

000 001 002 003 004 005 DISTMLIP: A DISTRIBUTED INFERENCE PLATFORM 006 FOR MACHINE LEARNING INTERATOMIC POTENTIALS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Large-scale atomistic simulations are essential to bridge computational materials
028 and chemistry to realistic materials and drug discovery applications. In the past few
029 years, rapid developments of machine learning interatomic potentials (MLIPs) have
030 offered a solution to scale up quantum mechanical calculations. Parallelizing these
031 interatomic potentials across multiple devices poses a challenging, but promising
032 approach to further extending simulation scales to real-world applications. In this
033 work, we present **DistMLIP**, an efficient distributed inference platform for MLIPs
034 based on zero-redundancy, graph-level parallelization. In contrast to conventional
035 spatial partitioning parallelization, DistMLIP enables efficient MLIP parallelization
036 through graph partitioning, allowing multi-device inference on flexible MLIP model
037 architectures like multi-layer graph neural networks. DistMLIP presents an easy-
038 to-use, flexible, plug-in interface that enables distributed inference of pre-existing
039 MLIPs. We demonstrate DistMLIP on four widely used and state-of-the-art MLIPs:
040 CHGNet, MACE, TensorNet, and eSEN. We show that DistMLIP can simulate
041 atomic systems 3.4x larger and up to 8x faster compared to previous multi-GPU
042 methods. We show that existing foundation potentials can perform near-million-
043 atom calculations at the scale of a few seconds on 8 GPUs with DistMLIP.
044

1 INTRODUCTION

045 Atomistic simulation has been the workhorse in computational materials and drug discovery over the
046 recent years (Merchant et al., 2023; Jain et al., 2013; De Vivo et al., 2016). The chemical properties
047 and behavior of a material are essentially determined by the interactions in the given set of atomic
048 arrangements. In the most simplified framework, one can formulate this problem as solving the
049 function that determines the potential energy surface (PES) of a set of atoms given by $E = \phi(\vec{r}_i, C_i)$,
050 where E is the energy, \vec{r}_i and C_i are the positions and chemical identities of the atoms.

051 To study the material’s properties, multiple fundamentally different methods have been developed
052 to obtain or construct the function ϕ . Classical force fields (FF) like embedded atom methods
053 (Daw & Baskes, 1984), **CHARMM** (Vanommeslaeghe et al., 2010), and Amber (Wang et al., 2004)
054 qualitatively predict the PES and the bond energy between atoms. These classical FFs are cheap,
055 intuitive, and explainable, but are often not accurate enough and have been constructed and applied to
056 narrow chemical domains and a few elements. Fundamentally, the interactions in ϕ are determined
057 by the electronic structure of a material and can be solved in first principles by quantum mechanics.
058 Quantum chemical simulation methods, such as Density Functional Theory (DFT) (Perdew et al.,
059 1996) and **coupled cluster** (CC) methods (Raghavachari et al., 1989), enabled the *ab initio* calculations
060 of atomic behavior that are much more accurate than empirical methods. However, their computational
061 complexity limits the practical use of quantum chemical simulation methods for many realistic
062 applications. DFT, the most widely used *ab initio* simulation method, scales cubically $O(N_e^3)$ with
063 the number of electrons and is therefore limited to simulating only a few hundred atoms (Beck, 2000).
064 Prohibitively high computational cost makes DFT only useful in describing materials properties that
065 can be learned from a small simulation cell (Wang et al., 2024).

066 Machine learning approaches such as machine learning interatomic potentials (MLIPs) open the
067 possibility to increase simulation scale while retaining quantum chemical accuracy by building
068 ML surrogate models trained on DFT and CC data (Bartók et al., 2010; Zhang et al., 2018; Wang
069 et al., 2024; Gasteiger et al., 2021; Deng et al., 2023; Batzner et al., 2022; Musaelian et al., 2023;

Fu et al., 2025). Compared to feature-based classical FFs, deep-learning-based MLIPs enable improved learnability to better model the PES data. Graph neural networks (GNNs), especially, have demonstrated extraordinary computational efficiency and accuracy by learning both long-range and high-order atomic interactions through message passing. By design, the computation time of MLIPs scales linearly with the number of atoms $O(N)$, enabling simulations with tens of thousands of atoms at nano-second time scale.

Many materials engineering problems involve finite-sized effects like protein folding (Jumper et al., 2021), interfacial reactions (Du et al., 2023), particle-size effects (Shi et al., 2020), and formation of nano-domains (Holstun et al., 2025). Such systems require meso-scale simulations with upwards of millions of atoms, necessitating the ability to further scale the capacity of MLIP simulations. One promising solution is to expand MLIP inference from single-device to multi-device inference. Simulation packages such as LAMMPS provide *ad hoc* solutions for multi-GPU simulation (Thompson et al., 2022). Multi-device simulations are realized by dividing the total simulation cell into multiple, mutually exclusive, small cells for each device. Each small cell is then padded with additional atoms beyond the cell boundary in order to properly calculate the energy and forces within the small cell. This method, known as spatial partitioning, is based on the fundamental assumption that the force field only contains short-range interactions (Plimpton, 1995).

Since most MLIPs are designed to be relatively long-ranged, expanding the number of utilized GPUs during inference time is a nontrivial task due to the necessity to distribute the large system cell across multiple devices. Currently, there exists no native multi-GPU support for GNN-based MLIPs as most MLIPs have been implemented for only single-device inference. In order to support fast, accurate, and parallelizable atomistic simulations, we hereby present a distributed MLIP inference platform, **DistMLIP**, that enables efficient multi-device inference without the need for a modified architecture or additional training. Our highlighted contributions are as follows:

- DistMLIP features a simple, efficient, general, and versatile parallel inference platform for MLIP inference. By design, most popular MLIPs can be supported with a minimal amount of adaptation. In this work, we include benchmarking results of 4 widely used MLIPs: MACE, TensorNet, CHGNet, and eSEN.
- DistMLIP leverages **graph-level partitioning** that allows node and edge information to transfer between GPUs at each layer of the forward pass while still maintaining the intermediates required to perform backpropagation. This allows efficient parallelization of long-range GNN-based MLIPs, which is standard for most MLIPs today. Compared to spatial partitioning, graph partitioning has **zero redundancy**, meaning that no redundant computation is thrown away during parallel inference.
- We implemented the distribution of both the atom graph and the augmented three-body line graph, a common graph structure used in MLIPs to encode three-body atomic interactions.
- To allow flexible usage, DistMLIP does not depend on a 3rd party distributed simulation library such as LAMMPS. As a result, DistMLIP supports **plug-in usage** of any MLIP workflow.
- We show that the simple-yet-effective partitioning technique DistMLIP utilizes performs MD up to 8x faster compared with the more standard graph partitioning techniques.

2 RELATED WORK

2.1 MACHINE LEARNING INTERATOMIC POTENTIALS

The most common MLIP architecture today is GNN, where nodes in the atom graph represent atoms and edges in the atom graph represent the pair-wise distances between atoms that are within a pre-defined cutoff distance (Batzner et al., 2022; Simeon & De Fabritiis, 2023; Passaro & Zitnick, 2023; Gasteiger et al., 2021; Schütt et al., 2021; 2018; Smith et al., 2017). GNN computation scales linearly with the number of atoms, as the amount of computation is associated with the neighbors within the receptive field of each atom. Some MLIPs also pass messages on top of higher-order graphs, such as threebody bond graphs, that encode angles as pairwise information between bonds (Choudhary & DeCost, 2021; Deng et al., 2023; Yang et al., 2024). MLIPs built on top of the transformer architecture have also been introduced, where "tokens" represent individual nodes and

108 full self-attention is performed over all tokens (Liao et al., 2024; Vaswani et al., 2017). Recently,
 109 a class of foundation potentials (FPs) have been shown to generalize across diverse chemistries by
 110 pretraining on massive datasets (Chen & Ong, 2022; Deng et al., 2023; Chanusot* et al., 2021;
 111 Barroso-Luque et al., 2024; Yang et al., 2024; Merchant et al., 2023; Kaplan et al., 2025). These
 112 pretrained FPs substantially reduce the need for target-system training, and their open-sourced
 113 pretrained checkpoints serve as ready-to-use universal MLIPs.

114

115

116

117

2.2 SPATIAL PARTITIONING

118

119

120 **LAMMPS** implements multi-GPU inference via a spatial partitioning approach where the simulation
 121 space is split into mutually exclusive partitions. For each mutually exclusive partition, LAMMPS
 122 creates a second, larger partition that includes all atoms up to the interaction radius of the FF,
 123 commonly known as border or ghost nodes. This is required as the energy and force calculation of
 124 the atoms within each mutually exclusive partition requires the atomic information from all nodes
 125 within the model’s interaction radius. This leads to highly redundant calculations as the computation
 126 performed on the ghost nodes is thrown away after each time step. By estimate, a 64-molecule
 127 water system calculated with a 6-layer GNN that has a 6 angstrom cutoff distance would require
 128 the computation of 20,834 ghost atoms when using spatial partitioning (Musaelian et al., 2023).
 129 Furthermore, unlike classical FFs, most MLIPs do not have a mature interface with LAMMPS,
 130 making spatial partitioning practically infeasible for the majority of MLIPs that have been developed.

131

132

133

134

DeepMD is a short-range MLIP that has been applied to the simulation of 100 million atoms of
 water by 27,360 NVIDIA V100 GPUs on the Summit supercomputer, utilizing the spatial partitioning
 features within LAMMPS (Jia et al., 2020). The atomic system size was further extended to 10 billion
 atoms after further optimization of model tabulation, kernel fusion, and redundancy removal of the
Deep Potential architecture (Guo et al., 2022).

135

136

137

138

139

Allegro has been developed as a strictly local, $E(3)$ -equivariant interatomic potential that features
 efficient parallelization through spatial partitioning due to its short-range design (Musaelian et al.,
 2023). Because of this strict locality, Allegro demonstrated good scaling on large atomic systems –
 Kozinsky et al. (2023) used Allegro and LAMMPS to simulate a bulk Ag model with 100 million
 atoms, achieving 0.003 microseconds/atom-timestep using 128 NVIDIA-A100-80GBs.

140

141

142

143

144

145

146

147

148

However, strictly local models experience key limitations. The need for efficient parallelization
 restricts their interaction range to only a few angstroms, preventing their use on systems that require
 the modeling of long-range interactions (Zhou et al., 2023; Song et al., 2024; Gong et al., 2025;
 Cheng, 2025; Anstine & Isayev, 2023). Furthermore, the short-range design prevents the MLIP’s
 application from simultaneously learning diverse chemical environments. As the short-range MLIP’s
 cutoff is often determined by the radial distribution function of one targeted material system, it is
 infeasible to determine a universal cutoff that efficiently works for many materials, which is becoming
 a common scenario with the increased interest in FPs. These problems raise the need for a simple,
 unified, and versatile API to parallelize MLIPs.

149

150

151

152

153

154

155

SevenNet, derived from the Nequip architecture (Batzner et al., 2022), is one of the first MLIPs
 that support graph-parallel inference (Park et al., 2024). A simulation of 112,000 atoms Si_3N_4
 was demonstrated by distributing the 0.84 million parameter SevenNet-0 on 8 A100-80GB GPUs.
 However, its graph parallel algorithm is not easily transferable to other MLIP architectures and relies
 on the combination of TorchScript and LAMMPS, making it unapplicable to simulation tasks and
 workflows that are not built upon LAMMPS (Larsen et al., 2017; Ganose et al., 2025; Barroso-Luque
 et al., 2022; Ko et al., 2025).

156

157

158

159

160

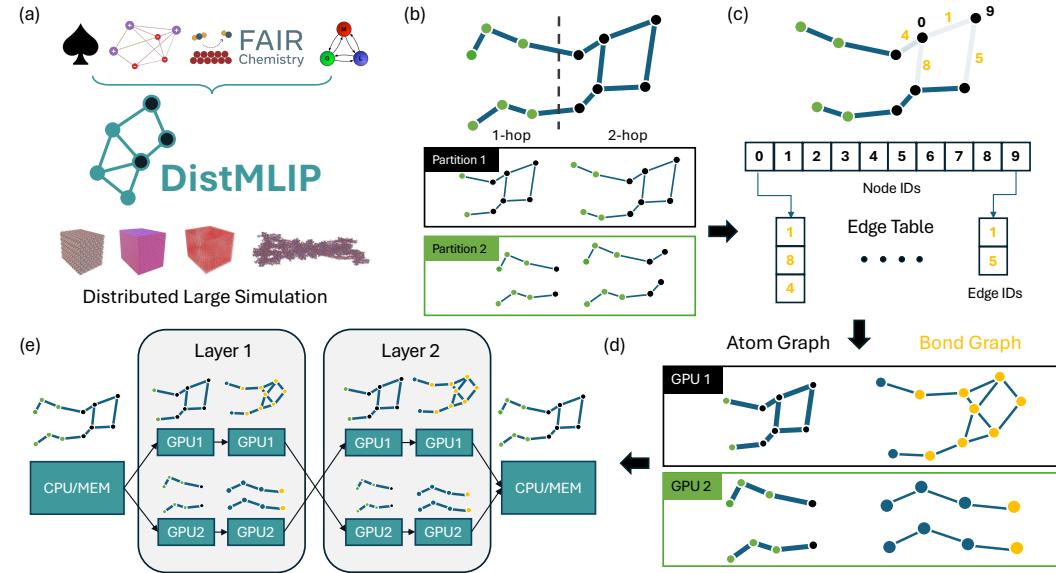
161

In addition, graph-parallelization has been previously explored for training large GNN models Sriram
 et al. (2022). In comparison, the parallelization in MLIP inference poses a fundamentally different
 challenge compared to training. During training, the samples are almost always restricted to very
 small-scale chemical systems due to the computational complexity of acquiring labels. In training,
 the goal of graph-parallelization is to increase MLIP model sizes and batch sizes. During inference,
 graph parallelization is applied for the simulation of a single large chemical system. As a result, the
 application of graph-parallelization in large-scale MLIP simulations remains an open challenge.

162

3 METHODS

164 Figure 1(a) denotes an overview of DistMLIP. Public MLIP models can be easily adapted to perform
 165 distributed large simulations with DistMLIP. The core infrastructure of DistMLIP is in the construction
 166 of graphs, subgraphs, and communication-related metadata.



186 Figure 1: An overview of DistMLIP. **(a)** DistMLIP takes public MLIP models and performs large-
 187 scale, distributed simulations. **(b)** Partition the atom graph using a vertical spatial partitioning scheme,
 188 and construct subgraphs containing the 1-hop neighbors and 2-hop neighbors of the original partition,
 189 which are later used to calculate the distributed bond graphs. **(c)** Take the 2-hop atom graph and
 190 create an edge table backbone mapping node IDs (black) to edge IDs (orange) that contain the node
 191 ID as a source node. **(d)** Recursively traverse the edge table to construct the atom graph and bond
 192 graph. **(e)** Data transfer in a simple 2-layer graph neural network with both atom graph and bond
 193 graph.

195

3.1 GRAPH-PARALLEL MESSAGE PASSING

197 After the material system is converted into a graph using a neighbor list construction algorithm,
 198 the graph can be partitioned into subgraphs for each device, as illustrated in Fig. 1(b). At each
 199 graph convolution, each node’s features are updated according to the edge and node features of its
 200 incoming neighbors. We can partition the nodes of the graph G into p disjoint sets, constructing
 201 graphs $G_1 \dots G_p$, where p is the number of partitions. Each of the graph partitions are distributed to
 202 its own GPU. To accurately calculate the features after one graph convolution, we expand G_i into
 203 G'_i , where G'_i consists of all nodes $v \in G$ such that there exists an edge $(v, u) \in E$ with $u \in G_i$.
 Formally,

$$G'_i = \{v \in V \mid \exists u \in G_i, (v, u) \in E\},$$

206 where V and E are the set of nodes and edges of the graph G , respectively. This ensures that all
 207 incoming information necessary for computing the convolution is included within G'_i . Let H_i denote
 208 the set of all 1-hop nodes that were added to G_i to create G'_i . Formally,

$$H_i = \{v \in V \setminus G_i \mid \exists u \in G_i, (v, u) \in E\}.$$

211 This represents the set of nodes in V that are not in G_i but have an outgoing edge into G_i . We refer to
 212 these nodes as border nodes. Let E'_i denote the set of edges not in G'_i that point to the border nodes.
 213 Formally,

$$E'_i = \{(u, v) \in E \mid v \in H_i \text{ and } (u, v) \notin G'_i\}.$$

214 We refer to these edges as border edges, which we use extensively when distributing the bond graph.
 215

216 **Algorithm 1** Atom Subgraph Creation

217 **Input:** Atomic system nodes and edges

218 **Output:** Partitioned subgraph with mappings

219 **1. Create a partition rule based on the longest cell dimension (vertical walls)**

220 **2. Assign atoms to buckets (PURE/TO/FROM) using algorithm 3**

221 **3. Create node array and corresponding marker array for each partition:**

222 **for** each starting partition p_i (creating marker arrays) **do**

223 initialize markers array

224 $\text{markers}[0] = 0$

225 $\text{markers}[1] = \text{len}(\text{PURE})$

226 $\text{marker_index} = 0$

227 **for** each destination partition p_j **do**

228 concatenate $\text{TO}[p_j]$ to p_i node array

229 $\text{markers}[\text{marker_index}] = \text{markers}[\text{marker_index} - 1] + \text{len}(\text{TO}[p_j])$

230 $\text{marker_index} = \text{marker_index} + 1$

231 **end for**

232 **for** each source partition p_k **do**

233 concatenate $\text{FROM}[p_k]$ to p_i node array

234 $\text{markers}[\text{marker_index}] = \text{markers}[\text{marker_index} - 1] + \text{len}(\text{FROM}[p_k])$

235 $\text{marker_index} = \text{marker_index} + 1$

236 **end for**

237 **end for**

238

239 After each graph convolution, we transfer the border node and border edge features to and from each

240 partition, as shown in Fig. 1(d). After this transfer process, each GPU has the most updated node and

241 edge feature to begin the next convolution. This implementation is completely model-agnostic and

242 can be applied to both conservative and direct force prediction MLIPs.

243

244

3.2 DISTRIBUTING ATOM GRAPHS

245

246 In order to distribute the atom graph, we first partition the graph spatially using vertical wall partitions.

247 Once these partitions are created, we specify algorithm 3 to identify the border nodes that each

248 partition requires as well as the border nodes within each partition that other partitions require. For

249 each partition, we create TO, FROM, and PURE arrays of node ids. We denote $\text{TO}_i[j]$ as the bucket

250 of node ids associated with G'_i required to be used in G'_j . Similarly, we denote $\text{FROM}_j[i]$ as the

251 node ids associated with G'_j required to be used in G'_i . As a result, $\text{TO}_i[j]$ and $\text{FROM}_j[i]$ should

252 be the same array. The PURE bucket specifies the nodes that are not required in the data transfer

253 process. Furthermore, each edge drawn from a border node to a pure node is assigned to the partition

254 responsible for the pure node.

255 For each partition, we concatenate each of the arrays while maintaining a marker array containing the

256 indices of the spans of each bucket. The marker array is used to efficiently index the spans of each of

257 the features for data transfer between GPUs. The entire atom graph creation algorithm can be found

258 in algorithm 1.

259

260

3.3 DISTRIBUTING HIGHER-ORDER GRAPHS

261

262 Higher-order graphs, sometimes referred to as line graphs or bond graphs (for the three-body case),

263 are frequently used in MLIPs to featurize higher-order interactions Choudhary & DeCost (2021);

264 Deng et al. (2023); Zhang et al. (2025). Distributing the bond graph involves selecting all 1-hop

265 and 2-hop neighbors of the pure atom graph nodes assigned to a partition. We then create an edge

266 table mapping from node ids to edges originating from the node id pointing to a different node. By

267 recursively traversing the table, we are able to create the bond graph for each partition in parallel.

268 Border nodes within the bond graph are associated with the 1-hop edge neighbors of border edges

269 within the atom graph – hence necessitating the inclusion of 2-hop neighbors. The parallel bond

270 graphs thus contain the 1-hop neighbors of each pure bond graph node assigned to the partition. The

271 complete procedure is found in algorithm 2 of the appendix.

270 DistMLIP graph creation runs purely on CPU memory, written in high-performance C. It is a
 271 standalone library that does not depend on external libraries such as LAMMPS, Pytorch, [JAX](#), or
 272 Pytorch Geometric, and can be, in principle, applied to **any** MLIP that includes an atom graph and/or
 273 three-body graph.
 274

275 3.4 CURRENTLY SUPPORTED MLIPS

 276

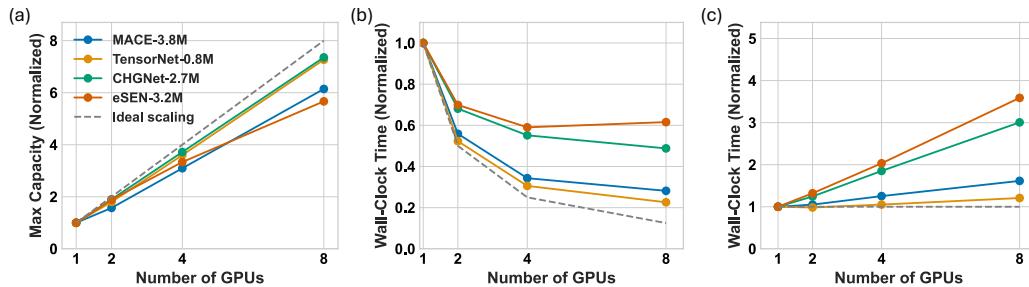
277 Currently, we have implemented four widely used models in DistMLIP: 1) CHGNet (Deng et al.,
 278 2023), an invariant MLIP that features both an atom graph as well as a bond graph, 2) TensorNet
 279 (Simeon & De Fabritiis, 2023; Ko et al., 2025), an atom graph-only, computationally-efficient,
 280 equivariant MLIP with performance on par with Nequip, 3) MACE (Batatia et al., 2023), an atom
 281 graph-only equivariant MLIP that directly models many body interactions between atoms, and 4)
 282 eSEN (Fu et al., 2025), an atom graph-only, smooth and equivariant MLIP. Specific architecture
 283 details and usage are found in appendix C and appendix I.
 284

285 4 RESULTS

 286

287 In this section, we benchmark DistMLIP with the 4 FPs loaded with their public pretrained check-
 288 points: MACE-MP-0b-small-3.8M, CHGNet-2.7M, TensorNet-0.8M, and eSEN-3.2M. The details
 289 of the models and checkpoints can be found in appendix C.

290 For all scaling timing-related benchmarks, model inference is performed 20 times, with the average
 291 of the final 10 trials reported. This is to allow GPUs to warm up before performing calculations. We
 292 use crystalline α -quartz SiO_2 supercells for each timing benchmark, unless stated otherwise. The
 293 benchmarks are performed with a GPU cluster with $8 \times$ NVIDIA-A100-80GB-PCIe.
 294



306 Figure 2: Performance scaling of DistMLIP inference with 4 pretrained MLIPs: MACE-3.8M,
 307 TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M. All results are averaged over 10 inferences on
 308 a SiO_2 supercell. (a) Maximum capacity (number of simulatable atoms) vs. the number of GPUs.
 309 Values are normalized by the 1-GPU capacity. (b) Strong scaling of MLIP inference on DistMLIP,
 310 where the total number of atoms in the supercell is held constant while the number of GPUs increases.
 311 (c) Weak scaling behavior of MLIP inference on DistMLIP, where the number of atoms on each GPU
 312 device is held constant while the number of GPUs increases.
 313

314 4.1 MAXIMUM CAPACITY

 315

316 A key performance metric is the maximum number of atoms that can be simulated by extending to
 317 multi-GPU inference. The maximum capacity scaling tests, with respect to the number of GPUs, can
 318 be found in Figure 2(a). All atom counts are normalized to be represented as multiples of the 1-GPU
 319 maximum capacity. As the number of GPUs (and thus, total GPU memory) increases, the maximum
 320 simulatable capacity increases linearly. The scaling of eSEN and MACE is further away from ideal
 321 scaling due to the one-time equivariant feature calculations that are occurring on a single GPU due to
 322 numerical stability concerns. The single GPU poses as a memory bottleneck for the system.
 323

We also benchmark the maximum capacity and corresponding inference time against the SevenNet
 model. The results can be found in Appendix G. After matching the total number of parameters

324 to SevenNet (800k), we find that MACE, TensorNet, and CHGNet can achieve up to 10x higher
 325 maximum capacity and 4x faster inference speed when incorporated with DistMLIP compared to the
 326 distributed inference of SevenNet.

328 4.2 STRONG AND WEAK SCALING

330 Strong scaling tests, where the total size of the system remains constant while the number of GPUs
 331 increases, can be found in Figure 2(b). All times are normalized to be represented as multiples
 332 of the 1 GPU time. The system sizes for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and
 333 eSEN-3.2M were 33.5k, 22.0k, 9.8k, and 1.4k atoms respectively. We also plot the ideal scaling
 334 under the assumption that computation performed by each GPU is purely independent and perfectly
 335 parallelizable. In particular, eSEN’s high memory consumption results in small atomic cells. However,
 336 small atomic cells with partition widths that aren’t sufficiently large results in overlapping border
 337 nodes during each convolution – leading to increased overhead.

338 Weak scaling tests, where the total size of the system increases proportionally with the number of
 339 GPUs (such that each GPU performs computation on the same number of atoms), are found in Figure
 340 2(c). All times are normalized to be represented as multiples of the 1 GPU time. The per GPU
 341 atom count for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M are 34.6k, 19.9k,
 342 9.9k, and 1.4k, respectively. In the case of eSEN-3.2M, weak scaling moves away from ideal scaling
 343 due to the high constant overhead associated with initial feature calculation. For CHGNet-2.7M,
 344 the computation required for the construction of the three-body graph scales with $O(N^6)$ where
 345 N is the number of atoms within the three-body cutoff, leading to suboptimal weak scaling when
 346 the simulation cell size increases. **In Table 3 of Appendix K.1, we show that the simple vertical
 347 partitioning rule used in DistMLIP and specified in Algorithm 3 is up to 8x faster compared to
 348 standard graph partitioning baselines.**

349 4.3 INTERACTION RANGE

350 In this section, we benchmark how the parallelized simulation speed and capacity is affected by the
 351 MLIP’s interaction range and number of parameters. In Fig. 3 (a), we fix each model to around
 352 0.8M parameters and vary the number of message passing layers to increase the interaction range of
 353 the model. The 8 GPU inference is performed on the α -quartz SiO_2 of 72k atoms. The measured
 354 inference times are then divided by the inference time of the baseline 10 \AA version of each MLIP.
 355 eSEN ran out of memory for the 45 and 50 angstrom tests.

356 The results in Fig. 3 (a) show that DistMLIP only has a linear relation between parallelized inference
 357 time vs. interaction range. This is due to the additional computation cost from each increased message
 358 passing layer. Conversely, in conventional spatial partitioning, the volume of the simulation cell, and
 359 therefore the number of ghost atoms, grows cubically with the interaction range. This highlights the
 360 parallelization efficiency and zero calculation redundancy in graph partitioning.

362 4.4 SCALING MODEL SIZE

364 In Fig. 3 (b) and (c), we fix the number of message passing layers and vary the feature embedding
 365 sizes in the MLIP, therefore measuring the relation between parallelized inference speed/capacity and
 366 model parameter size. The result shows that by decreasing the model parameter size, a significant
 367 increase in simulation speed and maximum capacity can be achieved. The result suggests an estimated
 368 performance gain when distributed inference can be combined with smaller model sizes through
 369 MLIP model distillation (Amin et al., 2025).

371 4.5 REAL WORLD SIMULATIONS

373 We also show the performance of real distributed simulations on a variety of solid-state and
 374 biomolecular systems, utilizing 1, 4, and 8 GPUs. The results are found in Table 1. We report
 375 the microseconds/atom-timestep of each model-system pair as well as the number of simulated atoms
 376 in the system. The simulated systems can be found in Figure 4. In Table 1, L-MACE-3.8M refers to
 377 multi-GPU inference of MACE using LAMMPS spatial partitioning, while the other 4 models are
 distributed with DistMLIP.

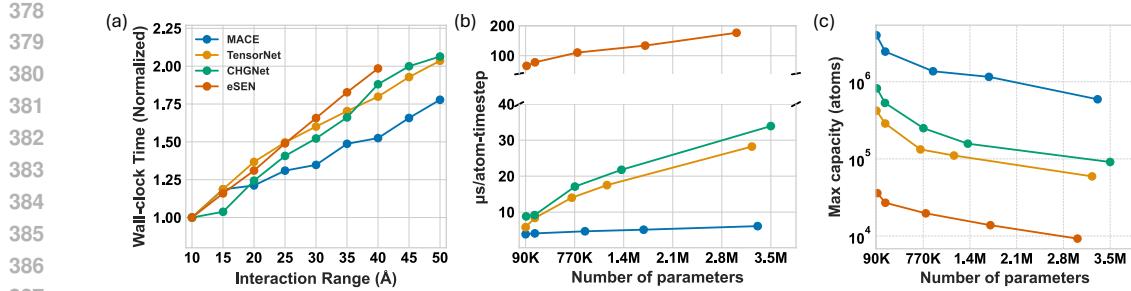


Figure 3: Effect of model configurations on graph-parallelized inference performance. **(a)** Inference time vs. MLIP interaction range while keeping model parameter size fixed. Values are represented as multiples of the 10Å interaction range. **(b)** Inference time and **(c)** maximum simulation capacity vs. number of parameters in the MLIP, while keeping interaction range fixed.

Table 1: MD step time (in μs / (atom \times step)) for the max capacity of 4 pretrained FPs on DistMLIP: MACE-MP-0b-small, TensorNet-MatPES-0.8M, CHGNet-MatPES-2.7M, eSEN-3.2M. L-MACE-3.8M refers to MACE running on LAMMPS spatial partitioning. L-MACE-3.8M is a compiled model using custom equivariant CUDA kernels while MACE-3.8M uses the pure-PyTorch implementation of MACE.

Model	# GPUs	μs / (atom \times step) # of atoms (in thousands)				
		Li ₃ PO ₄	H ₂ O	GaN	MOF	2w49
L-MACE-3.8M	1 GPU	82.47 5.2	33.4 10.4	19.8 9.7	53.8 8.0	OOM
	4 GPUs	16.9 41.4	10.1 24.6	5.1 45.0	9.4 27.0	OOM
	8 GPUs	12.3 65.9	8.5 82.9	2.7 77.8	6.2 64.0	OOM
MACE-3.8M	1 GPU	44.8 21.9	45.9 20.7	39.5 43.9	41.0 16.0	OOM
	4 GPUs	15.3 110.6	18.2 96.0	14.6 128.0	14.7 128.0	20.1 69.3
	8 GPUs	11.0 216.0	11.6 210.1	9.6 250.0	10.9 216.0	14.0 69.3
TensorNet-0.8M	1 GPU	81.7 21.9	92.1 6.1	79.1 16.0	79.1 16.0	OOM
	4 GPUs	24.3 64	26.9 49.1	22.9 65.5	23.2 54.0	OOM
	8 GPUs	16.3 140.0	18.0 82.9	15.9 123.0	15.5 125.0	19.6 69.3
CHGNet-2.7M	1 GPU	179.7 4.1	154.8 6.1	100.0 5.5	174.6 2.0	OOM
	4 GPUs	94.8 21.9	80.5 20.7	45.5 43.9	81.1 16.0	OOM
	8 GPUs	75.4 46.7	64.5 49.1	41.9 77.8	67.1 54.0	OOM
eSEN-3.2M	1 GPU	727.3 0.9	663.2 1.3	438.9 1.0	454.3 1.0	OOM
	4 GPUs	273.4 4.1	284.0 2.6	222.3 5.5	236.3 3.0	OOM
	8 GPUs	241.2 8.0	249.1 6.1	198.9 8.2	210.0 6.0	OOM

Our result shows that DistMLIP provides tripled maximum simulation sizes compared to LAMMPS spatial partitioning within the MACE-3.8M model. Note that L-MACE-3.8M uses a compiled model with custom equivariant CUDA kernels, while DistMLIP MACE-3.8M only runs the pure-PyTorch implementation. Custom equivariant CUDA kernels were shown to accelerate MACE inference time by up to 7.2x on large models (Geiger et al., 2024). Nevertheless, we observed similar simulation speed between the standard model on DistMLIP and the compiled model on LAMMPS, which supports the efficiency of DistMLIP graph-partitioning. No other model beyond MACE is reported due to the lack of LAMMPS multi-GPU inference support. For other FPs, which typically have

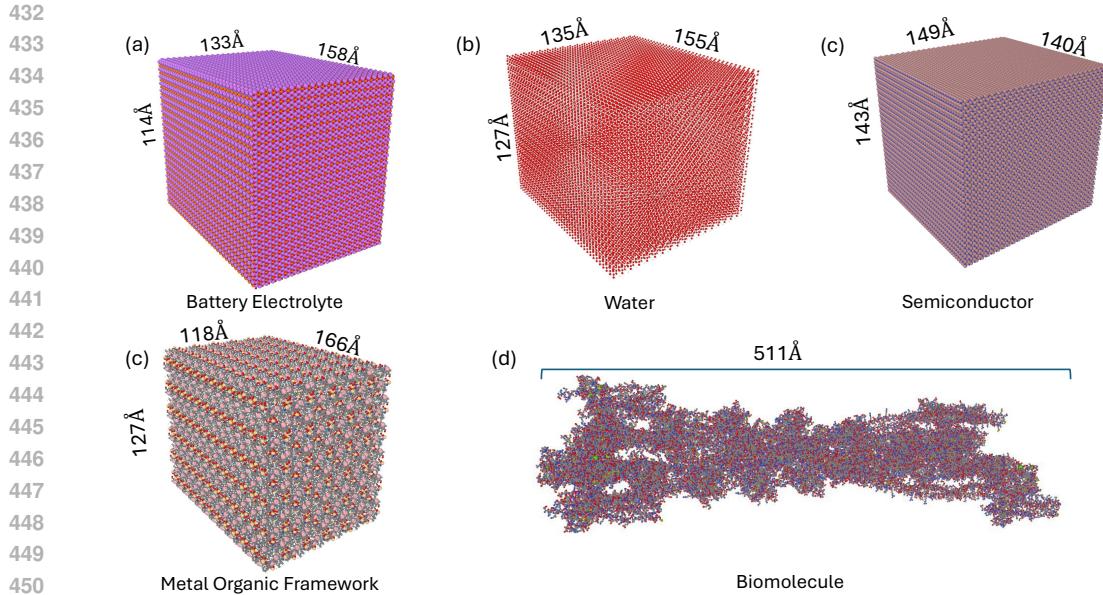


Figure 4: Sample simulation cells from real-world systems that are benchmarked in Table 1. **(a)** Li_3PO_4 supercell of 216.0k atoms. **(b)** H_2O supercell of 210.1k atoms. **(c)** GaN supercell of 250.0k atoms. **(d)** $\text{Cd}_2\text{B}_2\text{H}_{48}\text{C}_{55}\text{N}_6(\text{O}_2\text{F})_4$ metal organic framework (MOF) system of 216.0k atoms. **(e)** 2w49, an insect flight muscle protein of 69.3k atoms.

longer interaction ranges compared to 12 Å in MACE-3.8M, the capacity increase and inference speed-up should be much more significant as the efficiency of spatial partitioning degrades rapidly with increased cutoffs.

In Table 1, we highlight that most FPs with a few million parameters are capable of simulating near-million-atom scale systems when parallelized with only 8 GPUs. Moreover, we noticed that the inference time, when normalized by the number of atoms, is significantly decreased when any MLIP is being parallelized. This observation suggests chemically rare events can be cheaply simulated using a larger cell for a shorter simulation time, rather than a smaller cell for a longer simulation time, which has been the standard simulation procedure due to the inability to efficiently perform large simulations. As estimated from the benchmark result in Table 1, nanosecond near-million-atoms simulations can now be achieved at the order of 10 days with standard FPs and DistMLIP on a few GPUs.

5 CONCLUSION

Scaling quantum-chemical simulations to the size of realistic applications remains a critical challenge, even with recent developments of MLIPs and FPs. To address this challenge, we present DistMLIP, a distributed MLIP inference platform based on efficient graph-level partitioning. Compared to the conventional spatial partitioning through LAMMPS, DistMLIP serves as an easy and versatile distributed inference platform that supports long-range MLIPs. DistMLIP provides infrastructures for constructing and distributing atom and bond graphs, allowing the distribution of GNN-based MLIPs that are otherwise infeasible to parallelize.

We benchmarked the parallelized inference of 4 popular MLIPs: MACE, TensorNet, CHGNet and eSEN. Our result shows that efficient and plug-and-play parallelization can be achieved when combining DistMLIP with existing interatomic potentials. By distributing the MLIP simulation on 8 NVIDIA-A100 GPUs, our result shows that nanosecond, near-million-atom scale simulations can be accomplished at the scale of 10 physical days with state-of-the-art FPs. We believe this effort to enable large-scale simulation would accelerate chemical, materials, and biological discovery.

486 REFERENCES
487

488 Ishan Amin, Sanjeev Raja, and Aditi S. Krishnapriyan. Towards fast, specialized machine learning
489 force fields: Distilling foundation models via energy hessians. In *The Thirteenth International*
490 *Conference on Learning Representations*, 2025. URL [https://openreview.net/forum](https://openreview.net/forum?id=1durMugh3I)
491 ?id=1durMugh3I.

492 Dylan M Anstine and Olexandr Isayev. Machine learning interatomic potentials and long-range
493 physics. *The Journal of Physical Chemistry A*, 127(11):2417–2431, 2023.

494 Ariful Azad, Mathias Jacquelin, Aydin Buluç, and Esmond G Ng. The reverse cuthill-mckee algorithm
495 in distributed-memory. In *2017 IEEE International Parallel and Distributed Processing Symposium*
496 (*IPDPS*), pp. 22–31. IEEE, 2017.

497 David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. *Graph partitioning and*
498 *graph clustering*, volume 588. American Mathematical Society Providence, RI, 2013.

499 Luis Barroso-Luque, Peichen Zhong, Julia H. Yang, Fengyu Xie, Tina Chen, Bin Ouyang, and Ger-
500 brand Ceder. Cluster expansions of multicomponent ionic materials: Formalism and methodology.
501 *Physical Review B*, 106(14):144202, 2022. ISSN 2469-9950. doi: 10.1103/physrevb.106.144202.

502 Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng
503 Gao, Ammar Rizvi, C. Lawrence Zitnick, and Zachary W. Ulissi. Open materials 2024 (omat24)
504 inorganic materials dataset and models, 2024. URL <https://arxiv.org/abs/2410.12771>.

505 Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials:
506 The accuracy of quantum mechanics, without the electrons. *Physical Review Letters*, 104(13):
507 136403, 2010. ISSN 0031-9007. doi: 10.1103/physrevlett.104.136403.

508 Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, Dávid P Kovács, Janosh Riebesell,
509 Xavier R Advincula, Mark Asta, William J Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M
510 Blau, Vlad Cărare, James P Darby, Sandip De, Flaviano Della Pia, Volker L Deringer, Rokas
511 Elijošius, Zakariya El-Machachi, Edvin Fako, Andrea C Ferrari, Annalena Genreith-Schriever,
512 Janine George, Rhys E A Goodall, Clare P Grey, Shuang Han, Will Handley, Hendrik H Heenen,
513 Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S Jakob, Hyunwook
514 Jung, Venkat Kapil, Aaron D Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C
515 Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T Margraf, Ioan-Bogdan Magdău, Angelos
516 Michaelides, J Harry Moore, Aakash A Naik, Samuel P Niblett, Sam Walton Norwood, Niamh
517 O’Neill, Christoph Ortner, Kristin A Persson, Karsten Reuter, Andrew S Rosen, Lars L Schaaf,
518 Christoph Schran, Eric Sivonxay, Tamás K Stenczel, Viktor Svahn, Christopher Sutton, Cas van der
519 Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C Witt,
520 Fabian Zills, and Gábor Csányi. A foundation model for atomistic materials chemistry. *arXiv*,
521 2023.

522 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
523 Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
524 data-efficient and accurate interatomic potentials. *Nature Communications*, 13(1):2453, 2022. doi:
525 10.1038/s41467-022-29939-5.

526 Thomas L Beck. Real-space mesh techniques in density-functional theory. *Reviews of Modern*
527 *Physics*, 72(4):1041, 2000.

528 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
529 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic acids research*, 28(1):
530 235–242, 2000.

531 Lowik Chanussot*, Abhishek Das*, Siddharth Goyal*, Thibaut Lavril*, Muhammed Shuaibi*,
532 Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
533 Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary
534 Ulissi. Open Catalyst 2020 (OC20) Dataset and Community Challenges. *ACS Catalysis*, 2021.
535 doi: 10.1021/acscatal.0c04525.

540 Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic
 541 table. *Nature Computational Science*, 2(11):718–728, 2022. doi: 10.1038/s43588-022-00349-3.
 542

543 Bingqing Cheng. Latent ewald summation for machine learning of long-range interactions. *npj
 544 Computational Materials*, 11(1):80, 2025. doi: 10.1038/s41524-025-01577-7.
 545

546 Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials
 547 property predictions. *npj Computational Materials*, 7(1):185, 2021. doi: 10.1038/s41524-021-006
 548 50-1.
 549

549 Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
 550 *Proceedings of the 1969 24th national conference*, pp. 157–172, 1969.
 551

551 Murray S. Daw and M. I. Baskes. Embedded-atom method: Derivation and application to impurities,
 552 surfaces, and other defects in metals. *Phys. Rev. B*, 29:6443–6453, Jun 1984. doi: 10.1103/PhysRe
 553 vB.29.6443. URL <https://link.aps.org/doi/10.1103/PhysRevB.29.6443>.
 554

555 Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of molecular dynamics
 556 and related methods in drug discovery. *Journal of medicinal chemistry*, 59(9):4035–4061, 2016.
 557

557 Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J Bartel, and
 558 Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-informed
 559 atomistic modelling. *Nature Machine Intelligence*, 5(9):1031–1041, 2023.
 560

561 Xiaochen Du, James K. Damewood, Jaclyn R. Lunger, Reisel Millan, Bilge Yildiz, Lin Li, and
 562 Rafael Gómez-Bombarelli. Machine-learning-accelerated simulations to enable automatic surface
 563 reconstruction. *Nature Computational Science*, pp. 1–11, 2023. doi: 10.1038/s43588-023-00571-7.
 564

564 Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the efficiency of gpu algo-
 565 rithms for matrix-matrix multiplication. In *Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
 566 conference on Graphics hardware*, pp. 133–137, 2004.
 567

567 Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S Levine, Meng Gao, Misko Dzamba, and
 568 C Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical property
 569 prediction. *arXiv preprint arXiv:2502.12147*, 2025.
 570

571 Alex Ganose, Hrushikesh Sahasrabuddhe, Mark Asta, Kevin Beck, Tathagata Biswas, Alexander
 572 Bonkowski, Joana Bustamante, Xin Chen, Yuan Chiang, Daryl Chrzan, Jacob Clary, Orion Cohen,
 573 Christina Ertural, Max Gallant, Janine George, Sophie Gerits, Rhys Goodall, Rishabh Guha,
 574 Geoffroy Hautier, Matthew Horton, Aaron Kaplan, Ryan Kingsbury, Matthew Kuner, Bryant
 575 Li, Xavier Linn, Matthew McDermott, Rohith Srinivas Mohanakrishnan, Aakash Naik, Jeffrey
 576 Neaton, Kristin Persson, Guido Petretto, Thomas Purcell, Francesco Ricci, Benjamin Rich, Janosh
 577 Riebesell, Gian-Marco Rignanese, Andrew Rosen, Matthias Scheffler, Jonathan Schmidt, Jimmy-
 578 Xuan Shen, Andrei Sobolev, Ravishankar Sundararaman, Cooper Tezak, Victor Trinquet, Joel
 579 Varley, Derek Vigil-Fowler, Duo Wang, David Waroquiers, Mingjian Wen, Han Yang, Hui Zheng,
 580 Jiongzh Zheng, Zhuoying Zhu, and Anubhav Jain. Atomate2: Modular workflows for materials
 581 science. 2025. doi: 10.26434/chemrxiv-2025-tcr5h.
 582

582 Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
 583 neural networks for molecules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
 584 J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp.
 585 6790–6802. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfc13224cbd47863a34fc58-Paper.pdf.
 586

587 Mario Geiger, Emine Kucukbenli, Becca Zandstein, and Kyle Tretina. Accelerate drug and material
 588 discovery with new math library nvidia cuequivariance, November 2024. URL <https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/>. Accessed: 2025-05-27.
 589

590 Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Xu Han, Zhiao Yu, Mengyi
 591 Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Zhenze Yang, Xiaojie Wu, Shaochen Shi, Weihao
 592 Gao, Wen Yan, and Liang Xiang. A predictive machine learning force-field framework for liquid
 593

594 electrolyte development. *Nature Machine Intelligence*, pp. 1–10, 2025. doi: 10.1038/s42256-025
 595 -01009-7.

596

597 Zhuoqiang Guo, Denghui Lu, Yujin Yan, Siyu Hu, Rongrong Liu, Guangming Tan, Ninghui Sun,
 598 Wanrun Jiang, Lijun Liu, Yixiao Chen, Linfeng Zhang, Mohan Chen, Han Wang, and Weile Jia.
 599 Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms. pp. 205–218,
 600 2022. doi: 10.1145/3503221.3508425.

601

602 Tucker Holstun, Tara P Mishra, Lilian Huang, Han-Ming Hau, Shashwat Anand, Xiaochen Yang,
 603 Colin Ophus, Karen Bustillo, Lu ma, Steven Ehrlich, and Gerbrand Ceder. Accelerating the
 604 electrochemical formation of the δ phase in manganese-rich rocksalt cathodes. *Advanced Materials*,
 605 37(6), 2025. ISSN 0935-9648. doi: 10.1002/adma.202412871.

606

607 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 608 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
 609 Commentary: The materials project: A materials genome approach to accelerating materials
 610 innovation. 1:011002, 2013. doi: 10.1063/1.4812323.

611

612 Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, E Weinan, and Linfeng
 613 Zhang. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with
 614 machine learning. *SC20: International Conference for High Performance Computing, Networking,
 615 Storage and Analysis*, 00:1–14, 2020. doi: 10.1109/sc41405.2020.00009.

616

617 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 618 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
 619 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 620 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 621 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
 622 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 623 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 624 *Nature*, 596(7873):583–589, 2021. ISSN 0028-0836. doi: 10.1038/s41586-021-03819-2.

625

626 Aaron D Kaplan, Runze Liu, Ji Qi, Tsz Wai Ko, Bowen Deng, Janosh Riebesell, Gerbrand Ceder,
 627 Kristin A Persson, and Shyue Ping Ong. A foundational potential energy surface dataset for
 628 materials. *arXiv*, 2025.

629

630 George Karypis and Vipin Kumar. A software package for partitioning unstructured graphs, partition-
 631 ing meshes, and computing fill-reducing orderings of sparse matrices. *University of Minnesota,
 632 Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN*,
 633 38:7–1, 1998.

634

635 Tsz Wai Ko, Bowen Deng, Marcel Nassar, Luis Barroso-Luque, Runze Liu, Ji Qi, Atul C. Thakur,
 636 Adesh Rohan Mishra, Elliott Liu, Gerbrand Ceder, Santiago Miret, and Shyue Ping Ong. Materials
 637 graph library (matgl), an open-source graph deep learning library for materials science and
 638 chemistry. *npj Computational Materials*, 11(1):253, 2025. doi: 10.1038/s41524-025-01742-y.

639

640 Boris Kozinsky, Albert Musaelian, Anders Johansson, and Simon Batzner. Scaling the leading
 641 accuracy of deep equivariant models to biomolecular simulations of realistic size. In *Proceedings
 642 of the International Conference for High Performance Computing, Networking, Storage and
 643 Analysis*, pp. 1–12, 2023.

644

645 Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen,
 646 Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, et al. The atomic
 647 simulation environment—a python library for working with atoms. *Journal of Physics: Condensed
 648 Matter*, 29(27):273002, 2017.

649

650 Yi-Lun Liao, Brandon Wood, Abhishek Das*, and Tess Smidt*. EquiformerV2: Improved Equivariant
 651 Transformer for Scaling to Higher-Degree Representations. In *International Conference on
 652 Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=mC0BKZmrzD>.

648 Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 649 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, pp. 1–6, 2023. ISSN
 650 0028-0836. doi: 10.1038/s41586-023-06735-9.

651 Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
 652 Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
 653 dynamics. *Nature Communications*, 14(1):579, 2023. doi: 10.1038/s41467-023-36329-y.

654 Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
 655 Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder. Python
 656 materials genomics (pymatgen): A robust, open-source python library for materials analysis. 68:314–319,
 657 2013. ISSN 0927-0256. doi: 10.1016/j.commatsci.2012.10.028.

658 Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm for graph
 659 neural network interatomic potentials in molecular dynamics simulations. *Journal of Chemical
 660 Theory and Computation*, 20(11):4857–4868, 2024. ISSN 1549-9618. doi: 10.1021/acs.jctc.4c001
 661 90.

662 Saro Passaro and C Lawrence Zitnick. Reducing so (3) convolutions to so (2) for efficient equivariant
 663 gnns. In *International conference on machine learning*, pp. 27420–27438. PMLR, 2023.

664 Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches to image segmenta-
 665 tion. *Pattern recognition*, 46(3):1020–1038, 2013.

666 John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made
 667 simple. 77:3865–3868, 1996. ISSN 0031-9007. doi: 10.1103/physrevlett.77.3865.

668 Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. *Journal of Compu-
 669 tational Physics*, 117(1):1–19, 1995. ISSN 0021-9991. doi: 10.1006/jcph.1995.1039.

670 Alex Pothen. Graph partitioning algorithms with applications to scientific computing. In *Parallel
 671 Numerical Algorithms*, pp. 323–368. Springer, 1997.

672 Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-Gordon. A fifth-order
 673 perturbation comparison of electron correlation theories. *Chemical Physics Letters*, 157(6):
 674 479–483, 1989. ISSN 0009-2614. doi: 10.1016/s0009-2614(89)87395-6.

675 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 676 of tensorial properties and molecular spectra. In *International Conference on Machine Learning*,
 677 pp. 9377–9388. PMLR, 2021.

678 Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
 679 Schnet—a deep learning architecture for molecules and materials. *The Journal of Chemical Physics*,
 680 148(24), 2018.

681 Tan Shi, Qingsong Tu, Yaosen Tian, Yihan Xiao, Lincoln J. Miara, Olga Kononova, and Gerbrand
 682 Ceder. High active material loading in all-solid-state battery electrode via particle size optimization.
 683 *Advanced Energy Materials*, 10(1), 2020. ISSN 1614-6832. doi: 10.1002/aenm.201902881.

684 Guillem Simeon and Gianni De Fabritiis. Tensorsnet: Cartesian tensor representations for efficient
 685 learning of molecular potentials. *Advances in Neural Information Processing Systems*, 36:37334–
 686 37353, 2023.

687 Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
 688 potential with dft accuracy at force field computational cost. *Chemical science*, 8(4):3192–3203,
 689 2017.

690 Keke Song, Rui Zhao, Jiahui Liu, Yanzhou Wang, Eric Lindgren, Yong Wang, Shunda Chen, Ke Xu,
 691 Ting Liang, Penghua Ying, Nan Xu, Zhiqiang Zhao, Jiuyang Shi, Junjie Wang, Shuang Lyu, Zezhu
 692 Zeng, Shirong Liang, Haikuan Dong, Ligang Sun, Yue Chen, Zhuhua Zhang, Wanlin Guo, Ping
 693 Qian, Jian Sun, Paul Erhart, Tapiro Ala-Nissila, Yanjing Su, and Zheyong Fan. General-purpose
 694 machine-learned potential for 16 elemental metals and their alloys. *Nature Communications*, 15
 695 (1):10208, 2024. doi: 10.1038/s41467-024-54554-x.

702 Anuroop Sriram, Abhishek Das, Brandon M. Wood, Siddharth Goyal, and C. Lawrence Zitnick.
 703 Towards training billion parameter graph neural networks for atomic simulations. In *The Tenth*
 704 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=0jP2n0YFmKG>.

705

706 Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In
 707 *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data*
 708 *mining*, pp. 1222–1230, 2012.

709

710 Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown,
 711 Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al.
 712 Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and
 713 continuum scales. *Computer physics communications*, 271:108171, 2022.

714

715 David A Tolliver and Gary L Miller. Graph partitioning by spectral rounding: Applications in image
 716 segmentation and clustering. In *2006 IEEE Computer Society Conference on Computer Vision and*
 717 *Pattern Recognition (CVPR’06)*, volume 1, pp. 1053–1060. IEEE, 2006.

718

719 K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench,
 720 P. Lopes, I. Vorobyov, and A. D. Mackerell. Charmm general force field: A force field for drug-
 721 like molecules compatible with the charmm all-atom additive biological force fields. *Journal of*
 722 *Computational Chemistry*, 31(4):671–690, 2010. ISSN 0192-8651. doi: 10.1002/jcc.21367.

723

724 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 725 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 726 *systems*, 30, 2017.

727

728 Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Devel-
 729 opment and testing of a general amber force field. *Journal of Computational Chemistry*, 25(9):
 730 1157–1174, 2004. ISSN 0192-8651. doi: 10.1002/jcc.20035.

731

732 Tong Wang, Xinheng He, Mingyu Li, Yatao Li, Ran Bi, Yusong Wang, Chaoran Cheng, Xiangzhen
 733 Shen, Jiawei Meng, He Zhang, et al. Ab initio characterization of protein molecular dynamics with
 734 ai2bmd. *Nature*, pp. 1–9, 2024.

735

736 Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen, Shuizhou
 737 Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across elements, tempera-
 738 tures and pressures. *arXiv preprint arXiv:2405.04967*, 2024.

739

740 Duo Zhang, Anyang Peng, Chun Cai, Wentao Li, Yuanchang Zhou, Jinzhe Zeng, Mingyu Guo,
 741 Chengqian Zhang, Bowen Li, Hong Jiang, Tong Zhu, Weile Jia, Linfeng Zhang, and Han Wang. A
 742 graph neural network for the era of large atomistic models. *arXiv*, 2025. doi: 10.48550/arxiv.2506.
 01686.

743

744 Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular
 745 dynamics: a scalable model with the accuracy of quantum mechanics. *Physical review letters*, 120
 746 (14):143001, 2018.

747

748 Yuxing Zhou, Wei Zhang, En Ma, and Volker L. Deringer. Device-scale atomistic modelling of
 749 phase-change memory materials. *Nature Electronics*, 6(10):746–754, 2023. doi: 10.1038/s41928-
 023-01030-x.

750

751

752 **A DISTRIBUTING BOND GRAPHS**

753

754 Algorithm 2 depicts the method to distribute three-body graphs (bond graphs), as well as calculating
 755 the necessary information to perform data transfer between various partitions at each convolution of
 the three-body graph.

756 **Algorithm 2** Distributed Bond Graph Construction

757 **Input:** Global edges E , partitions $\{P_i\}$, bond cutoff r , tolerance τ

758 **Output:** Line graphs $\{L_i\}$ for partitions $\{P_i\}$

759 **for** each partition P_i **do**

760 Initialize TO/FROM/PURE arrays for bond graph nodes (edges within atom graph)

761 Initialize edge tables T_i for each partition

762 **Build Edge Table** T_i :

763 **for** each edge $e \in E$ with $\text{dist}(e) \leq r + \tau$ **do**

764 **if** $\text{dst}(e)$ in P_i **then**

765 append e to $T_i[e.\text{src}]$

766 **if** e is border edge for P_i **then**

767 add e to $\text{FROM}_{P_i}[\text{which_partition}(e.\text{src})]$

768 **else if** e is border edge for another partition P_j **then**

769 add e to $\text{TO}_{\text{which_partition}(e.\text{src})}[P_i]$

770 **end if**

771 **end if**

772 **end for**

773 **for** each edge $e \in E$ with $\text{dist}(e) \leq r + \tau$ **do**

774 **if** e is pure edge assigned to P_i **then**

775 Append e to $T_i[e.\text{src}]$

776 add e to $\text{PURE}[\text{which_partition}(e.\text{dst})]$

777 **end if**

778 **end for**

779 **Localize Edges**

780 **for** each $e \in T_i$ **do**

781 Create mappings between global and local bond graph node indices

782 Assign local node indices to each e in $T_i \forall i$

783 **end for**

784 **Build Line Graph** L_i

785 **for** each partition P_i **do**

786 **for** each $v \in T_i$ **do**

787 **for** each $e \in T_i[v]$ **do**

788 **for** each $e' \in T_i[e.\text{dst}]$ **do**

789 **if** $\text{needs_in_line}(e')$ **then**

790 Draw an edge in bond graph from e to e' using local node indices

791 **end if**

792 **end for**

793 **end for**

794 **end for**

795

796

797

798

799

800

801

802 **B ASSIGN TO PARTITIONS**

803

804

805

806

807

808 Algorithm 3 is the method used to determine assign individual nodes to the PURE/TO/FROM buckets

809 of each partition. It is used extensively in both atom graph creation (algorithm 1) and three-body

graph creation (algorithm 2).

810

811 **Algorithm 3** assign_to_partitions Subroutine

812 **Input:** Nodes, edges, partitions
 813 **Output:** PURE, TO, FROM arrays for each partition
 814 **1. Initialize node tracking:**
 815 Create table $\text{node_to_partition}[\text{node_id}] \leftarrow -1 \forall \text{nodes}$
 816 **2. Populating node_to_partition**
 817 **for** each edge e **do**
 818 $\text{node_to_partition}[\text{which_partition}(e.\text{src})] =$
 819 $\text{which_partition}(e.\text{dst})$
 820 **end for**
 821 **3. Assigning nodes to partition buckets**
 822 **for** each node n **do**
 823 **if** $\text{node_to_partition}[n] = -1$ **then**
 824 add n to PURE array of $\text{which_partition}(n)$
 825 **else**
 826 add n to $\text{TO}_{\text{which_partition}(n)}[\text{node_to_partition}[n]]$
 827 add n to $\text{FROM}_{\text{node_to_partition}[n]}[\text{which_partition}(n)]$
 828 **end if**
 829 **end for**
 830

 831

830 **C MLIP VERSIONS IN BENCHMARK**
 831

832 The table below shows the checkpoint versions of the MLIPs tested. The CHGNet model is taken
 833 from recent release of MatGL library Ko et al. (2025). The eSEN model in our benchmark is not
 834 taken from the public pretrained checkpoints of 30.2M parameters, which is too big for efficient
 835 parallelized simulation. Instead, we initialized a 3.2M eSEN in accordance with the eSEN-MPTrj-
 836 3.2M configuration found in Fu et al. (2025).
 837

838 Table 2: Pretrained MLIPs Model Specifications

839 Model	840 Version	841 ModelSize	842 InteractionRange	843 Reference
CHGNet	matgl-MatPES-PBE-2025.2.10	2.7M	45Å	(Deng et al., 2023)
MACE	MACE-MP-0b-small	3.8M	12Å	(Batatia et al., 2023)
TensorNet	matgl-MatPES-PBE-v2025.1	0.8M	10Å	(Ko et al., 2025)
eSEN	eSEN-MPTrj-3.2M	3.2M	12Å	(Fu et al., 2025)

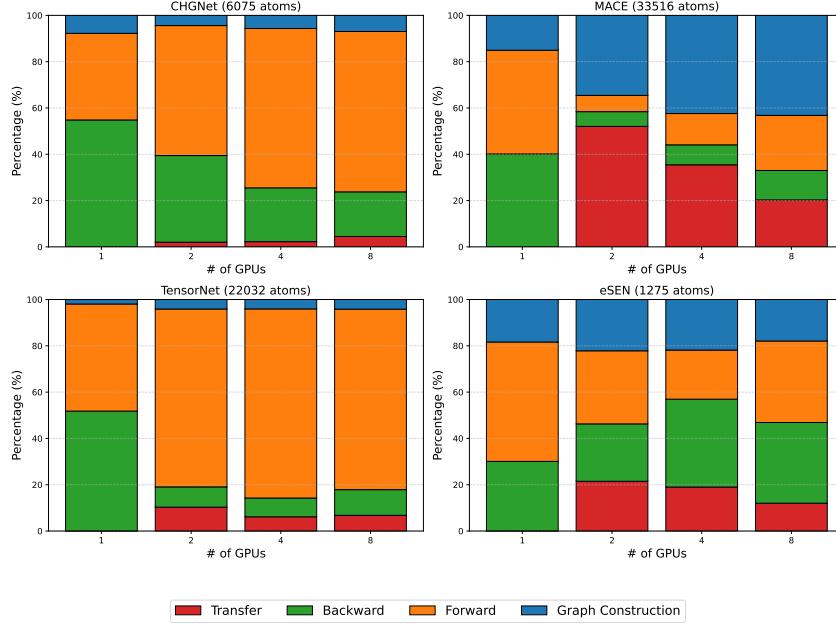
 845
 846
847 **D SINGLE GPU BENCHMARKING DETAILS**
 848

849 Because DistMLIP parallelizes neighbor list construction as well as underlying threebody graph
 850 creation, utilizing only 2 DistMLIP partitions can already lead to faster total inference time and
 851 less total memory consumption compared to a baseline implementation without DistMLIP (this is
 852 especially the case with CHGNet). Therefore, to maintain a fair comparison, all single-GPU results
 853 reported in any benchmark utilize 2 DistMLIP partitions performing operations on the same GPU.
 854 Therefore, only 1 GPU is utilized, but the same fast graph creation algorithms and implementation
 855 are shared. For all benchmarking tasks, 128 threads were used for neighbor list construction and
 856 graph creation.

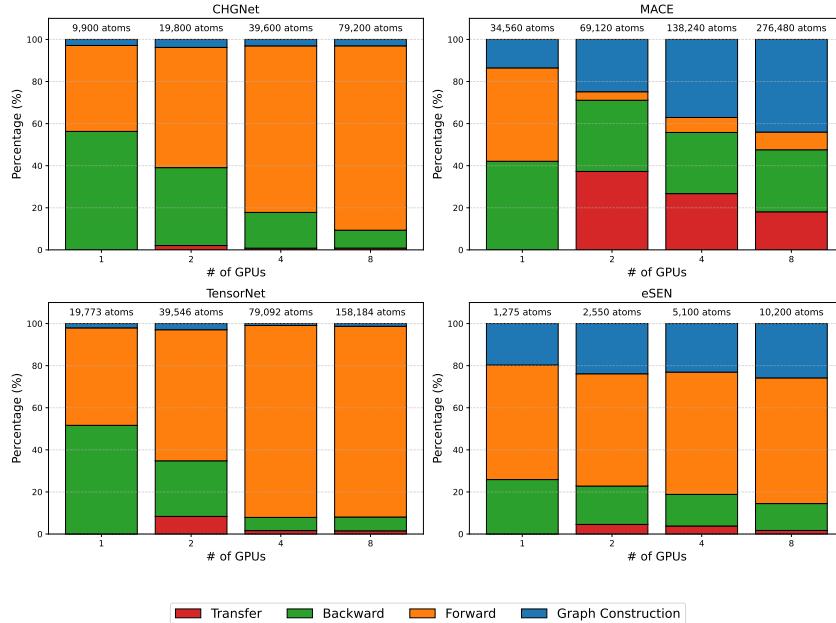
857 **E INFERENCE TIME BREAKDOWN**
 859

860 Neighbor list construction could take a substantial amount of inference time when the simulated
 861 system is large. In order to address this issue, we parallelized neighbor list construction in DistMLIP
 862 through multi-threading, so that graph creation time is substantially decreased compared to the
 863 single-thread neighbor list construction in Pymatgen (Ong et al., 2013). Furthermore, we show the
 breakdown of overall inference time using DistMLIP when fixing the total atomic system size in

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
Figure 5. We also include the breakdown of overall inference time when fixing the total number of atoms per GPU while scaling the total number of GPUs in Figure 6. The atomic system used was a crystalline SiO₂ supercell expanded in a cubic fashion.



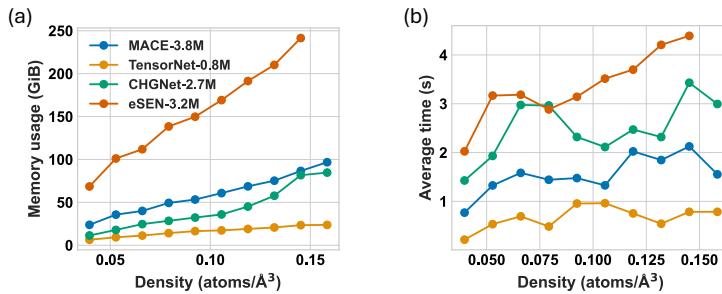
889
890
891
Figure 5: Timing breakdown, by percentage, for CHGNet-2.7M, MACE-3.8M, TensorNet-0.8M and
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Figure 5: Timing breakdown, by percentage, for CHGNet-2.7M, MACE-3.8M, TensorNet-0.8M and
eSEN-3.2M models across data transfer, backward pass (for force calculation), forward pass, and
graph construction. The total number of atoms is held fixed across all GPUs runs.



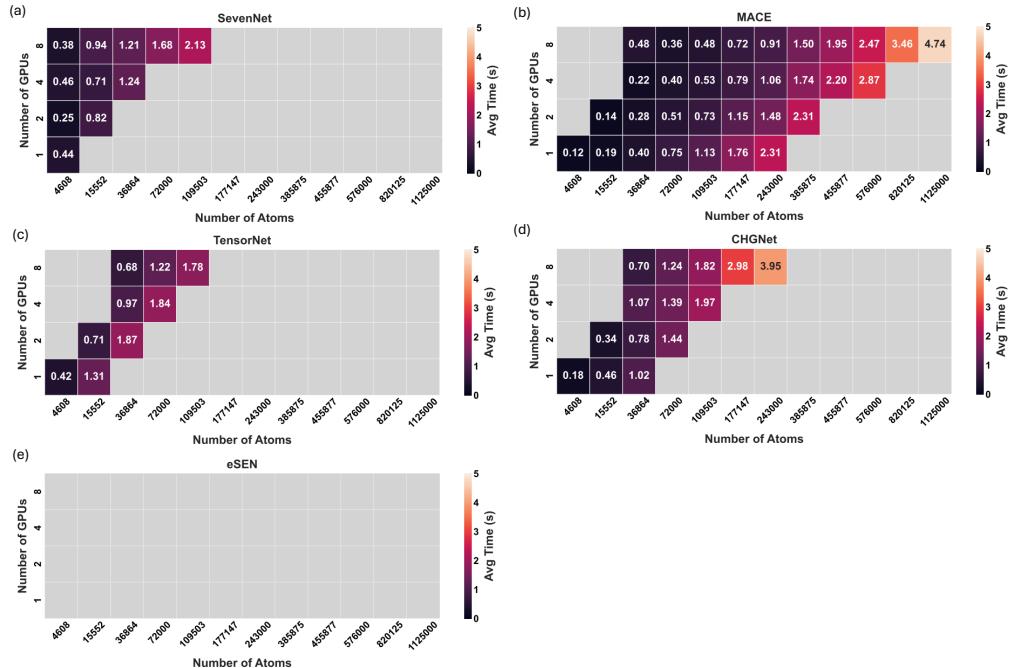
914
915
916
917
Figure 6: Timing breakdown, by percentage, for CHGNet-2.7M, MACE-3.8M, TensorNet-0.8M and
eSEN-3.2M models across data transfer, backward pass (for force calculation), forward pass, and
graph construction. The total number of atoms increase proportionally to the number of GPUs such
that the number of atoms per GPUs is held fixed as the number of GPUs increases.

918 F SCALING SYSTEM DENSITY
919

920 In Fig. 7, we plot the memory consumption and inference time of scaling system density (atoms/Å³)
921 of an SiO₂ system with 3456 atoms. DistMLIP inference with 4 A100-80GB GPUs were used. Denser
922 atomic systems lead to a linear increase in total neighbor list size, driving up memory usage as well
923 as inference time due to the decreased sparsity within the underlying atom graph’s adjacency matrix.
924 DistMLIP and its zero-redundancy inference algorithm scales memory consumption according to the
925 increase in edge count.



939 Figure 7: The effects of scaling density on (a) memory consumption, and (b) inference time. Both
940 plots are the result of scaling atomic density (atoms/Å³) on an arbitrary system with fixed atom count
941 using DistMLIP and 4 A100-80GB GPUs. eSEN is missing a datapoint due to out-of-memory issues.

943 G BENCHMARKING AGAINST SEVENNET
944

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971 Figure 8: Inference speed and max capacity on α -quartz SiO₂. Except for (a), all other models are
972 distributed through DistMLIP. (a) SevenNet plus LAMMPS support. (b) MACE, (c) TensorNet,
973 (d) CHGNet, and (e) eSEN. Because SevenNet is a 0.8M parameter model, all other DistMLIP
974 models are initialized at 0.8M parameters for comparison purposes. Grey boxes denote the inability
975 to simulate the system either due to out-of-memory issues or system-size issues.

In this section, we benchmark the inference time and max capacity of the 4 MLIPs in DistMLIP against the distributed inference of SevenNet (Park et al., 2024). All the MLIPs are constructed to have a similar number of parameters as SevenNet-0 (0.8M parameters). All tests are performed on the supercells of the α -quartz SiO_2 . Inference times are averaged over 10 trials after 5 warmup trials.

Fig. 8 shows the result for (a)SevenNet, (b)MACE, (c)TensorNet, (d)CHGNet, and (e)eSEN. The number in each box in the heat map indicates the inference time of the given cell and the number of GPUs, and darker color represents faster inference. Grey boxes indicate the simulation failed due to the GPU out-of-memory error. We reproduced a similar maximum simulation size of 110k α -quartz SiO_2 with SevenNet on 8 NVIDIA-A100-80GB, as indicated in the original manuscript. Our results indicated that MACE, TensorNet, and CHGNet can generally simulate larger maximum capacity at faster speed in DistMLIP. For eSEN, all experiments failed due to the extensive memory consumption.

H ALIGNMENT OF SINGLE-DEVICE AND MULTI-DEVICE PREDICTIONS

DistMLIP’s atom graph and bond graph distribution algorithms are exact in principle. However, numerical differences arise when performing computation in a distributed manner compared to on a single GPU. This is a result of non-determinism occurring during matrix multiplications and other operations on different GPUs (Fatahalian et al., 2004). Therefore, the exact same model and weights running single GPU inference on different GPUs within the same node will also yield slightly different results. In Fig. 9, we plot the energy/atom error in meV/atom units for MACE-3.8M, TensorNet-0.8M, and CHGNet-2.7M. The result shows that the numerical error from different GPUs is far below chemical accuracy.

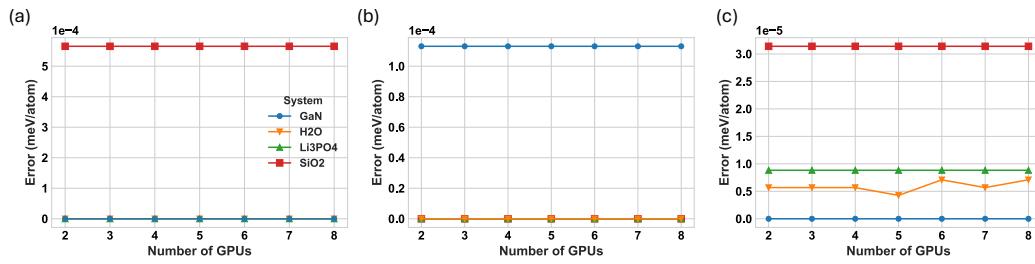


Figure 9: Energy (meV/atom) discrepancy between DistMLIP’s multi-GPU inference and baseline single-GPU inference for (a) MACE-3.8M, (b) TensorNet-0.8M, and (c) CHGNet-2.7M on multiple chemical systems. Note that DistMLIP’s graph partitioning and distribution algorithms are exact, and these non-perfect discrepancies are a result of non-deterministic matrix multiplication operations on different devices.

1026
1027

I USAGE

```
# Load the MLIP as usual
chgnet = ...
from DistMLIP.implementations.matgl import CHGNet_Dist
chgnet_dist = CHGNet_Dist.from_existing(chgnet)
chgnet_dist.enable_distributed_mode([0, 1, 2, ...]) # Specify GPU ids
# Run inference/simulation as usual
```

1034

1035 Code 1: Example code for using DistMLIP along with CHGNet. DistMLIP is designed to be a plug-
1036 and-play platform for distributed inference. The current implementation only supports single-node
1037 multi-GPU inference.

1038
1039

J PARALLELIZING A MODEL IN DISTMLIP

1040
1041
1042
1043
1044
1045
1046
1047

DistMLIP is designed to be both high-performant as well as easily usable. Parallelizing new MLIPs using DistMLIP is a straightforward process that can be done purely in Python. A few key points of DistMLIP are outlined in J.1. **The primary data structure, the Distributed object, inputs atom positions, periodic boundary conditions, and (optionally) cell lattice, and constructs the graph partitions and associated metadata.** The data structure can partition, aggregate, and perform data transfer for node features, edge features, and node features within the threebody graph. These simple distributed primitives are implemented in high performance C and makes distributing a new MLIP very straightforward to implement but still high performing.

1048
1049

J.1 MODEL PARALLELIZATION EXAMPLE

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

```
# Creating a DistMLIP distributed object
dist = Distributed.create_distributed(...)
# Distributed edge information
dist.src_nodes, dist.dst_nodes # List of src and dist node pairs for each
    partition
# Distributing node/edge features
node_features_dist = dist.distribute_node_features(node_features)
edge_features_dist = dist.distribute_edge_features(edge_features)
# Exchanging node information
dist.atom_transfer(node_features_dist)
# Aggregating node features
node_features = dist.aggregate(node_features_dist)
```

1062
1063
1064

Code 2: A subset of the available features implemented into DistMLIP. These features, implemented as a Python wrapper over efficient C and PyTorch code, allow for the straightforward distribution of any arbitrary MLIP.

1065
1066

K GRAPH PARTITIONING

Graph partitioning algorithms find applications in solving PDEs via domain decomposition, solving sparse linear systems of equations, circuit partitioning and layout, VLSI design, social network analysis, clustering algorithms, and image segmentation (Pothen, 1997; Stanton & Kliot, 2012; Bader et al., 2013; Tolliver & Miller, 2006; Peng et al., 2013). One common use case in graph partitioning is to create mutually exclusive spanning sets of nodes that contain the minimum number of edges that cross from one partition to another. This use case can be tackled using sparse, symmetric matrix reordering methods such as the Reverse Cuthill-McKee (RCM) algorithm, which permutes a sparse matrix to minimize its bandwidth (i.e. reordering rows and columns such that non-zero values are closer to the diagonal) (Cuthill & McKee, 1969; Azad et al., 2017). The reordered matrix can then be partitioned along the columns in order to calculate graph node partitions. METIS is a graph partitioning algorithm that utilizes a graph coarsening phase, an initial partitioning sequence over the coarsened graph, and an uncoarsening and partition refinement stage (Karypis & Kumar, 1998). However, applications depending on algorithms such as RCM or METIS typically don't have latency requirements during the graph partitioning stage. In atomistic simulation, the underlying graphs are recalculated and repartitioned at each time step. Therefore, even small latency increases during the

graph creation and partitioning stage get compounded into significant increases in overall simulation time. In our own experiments, we find that RCM and METIS could increase inference time for million-atom graphs by several seconds per timestep.

K.1 BENCHMARKING PARTITION STRATEGIES

We compare DistMLIP’s vertical wall partitioning strategy with other common graph partitioning algorithms. In Table 3, we replace DistMLIP’s current vertical wall partitioning strategy with the Reverse Cuthill-McKee (RCMK) and METIS algorithms while holding the other components of Algorithm 1 and Algorithm 3 constant. Neither RCMK nor METIS supports threebody bond graph creation. RCMK and METIS both utilize the graph’s topology in order to partition the graph such that the number of crossing edges between partitions is minimized. DistMLIP’s current partitioning strategy, on the other hand, doesn’t perform graph traversals but rather uses atomic positions as a heuristic in order to partition the graph. In Table 3, we also include the LAMMPS spatial partitioning results for comparison. As a result, we perform all benchmarks with the MACE-3.8M model.

Table 3: MD step time (in μs / (atom \times step)) for various graph and spatial partitioning strategies. RCMK refers to the Reverse Cuthill-McKee algorithm used for graph partitioning. Both RCMK and METIS still utilize the DistMLIP platform, only the partitioning strategy is replaced. The model used was MACE-3.8M, and LAMMPS spatial partitioning values are included for comparison.

Method	# GPUs	μs / (atom \times step) # of atoms (in thousands)				
		Li ₃ PO ₄	H ₂ O	GaN	MOF	2w49
METIS	4 GPUs	81.19 108.0	101.67 96.0	68.98 77.0	83.60 125.0	78.93 69.0
	8 GPUs	62.18 216.0	56.76 216.0	77.15 207.0	69.63 216.0	67.10 69.0
RCMK	4 GPUs	77.49 110.0	98.02 96.0	66.92 77.0	82.24 125.0	79.94 69.0
	8 GPUs	57.22 216.0	51.67 216.0	74.01 207.0	65.74 216.0	65.51 69.0
Vert. wall	4 GPUs	15.30 110.6	18.20 96.0	14.60 128.0	14.70 128.0	20.10 69.3
	8 GPUs	11.00 216.0	11.60 210.1	9.60 250.0	10.90 216.0	14.00 69.3

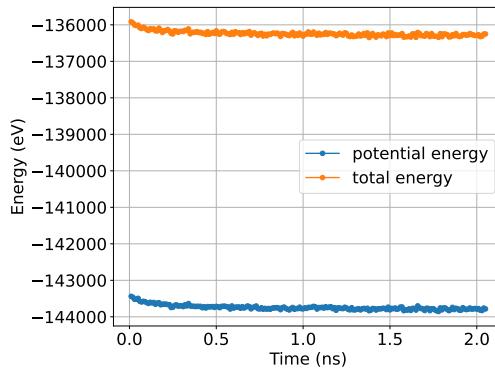
L MOLECULAR DYNAMICS SIMULATION STABILITY

To validate the numerical robustness and long-term stability of DistMLIP simulations, we performed a 2 nanosecond TensorNet MD simulation of a Li-ion cathode material containing 0.1 million atoms on 8 A100 GPUs. Fig. 10 shows the energy of the material as a function of time. Throughout the simulation, the system maintained structural stability. Except for the expected thermal fluctuation, no severe energy oscillation is observed during the entire simulation. The initial decrease in energy is not a numerical artifact; rather, it is attributed to the energy equilibration of the simulated material, representing a crucial physical process successfully captured by the DistMLIP simulation.

M LARGE SYSTEM TRAINING USING DISTMLIP

Machine learning interatomic potentials are trained on quantum mechanical calculations such as density functional theory or coupled cluster techniques. Due to the computational complexity of these techniques, however, calculating the energy and forces of atomic systems with greater than several hundred atoms is computationally intractable. As a result, other than instances in which large batch sizes are used in training, DistMLIP’s primary use case would be for large scale inference. However, for technical completeness, we perform training on a GPCR protein, 6P9X from the protein data bank (Berman et al., 2000) consisting of 8.1k atoms. Energy and forces were calculated using a Lennard-Jones potential. With a batch size of 16, we achieve 2.1 seconds per training step on 8 A100-80 GB GPUs using a 0.4M parameter CHGNet model – demonstrating DistMLIP’s ability in large-scale, large-batch training.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165



1166 Figure 10: Evolution of potential energy and total energy in a 2 nanosecond long DistMLIP MD
 1167 simulation of Li-ion cathode material using 8 GPUs and the TensorNet model. The long-time
 1168 numerical stability of DistMLIP is indicated in the smooth profile of energies with only expected
 1169 thermal fluctuations.

1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187