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Abstract

Despite the promising performance of existing visual
models on public benchmarks, the critical assessment of
their robustness for real-world applications remains an on-
going challenge. To bridge this gap, we propose an ex-
plainable visual dataset, XIMAGENET-12, to evaluate the
robustness of visual models. XIMAGENET-12 consists of
over 200K images with 15,410 manual semantic annota-
tions. Specifically, we deliberately selected 12 categories
from ImageNet, representing objects commonly encoun-
tered in practical life. To simulate real-world situations,
we incorporated six diverse scenarios, such as overexpo-
sure, blurring, and color changes, etc. We further develop
a quantitative criterion for robustness assessment, allowing
for a nuanced understanding of how visual models perform
under varying conditions, notably in relation to the back-
ground. We make the XIMAGENET-12 dataset and its cor-
responding code openly accessible at https://sites.
google.com/view/ximagenet-12/home. We ex-
pect the introduction of the XIMAGENET-12 dataset will
empower researchers to thoroughly evaluate the robustness
of their visual models under challenging conditions.

1indicates Co-first Authorship, and * indicates Shared Corresponding
Author. Acknowledging the great support and sponsorship received from
Accenture, V7 Lab and Playground AI. Paper accepted by Synthetic Data
for Computer Vision Workshop @ IEEE CVPR 2024

1. Introduction

Visual models have been widely utilized in a variety of real-
world applications, including manufacturing, maintenance,
etc. [10, 20, 23, 44, 47]. Despite their commendable per-
formance on standardized benchmark datasets, existing vi-
sual models often exhibit noticeable performance degrada-
tion in real-world deployments [3, 14, 20, 41]. Challenges
such as variations in lighting, background interference, ob-
ject displacements and unexpected environmental factors,
like noises or artificial camera disturbances, are common
issues encountered by visual models in practical scenar-
ios [23, 42, 44].

The lack of a readily available and interpretable dataset
makes the evaluation of robustness an open challenge.
There are a few works attempting to explore how existing
visual models are influenced by contextual bias or back-
grounds [27, 28, 30, 37, 43, 48]. Among them, the most
similar work is ImageNet-9 dataset [37], which selects nine
classes and explores the impact of backgrounds on fore-
ground objects. However, their work did not deeply inves-
tigate what factors in the backgrounds really matter for the
model behavior, thus leading to less explainability. Besides,
their semantic labeling is not precise enough and such rough
segmentation of foreground and background leads to some
misleading conclusions.

In this work, we propose an explainable visual bench-
mark dataset, XIMAGENET-12, to evaluate the robustness

https://sites.google.com/view/ximagenet-12/home
https://sites.google.com/view/ximagenet-12/home
https://syndata4cv.github.io/
https://syndata4cv.github.io/
https://cvpr.thecvf.com/Conferences/2024
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Figure 1. XIMAGENET-12 sample for 6 scenarios: Blur, Random generated background, AI-generated background, Segmentated, Trans-
parent and Color images. Over 200K Images in total.

of visual models when facing challenging real-world sce-
narios. XIMAGENET-12 consists of over 200K images
with 15,410 manual semantic annotations. Specifically,
we deliberately selected 12 categories from ImageNet [7].
These images contain objects that are commonly found in
daily life, with relatively complicated backgrounds. To sim-
ulate real-world situations, we incorporated six diverse sce-
narios that often occur in real-world applications. As shown
in Figure 1, these scenarios cover background & foreground
blurring, color changes to simulate the camera vibrations in
industrial production processes, as well as background re-
placement & removal and artificially rendered backgrounds
for enhanced validation. It is worth noting that our seman-
tic annotations of foreground and background are precise,
which allows us to deeply investigate how the visual model
is influenced by the backgrounds. We further develop a
quantitative criterion for robustness assessment, allowing
for a comparative evaluation of visual model robustness.
We show that the robustness score of visual backbones cal-
culated on our dataset can provide guidance for practical
visual model usage. We summarize our main contributions
as follows:
• We create a dataset, named XIMAGENET-12, consisting

of a variety of challenging scenarios.
• We develop a quantitative criterion to evaluate the robust-

ness of visual models and show its effectiveness in pro-
viding guidance for real-world applications.

• We deeply investigate the influence of backgrounds
and show some interesting findings based on our well-
annotated dataset.

2. Related Work

In this section, we discuss previous works that investigate
models’ performances dependence with contextual bias and

backgrounds. Previous research has studied the overarch-
ing phenomenon of contextual bias [16, 31, 35], proposing
methods to mitigate its impact. For example, Khosla et al.
proposed a discriminative framework that directly exploited
dataset bias during training [16]. Torralba et al.compared
multiple popular datasets by using a variety of evaluation
criteria to obtain directions that could improve dataset col-
lection and algorithm evaluation protocols [35].

Among them, the works most similar to ours are pro-
posed by Zhu et al. [48] and Xiao et al. [37], both of
which delved into ImageNet[7] classification and segmen-
tation, and background exploration. Zhu et al. [48] trained
deep neural networks on the foreground and background re-
spectively, demonstrating that valuable visual hints can be
learned separately and then combined to achieve higher per-
formance. As Zhu et al. [48] did not conduct the evaluation
of recent visual models, Xiao et al. [37] only plainly in-
vestigated the influence of backgrounds with state-of-the-
art (SOTA) visual models: Noise or Signal. Meanwhile,
they proposed a synthetic dataset, ImageNet-9 by disen-
tangling foreground and background signals on ImageNet.
Compared with ImageNet-9 [37], our dataset has more pre-
cise semantic labels and we demonstrate that poor semantic
label quality can yield sub-optimal results through exten-
sive experiments. Furthermore, our dataset encompasses six
scenarios simulating challenges commonly encountered in
real-world applications.

3. XIMAGENET-12 Dataset

3.1. Dataset Simulation

The overall dataset generation flow is shown in Figure 2.
We select 12 categories of images from the ImageNet [7]
dataset as the base images. These 12 categories are: lizard,

green lizard, crayfish, whale, dog, fox, anemone fish,



Figure 2. The flow chart of XIMAGENET-12 generation.

airship, car wheel, cash machine, cello, and ice cream.
These selected images contain objects with complex shapes,
detailed edges or boundaries, distinguished colors, diverse
resolutions, and complex backgrounds, which can represent
situations frequently encountered in daily life. To separate
the background and foreground, we employ the IOG net-
work [45] for rough segmentation and manually refine the
annotations via V7 Lab [36]. Then we synthesize 6 scenar-
ios, including colored images, blurred images, segmented
images, transparent images, images with randomly gen-
erated backgrounds, and images with AI-generated back-
grounds. We detail each scenario as follows.

Colored images: Colored images can simulate light-
ing changes in the real world. There are 7 different
transformations with regards to colored images, including
transforming backgrounds to grayscale, single-channel (R,
G, B), rainbow, and switching brightness of both back-
grounds (bright changing BG) and foregrounds (bright
changing FG). Specifically, we use the OpenCV function
addWeighted to adjust brightness and sharpness via Un-
sharp Masking (USM). We generate rainbow images by
converting the image to HSV color space and changing the
hue of the backgrounds.

Blurred images: Blur often happens when a camera
suffers a slight shift, resulting in the degradation of de-
tails. We use the OpenCV function GaussianBlur to blur

images both in backgrounds (blurred background) and fore-
grounds (blurred foreground).

Segmented images: We remove the backgrounds of the
images and keep the foreground only. Specifically, we keep
the RGB channel unchanged for the foreground and set the
RGB channel of background as (0, 0, 0).

Transparent images: We create a new image with
RGBA 4 channels, where the background is completely re-
moved. For example, if the pixel at (x, y) in the original
image is (r,g,b), we set it as (0, 0, 0, 0) if it belongs to the
background, and (r, g, b, 255) vice reverse.

Images with randomly generated backgrounds: We
randomly select an image from ImageNet [7] dataset as the
background and blend it with the foreground of the origi-
nal image by using addWeighted blending, resize, random
Shuffle & position functions.

Images with AI-generated backgrounds: We use the
transparent images as inputs for Playground AI [25] with
the Stable Diffusion XL model [26]. We have tried differ-
ent text prompts and found some very useful tips: Using
keywords such as ‘National Geographic Magazine’ or ‘Na-
tional Oceanic Magazine’ can increase the authenticity of
the generated background; Adding specific and appropriate
environmental information to the prompt can make the gen-
erated background and objects better integrated. By using
a diffusion model and introducing unexpected or extreme



background variations, we can assess whether the model
is resilient against potential adversarial attacks involving
background manipulation.

Figure 3. XIMAGENET-12 samples for each class and scenario.

3.2. Dataset Properties

There are 15,410 original images in XIMAGENET-12, with
around 1,300 samples in each category. Each image is sim-
ulated to 6 scenarios. As we found that some AI-generated
images contained too small or incomplete objects, we fil-
tered those sup-optimal images and obtained 12,248 images
for AI-generated scenarios, with approximately 1,000 im-
ages for each class. Finally, we have in total 212,747 im-
ages contained in XIMAGENET-12. Figure 3 illustrates the
overall look of our dataset across various scenarios, includ-
ing original images.

4. Robustness Score

In this section, we introduce our proposed criterion for eval-
uating the robustness of visual models. We aim to quanti-
tatively assess a model’s generalization performance across
diverse scenarios. Drawing inspiration from mathematical
concepts like variance and covariance, we have devised a
robustness score based on the XIMAGENET-12 dataset, as
outlined below.

Firstly, we measure the robustness of models in cross
scenarios in a variance-like form:

�2
cross =

Pn
i=1(C(i)� µ)2

n
. (1)

Here, µ means the best weight accuracy when the model
is both trained and tested on the original scenario. C(i)
means the model is trained on original images but tested on
the i-th scenario. i 2 {0, 1, . . . , n} and n is the number of
scenarios that we consider.

Similarly, we formulate the robustness of models when
trained and tested within the same scenario as follows:

�2
inner =

Pn
i=1(C

0(i)� µ)2

n
. (2)

Here C 0(i) means that the model is both trained and
tested on the i-th scenario. Considering both above-
mentioned cases, we derive the robustness score as follows:

Srobust = 1� (�2
cross + �2

inner). (3)

We consider a larger robustness score as an indicator of the
higher robustness of the visual model.

5. Experiments

5.1. Experimental Settings

In this section, we evaluated the robustness of commonly
used visual models with our proposed XIMAGENET-12
dataset and investigated how visual models perform un-
der various conditions. Specifically, we tested classifica-
tion models with the following selected visual backbones:
ResNet [11] series, MobileNet [29], EfficientNet [34] se-
ries, InceptionNet [33], DenseNet [13], ViT [8] and Swin
Transformers [22]. We included the following segmenta-
tion models with the above-mentioned backbones for fur-
ther evaluation, including PSPNet [46], FPN [21], UperNet
[38], DeepLabV3 [4] and DeepLabv3plus R50-D8 [5].

We conducted our experiments by using TensorFlow [1],
Keras [15], PyTorch [24], and MMsegmentation Li-
brary [6]. For the inputs of classification models, we
cropped the images as 224 ⇥ 224. For the inputs of seg-
mentation models, we cropped the images as 256 ⇥ 256.
We trained these models by using the Adam [17] optimizer
under the learning rate of 0.0001, with the epochs of 200
and the batch size of 16.

We adopted Top-1 accuracy as the major evaluation met-
ric for classification. We performed Multiple Linear regres-
sion [39] to evaluate our hypotheses. We utilized the P-
value [9] of 95% CI as the confidence of verified hypothe-
ses. We employed the Variable that accounts for variations
across different models, scenarios, and object classes. Esti-
mate in the Table 3 serves as a valuable indicator for assess-
ing accuracy change compared with the reference model.
For segmentation models, we used Mean Intersection over
Union (MIoU) and accuracy.

5.2. Main Results

Comparison of SOTA Visual Models. Here, we investi-
gate the performance of SOTA models facing diverse sce-
narios. We study two cases: 1) EX1 Cross Scenario. In this
setting, we train the classification model on original images
and test them in different scenarios respectively. 2) EX2
Within the same Scenario. In this setting, we both train and
test the classification model within the same scenario. We
report the classification performance (Top-1 Accuracy) in
Table 1. In general, different scenarios influence these mod-
els to different degrees. Among those scenarios, removing



Table 1. Comparison of SOTA visual models with diverse scenarios. Here all the evaluation metrics are Top-1 Accuracy.

Pretrained Dataset Model Name Parameters (M) Test Dataset (Top-1 Acc.)

Blur bg Blur obj Color g Color b Color grey Color r Rand bg Seg img

ImageNet [7]
(Original images)

EX1

ResNet50 [11] 25.60 90.97% 88.17% 84.42% 86.98% 92.13% 89.03% 22.41% 68.55%
VGG-16 [32] 138.4 89.92% 89.91% 78.64% 70.46% 81.48% 80.68% 24.58% 49.62%

MobileNetV2 [29] 3.5 92.34% 88.52% 85.73% 88.67% 88.81% 89.33% 27.14% 66.43%
EfficientNetB0 [34] 5.3 91.44% 90.86% 78.10% 82.45% 86.44% 83.65% 25.29% 53.56%
EfficientNetB3 [34] 12.3 86.80% 84.53% 77.99% 81.22% 83.00% 83.85% 22.06% 69.67%
DenseNet121 [13] 8.1 93.77% 88.92% 87.39% 87.33% 93.23% 88.21% 26.41% 69.67%

ViT [8] 86.6 88.44% 90.77% 65.87% 62.82% 70.69% 66.53% 17.21% 49.01%
Swin [22] 87.76 80.97% 81.57% 64.59% 65.91% 69.28% 64.41% 19.43% 44.57%

XImageNet-12
(*Scenarios)

EX2

ResNet50 [11] 25.60 83.52% 80.24% 83.61% 84.45% 84.71% 80.40% 53.91% 85.76%
VGG-16 [32] 138.4 74.85% 71.54% 74.18% 76.26% 77.58% 69.91% 70.25% 73.27%
AlexNet [19] 61.1 81.60% 79.95% 81.96% 81.89% 81.31% 78.07% 46.29% 82.00%

MobileNetV3 [12] 3.50 67.36% 67.88% 72.04% 74.25% 69.48% 64.79% 43.33% 78.85%
DenseNet121 [13] 8,1 90.79% 86.57% 88.92% 89.96% 90.44% 87.37% 69.58% 91.60%

ViT [8] 86.56 71.51% 70.21% 74.77% 75.96% 75.80% 71.14% 38.01% 78.69%
Swin [22] 87.76 72.81% 75.02% 81.05% 81.96% 81.63% 76.42% 13.23% 80.64%

the backgrounds and randomly substituting the background
result in most performance drops.

In Table 1 ”Rand bg” scenario of EX1, all these mod-
els show poor performance when trained on original images
and tested on images with random backgrounds. This indi-
cates that all these models tend to capture significant infor-
mation from original backgrounds during training. Those
random backgrounds in the test set will heavily interrupt the
recognition of visual models. Compared with EX1, the per-
formance drop of EX2 is not so significant. This indicates
that when trained on images with random backgrounds, vi-
sual models may be aware of the irrationality of the back-
grounds and automatically ignore them.

In Table 1 “Seg img” scenario of EX2, we find that train-
ing on the images with removed backgrounds does not lead
to a test accuracy drop. This finding contrasts with the
assertion by Xiao et al. [37], who claimed that removing
the background negatively impacts test accuracy. The sub-
optimal performance obtained by Xiao et al. is due to the
poor annotation quality of ImageNet-9 instead of the miss-
ing background (we will further validate this in Sec 5.3).
Our experiment on XIMAGENET-12 indicates that models

trained and tested with well-segmented foregrounds tend

to perform well even if the backgrounds are missing.
By observing blurring and color scenarios in Table 1,

CNN-based models generally show better performance with
EX1 setting than EX2, while transformer-based models
show the opposite results in color scenarios. When observ-
ing the Color scenarios (Color g to Color r) in EX1, CNN-
based models show higher robustness (e.g. the drop rate of
VGG-16 [32] is 11.28% ) than transformers (the drop rate
of ViT [8] is 27.95%).

While ViT [8] and Swin-Transformers [22] show good
performance in most visual tasks [40], their accuracy and
robustness are not always as good as CNN-based models
when facing challenging scenarios. This motivates us with
a hypothesis that a model with higher accuracy is not nec-

essarily more stable. We argue that more robust models

tend to rely less on backgrounds. To validate our hypoth-
esis, we provide a deeper investigation of the robustness of
existing visual models by using our robustness score and
statistical analysis in the following parts.

Evaluation of Robustness. Using our proposed ro-
bustness score, we quantitatively evaluate the robustness of
commonly used visual models and report the results in Ta-
ble 2. We find that a model with a higher robustness score
is more resistant to the changes in background (with lower

(a) ResNet50 [11] with relatively higher Robustness Score on our Dataset,
also perform good in MVTec AD dataset [2], can detect more details in
scratches on metal nut rather than general focus on flaw shape

(b) VGG-16 [32] with relatively lower Robustness Score on our Dataset, per-
form poor in MVTec AD dataset [2]

Figure 4. Saliency Map Analysis on the MVTec AD Dataset [2].



Table 2. Variance of Model Accuracy Performance and Robustness Scores.

Model Acc. Drop Volatility
Scenarios Variance Robustness Score

(Our* 0 - 1)
Offical Top-1 Acc.
(On ImageNet [7])

Offical Top-1 Acc.
(On Cifar10 [18])Blur background Blur object Image g Image b Image grey Image r Random background Segmented image

ResNet50 [11]: external 0,18% 0,50% 1,17% 0,68% 0,10% 0,38% 53,04% 7,12% 0,0902 0,8985 74,90% 93,03%ResNet50 [11]: internal 0,10% 0,00% 0,11% 0,17% 0,20% 0,00% 6,96% 0,30% 0,0112

DenseNet121 [13]:external 0,13% 0,72% 1,00% 1,01% 0,17% 0,84% 50,39% 7,69% 0,0885 0,9062 75,00% 96,54%DenseNet121 [13]:internal 0,21% 0,00% 0,07% 0,14% 0,18% 0,01% 2,77% 0,29% 0,0052

VGG-16 [32]:external 0,15% 0,15% 2,30% 5,45% 1,52% 1,72% 47,93% 19,53% 0,1125 0,8845 71,30% 93,43%VGG-16 [32]:internal 0,33% 0,06% 0,26% 0,51% 0,72% 0,01% 0,01% 0,17% 0,0029

ViT [8]:external 0,25% 0,07% 7,60% 9,38% 5,18% 7,24% 58,11% 19,74% 0,1536 0,8196 81,07% 98,20%ViT [8]:internal 0,51% 0,72% 0,15% 0,07% 0,08% 0,57% 16,54% 0,00% 0,0266

Swin [22]:external 0,96% 0,84% 6,84% 6,17% 4,61% 6,94% 50,87% 21,33% 0,1408 0,6305 83.58% 97,95%Swin [22]:internal 0,02% 56,28% 0,48% 0,61% 0,56% 0,05% 37,10% 65,03% 0,2287

Table 3. Performance Evaluation of Multiple Linear Regression. (P value < 0.0001 and **** indicate the result is of high significance. ns
note as not significant).

Classification Segmentation

Variable Estimate P value P value summary Variable Estimate P value P value summary

Intercept 0.8986 < 0.0001 **** Intercept 0.6672 < 0.0001 ****
Model Name[EfficientNetB0 [34]] -0.03444 0.0175 * Model Name[dpt vit-b16 [8]] -0.1999 < 0.0001 ****
Model Name[EfficientNetB3 [34]] -0.04111 0.0046 ** Model Name[upernet swin [38]] -0.2211 < 0.0001 ****
Model Name[DenseNet121 [13]] 0.01556 0.2821 ns Model Name[upernet vit-b16 ln mln [38]] -0.1695 < 0.0001 ****
Model Name[MobileNetV2 [29]] 0.005556 0.7007 ns Model Name[pspnet r50-d8 [46]] -0.045 0.0106 *

Model Name[fpn r50 [21]] -0.2081 < 0.0001 ****
Model Name[upernet r50 [38]] -0.05796 0.001 **

Image Scenario[blur background] -0.0425 0.0288 * Image Scenario[blur background] 0.01833 0.3576 ns
Image Scenario[blur object] -0.07 0.0003 *** Image Scenario[blur object] -0.1571 < 0.0001 ****

Image Scenario[image g] -0.1257 < 0.0001 **** Image Scenario[image g] -0.07131 0.0004 ***
Image Scenario[image b] -0.0985 < 0.0001 **** Image Scenario[image b] -0.03952 0.0476 *

Image Scenario[image grey] -0.06517 0.0008 *** Image Scenario[image grey] -0.01929 0.3332 ns
Image Scenario[image r] -0.087 < 0.0001 **** Image Scenario[image r] -0.07702 0.0001 ***

Image Scenario[Random Background with Real Environment] -0.7078 < 0.0001 **** Image Scenario[segmented image] -0.08143 < 0.0001 ****
Image Scenario[Segmented image] -0.3012 < 0.0001 **** Image Scenario[generated background] -0.1408 < 0.0001 ****

Image Class[1] 0.134 < 0.0001 **** Image Class[1] 0.07619 0.001 ***
Image Class[2] -0.04867 0.0301 * Image Class[2] -0.06508 0.0048 **
Image Class[3] 0.04 0.0745 ns Image Class[3] 0.05222 0.0234 *
Image Class[4] 0.1004 < 0.0001 **** Image Class[4] 0.08127 0.0004 ***
Image Class[5] 0.1333 < 0.0001 **** Image Class[5] 0.2713 < 0.0001 ****

Image Class[6] 0.07667 0.0007 *** Image Class[6] 0.3021 < 0.0001 ****
Image Class[7] 0.01044 0.6409 ns Image Class[7] 0.1641 7.137 ****
Image Class[8] 0.09067 < 0.0001 **** Image Class[8] 0.1548 6.73 ****
Image Class[9] 0.09933 < 0.0001 **** Image Class[9] 0.2216 9.635 ****

Image Class[10] 0.1651 < 0.0001 **** Image Class[10] 0.2689 11.69 ****
Image Class[11] -0.02244 0.3164 ns Image Class[11] 0.04079 1.774 ns

performance variance). Consistent with the observation in
the previous part, ViT [8] and Swin-Transformer [22] have
higher variances across diverse scenarios and lower robust-
ness scores.

Table 2 also shows the performance on another dataset
Cifar10 [18]. In this case, for CNN-based models,
a model with a higher robustness score tends to have
higher accuracy. For the transformer-based models, Swin-
Transformer [22] has both a higher robustness score and
better performance. This indicates that the robustness score
calculated on XIMAGENET-12 can be an effective perfor-
mance indicator for other datasets. To show that our robust-
ness evaluation can also provide helpful guidance to real-
world applications such as industry, we investigate the per-
formance of ResNet50 [11] and VGG-16 [32] backbones on
an industrial anomaly detection dataset MVTec AD [2]. We

show the Saliency maps of ResNet50 [11] and VGG-16[32]
on MVTec AD [2] in Figure 4. It indicates that the model
with a higher robustness backbone tends to focus more on
features from the foreground object and less on the back-
ground, such as scratches on metal nuts.

Performance Evaluation of Multiple Linear Regres-

sion. Here, we further examine the changes in model per-
formance across scenarios (EX1), using multiple linear re-
gression analyses. In addition to addressing classification
tasks, we extend our investigation to include segmentation
tasks.

As shown in Table 3 of multiple linear regression anal-
yses, we consider these three variables: Model Name, Sce-
narios, and Image Class. We use the P-value to indicate the
confidence of our results and use the P-value summary as
an auxiliary indicator of the P-value.
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Figure 5. TOP-1 Accuracy for SOTA models pre-trained on IMAGENET original formal images and tested on XIMAGENET-12 different
background scenarios.

Specifically, the coefficient of Estimate for Segmenta-
tion Model Name[dpt-vitb16] is -0.1999, indicating that,
compared to the reference segmentation Intercept model
(deeplabv3plus-r50-d8 [5]), model[dpt-vitb16] is associ-
ated with a decrease of 0.1999 in segmentation accuracy.
With most of the SOTA Visual segmentation model Accu-
racy decrease from -0.05 to -0.22 and the base Intercept
model only achieve 0.6672 Accuracy with (P < 0.0001),
it further verified that our benchmark could serve a valu-
able tool for measuring (SOTA) segmentation models per-
formance in segmenting complex shapes or detecting de-
tailed area in AI-generated background images (with Image
Scenarios AI generated background leads to accuracy de-
crease by 0.14).

Besides, we can see that models suffer a performance
drop once the background changes as all Image Scenarios

Accuracy dropped from -0.7078 (Random Background) to
color change (image grey) -0.06517. Notably, the Classi-
fication(EX1) results in Table 3 also indicate foreground

class also play an important role for content reasoning,
since Image Class[1,4,5] will lead to Accuracy increase
in replacement of baseline Intercept Image Class[0], while
other leads to decrease.

The results of the regression analyses are presented
in Table 3, confirming our hypotheses. Our benchmark

should present also a challenging task for SOTA segmen-

tation models. It serves as an effective tool for assessing
model performance in segmenting complex shapes and de-
tecting detailed areas within AI-generated background im-
ages.

Accuracy Drop of SOTA Models. We show the accu-
racy variance of SOTA visual models in Figure 5. Notably,



we observed that the presence of “Random Background”
had the most substantial adverse impact on accuracy, result-
ing in a significant decrease. Furthermore, the “Segmented
Image” scenario also exhibited a significant negative influ-
ence, leading to a decrease in accuracy.

5.3. Qualitative Results

We compare the semantic annotations of our
XIMAGENET-12 with the IOG benchmark dataset [48]
and ImageNet-9 dataset [37] in Figure 6. As can be
seen, the semantic labels of XIMAGENET-12 are much
more precise than the others. We consider that due to the
more precise separation of foreground and background,
we can conduct a more reliable evaluation and analysis
of the model robustness. For example, the sup-optimal
annotation of ImageNet-9 [37] leads to a misleading claim
that removing the background negatively impacts test
accuracy. In contrast, we argue that poor segmentation
quality, particularly with minimal foreground remaining,
hampers the performance of recognition. We believe
that our dataset can perform as a high-quality dataset for
analysis of domain adaptation/generation.

We show the segmentation and attention map of SOTA
segmentation models on XIMAGNET-12 in Figure 7. As
can be seen, those segmentation models do not show satis-
fying performance. For example, the clothes of the dog has
not been recognized. This indicates that our XIMAGNET-
12 is a challenging dataset for the segmentation task.

6. DISCUSSION AND CONCLUSION

In this work, we introduce an explainable visual benchmark
dataset, XIMAGENET-12, to evaluate the robustness of vi-
sual models. XIMAGENET-12 consists of six diverse sce-
narios, such as overexposure, blurring, color changes, etc.,
to simulate real-world situations. We further develop a ro-
bustness score to investigate the model performance under
various conditions. From the experiments, we conclude the
following interesting findings:

1) Different scenarios influence visual models in dif-
ferent degrees, and randomly substituting the background
leads to the most severe performance drops.

2) Models trained and tested with well-segmented fore-
grounds tend to perform well even if the backgrounds are
missing.

3) A model with higher accuracy is not necessarily more
stable.

We expect the XIMAGENET-12 dataset will empower
researchers to thoroughly evaluate the robustness of their vi-
sual models under challenging conditions. In future work,
we will show how XIMAGENET-12 can serve as a high-
quality dataset for more visual applications such as seman-
tic segmentation tasks and domain adaptation/generation
tasks.

IoG Benchmark Dataset

ImageNet-9 Dataset

XIMAGENET-12 Dataset

Figure 6. Additional Related Works and Explicit Comparisons. As
can be seen, the semantic annotation of XIMAGENET-12 dataset
is much more precise than the other datasets.



Figure 7. Attention Map of SOTA segmentation models. “psp-
net [46] r50-d8” achieves a MIoU of 0.562 in our dataset. Our
dataset is also enabled to tackle the intricacies of segmenting ob-
jects within AI-generated backgrounds, offering a substantial im-
provement in human-labeled ground truth quality compared to
the original ImageNet [7], where only image labels are included.
Moreover, it proves to be a valuable resource for identifying AI-
generated images on the internet, showcasing its versatility and
significance in contemporary computer vision research.
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