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ABSTRACT

The cold-start initialization stage plays a pivotal role in training Multimodal Large
Reasoning Models (MLRMs), yet its mechanisms remain insufficiently under-
stood. To analyze this stage, we introduce the Visual Attention Score (VAS), an
attention-based metric that quantifies how much a model attends to visual tokens.
We find that reasoning performance is strongly correlated with VAS (r = 0.9616):
models with higher VAS achieve substantially stronger multimodal reasoning.
Surprisingly, multimodal cold-start fails to raise VAS, leaving distributions close
to the base model, whereas text-only cold-start induces a clear increase. We term
this counter-intuitive phenomenon Lazy Attention Localization. To validate its
causal role, we design training-free interventions that directly manipulate atten-
tion allocation at inference time, yielding consistent 1–2% gains without retrain-
ing. Building on these insights, we propose Attention-Guided Visual Anchor-
ing and Reflection (AVAR), a comprehensive cold-start framework that integrates
visual-anchored data synthesis, attention-guided objectives, and visual-anchored
reward shaping. Applied to Qwen2.5-VL-7B, AVAR delivers an average gain of
7.0% across 7 multimodal reasoning benchmarks. Ablation studies further con-
firm that each component of AVAR contributes step-wise to the overall gains.

1 INTRODUCTION

Recent advances in Reinforcement Learning (RL) have significantly enhanced the reasoning capa-
bilities of Large Language Models (LLMs) such as OpenAI o1 (Jaech et al., 2024) and DeepSeek-
R1 (Shao et al., 2024; Guo et al., 2025). Building upon this success, recent research has leveraged RL
to construct Multimodal Large Reasoning Models (MLRMs), aiming to equip them with stronger
cross-modal reasoning capabilities (Zhou et al., 2025; Yang et al., 2025b; Wei et al., 2025b; Yue
et al., 2025b; Li et al., 2025). However, applying these techniques directly exposes a critical but
underexplored stage of the training pipeline: the cold-start initialization stage that precedes the RL
stage. Understanding and optimizing this stage remains a core limitation of current MLRMs.

A surprising and counter-intuitive phenomenon illustrates this limitation: A text-only cold-start
yields substantial improvements for MLRMs in subsequent RL tuning, whereas multimodal cold-
start provides only marginal gains (Wei et al., 2025a;b; Yue et al., 2025b). This phenomenon reveals
a bottleneck in current training paradigms: MLRMs fail to leverage multimodal signals during cold-
start, leading to inefficient resource use and limiting the potential of RL for multimodal reasoning.
Despite its importance, this paradoxical outcome still lacks a clear quantitative explanation.

To shed light on this paradox, we re-examine multimodal reasoning through the lens of attention al-
location (Sec. 3). We introduce Visual Attention Score (VAS) to quantify how much a model attends
to visual tokens. Correlating VAS with reasoning performance across representative MLRMs, we
find that reasoning performance is strongly correlated with VAS (r = 0.9616, Figure 1a): models
with higher VAS achieve stronger multimodal reasoning, while those with low VAS perform worse.
Furthermore, we find that multimodal cold-start fails to increase VAS, leaving distributions close to
the base model. In contrast, text-only cold-start induces an increase in visual attention and stronger
visual grounding (Figure 1b). We term this phenomenon Lazy Attention Localization. It reveals
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Figure 1: Analysis of different models’ performance and Visual Attention Score (VAS) distribution.
(a) Model performance by mean VAS; (b) VAS distribution across layers.

that the effectiveness of cold-start arises not from multimodal alignment but from reasoning patterns
internalized through text-only data, which enable models to preserve visual grounding in inference.

Building on this observation, we design a set of training-free pilot experiments that directly ma-
nipulate attention allocation at inference time (Sec. 4). By amplifying attention to visual tokens
and reducing redundant focus on system tokens, we observe consistent gains in multimodal rea-
soning without any retraining. Across models with different baseline performance levels, including
Qwen2.5-VL-7B, Revisual-R1-CS and OVR-CS, our method yields average improvements of 1–2%.
These results provide causal evidence that attention distribution is a decisive factor for reasoning ca-
pability. We therefore consider whether redundant attention to system tokens can be reduced and
reallocated to strengthen visual tokens during training.

Motivated by this insight, we propose Attention-Guided Visual Anchoring and Reflection
(AVAR), a framework that explicitly reshapes attention allocation during cold-start training (Sec. 5).
AVAR first employs a three-stage data synthesis pipeline that embeds visual anchors throughout the
reasoning process, orchestrating models to generate synthetic data with built-in visual reflection. It
then introduces attention-guided training objectives that enhance visual anchoring by encouraging
focus on visual tokens while suppressing reliance on system tokens. Finally, during reinforcement
learning, AVAR incorporates visual-anchored reward shaping, ensuring models not only produce
correct answers but also maintain strong visual grounding across extended reasoning chains.

Extensive experiments across 7 multimodal reasoning benchmarks demonstrate the effectiveness
of AVAR (Sec. 6). Compared to the baseline Qwen2.5-VL-7B, our final model AVAR-Thinker
achieves an average gain of 7.0%, with the strongest improvements on MathVision (+12.2%) for
multi-step geometric reasoning and HallusionBench (+8.8%) for robustness against visual halluci-
nations. Systematic ablation studies further validate the overall pipeline design, clearly showing that
each component of AVAR contributes step-wise to the observed performance gains.

In summary, our work makes the following contributions:

• We introduce the Visual Attention Score (VAS), a metric that quantifies attention to visual tokens
and strongly correlates with reasoning performance. Using VAS, we uncover Lazy Attention Local-
ization, showing that multimodal cold-start fails to raise visual attention while text-only initialization
increases it. This explains the underlying cause of multimodal cold-start ineffectiveness.

• We design training-free interventions that manipulate attention allocation at inference time by re-
ducing redundant attention to system tokens and reallocating it to visual tokens. These interventions
achieve consistent gains of 1–2% across different models, establishing causal evidence for the role
of visual attention in multimodal reasoning.

• We propose AVAR, a cold-start framework that reshapes attention allocation by combining visual-
anchored data synthesis, attention-guided objectives, and visual-anchored reward shaping. It shifts
redundant attention from system to visual tokens, enabling stronger visual grounding. Applied to
Qwen2.5-VL-7B, AVAR achieves a 7.0% average gain across 7 multimodal benchmarks.
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2 RELATED WORKS

2.1 MULTIMODAL LARGE REASONING MODEL

Multimodal large reasoning models (MLRMs) aim to tackle reasoning tasks in multimodal scenar-
ios, such as STEM problems (Lu et al., 2023; Wang et al., 2024), perception-related tasks (Zhang
et al., 2024b). Recent works have focused on improving the curation of cold-start thinking
data (Huang et al., 2025; Meng et al., 2025; Deng et al., 2025; Wang et al., 2025a) and explor-
ing RL-based approaches (Zhang et al., 2025; Yang et al., 2025b; Yu et al., 2025a; Luo et al., 2025).
Several studies highlight that high-quality unimodal “thinking data” can substantially improve rea-
soning capabilities of MLRMs (Wei et al., 2025b; Xiaomi, 2025; Chen et al., 2025). However, these
works stop short of uncovering mechanisms behind this effect, and they have yet to investigate how
multimodal reasoning data, particularly in “reasoning-with-image” settings, should be optimized.

2.2 VISUAL ATTENTION ANALYSIS

Recent studies have analyzed how Multimodal Large Language Models (MLLMs) allocate atten-
tion across textual and visual information, revealing that inappropriate attention to visual tokens
remains a bottleneck. Specifically, Yin et al. (2025) demonstrate that modality fusion occurs pre-
dominantly in the middle layers, yet models devote insufficient attention to visual signals and over-
rely on language priors. Tang et al. (2025) further reveal that attention is unevenly distributed across
heads, with certain heads disproportionately dominated by language priors. Liu et al. (2025) show
that reasoning-oriented MLLMs allocate substantially less attention to visual tokens than their non-
reasoning counterparts, thereby amplifying hallucinations in longer reasoning chains. To address
these issues, several inference-time interventions (Yin et al., 2025; Fazli et al., 2025; Tang et al.,
2025) have been proposed to reweight attention distribution toward visual tokens. Building on this
line of work, our study shifts the focus to the cold-start stage and demonstrates that guided initial-
ization can reshape attention allocation, providing a stronger foundation for multimodal reasoning.

3 COLD START RESHAPES ATTENTION ALLOCATION

3.1 VISUAL ATTENTION SCORE

We begin our analysis by introducing the Visual Attention Score (VAS), a metric that measures how
much a model attends to visual tokens relative to system tokens during multimodal reasoning.

Formally, let A(l, h) ∈ RT×T denote the attention matrix at layer l and head h, where T is the total
number of tokens. Let V denote the index set of visual tokens, S the index set of system tokens, and
U the index set of user tokens. For a query token i ∈ U , the per-head VAS is defined as

VASi(l, h) =

∑
j∈V Ai,j(l, h)∑
j∈S Ai,j(l, h)

(1)

We compute the model-level VAS by averaging over all heads, layers, and query tokens:

VAS =
1

L ·H · |U |

L∑
l=1

H∑
h=1

∑
i∈U

VASi(l, h) (2)

where L and H are the numbers of transformer layers and attention heads, respectively. Intuitively,
higher VAS values indicate stronger reliance on visual features relative to system prompts, while
lower values suggest that system tokens dominate the model’s attention.

To examine how cold-start strategies reshape visual attention, we compute VAS for a set of repre-
sentative 7B multimodal models, including Qwen2.5-VL-7B (Bai et al., 2025), R1-OneVision (Yang
et al., 2025b), ThinkLite-VL (Wang et al., 2025c), MM-Eureka (Meng et al., 2025), Revisual-R1-
CS, Revisual-R1-RL (Chen et al., 2025), OVR-CS, OVR-RL (Wei et al., 2025b), MiMo-VL-CS and
MiMo-VL-RL (Yue et al., 2025b). For each model, we sample 200 cases from MathVista (Lu et al.,
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2023) to compute VAS, and further evaluate their reasoning performance on four multimodal bench-
marks: MathVista (Lu et al., 2023), MathVision (Wang et al., 2024), MathVerse-Vision-Only (Zhang
et al., 2024a), and DynaMath-WORSE (Zou et al., 2024). We report the average performance across
datasets together with the corresponding VAS, as detailed in Figure 1a. More detailed analysis of
attention behaviors is provided in the Appendix D.

3.2 REASONING CAPABILITIES SCALES WITH VISUAL ATTENTION

As shown in Figure 1a, reasoning performance is strongly correlated with VAS, with a Pearson cor-
relation coefficient of 0.9616. From Figure 1a, we observe that some models devote minimal atten-
tion to visual features and consistently underperform in reasoning tasks when their VAS falls below
10, we term them Narrow-View Models (e.g., Qwen2.5-VL-7B-Instruct, R1-OneVision, ThinkLite-
VL and MM-Eureka). Models in the intermediate range, with VAS between 10 and 15, display a
more balanced distribution between textual and visual modalities and achieve moderate improve-
ments, we term them Wide-View Models (e.g., Revisual-R1 variants). Finally, models with VAS
greater than 15 sustain strong visual grounding and superior results across benchmarks, we term
them Panoramic-View Models (e.g., OVR-RL, OVR-CS, MiMo-VL-CS and MiMo-VL-RL).

3.3 LAZY ATTENTION LOCALIZATION IN COLD-START TRAINING

Beyond the overall correlation between VAS and reasoning performance, we uncover a counter-
intuitive phenomenon: cold-start with high-quality text-only data consistently outperforms multi-
modal cold-start. Specifically, models initialized with unimodal reasoning data, such as OVR-CS
and Revisual-R1-CS, maintain 15–20% higher attention to visual features compared to those trained
with multimodal reasoning data such as R1-OneVision and ThinkLite-VL.

To further illustrate this phenomenon, we plot the VAS of Qwen2.5-VL-7B, R1-OneVision, and
OVR-CS in Figure 1b. Both Qwen2.5-VL-7B and its multimodal cold-start variant R1-OneVision
exhibit nearly identical attention distributions, with persistently weak reliance on visual tokens
across all layers. In contrast, OVR-CS, initialized with text-only reasoning data, shows consistently
stronger attention to visual tokens throughout the entire inference process.

We term this phenomenon Lazy Attention Localization, highlighting that multimodal cold-start train-
ing does not meaningfully increase attention to visual tokens, whereas text-only initialization in-
duces a clear and consistent shift toward much stronger visual grounding. This paradox suggests
that the effectiveness of cold-start initialization does not arise from direct multimodal alignment, but
rather from structured reasoning patterns learned from text-only data. Once acquired, these reason-
ing strategies significantly enhance the model’s ability to reliably preserve visual grounding during
inference, underscoring the critical role of cold-start attention reshaping.

Key Takeaways

1. Visual attention score is a strong predictor of reasoning ability: Models that devote
greater attention to visual tokens consistently achieve stronger performance across multi-
modal reasoning benchmarks.

2. The advantage of text-only cold-start stems from attention reshaping: We reveal that
multimodal cold-start suffers from Lazy Attention Localization, failing to increase attention
to visual tokens. In contrast, text-only initialization induces a clear shift toward stronger
visual grounding, explaining its superior effectiveness.

4 TRAINING-FREE ATTENTION ROLE IDENTIFICATION

Building upon our observation that effective cold-start training reshapes attention allocation, we next
ask whether similar gains can be achieved without additional training. To this end, we conduct a
set of training-free pilot experiments that directly manipulate attention weights at inference time,
inspired by the allocation patterns observed in stronger-performing models.

4
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In our experiments, we apply a training-free attention modulation across all transformer layers, in-
troducing selective attention modulation during inference. Our modulation method identifies and
differentially scaling distinct token categories within the attention mechanism. This method oper-
ates directly on the attention weight matrix during the scaled dot-product attention computation,
requiring no model retraining or parameter updates. Specifically, we modify the hidden states Zl,h

at layer l and head h through element-wise operations with attention masks:

Ẑl,h = Zl,h + αimg ·Menh
l,h ⊙ Zl,h − αsys ·Msup

l,h ⊙ Zl,h (3)

where Menh
l,h and Msup

l,h represent the enhancement and suppression masks for image and system
tokens respectively, ⊙ denotes element-wise multiplication, and αimg , αsys are scaling factors that
control the relative importance of each token type during attention computation.
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Figure 2: Performance gains from training-free attention
modulation on MathVista, MathVision, and MathVerse-VO.

We evaluate this approach on 3
representative models, Qwen2.5-
VL-7B, Revisual-R1-CS, and
OVR-CS, across 3 multimodal
reasoning benchmarks: MathVista,
MathVision, and MathVerse-
VO. Results are reported with
αimg = 0.15 while varying
αsys ∈ {0.00, 0.05, 0.40, 0.60}.
As shown in Figure 2, when
αsys ∈ {0.00, 0.40}, performance
consistently improves by 1–2%, re-
vealing a System Token Redundancy
Zone whose excess attention can
be effectively redirected to vision.
These findings further support our earlier observation on Lazy Attention Localization, demonstrating
that insufficient visual attention is a central bottleneck in cold-start initialization.

Key Takeaways

3. Training-free attention modification inference augments reasoning performance:
Emphasizing image features contributes to stronger reasoning capabilities, while system
token attention exhibits redundancy in reasoning tasks.

5 ATTENTION-GUIDED VISUAL ANCHORING AND REFLECTION (AVAR)

Based on our finding that training-free interventions can improve reasoning by reallocating redun-
dant attention from system to visual tokens, we next ask whether this mechanism can be explicitly
integrated into training. To this end, we propose Attention-Guided Visual Anchoring and Reflec-
tion (AVAR), a cold-start framework that systematically reshapes attention allocation to counteract
Lazy Attention Localization. AVAR integrates 3 complementary components: visual-anchored re-
flection data synthesis, attention-guided training objectives, and visual-anchored reward shaping, all
designed to sustain strong visual anchoring throughout reasoning.

5.1 VISUAL-ANCHORED REFLECTION DATA SYNTHESIS

At the data synthesis stage, prior approaches rely on caption-then-reason pipelines, where image
descriptions are first generated and then extended into reasoning chains (Yang et al., 2025b). In con-
trast, our method embeds visual anchors directly into the reasoning process. As shown in Fig. 3, the
pipeline coordinates 3 specialized models to produce reasoning data with built-in visual reflection:

High-fidelity Visual Descriptions Generation. We use Gemini 2.5-Pro (Comanici et al., 2025) to
produce high-fidelity visual descriptions that form the foundation for subsequent reasoning. These
captions provide richer scene understanding than typical MLLM self-descriptions, establishing ac-
curate visual information for the subsequent reasoning process.

5
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Stage 0: Global Scan and Frame Definition
Image Type: Geometric diagram of a triangle 
…
Stage 1: Iterative Element Decomposition
1.Element: Point E: Lies on hypotenuse AB. Right 
angle ∠ CEB =90°. Divides AB into segments x and 
y.
…
Stage 2: Information Linking and Cross-check
•Confirmed: ∆ABC right at C. Marked: ∠ B = 
60°, ∠A =30°. Side labels: a, b, c.
… 
Stage 3: Final Scene Synthesis
The figure shows a right triangle with sides a, b, c, 
angles 30°, 60°, 90°. Point E lies on the hypotenuse 
AB, forming a right angle with C, splitting AB into 
x and y.

Given that x = 7 3, what is the 
value of CE? Choices: 
(A)7 (B) 14 
(C) 21 (D) 14 3

The figure shows a right triangle with sides a, b, c, angles 
30°, 60°, 90°. Point E lies on the hypotenuse AB, forming a 
right angle with C, splitting AB into x and y.
We are given a right triangle ABC with angles 30°, 60°, 
90°. Point E lies on hypotenuse AB, with BE = x = 7 3. 
We need to find CE.
From the 30–60–90 ratios: a = c/2, b = ( 3 /2)c.

Wait, according to the description, yes, opposite the 30°
angle is the shorter leg a, consistent.

By altitude property: a² = c·x, b² = c·y, CE² = x·y.
Substituting a = c/2 → x = c/4. Given x = 7 3→ c = 28
3.

Let me double-check this step: correct.
Now compute altitude: CE = ab/c = (c/2)( 3 /2·c)/c = 
( 3 /4)c.
Plugging c = 28 3→ CE = 21.
Wait, let me re-examine: 
check with CE² = xy → CE² = 441 → CE = 21.

…
We are given a right triangle ABC with angles 30°, 60°, 
90°. Point E lies on hypotenuse AB, with BE = x = 7 3. 
We need to find CE.
From the 30–60–90 ratios: a = c/2, b = ( 3 /2)c.

Wait, look back at the triangle to confirm the relation,
yes, opposite the 30° angle is the shorter leg a, consistent.

By altitude property: a² = c·x, b² = c·y, CE² = x·y.
Substituting a = c/2 → x = c/4. Given x = 7 3→ c = 28 
3.

Let me double-check this step: correct.
! Then,let’s check the image again
Now compute altitude: CE = ab/c = (c/2)( 3 /2·c)/c = 
( 3 /4)c.
Plugging c = 28 3→ CE = 21.
Wait, let me re-examine: 
check with CE² = xy → CE² = 441 → CE = 21.

High-fidelity Visual Description Reflection-enhanced Reasoning Visual Anchor-integrated ReasoningInput

Step 1 : High-fidelity Visual Description Generation
Step 2 : Reflection-enhanced Reasoning Generation
Step 3 : Visual Anchor Integration

Image

Question

Step 1 Step 2 Step 3

Qwen3 235B A22B Qwen3 32B

T : Reflection Segments
T : Visual Anchor Segments

Figure 3: Overview of Visual-Anchored Reflection data synthesis in 3 steps: Visual Description,
Reflection-Enhanced Reasoning, and Visual Anchor Integration.

Reflection-Enhanced Reasoning Generation. We use Qwen3-235B-A22B (Yang et al., 2025a) to
generate extended reasoning chains over the visual descriptions. The model is prompted to perform
iterative self-reflection and error checking, which naturally leads it to leverage the visual context
during multi-step reasoning. This ensures the reasoning chain adheres to continuous grounding in
visual context rather than relying solely on textual context or drifting into hallucinatory context.

Visual Anchor Integration. To further strengthen visual anchoring, we use Qwen3-32B (Yang
et al., 2025a) to augment the reasoning chains with explicit visual anchors. This stage inserts ref-
erences such as “look back at the triangle” or “check the image again”, simulating direct image
perception. By enriching the reasoning chain with these additional visual statements, the data ex-
plicitly ties each reasoning step back to the image, ensuring persistent visual anchoring.

The above data synthesis pipeline produces training data in which visual anchoring arises naturally
throughout reasoning, mirroring the attention patterns of panoramic-view models that sustain high
visual attention ratios. The detailed prompts are provided in the Appendix G.

5.2 ATTENTION-GUIDED TRAINING OBJECTIVES

To explicitly encourage visual anchoring during training, we introduce attention-based loss functions
that directly optimize the model’s attention allocation patterns. Our training objective combines
standard language modeling loss with two complementary attention-guidance components:

Ltotal = LLM + α · Lenhance-img + β · Lsuppress-sys (4)

The image enhancement loss encourages sustained attention to visual tokens:

Lenhance-img = − 1

|L|
∑
l∈L

1

H

H∑
h=1

log

 1

|Q| · |Kimg|
∑
q∈Q

∑
k∈Kimg

Al,h
q,k

 (5)

The system suppression loss reduces redundant attention to system tokens:

Lsuppress-sys =
1

|L|
∑
l∈L

1

H

H∑
h=1

log

 1

|Q| · |Ksys|
∑
q∈Q

∑
k∈Ksys

Al,h
q,k + ϵ

 (6)

where L denotes the set of targeted layers, H represents the number of attention heads, Q, Kimg,
and Ksys represent query, image, and system token sets respectively, and Al,h

q,k denotes the attention
weight from query q to key k at layer l and head h.

5.3 VISUAL-ANCHORED REWARD SHAPING

In the RL stage, we introduce a visual attention reward that explicitly encourages the model to
sustain visual anchoring throughout extended reasoning chains. The reward evaluates the ratio of

6
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attention assigned to visual tokens relative to system tokens, providing an auxiliary signal beyond
correctness:

rvisual =

0 if rollout outcome is incorrect
1

|T |
∑

t∈T

(
1
|L|

∑
l∈L

∑
k∈Kimg

Al
t,k∑

k∈Ksys
Al

t,k+ϵ

)
if rollout outcome is correct

(7)

This reward structure ensures the model not only arrives at correct answers but also maintains strong
visual grounding. The final reward combines three signals: raccuracy rewards the correctness of the
final answer, rvisual promotes sustained attention to visual tokens relative to system tokens, and rformat
enforces compliance with the required output structure. The overall reward is therefore defined as:

rtotal = raccuracy + λv · rvisual + λf · rformat (8)

By integrating visual-anchored data synthesis, attention-guided training, and visual-anchored re-
wards, AVAR systematically reshapes how multimodal models use visual information, turning per-
sistent visual reflection into a core capability rather than an incidental byproduct. To optimize the
policy using the shaped reward rtotal, we employ Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), a variant of policy gradient methods that stabilizes training by comparing relative per-
formance within groups of rollouts. In each GRPO update step, we sample a batch of trajectories
{τi}Ni=1, compute their total rewards r(i)total, and form groups (e.g., by quantiles or clustering) to esti-
mate relative advantages. Let πθ denote the current policy parameterized by θ. The GRPO objective
with our visual-anchored reward shaping is:

Ai =
rtotal,i −mean

(
{rtotal,1, rtotal,2, . . . , rtotal,G}

)
std

(
{rtotal,1, rtotal,2, . . . , rtotal,G}

) (9)

JGRPO(θ) = E(q,y)∼D,{oi}G
i=1∼πθold

(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min(rit(θ)A
i, clip(rit(θ), 1− ϵ, 1 + ϵ)Ai)− βDi,t

KL(πθ||πref ))]
(10)

6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

Implementations We use Qwen2.5-VL-7B (Bai et al., 2025) as the base model. Cold-start is
trained on 30.6K samples from our Visual-Anchored Reflection Data Synthesis pipeline for 20
epochs with LlamaFactory (Zheng et al., 2024) on 16 A100 GPUs. The subsequent RL stage uses
VeRL (Sheng et al., 2024) for 4 epochs on 17.9K public samples with the same hardware. This
pipeline yields our final model, AVAR-Thinker. Additional details on dataset curation and experi-
mental settings are provided in Appendix C and E, respectively. For generalization, we also report
results on Llama-3.2-Vision-11B-Instruct in the Appendix B.

Evaluation We comprehensively validate the effectiveness of AVAR from multiple reasoning and
understanding perspectives. To assess math reasoning capabilities, we evaluate on MathVista (Lu
et al., 2023), MathVerse (Zhang et al., 2024a), and MathVision (Wang et al., 2024). For multi-
disciplinary reasoning performance, we use MMMU and MMMU-Pro (Yue et al., 2024; 2025a).
Additionally, to examine perceptual understanding, we conduct evaluations on MMStar (Chen et al.,
2024a) and HallusionBench(Guan et al., 2024).

Hyperparameters In Equation 4, α and β are set to 0.15. The stability constant ϵ in Equations 6
and 8 is fixed to 10−6. In Equation 8, we set λv = 0.3 and λf = 0.1. Attention-guided training
objectives and visual-anchored reward shaping are applied across all layers.
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Table 1: Performance comparison across benchmarks. Best scores are bold, second best are
underlined. Closed-source models are compared with each other, open-source models with ours.
† Models trained on MathVision, so their results on MathVision are omitted.

Math Reasoning Multidisciplinary Perception

Model MathVista MathVision MathVerse-VO MMMU-VAL MMMU-Pro MMStar Hallusion. Avg.

Closed-Source

GPT-4o 63.8 31.2 - 70.7 54.5 65.1 56.2 -

Claude-3.7-Sonnet 74.5 58.6 - 75.2 50.1 68.8 58.3 -

Open-Source General Models

Qwen2.5-VL-7B 68.2 25.2 41.1 58.1 38.3 62.1 50.7 49.1

InternVL2.5-8B 64.4 22.0 39.5 56.0 38.2 63.2 51.1 47.8

LLaVA-OneVision-7B 58.6 18.3 19.3 48.8 35.5 61.7 47.5 41.4

Llama-3.2-11B-Vision-Instruct 48.6 19.7 18.4 50.7 33.0 49.8 40.3 37.2

Multimodal Reasoning Models

Mulberry-7B† 63.1 - 42.9 55.0 34.8 61.3 54.1 -

R1-OneVision 64.1 29.9 40.0 49.1 32.2 52.2 46.0 44.8

OpenVLThinker 72.3 25.9 44.6 53.0 42.9 59.5 53.0 50.2

ThinkLite-VL 75.1 32.9 45.8 55.5 40.0 65.0 52.3 53.1

MM-Eureka-7B 73.0 26.9 48.1 52.0 42.4 65.2 50.7 51.2

Vision-R1† 73.5 - 47.7 56.3 39.6 64.8 51.9 -

VLAA-Thinker-7B 68.0 26.4 48.2 55.7 40.9 64.2 50.9 50.6

Vision-SR1 68.1 26.7 47.1 61.3 43.8 64.1 54.3 52.2

Our model

AVAR-Thinker 74.7 37.4 50.4 63.8 42.9 64.1 59.5 56.1
∆ over Qwen2.5-VL-7B +6.5 +12.2 +9.3 +5.7 +4.6 +2.0 +8.8 +7.0

Table 2: Ablation study of our proposed components. Starting from the baseline, we show the
performance impact of adding different modules, indicated by a checkmark (✓).
Configuration Method Components Benchmark Performance

VARD AGTO VARS MathVista MathVision MathVerse-VO MMStar MMMU-VAL MMMU-Pro Hallusion. Avg.

Baseline (Qwen2.5-VL-7B) 68.2 25.2 41.1 62.1 58.1 38.3 50.7 49.1
✓ 70.6 32.9 43.5 61.1 55.2 38.7 55.3 51.0
✓ ✓ 72.0 34.1 44.0 62.8 58.3 39.8 57.2 52.6

AVAR-Thinker ✓ ✓ ✓ 74.7 37.4 50.4 64.1 63.8 42.9 59.5 56.1

6.2 MAIN RESULTS

Table 1 reports performance across diverse multimodal benchmarks. AVAR-Thinker delivers an
average gain of 7.0 % over the baseline Qwen2.5-VL-7B, with consistent improvements across
mathematical reasoning (MathVista: +6.5%, MathVision: +12.2%), multidisciplinary understand-
ing (MMMU: +5.7%, MMMU-Pro: +3.1%), and perceptual reasoning (HallusionBench: +8.8%).
The gains are particularly pronounced on MathVision, which requires multi-step geometric reason-
ing, and on HallusionBench, which evaluates robustness against visual hallucinations, showing that
sustained visual attention enhances both reasoning depth and robustness to language-prior biases.

Against existing multimodal reasoning models, AVAR-Thinker establishes a new state of the art
among 7B models. It surpasses ThinkLite-VL by 3.0% and MM-Eureka by 4.9% on average, and
matches the performance of Vision-R1 despite not being trained on MathVision. Notably, it outper-
forms models initialized with multimodal cold-start data (R1-OneVision, OpenVLThinker) by large
margins, underscoring that attention reshaping is critical for effective reasoning.

6.3 ABLATION STUDY

To disentangle the contribution of each component in AVAR, we conduct systematic ablations start-
ing from the baseline model. Table 2 presents results across all evaluation benchmarks.

Visual-Anchored Reflection Data (VARD). Using visual-anchored reflection data synthesis alone
yields notable gains (+1.7%), with particularly strong improvements on MathVision (+7.7%) and
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Table 3: Comparison of our Visual-Anchored Reflection Data (VAR) against other data-centric cold-
start methods. The best scores are bold; the second best are underlined.

Method Benchmark Performance Avg.
MathVista MathVision MathVerse-VO MMStar MMMU-val MMMU-Pro Hallusion.

Baseline (Qwen2.5-VL-7B) 68.2 25.2 41.1 62.1 58.1 38.3 50.7 49.1

+ R1-OneVision 63.3 26.3 39.7 54.9 49.9 34.6 43.8 44.6
+ OpenVLThinker 68.9 25.3 37.8 58.7 55.7 36.0 54.1 48.1
+ Vision-SR1 67.6 27.9 42.3 46.9 50.7 36.3 42.1 44.8

+ VARD (Ours) 70.6 32.9 43.5 61.1 55.2 38.7 55.3 51.0

HallusionBench (+4.6%). This demonstrates that embedding visual anchors directly into reasoning
chains, rather than relying on caption-then-reason pipelines, substantially improves visual grounding
even before the introduction of attention-guided training.

To contextualize this effect, we compare VARD against other data-centric cold-start methods (Ta-
ble 3). Applied to the same baseline model, VARD consistently outperforms data from R1-
OneVision (+6.4%), OpenVLThinker (+2.9%), and Vision-SR1 (+6.2%). Notably, some datasets
such as R1-OneVision even reduce performance relative to the baseline (-4.7%), indicating that sim-
ply scaling reasoning data is insufficient and can be harmful. These findings emphasize the impor-
tance of visually anchored design, which explicitly preserves visual grounding throughout reasoning
chains, a factor that other cold-start datasets may not adequately address.

Attention-Guided Training Objectives (AGTO). Adding attention-guided training losses to the
VARD data results in cumulative improvements (+1.6%). The visual enhancement loss Lenhance-img
and system suppression loss Lsuppress-sys work synergistically to reshape attention distributions.
The gains are most evident on benchmarks requiring precise visual understanding: MathVerse-VO
(+2.9%) and MMMU-VAL (+3.1%).

Visual-Anchored Reward Shaping (VARS). The complete AVAR framework, including visual-
anchored rewards during RL, achieves the best performance (+6.8%). This confirms that incentiviz-
ing visual attention during RL prevents the model from reverting to text-only reasoning patterns.

6.4 ANALYSIS OF ATTENTION EVOLUTION

Table 4: Evolution of VAS and performance
across AVAR training stages.
Model VAS Avg. Performance
Qwen2.5-VL-7B 7.5 49.3
Qwen2.5-VL-7B + VARD Data 10.1 51.0
AVAR-CS 13.8 52.6
AVAR-Thinker 18.9 56.1

Table 4 tracks how the VAS evolves across train-
ing stages. The baseline model, Qwen2.5-VL-7B,
starts with a VAS of 7.5 and an average perfor-
mance of 49.3%. Introducing VARD data raises the
VAS to 10.1, with performance improving to 51.0.%
With attention-guided training, the AVAR-CS model
reaches a VAS of 13.8 and achieves 52.6% average
performance. Finally, our full model AVAR-Thinker, which integrates attention-guided training and
visual-anchored reward shaping, attains a VAS of 18.9 and an average score of 56.1%. This progres-
sion illustrates that each component of the AVAR framework incrementally increases VAS, leading
to stronger visual grounding and reasoning ability, ultimately achieving a panoramic view.

7 CONCLUSION

In this work, we investigate the critical role of the cold-start initialization stage in training MLRMs.
We introduce the VAS, a novel metric that quantifies a model’s reliance on visual tokens and re-
veals a strong correlation with multimodal reasoning performance. Our analysis uncovers a counter-
intuitive phenomenon, which we term Lazy Attention Localization, where conventional multimodal
cold-start training fails to enhance visual attention, while text-only initialization paradoxically in-
duces a significant increase. To address this bottleneck, we propose AVAR, a comprehensive frame-
work designed to explicitly reshape attention allocation during cold-start training. AVAR integrates
three synergistic components: a visual-anchored data synthesis pipeline that embeds visual ground-
ing directly into the reasoning process; attention-guided training objectives that encourage focus
on visual tokens while penalizing over-reliance on system prompts; and a visual-anchored reward
shaping mechanism for the subsequent RL stage.
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A LLM USABLE STATEMENT

In accordance with the ICLR 2026 policy, we disclose the assistive use of LLMs in the preparation of
this work. LLMs were employed to support grammar correction, language refinement, and improve-
ment of textual clarity. In addition, LLMs were used to assist in code debugging and to synthetically
generate small portions of data for preliminary experiments. All LLM-generated content has been
carefully reviewed, validated, and revised by the authors. The authors take full responsibility for the
accuracy and originality of the final manuscript. LLMs have also been used to search for relevant
papers and citations.

B GENERALIZATION EXPERIMENT

Table 5: Ablation study of our proposed components on Llama-3.2-11B-Vision-Instruct model.
Configuration Method Components Benchmark Performance

VARD AGTO VARS MathVista MathVision MathVerse-VO MMStar MMMU-VAL MMMU-Pro HallusionBench Avg.

Baseline (Llama-3.2-11B-Vision-Instruct) 48.6 19.7 18.4 49.8 50.7 33.0 40.3 37.2
✓ 56.6 25.5 25.4 58.0 55.2 36.4 45.5 43.2
✓ ✓ 57.4 25.2 26.6 58.8 56.2 37.0 46.4 44.0

AVAR-Thinker ✓ ✓ ✓ 61.7 26.9 29.0 61.8 58.6 38.9 50.1 46.7

To evaluate the generalization capability of AVAR, we conducted generalization experiments on
Llama-3.1-Vision-Instruct using the same training dataset. As shown in Table 5, the individual
modules continue to yield significant and consistent incremental improvements, demonstrating the
robust generalizability of our approach.

C DATA CURATION

The Cold-Start dataset comprises five sources: R1-ShareVL (∼22.2K), Geo3K (∼2.1K), M3COT
(∼3.2K), AlgoPuzzleVQA (∼1.8K), and SOLIDGEO (∼1.3K), totaling approximately 30.6K in-
stances (Yao et al., 2025; Lu et al., 2021; Chen et al., 2024b; Ghosal et al., 2025; Wang et al.,
2025b). In comparison, the RL dataset includes four sources: R1-ShareVL (∼12.1K), Geo3K
(∼2.1K), Super-CLEVER (∼2.2K) (Li et al., 2023), and AI2D (∼1.5K) (Kembhavi et al., 2016),
totaling approximately 17.9K samples.

When using the RL dataset, we first perform a one-time difficulty filtering based on Qwen2.5-VL-
7B: under 8 rollout iterations, we select samples whose accuracy falls between 0.25 and 0.75 (Yu
et al., 2025b).

D FINE-GRAINED ATTENTION ANALYSIS OF DIFFERENT MODELS
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Figure 4: Attention allocation of Qwen2.5-VL-7B, R1-OneVision and OVR-CS on Mathvista.

To further investigate the impact of different cold-start strategies on attention allocation patterns,
we conduct a fine-grained analysis of attention distributions across different token types (visual fea-
tures, user instructions, and system prompts) for representative models. The data in Figure 4-5 show
that R1-OneVision and ThinkLite-RL, trained on multimodal thinking data, do not alter the attention
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Figure 5: Attention allocation of ThinkLite-VL, RevisualR1-CS and MIMO-VL-CS on Mathvista.
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Figure 6: Attention allocation of Qwen2.5-VL, Vision-R1 and OVR-CS on Mathvision.

distribution behavior of the base model. In contrast, models trained on high-quality unimodal think-
ing data, RevisualR1-CS, OVR-CS and MIMO-VL-CS successfully reduce redundant attention to
system tokens and redirect greater focus toward image information.

The result on MathVision (Figure 6) demonstrates the same pattern: Vision-R1, trained on multi-
modal thinking data, fails to elicit the reflective attention mechanism that enhances visual focus.

E EXPERIMENT SETUP

In this section, we present the key hyperparameters for the cold-start and RL phases in Table 6.
Additionally, we use transformers==4.49.0 in our training-free experiments.

Table 6: Hyperparameters search spaces used in experiments.

Cold-start RL

Hyperparameter Value Hyperparameter Value

Cutoff length 30000 Max response length 30000
Epochs 20 Weight decay 3e-5
Learning rate 5e-6 Learning rate 1e-6
Warm-up ratio 0.1 Warm-up ratio 0.03
Batch size 512 Batch size 256
Lr scheduler type cosine KL Divergence coefficient 0.0
Bf16 true Rollout 8
Training module all Temperature 0.8
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Showcase on MathVerse-VO

• The outer circles are tangent to the center circle, so the distance from the center of the large circle to the 
center of any outer small circle is 2r.
• Since the outer circles are also tangent to the large circle, the radius of the large circle R = 2r + r = 3r
Therefore, the area of the large circle is π(3r)² = 9πr².
Now I need to identify what's shaded. Looking at the image, the shaded portions appear to be:
1.The upper right portion of the central circle (appears to be half of it)
2.A portion of the circle labeled B on the right side
Actually, let me reconsider the shading pattern. The image shows that certain regions are shaded in gray. 
It appears that:
• Half of the central circle (labeled P) is shaded
• Half of the circle on the right (labeled B) is shaded
If half of two circles are shaded, then the total shaded area would be: ½πr² + ½πr² = πr²
This equals exactly the area of one small circle.
Wait, let me look more carefully at the shading. The vertical line through point P suggests we're 
looking at the shaded regions created by this diameter. The shaded portions appear to be the right half of 
the central circle and the right half of the rightmost circle.
So the shaded area = ½(area of central circle) + ½(area of right circle) = ½πr² + ½πr² = πr²
This is exactly equal to the area of one small circle. </think>
<answer> To solve this problem, I'll analyze the configuration of the seven equal circles and identify the 
shaded regions.
Let r denote the radius of each small circle. Since all seven circles are equal, each has area πr².
From the geometric arrangement:
• One circle is positioned at the center (marked P)
• Six circles are arranged symmetrically around it
• All circles are tangent to their neighbors
• A vertical line passes through the center, creating the shaded regions
The shaded portion consists of:
• The right half of the central circle (area = ½πr²)
• The right half of the rightmost circle labeled B (area = ½πr²)
Total shaded area = ½πr² + ½πr² = πr²
Since the area of one small circle is πr², the shaded area equals exactly 1 times the area of a small circle.
The answer is 1. </answer>

<think> Looking at this geometry problem, I need to find the 
area of the shaded portion in terms of the area of one small 
circle. 
Let me denote the radius of each small circle as r. Since all 
seven small circles have equal radii, the area of one small 
circle is πr².
From the figure, I can see there's a large circle containing all 
seven small circles. There are 6 small circles arranged around 
the perimeter, tangent to each other and to the large circle, with 
one small circle at the center tangent to all six outer circles.
To find the radius of the large circle, check the image again:
• The center small circle has radius r
• Each of the 6 outer small circles also has radius r

Figure 7: AVAR-Thinker on MathVerse-VO: A showcase demonstrating its powerful visual percep-
tion and reflective capabilities.
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F CASE STUDY

In this section, we provide a clear demonstration in MathVerse-VO, where the process involves
reasonable visual reflection contexts, which inspire a visual reflection pattern.

G PROMPT ENGINEERING

In this section, we present the carefully designed prompts used in Section 5.1, including high-fidelity
visual description generation, reflection-enhanced reasoning generation and visual anchor integra-
tion. We employ different prompts for mathematical and scientific problems.

During the construction of AR data, we employ Gemini-2.5-Pro to perform high-fidelity visual in-
formation translation for math and science questions, owing to its superior perceptual capabilities,
which enable the accurate generation of visual element priors. Leveraging the strong mathemat-
ical and scientific reasoning abilities of Qwen3-235B-A22B-Thinking-2507, we generate pseudo-
multimodal reflection data based on caption token-based reflection, naturally inserting placeholders
for visual anchors. Since the task of visual anchor rewriting is relatively straightforward, we use
a smaller dense model, Qwen3-32B, which achieves sufficient accuracy after manual verification,
making it suitable and efficient for this specific task.

Visual Description Generation Prompt for Math Problem

Your Role:
You are a High-Fidelity Visual Transcriber. Your sole mission is to precisely and accurately translate an
image (e.g., physics diagrams, geometric figures, charts, maps, etc.) into a structured textual description.
Core Instructions:
You are a pure “visual scanner” and “data recorder.” Your output must serve two critical goals:
• Assisting Reasoning: Provide a complete, unambiguous set of visual facts necessary for an image-

blind AI model to solve the associated problem—no detail omitted.
• Enabling Reconstruction: Your description must achieve engineering-blueprint-level precision, en-

abling any reader—using only your text—to reconstruct the original image almost identically, either by
hand or with drawing tools.

Core Principles:
• Absolute Objectivity: Describe only what you “see.” Strictly forbid any inference, interpretation,

summary, or prediction. You are not the problem solver—you are the problem solver’s eyes.
• Structured Thinking: Strictly follow every stage of the protocol below. Do not skip steps or mix

phases.
• First-Person Observer Perspective: Use phrases such as “I first observe...”, “My attention then shifts

to...”, to simulate a meticulous observer systematically scanning and recording visual details.
[Protocol Execution Flow]
Part 1: Pure Visual Information Extraction (PVI)
In this section, you MUST NOT access or consider any accompanying textual problem. Your world
consists solely of the image.
Stage 0: Global Scan and Framework Definition
• Image Qualification: Precisely define the basic type of the image in one sentence.

Example: “This is a free-body diagram of an object on an inclined plane.”
• Canvas Setup and Layout: Treat the image as a 2D canvas. Use directional terms (top, bottom, left,

right, center) to summarize the overall layout and distribution of primary content.
Example: “The image is horizontally oriented, with the main content concentrated toward the lower
center region.”

• Core Framework Identification (if present): If the image contains a foundational structure (e.g.,
coordinate system, table, circuit skeleton, inclined plane with ground), define it first. This serves as the
positional reference for all subsequent elements.
Example: “The core of the image is a Cartesian coordinate system. I will use this as my reference
frame. The origin (0,0) is located slightly below and to the left of the canvas center. The x-axis is
horizontal, with an arrow pointing rightward. The y-axis is vertical, with an arrow pointing upward.
Both axes are marked with tick marks; each major grid line represents one unit of length.”

Stage 1: Iterative Element Deconstruction
Begin with the most central, largest, or most fundamental “anchor” element. Proceed in a logical se-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

quence (e.g., center-to-periphery, left-to-right, clockwise) to deconstruct each element individually. Do
not proceed to the next element until every detail of the current one has been fully described.
For each new element, strictly follow this sub-process:
• Element Declaration and Type: Clearly state the element you are about to describe and its type.

Example: “I will now describe the rectangular wooden block resting on the inclined plane.”
• Precise Location and Association: Locate the element relative to already-described elements or the

core framework. If a coordinate system exists, provide exact coordinates. For non-coordinate images,
use directional references (e.g., “at the 3 o’clock position relative to the block’s geometric center”),
contact points, or quantitative approximations (e.g., “length is approximately half the height of this
block”). For unmarked but visually discernible relationships, carefully estimate numerical proportions.
Example: “This block rests on the inclined plane described above, with its base fully aligned to the
surface. Its center lies at the horizontal midpoint of the entire canvas.”

• Detailed Description of Form, Labels, and Visual Cues: This is the core of the description. Exhaus-
tively detail all visual attributes and immediately record any text, symbols, or markings attached to or
adjacent to the element.

– Form: Shape, size (relative to other elements or the entire canvas), orientation, trajectory.
Example: “The block is rectangular, with a length approximately twice its height.”

– Labels: Immediately transcribe all text, symbols, numbers, or annotations directly attached or placed
nearby.
Example: “At the center of the block is a black dot labeled with the capital letter ‘A’.”

– Special Visual Cues: Include any details critical for precise reconstruction and interpretation, such
as color, shading, texture, line thickness/style (solid, dashed, wavy, bold), and arrow style (filled,
hollow).
Example: “The rectangular block is filled with light gray parallel diagonal lines simulating wood
grain. Its outline is thicker than other lines in the diagram. The arrow representing gravitational
force is solid, while the arrow representing the normal force is dashed.”

Repeat this iterative process until every line, shape, arrow, symbol, letter, and number in the image has
been fully and precisely recorded.
Stage 2: Final Scene Synthesis
Conclude by integrating the image’s content with the implied problem context in one or two concise
sentences, delivering a high-level summary optimized for problem-solving.
Example 1 (Physics problem): “In summary, this image depicts a stationary object on a horizontal surface
subject to gravitational and normal forces, providing complete visual information for analyzing mechani-
cal equilibrium.”
Example 2 (Coordinate diagram): “In summary, this image provides a planar Cartesian coordinate map
identifying multiple locations including Li Ming’s home, school, and the post office.”

Scientific Scene Description Prompt for Physics, Chemistry, and Biology

Your Role:
You are a Scientific Scene Describer specializing in physics, chemistry, and biology images. Your task is
to transform images into objective, structured, and faithful textual descriptions. Your core function is to
record, not interpret.
Core Principles:
• Objective Recording: Describe only what explicitly exists in the image (components, labels, connec-

tions, relative positions). Avoid inferences, interpretations, or predictions based on scientific principles.
• Structured Clarity: Use clear hierarchies and lists to organize information, making it easy to read and

reference.
• Faithful Transcription: All text, symbols, and labels in the image must be recorded accurately and

completely.
• Focus on Configuration: Emphasize how components are visually organized (e.g., “A is inside the

coil,” “B is immersed in liquid,” “curve C is above curve D”), not their functional interactions (e.g., “A
exerts force on B”).

[Protocol Execution Flow]
Step 1: Global Identification
• Image Type and Main Theme: Summarize in one sentence what the image is and what scientific scene

or apparatus it displays.
Example (microphone diagram): “This is a cross-sectional diagram of a dynamic microphone’s internal
structure.”
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Example (s-t graph): “This is a displacement-time (s-t) graph containing motion curves for two objects
(A and B).”

Step 2: Component Breakdown
List and describe key components in logical order from primary to secondary.
• Component Name and Location: Identify the component (prioritizing its label) and describe its posi-

tion in the image.
• Visual Feature Description: Describe its visual form, state, or connection method. For graphs, de-

scribe the shape of axes and data curves.
Operational Example (s-t graph):

• Coordinate System:
– Horizontal axis: Labeled as t, representing time.
– Vertical axis: Labeled as s, representing displacement.

• Curve A: A straight inclined line.
• Curve B: An upward-opening curve (parabola).
• Intersection Points: Curves A and B intersect at two moments, t1 and t2.

Step 3: Configuration & Relationship Description
The core of this step is “describe what you see.” Only describe connections, relative positions, and visual
relationships directly shown in the image. Strictly avoid physical interpretations.
Prohibited Examples:
• Avoid inferring relative states: Don’t say “during this period, A’s position is always ahead of B”;

instead say “in the interval from t1 to t2, curve A is consistently above curve B.”
• Avoid inferring equal quantities: Don’t say “at some moment both have the same velocity”; instead

say “at some point between t1 and t2, the tangent slope of curve B equals the slope of curve A.”
Operational Example (circuit diagram):
Describe: “A wire extends from the positive terminal of the power source, connecting sequentially to
switch S and bulb L1. The wire then branches: one path passes through bulb L2, another through motor
M. The two paths reconverge and connect back to the negative terminal. Voltmeter V is connected in
parallel across bulb L2.”
Avoid: “This is a parallel circuit where switch S in the main line controls the entire circuit. The voltmeter
measures the voltage across L2.”
Step 4: Final Scene Summary
Provide a one-sentence high-level summary of the core setup or scene depicted in the image.
Example (microphone diagram): “In summary, this diagram depicts an apparatus structure composed of
a diaphragm, coil, and permanent magnet.”
Example (s-t graph): “In summary, this graph depicts the displacement-time relationship of object A
moving linearly and object B moving along a curve within the same coordinate system.”

Problem Solving Prompt with Image Description

Task Instructions:
I need you to solve a problem that involves an image. I will provide you with a detailed description of the
image, and you should solve the problem based on that description.
Answer Format Requirements:
• Place the final answer inside \boxed{}.
• If the question contains multiple sub-questions, separate their answers with semicolons (‘;’) and put

them all together inside \boxed{}.
Input Structure:
• Image Content: [Detailed description of the image will be provided here]
• Question: [The problem to be solved based on the image description]

Multimodal Reasoning Style Transfer Protocol

Your Role:
You are a Multimodal Reasoning Style Transfer Surgeon. Your sole mission is to receive (1) structured
image text descriptions and (2) a dual-part solution process containing “Thinking content” and
“Response”, then losslessly rewrite both parts in the output style of a native multimodal large language
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model. Your rewrite must leverage the image description to create reasoning with precise visual anchors,
making the output appear as if the model is observing and analyzing the original image in real-time. You
are not a problem solver, but a precision instrument for style transfer.
Core Directives – Three Non-negotiable Goals:
1. Reasoning Preservation

• Absolutely forbidden: modifying any reasoning steps, mathematical calculations, logical chains,
reflection paragraphs, or conclusions.

• All numbers, formulas, coordinates, and proportional relationships must be preserved verbatim.
• Absolutely forbidden: adding/deleting/adjusting any facts, assumptions, or verification processes

related to the solution.

2. Full-Process Coverage & Integrity
• Your rewrite must cover both ### Thinking content: and ### Response: sections.
• Absolutely forbidden: skipping or merging any steps from either part.
• Every step of the original reasoning, however minor or redundant (e.g., A = B, B = C, therefore
A = C), must be reproduced in original order.

• Your task is to dress each step in multimodal clothing, not simplify it.
3. Multimodal Authenticity

• Transform all text-description-dependent expressions into native multimodal model visual interac-
tion style.

• Output must make readers unable to detect this is a text-based rewrite.
• Readers should believe the model directly observes, locates, and analyzes specific regions of the

original image.

Key Principle: Your scalpel cuts only the stylistic surface, never touching the reasoning core or logical
flow.
Input Specification:
• Input 1: Structured Image Description – Detailed text describing key elements, spatial layout, labels,

axes, legends, colors, shapes, etc. This is your sole source for visual anchoring.
• Input 2: Dual-Part Solution Text – Contains ### Thinking content: and ### Response:

sections. You must perform style transfer on both parts independently.
Phase 1: Visual Anchoring & Style Transfer
Phase 1: Visual Anchoring & Style Transfer
1. Referencing overall structure (e.g., “According to description. . . ”)

• Anchoring Rule:
– → “Observing the image layout. . . ”
– → “From the image structure. . . ”

• Example:
– Input1: “Shows trapezoid ABED”
– Input2: “According to description, this is a trapezoid”
– Output: “From the image structure, the figure is a right trapezoid ABED”

2. Referencing specific regions (e.g., “Description mentions. . . ”)

• Anchoring Rule:
– → “[Visual verb] the [location]. . . ”
– Visual verbs: focus, observe, examine
– Locations: left side, upper corner, etc.

• Example:
– Input1: “Triangle ABC on left side”
– Input2: “According to info, there’s triangle ABC”
– Output: “Focusing on the left side, we see triangle ABC”

3. Referencing values/labels (e.g., “B’s coordinate is. . . ”)

• Anchoring Rule:
– → “The annotation clearly shows. . . ”
– → “Reviewing the axes. . . ”
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• Example:
– Input1: “Point B at origin (0,0)”
– Input2: “B is at (0,0)”
– Output: “Reviewing the axes, point B is marked at (0,0)”

Replacement Rules:
• Anchor precision: All visual anchors must correspond exactly to Input 1 information.
• Never fabricate details not present in the description.
• Never add visual attributes unless explicitly described in Input 1.

Phase 2: Multimodal Enhancement
Apply minimal polish only after replacement:

• Reasoning start: “I need to understand” → “From the image structure”
• Key conclusions: “Therefore” → “Combining image features confirms”
• Each enhancement must not exceed 5 words.

Phase 3: Post-Transfer Verification
Four-point verification before output:

1. Reasoning preservation: All coordinates, formulas, proportions, variables, and conclusions 100%
identical.

2. Process completeness: No steps skipped, merged, or reordered in either section.
3. Anchor accuracy: All visual anchors precisely correspond to Input 1.
4. Multimodal authenticity: Output naturally suggests “model viewing and solving from image.”

Prohibited Failures:
• Tampering with reasoning: Never change numbers or logic
• Skipping steps: Must preserve complete logical chains
• Structure destruction: Must maintain dual-part structure
• Anchor misalignment: Must strictly follow Input 1 positioning

Output Specification:
• Format: Strictly maintain original dual-part structure with ### Thinking content: and ###
Response: separators.

• Tone: Preserve original reflective style (e.g., “But maybe my assumption is wrong?” must remain).
• Ultimate Goal: Readers should believe: “This is a multimodal model directly observing the image

while conducting deep, step-by-step reasoning.”

H BASELINE MODEL LIST

Table 7 summarizes the models we compared and their Hugging Face repositories.
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Model Name Hugging Face Repository

Qwen2.5-VL-7B-Instruct https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct

R1-OneVision https://huggingface.co/Fancy-MLLM/
R1-Onevision-7B-RL

InternVL2.5-8B https://huggingface.co/OpenGVLab/
InternVL2_5-8B

MM-Eureka https://huggingface.co/FanqingM/
MM-Eureka-Qwen-7B

ThinkLite-VL https://huggingface.co/russwang/
ThinkLite-VL-7B

Revisual-R1-CS https://huggingface.co/csfufu/
Revisual-R1-Coldstart

Revisual-R1-RL https://huggingface.co/csfufu/
Revisual-R1-final

OVR-CS https://huggingface.co/Kangheng/
OVR-7B-ColdStart

OVR-RL https://huggingface.co/Kangheng/OVR-7B-RL

MiMo-VL-CS https://huggingface.co/XiaomiMiMo/
MiMo-VL-7B-SFT

MiMo-VL-RL https://huggingface.co/XiaomiMiMo/
MiMo-VL-7B-RL

LLaVA-OneVision-7B https://huggingface.co/lmms-lab/
llava-onevision-qwen2-7b-ov

Llama-3.2-11B-Vision-Instruct https://huggingface.co/meta-llama/
Llama-3.2-11B-Vision-Instruct

Mulberry-7B https://huggingface.co/HuanjinYao/
Mulberry_qwen2vl_7b

OpenVLThinker https://huggingface.co/ydeng9/
OpenVLThinker-7B

Vision-R1 https://huggingface.co/Osilly/
Vision-R1-7B

VLAA-Thinker-7B https://huggingface.co/UCSC-VLAA/
VLAA-Thinker-Qwen2.5VL-7B

VLAA-Thinker-7B https://huggingface.co/UCSC-VLAA/
VLAA-Thinker-Qwen2.5VL-7B

Vision-SR1 https://huggingface.co/LMMs-Lab-Turtle/
SelfRewarded-R1-7B

Table 7: List of models and their Hugging Face repositories.
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