (Wang et al.,
2024), and Pre-LN (Dai, 2019). Following Lialin et al. (2023a); Zhao et al. (2024), we conduct
experiments using the LLaMA-based architecture with various sizes from 71M to 1B parameters,
incorporating RMSNorm (Shazeer, 2020) and SwiGLU activations (Zhang & Sennrich, 2019). Mod-
els are trained with Adam Kingma (2014) using different learning rates based on model size: specif-
ically, we use a learning rate of 5e-3 for models with 250M parameters and below, and a learning
rate of 5e-4 for the 1B parameter model. All models of the same size are trained with identical con-
figurations except for the normalization. To determine the optimal value for the hyperparameter α in
Mix-LN, we performed a small hyperparameter sweep using LLaMA-250M, as shown in Table 3.
We found that α = 0.25 provided the best performance, and therefore, we applied this value across
all model sizes.

Results are shown in Table 1. Post-LN generally yields the worst performance and even diverges
with larger models, aligning with previous studies that indicate Post-LN suffers from training insta-
bility in Transformers (Xiong et al., 2020; Takase et al., 2022). DeepNorm, as a modified version
of Post-LN, achieves comparable performance to Pre-LN with smaller model sizes; however, it also
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Table 1: Perplexity comparison of various normalization methods across various LLaMA sizes.
Normalization LLaMA-71M LLaMA-130M LLaMA-250M LLaMA-1B
Training Tokens 1.1B 2.2B 3.9B 5B

Post-LN 35.18 32.18 1409.09 1411.54
DeepNorm 34.87 30.86 23.94 1410.94
Pre-LN 34.77 30.91 23.39 18.65
Mix-LN 33.12 29.95 22.33 18.18

experiences divergence during training with 1B parameter models. This observation confirms se-
vere training instability of Post-LN, where gradients in early layers vanish, preventing proper model
convergence. In contrast, Mix-LN consistently achieves the lowest perplexity across various model
sizes. Mix-LN achieves a notable gain by 1.65 and 1.06 perplexity with LLaMA-71M and LLaMA-
250M, respectively, compared to the widespread Pre-LN.

The above results clearly show that Mix-LN not only overcomes the instability of Post-LN but also
enhances the model quality by combining the benefits of Pre-LN and Post-LN, making it an ideal
choice for large-scale LLMs.

4.2 SUPERVISED FINE-TUNING

Table 2: Fine-tuning performance of LLaMa with various normalizations.
Method MMLU BoolQ ARC-e PIQA Hellaswag OBQA Winogrande Avg.

LLaMA-250M
Post-LN 22.95 37.83 26.94 52.72 26.17 11.60 49.56 32.54
DeepNorm 23.60 37.86 36.62 61.10 25.69 15.00 49.57 35.63
Pre-LN 24.93 38.35 40.15 63.55 26.34 16.20 49.01 36.93
Mix-LN 26.53 56.12 41.68 66.34 30.16 18.00 50.56 41.34

LLaMA-1B
Post-LN 22.95 37.82 25.08 49.51 25.04 13.80 49.57 31.96
DeepNorm 23.35 37.83 27.06 52.94 26.19 11.80 49.49 32.67
Pre-LN 26.54 62.20 45.70 67.79 30.96 17.40 50.51 43.01
Mix-LN 27.99 61.93 48.11 68.50 31.35 18.80 55.93 44.66

We believe that the superior middle and deeper layers produced by Mix-LN are better equipped
to learn during supervised fine-tuning. This advantage stems from the fact that these layers capture
more diverse and rich features compared to those trained with Pre-LN. In complex downstream tasks,
having access to a broad spectrum of features allows the model to make more nuanced predictions,
leading to improved generalization.

To verify our conjecture, we follow Li et al. (2024) and fine-tune the models obtained in Section
4.1 on Commonsense170K (Hu et al., 2023), evaluating them on eight downstream tasks. As shown
in Table 2, Mix-LN consistently outperforms other normalization techniques across all evaluated
datasets. For the LLaMA-250M model, Mix-LN achieves a significant average gain of 4.26% and
a 17.31% improvement on BoolQ compared to Pre-LN. Similar trends are observed with the larger
LLaMA-1B model. Even though Mix-LN only slightly reduces perplexity by 0.25 compared to
Pre-LN, it delivers substantial performance gains in supervised fine-tuning.

4.3 SCALING UP TO 7B MODEL

Evaluating whether the benefits of Mix-LN scale to larger models, such as 7B parameters, is es-
sential. To this end, we conducted experiments using the LLaMa-7B architecture, which features
an embedding size of 4096 and 32 total layers, following the setup of Zhao et al. (2024). All train-
ing configurations were kept identical, with the exception of the layer normalization method. Due
to computational constraints, we were able to complete only 13,000 steps of training. The training
curve comparison is presented in Figure 4, where it is evident that Mix-LN consistently outperforms
Pre-LN during the early training stages of LLaMa-7B.

7
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Figure 4: Training curve comparison between Mix-LN and Pre-LN with LLaMa-7B.

Proper Post-LN ratio α. Mix-LN has a hyperparameter, α, that controls the ratio of layers applying
Post-LN. Specifically, α = 0 means Pre-LN is applied to all layers, while α = 1 corresponds to pure
Post-LN. To determine the optimal Post-LN ratio, we conduct a sweep over the values [0, 12.5%,
25.0%, 33.0%, 41.7%, 50.0%, 75.0%, 100%] using LLaMA-250M on the C4 dataset. The results
are shown in Table 3. As the normalization transitions from Pre-LN to Mix-LN, the model achieves
progressively lower perplexity, reaching its best performance at α = 0.25. Beyond this point,
performance begins to decline, although it still surpasses that of pure Pre-LN until most layers apply
Post-LN, where performance degrades significantly. Based on these results, we choose α = 0.25
for all model sizes, although we believe there is potential to further improve the performance of
Mix-LN by searching for the optimal α for each individual model.

Table 3: Perplexity of LLaMA-250M with various Post-LN ratios α.
Pre-LN Mix-LN Post-LN

Post-LN ratios α 0 12.5% 25.0% 33.0% 41.7% 50.0% 75.0% 100%

Perplexity 23.39 22.37 22.33 22.83 22.80 22.81 23.64 32.18
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Figure 5: Normalized angular distance from initial layer ℓ (x-axis) with block size n (y-axis).

Mix-LN promotes representation diversity across layers. As we have claimed, our hybrid ap-
proach promotes a more balanced gradient flow throughout the entire network. To validate this, we
report the angular distance of LLaMA-250M for Pre-LN, Post-LN, and Mix-LN in Figure 5. Fol-
lowing Gromov et al. (2024), we normalize each row to display the row-normalized angular distance
between layer ℓ (x-axis) and ℓ+ n (y-axis) for all possible ℓ. Given block size n, the layers with the
smallest distances are highlighted in the lightest yellow in each row. Notably, Mix-LN consistently
exhibits larger distances (darker color) across layers compared to Pre-LN, except for the final two
layers. This indicates that Mix-LN produces more diverse representations between layers than Pre-
LN. In contrast, the smallest distances in Post-LN are concentrated in the early layers, reinforcing
the notion that Post-LN tends to restrict representation diversity in deeper layers.

Mix-LN enhances healthier gradient norms across all layers. We compare the gradient norm of
different LN at initialization in Figure 6. It demonstrates that Mix-LN maintains more consistent
gradient norms across all layers. This balance results in a more uniform distribution of gradient
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Figure 6: Layer gradient norm of LLaMA-250M with various normalization techniques.

norms across layers, allowing all parts of the network—both shallow and deep layers—to contribute
effectively to model training.

5 RELATED WORK

5.1 NORMALIZATION IN LANGUAGE MODELS

Layer Normalization (LN), first proposed by Ba (2016), has become the de facto standard for nor-
malizing activations in modern language models. It directly estimates normalization statistics from
the summed inputs to neurons within a hidden layer, ensuring that the input distribution to each
layer remains stable throughout training. In the original Transformer (Vaswani, 2017), LN was ini-
tially applied after the residual connection, a configuration known as Post-LN. However, subsequent
studies (Baevski & Auli, 2018; Dai, 2019; Nguyen & Salazar, 2019) found that placing LayerNorm
before the residual connection (Pre-LN) results in more stable performance, especially in large lan-
guage models (Brown, 2020; Touvron et al., 2023; Jiang et al., 2023). Xiong et al. (2020) theoreti-
cally demonstrated that Post-LN results in larger gradients near the output layer, making the use of
warm-up essential to avoid instability is necessary. Conversely, Pre-LN scales down gradients with
the depth of the model, which ensures more stable gradients during initialization. Our work builds
upon Xiong et al. (2020), highlighting that while Pre-LN prevents instability by reducing gradient
magnitudes, smaller gradients in deeper layers can diminish the effectiveness of the corresponding
weights.

To improve the effectiveness of deeper layers in language models, various LN variants have been
proposed. For instance, Wang et al. (2019) verified empirically that Post-LN suffers from gradient
vanishing in deep Transformers, while Pre-LN facilitates stacking more layers. They consequently
introduced dynamic linear combination of layers (DLCL), which connects all previous layers to
improve trainability. Similar techniques have been employed in other works (Bapna et al., 2018;
Dou et al., 2018). Liu et al. (2020) revealed that Post-LN has strong dependencies on the residual
branch, often leading to instability. To address this, Adaptive Model Initialization (Admin) was in-
troduced, which uses additional parameters to control residual dependencies in Post-LN, stabilizing
training. DeepNorm (Wang et al., 2024) further improved the trainability of deep Transformers by
upscaling the residual connection before applying LN, reducing model updates, and enabling deeper
architectures. Additionally, Ding et al. (2021) proposed Sandwich LayerNorm, normalizing both the
input and output of each transformer sub-layer. Takase et al. (2022) identified that Post-LN tends
to preserve larger gradient norms in deeper layers, potentially leading to more effective training. To
address the issue of gradient vanishing in early layers, they introduced B2T, a method that uses a
residual connection to bypass all LN except the final one in each layer. We got inspiration from
Takase et al. (2022), addressing the limitations of both Pre-LN and Post-LN by combining them.
We study Scaled Initialization and Scaled Embed in Appendix B.

5.2 INEFFICACY OF DEEP LAYERS IN LLMS

The Inefficacy of deep layers in LLMs serves as a valid indicator for LLM pruning. Yin et al. (2023)
demonstrated that the deeper layers of prominent LLMs like LLaMA and Mistral can be pruned
more aggressively than earlier layers, without causing a significant drop in performance. Similarly,
Gromov et al. (2024) and Men et al. (2024) further explored layer pruning, identifying the deeper
layers of LLMs as typically less essential. Lad et al. (2024) observed that in models like Pythia and
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GPT-2, deeper layers exhibit strong resilience to interventions, such as layer deletion or swapping.
Our work shares similarities with Gromov et al. (2024) in applying angular distance to assess the
effectiveness of layers. However, while they identify the inefficacy of deeper layers, they do not
offer an explanation for this phenomenon nor propose a solution to address it.

While previous studies often view these characteristics of deeper layers as an opportunity for model
compression (Siddiqui et al., 2024; Zhong et al., 2024; Sreenivas et al., 2024), we argue that this
behavior reveals a deeper training shortfall—primarily due to the widespread use of Pre-LN. In
response, we introduce Mix-LN, a novel method that enhances the effectiveness of deeper layers,
ensuring that the entire architecture is more effectively trained and fully leverages the network’s
parameters.

6 CONCLUSION

In this paper, we have addressed the inefficiencies of deep layers in LLMs by identifying the
widespread use of Pre-LN as the root cause. Pre-LN leads to diminished gradients in deeper layers,
reducing their effectiveness. While Post-LN preserves deeper gradients, it suffers from vanishing
gradients in earlier layers. To resolve this, we introduced Mix-LN, a hybrid normalization tech-
nique that combines the strengths of both Pre-LN and Post-LN. By applying Post-LN to early layers
and Pre-LN to deeper layers, Mix-LN achieves balanced gradient norms throughout the network,
enabling more effective training. Our experiments show that Mix-LN consistently outperforms both
Pre-LN and Post-LN, enhancing pre-training and fine-tuning performance without increasing model
size. By fully utilizing the potential of deep layers, Mix-LN improves the overall capacity and
efficiency of LLMs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
arXiv preprint arXiv:1809.10853, 2018.

Ankur Bapna, Mia Xu Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper neural
machine translation models with transparent attention. arXiv preprint arXiv:1808.07561, 2018.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Zihang Dai. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
Advances in neural information processing systems, 34:19822–19835, 2021.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and Tong Zhang. Exploiting deep representa-
tions for neural machine translation. arXiv preprint arXiv:1810.10181, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of infer-
ence? arXiv preprint arXiv:2406.19384, 2024.

Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu. Owlore: Outlier-weighed layerwise sampled
low-rank projection for memory-efficient llm fine-tuning. arXiv preprint arXiv:2405.18380, 2024.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023a.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Stack more lay-
ers differently: High-rank training through low-rank updates. arXiv preprint arXiv:2307.05695,
2023b.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. arXiv preprint arXiv:2004.08249, 2020.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari, Stella
Biderman, Hady Elsahar, Niklas Muennighoff, Jason Phang, et al. What language model to train
if you have one million gpu hours? arXiv preprint arXiv:2210.15424, 2022.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and
Pavlo Molchanov. A deeper look at depth pruning of llms. arXiv preprint arXiv:2407.16286,
2024.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Llm pruning
and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796, 2024.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. B2t connection: Serving stability
and performance in deep transformers. arXiv preprint arXiv:2206.00330, 2022.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing the
pre-training of large language models. arXiv preprint arXiv:2312.16903, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

A DETAILS OF EXPERIMENTS

A.1 ARCHITECTURE AND HYPERPARAMETERS

We introduce details of the LLaMA architecture and hyperparameters used for pre-training following
(Lialin et al., 2023a; Zhao et al., 2024). Table 4 shows the most hyperparameters of LLaMA models
across model sizes. We use a max sequence length of 256 for all models, with a batch size of 512,
with a batch size of 131K tokens. Learning rate warmup is applied to the first 10% of the training
steps. We train models using Adam with a cosine annealing for the learning rate schedule, decaying
to 10% of the initial learning rate. We use a learning rate of 5e-3 for models with 250M parameters
and below, and a learning rate of 5e-4 for the 1B parameter model.

Table 4: Hyperparameters of LLaMA models used in this paper.

Params Hidden Intermediate Heads Layers Steps Data amount

71M 512 1368 8 12 10K 1.1 B
130M 768 2048 12 12 20K 2.2 B
250M 1024 2560 16 24 60K 3.9 B
1 B 2048 5461 24 32 100K 5.0 B
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B COMPATIBILITY TO ADVANCED

In this section, we also evaluate if Mix-LN can integrate well with the advanced techniques pro-
posed to stabilize training. Specifically, we evaluate the commonly used Scaled Initialization
(Nguyen & Salazar, 2019; Scao et al., 2022) that initializes W2 and W0 with a smaller normal
distribution N (0,

√
2/5d/

√
2N) to stabilize training dynamics; and Scaled Embed (Takase et al.,

2023) scales up embeddings to stabilize LayerNorm gradients. We observe that both Pre-LN and
Mix-LN work effectively with Scaled Initialization. However, incorporating Scaled Embed on top
of this setup leads to a degradation in performance.

Table 5: Perplexity of LLaMA-130M with various normalization methods with Scaled Initialization
and Scaled Embed.

Normalization Scaled Initialization Scaled Embed Perplexity
Pre-LN 32.18
Mix-LN 29.95

Pre-LN ✓ 30.63
Mix-LN ✓ 29.77

Pre-LN ✓ ✓ 31.28
Mix-LN ✓ ✓ 31.19
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