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ABSTRACT

Convolutional neural networks are known to be vulnerable to adversarial attacks.
Solutions to improve their robustness have largely focused on developing more
effective adversarial training methods, while limited efforts have been devoted to
analyzing the role of architectural elements (such as topology, depth, and width)
on adversarial robustness. This paper seeks to resolve this limitation and present
a holistic study on the impact of architecture choice on adversarial robustness.
We focus on residual networks and consider architecture design at the block level,
i.e., topology, kernel size, activation, and normalization, as well as at the network
scaling level, i.e., depth and width of each block in the network. We first derive
insights on the block structure through systematic ablative experiments and design
a novel residual block, dubbed RobustResBlock. It improves CWH40 robust accu-
racy by ~3% over Wide residual networks (WRNs), the de facto architecture of
choice for designing robust architectures. Then we derive insights on the impact
of depth and width of the network and design a compound scaling rule, dubbed
RobustScaling, to distribute depth and width at a given desired FLOP count. Fi-
nally, we combine RobustResBlock and RobustScaling and present a portfolio of
adversarially robust residual networks, RobustResNets, spanning a wide spectrum
of model capacities. Experimental validation, on three datasets across four adver-
sarial attacks, demonstrates that RobustResNets consistently outperform both the
standard WRNs (3 ~ 4% improvement in robust accuracy while saving about half

parameters) and other robust architectures proposed by existing works.

1 INTRODUCTION

Robustness to adversarial attacks is a critical consideration for practical deployments of deep neural

networks. Current research on defenses against
such attacks has primarily focused on develop-
ing better adversarial training methods (Madry
et al., 2018; Zhang et al., 2019; Wang et al.,
2019; Shafahi et al., 2019; Wong et al., 2020).
These techniques, and the insights derived from
them, have largely been developed by fixing the
architecture of the network, typically variants
of Wide Residual Networks (Zagoruyko & Ko-
modakis, 2016). While significant knowledge
exists on designing effective neural networks
for standard tasks under standard settings, lim-
ited attention has been devoted to studying the
role of architectural components on adversar-
ial robustness. But, as we preview in Figure 1,
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Figure 1: Impact of architectural components on
adversarial robustness, relative to that of adversar-
ial training methods. The variation of each com-
ponent is elaborated in §3. Results on CIFAR-10.

architectural components can impact adversarial robustness as much as, if not more, different ad-
versarial training methods. As such, we posit that there is a large void in practitioners’ toolboxes on
designing architectures with better adversarial robustness properties.

The primary goal of this paper is to bridge this knowledge gap by, i) systematically studying the
contribution of architectural components to adversarial robustness, ii) identify key design choices
that aid adversarial robustness, and iii) finally construct a new adversarially robust network that
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can serve as a baseline and test bed for studying architectural aspects of adversarial robustness. We
adopt an empirical approach and conduct an extensive amount of carefully designed experiments to
realize this goal.

We start from the well-founded observation by Cazenavette et al. (2021) that networks with residual
connections exhibit more robustness to adversarial attacks, and thus, consider the family of residual
networks. Then we systematically consider the two main aspects of architecture design, namely
block and network scaling, and adversarially train and evaluate more than 1200 networks. For
block, we consider the choice of layers, exact connections between layers, and type of residual con-
nection. For network scaling, we consider the choice of varying the width and depth of the network
layers. To ensure the generality of the experimental observations, we evaluate them on three differ-
ent datasets, and under four different adversarial attacks. To ensure the reliability of the empirical
observations, we conduct several repetitions with different seeds. Based on our empirical obser-
vations, we identify architectural design principles that improve the adversarial robustness of net-
works, we propose a new block topology and network scaling scheme, dubbed RobustResBlock and
RobustScaling, respectively, and finally propose a family of RobustResNets as a new benchmark
architecture for studying adversarial robustness. The main findings from our experiments are:

1. Pre-activation is preferred over post-activation for adversarial robustness.

2. Bottleneck block improves adversarial robustness over the de facto basic block used in
WRNs. Both aggregated and hierarchical convolutions, derived from standard tasks (i.e.,
on clean images), improve adversarial robustness.

3. Squeeze and excitation with minor customization improves adversarial robustness.

4. ReLU is consistently better than smooth activations on CIFAR-10 and Tiny-ImageNet
across different model capacities when using an appropriate weight decay value. This
contrasts with prevailing consensus that smooth activation functions are better than ReLU.

5. A larger kernel size does not necessarily lead to better adversarial robustness.

6. Architecture design contributes significantly to adversarial robustness. Under the same
FLOPs budget, deep (but narrow) networks are adversarially more robust than wide (but
shallow) networks.

In summary, we reaffirm known observations (6), challenge some existing observations (4), and
finally make some new observations (1, 2, 3, 5, 6).

2 EXPERIMENTAL SETUP

‘We now describe our experimental setup in terms of the adopted architectural skeleton and the details
on training and evaluating the networks against adversarial attacks. Code to reproduce our results
and log files from our experiments can be found in the supplementary material.

Architecture Skeleton: Figure 2 shows the skeleton of the network that we consider. It comprises
a stem (i.e., a single 3 x 3 convolution), and three stages of processing. Each stage is made up of
a varying number of convolutional blocks. The first block in stage two and three uses a stride of
two to down sample the feature sizes by half. We denote the depth (i.e., number of blocks) and
width (in terms of widening factors) of i-th stage by D, and W;, respectively. Unless otherwise
specified, we use 3 x 3 convolution, ReL.U activation, and batch normalization as the standard
operations. We study the effect of the block topology (variants of residual blocks) and the network
scaling (configurations of [D;, Do, D3] and [W7, Wy, W3]), within this architectural skeleton, on
the network’s adversarial robustness.

Datasets, Training, and Evaluation Metrics: We evaluate adversarial robustness on three
datasets, CIFAR-10, CIFAR-100 and Tiny-ImageNet. All models are adversarially trained using
TRADES (Zhang et al., 2019) with v = 6; we use a step size of « = 2/255 and with 10 and 7 steps
of PGD for CIFAR-10/CIFAR-100 and Tiny-ImageNet, respectively; we set the maximum pertur-
bation strength to € = 8/255 to constrain the {o,-norm. For evaluating adversarial robustness, we
consider multiple attacks, FGSM (Goodfellow et al., 2015), 20-step PGD (PGD??) (Madry et al.,
2018), 40-step CW (CW*0) (Carlini & Wagner, 2017), and AutoAttack (AA) (Croce & Hein, 2020)
with the same perturbation constraint e = 8/255. We repeat each experiment two or three times and
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Figure 2: Overview of the architecture design we explore for adversarial robustness: (Top) Network
level and (Bottom) Block level. The network has three stages, each with multiple blocks and scaling
parameters depth and width. We study variants of residual blocks and their components like convo-
lution type, activations, and normalization.

compute the mean performance to account for noise in evaluating adversarial attacks. In all results,
we use markers and shaded regions show the mean and standard deviation across the repetitions.

3 ADVERSARIALLY ROBUST NETWORKS

Convolutional neural network design involves determining block topology, components of the block
and scaling factors. We examine these elements independently through controlled experiments, and
finally propose a new residual network based on our observations.

3.1 ADVERSARIALLY ROBUST RESIDUAL BLOCK

The design of a convolutional block primarily comprises its topology, type of convolution and kernel
size, and choice of activation and normalization layers. We examine these elements independently
through controlled experiments, and finally propose a new residual block based on our observations.

3.1.1 BLOCK TOPOLOGY

Residual Topology: Figure 2 shows the three primary variants of residual blocks, namely basic,
bottleneck and inverted bottleneck, in the literature. Among them, the basic block is the de facto
block of choice for studying adversarial robustness. Surprisingly, the bottleneck and inverted bot-
tleneck blocks have rarely been employed for adversarial robustness, despite their well-established
effectiveness under standard setting for image classification, object detection, etc. Therefore, we re-
visit these residual blocks in the context of adversarial robustness. And for each block, we consider
two variants (post-activation (He et al., 2016a) and pre-activation (He et al., 2016b)) corresponding
to placement of activation functions (see Appendix A.2 for illustration) before and after a convo-
Iutional layer. Moreover, we consider models at four capacities by varying the stage wise depth
Dicq1,2,3y and width Wiy 2 33 among {4, 5,7, 11} and {10, 12, 14, 16}, respectively.

Figure 3 compares the aforementioned variants of residual blocks. We observe that (i) the basic
block is very sensitive to the location of the activation function, with pre-activation leading to a
substantial improvement in adversarial robustness (Figure 3a); (ii) performance of the bottleneck
and the inverted bottleneck blocks are relatively stable w.r.t the location of the activation function,
although pre-activation provides a small but noticeable benefit on large-capacity models with bottle-
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Figure 3: Robust accuracy of networks on CIFAR-10 with (a) basic, (b) bottleneck, and (c) inverted
bottleneck blocks, with post and pre activation. (d) Comparison between blocks with pre-activation.
“No residual” removes the residual connection in the basic block.

neck blocks and small-capacity models with inverted bottleneck blocks (Figures 3b and 3c). Thus,
we conclude that pre-activation is preferred over post-activation for adversarial robustness. Fig-
ure 3d compares the three residual blocks with pre-activation. We observe that the basic block is
more effective in low model-capacity regions, while the bottleneck block is more effective in high
model-capacity regions. Finally, since the inverted bottleneck does not outperform the other two
blocks under any model capacity, we no longer consider it in the rest of this paper.

Aggregated and Hierarchical Convolutions: Next, we consider two enhanced arrangements of
convolution, aggregated (Xie et al., 2017) and hierarchical (Gao et al., 2021), which have proven to
be effective for residual blocks on standard tasks. We incorporate both of them within the bottleneck
block. For each enhancement, we conduct ablation experiments to determine appropriate values
for their hyperparameters, i.e., cardinality for aggregated and scales for hierarchical convolutions.
Figure 4 compares the bottleneck block with aggregated and hierarchical convolutions, respectively.
We observe that the bottleneck block consistently benefits from both enhancements, and outperforms
the basic block under all the model-capacity regions we considered. In contrast, we observe that
when paired with the basic block, aggregated convolution adversely affects adversarial robustness.
More detailed results can be found in Appendix §A.3.
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Figure 4: (a, e) Aggregated and hierarchical convolutions that split a regular convolution into mul-
tiple parallel convolutions (cardinality) and hierarchical convolutions (scales), respectively. Results
are then concatenated. (b, f) and (c, g) show robustness of low-capacity (*P = 39M,# F = 5.9G)
and high-capacity (*P = 262M,” F = 39G) models. (d, h) Comparing aggregated (cardinality = 4)
and hierarchical (scales = 8) bottleneck to other blocks. All results are CIFAR-10.

Squeeze and Excitation: Finally, we consider squeeze-and-excitation (SE) (Hu et al., 2020), which
emerged as a standard component of modern CNN architectures, such as MobileNetV3 (Howard
etal., 2019) and EfficientNet (Tan & Le, 2019a). However, we observe (see Table 5b) that a straight-
forward application of SE, and all its variants explored by Hu et al. (2020), degrades performance.
We hypothesize that this may be due to the SE layer excessively suppressing or amplifying channels.
Therefore, we present an alternative design of SE, dubbed residual SE, for adversarial robustness.
As shown in Figure 5a, it adds another skip connection around the SE module, a simple yet crucial
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Figure 5: (a) Our residual SE that adds an extra skip connection around the SE module. (b) Ablation
results, with relative improvement/degradation shown in parentheses. (c) Comparing residual blocks
with and without our residual SE. All results are evaluated on CIFAR-10.

modification. During adversarial training, this skip connection provides extra regularization to avoid
channels from being excessively suppressed or amplified by SE. Additionally, we observe (Table 5b)
that a higher reduction ratio can reduce the computational complexity of the SE module at the cost of
a marginal degradation in clean accuracy. Figure 5c compares the basic and bottleneck blocks with
and without residual SE. Results indicate that our residual SE consistently improves the adversarial
robustness of both blocks. More detailed results can be found in Appendix §A 4.

To summarize, we demonstrate, in Table 1, that all the topological enhancements we identified, i.e.,
pre-activation, aggregated, hierarchical convolutions, and residual SE, can be naturally integrated
within the bottleneck block. Empirically, our final topology design yields a ~3% improvement over
the basic block, the de facto topology of choice for designing robust architectures.

Table 1: Break-down of the contribution of each topological enhancement we identified. Both basic
and bottleneck blocks use pre-activation. Cardinality for aggregated convolutions is 4 and scales for
hierarchical convolutions is 8. All results are for a large-capacity model with D; = 11, W; = 16.

Topology | Complexity | CIFAR-10 | CIFAR-100
Basic Bottle | Aggr. Hier. | SE| #P  #F |  Clean PGD* CW* | Clean PGD? cwio
v 267TM  38.8G | 85.5140.10 56.7840.13 54.5210.13 56.9310.40 29.7640.14 27.2440.15
v 265M  39.0G | 85.4740.21 57.4910.01 55.07+0.10 59.2440.36 32.0840.26 28.6140.17
v v 265M 394G | 85.4740.10 57.5040.28 55.56340.26 59.2710.34 31.6340.36 28.8040.18
v v v 262M 393G | 86.2940.07 59.4840.12 56.9440.27 59.3240.13 33.4640.22 29.6540.14
v v v | v | 270M 393G | 86.5510.10 60.4810.00 57.7810.00 | 60.221057 33.881003 29.91i0.15

3.1.2 CONVOLUTION KERNEL SIZE
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Figure 6: (a, b, ¢) Heat maps visualizing the relationship between kernel sizes and adversarial ro-
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robustness of different kernel sizes for higher resolution images on C-10 (L) and Tiny-IN (R).

Larger kernel sizes have been shown to be beneficial on standard problems (Tan & Le, 2019b; Liu
etal.,, 2022; Ding et al., 2022). We evaluate large kernel sizes for adversarial robustness. Specifically,
we allow the kernel size K¢y 2 3y for each stage to be among {3x3, 5x5, 7x7, 9x9} while use
the default options for all other settings as described in §2. We evaluate all the 43 = 64 possible
networks with all possible settings for the kernel size. Figure 6 (a, b) shows our results. We observe
that, in general, a larger kernel size does not necessarily lead to better adversarial robustness. To
confirm if this observation is specific to low-resolution images, we repeat the experiment at higher
image resolutions. Specifically, we upsample the images to the following sizes: {64 x 64, 96 x 96,
128 x 128}. We constrain all stages to use a canonical kernel size and use a stride of two in the
first block of the first stage when the image resolution is larger than 64 x 64. Figure 6 presents
these results. Empirically, we observe that larger kernels start to improve adversarial robustness
noticeably when the image size increases to 128 x 128, particularly on Tiny-ImageNet. However,
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adversarial robustness on upsampled images is consistently worse than that of smaller images. Thus,
we argue that a kernel size of 3 x 3 remains the preferred choice for adversarial robustness.

3.1.3 ACTIVATION AND NORMALIZATION

Activation: Since the first demonstration by Xie et al. (2020), several researchers (Pang et al.,
2021; Singla et al., 2021; Gowal et al., 2020) reaffirmed that smooth activation functions improve
adversarial training, which in turn improves adversarial robustness. However, these observations are
primarily based on CIFAR-10 with low-capacity models (e.g., ResNet-18 or WRN-34-10) and for a
fixed set of training hyperparameters. We hypothesize that different activation functions, regardless
of being smooth or not, may perform differently depending on training hyperparameters, especially
weight decay, as observed by Pang et al. (2021). Therefore, we revisit the adversarial robustness of
smooth and non-smooth activation functions under appropriate weight decay settings. We consider
ReLU (non-smooth) and three smooth activation functions, SiLU/Swish (Xie et al., 2020; Rebuffi
et al.,, 2021; Gowal et al.,, 2021), Softplus (Qin et al., 2019; Pang et al., 2021), and GELU (Bai
et al., 2021), given their prevalence in the literature. For each activation function, we first identify
a suitable weight decay value from {1, 2,5} x 10~*. We observe (Figure 7 (a, b)) that, (i) different
activation functions indeed perform their best at different weight decay values on CIFAR-10; (ii) on
Tiny-ImageNet, a weight decay of 10~4 works best for all activation functions. Then we compare the
performance of the activation functions under their optimal weight decay values across a wide range
of model capacities. Surprisingly, we observe (Figure 7 (c, d)) that ReLU consistently outperforms
SiLU and GELU on both CIFAR-10 and Tiny-ImageNet, particularly in the large model-capacity
regions. Our findings suggest that ReLU is effective even in the context of adversarial robustness,
challenging the existing consensus that smooth activation is preferable for adversarial robustness.
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Figure 7: (a, b) Effect of weight decay values for different activation functions in WRN-28-10. (c,
d) Robust accuracy of different activation functions, with the weight decay shown in parentheses.

Normalization: We find that standard BatchNorm outperforms other alternatives such as Group-
Norm (Wu & He, 2018), LayerNorm (Ba et al., 2016), and InstanceNorm (Ulyanov et al., 2016).
Due to space constraints, we refer the readers to appendix §A.6 for details and results.

3.2 ADVERSARIALLY ROBUST SCALING OF RESIDUAL NETWORKS

Scaling a network involves controlling the width and depth of its layers. We first study these ele-
ments individually and then introduce a compound scaling rule that improves adversarial robustness.

3.2.1 INDEPENDENT SCALING NETWORK DEPTH AND WIDTH

We independently study the relationship between adversarial robustness, and network depth (i.e.,
number of blocks) and network width (i.e., number of channels). We allow the depth of each stage
(Djef1,2,3)) to vary among {2,3,4,5,7,9,11}, and the width widening factor (We(1,2,33) to vary
among {4, 6,8, 10,12, 14,16, 20}, while fixing the other architecture components to the baseline
settings described in §2. As a result, in the case of depth variations, the number of layers in the
resulting networks ranges from 16 to 70. We adversarially train all possible networks, 72 = 343 for
depth and 8% = 512 for depth, and present the results in Figure 8a and Figure 8e, respectively. From
a trade-off perspective of maximizing adversarial robustness and minimizing network complexity,
we highlight the efficient, inefficient, and standard uniform depth/width settings with different col-
ored markers. Empirically, we observe that (i) there is no substantial correlation between network
depth and adversarial robustness, implying that more blocks do not necessarily lead to better ad-
versarial robustness, (ii) there is only a weak correlation between network width and adversarial
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robustness, implying that more channels do not automatically lead to better adversarial robustness,
and (iii) at any given total network depth/width, there is a significant variation in adversarial robust-
ness, suggesting that the distribution of depth/width in each stage needs to be carefully selected for
improving robustness.
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Figure 8: Adversarial robustness of 343 depth (a) and 512 width (e) settings on CIFAR-10. Pareto-
efficient models (robust and compact) are in red squares, inefficient models (sensitive and complex)
are in violet triangles, and networks with standard uniform distribution (D, = D> = D3 and W, =
Wa = W3) are in brown diamonds. Rank correlation (7) between depth/width and robust accuracy
is shown. Distribution among the three stages for the efficient (b, f), standard uniform (c, g), and
inefficient (d, h) settings are shown. The secondary y-axis shows robust accuracy.

Next, we zoom in to take a closer look at each stage. Specifically, at each level of total network
depth/width, we rank the settings by their adversarial robustness and visualize the distribution of
blocks/widening factors among the three stages. Figure 8b shows that models which distribute more
blocks evenly between the first two stages and decrease the number of blocks in the third stage are
ranked higher. On the other hand, Figure 8c shows that models which distribute more blocks in the
third stage and reduce the number of blocks in the first two stages are ranked last. Similarly, Figure 8f
shows that top-ranked settings tend to use small widening factors in stage-3, and allocate larger
widening factors to the first two stages, particularly the second stage. On the other hand, Figure 8g
shows that last-ranked models use larger widening factors in the last stage by reducing the widening
factors of the second stage. For both depth and width, by averaging the block/widening factor
distribution in the top-ranked models at each network depth/width, we identify that distributing the
depthas Dy : Dy : D3 =2:2:1and width as Wy : W> : W5 = 2: 2.5 : 1 across the stages leads to
robust and efficient models. For completeness, we also show the depth/widening factor distribution
and robust accuracy for the standard uniform depth/width settings in Figures. 8d and 8h.

3.2.2 COMPOUND SCALING BY NETWORK DEPTH AND WIDTH

We study the interplay between network depth and width by searching for a ratio between total
network depth and total network width, i.e., 3 D; : > W;) which improves adversarial robust-
ness. Specifically, given a target network complexity (e.g., #*FLOPs), we systemically tune the
contribution ratio of depth (i.e., rp = S_ D;/(3>_ D; + > W;)) between [0.3,0.95) and record the
relative changes in adversarial robustness. As shown in Figure 9 (a, b), we observe that adver-
sarial robustness improves monotonically as rp increases and peaks at approximately rp = 0.7,
suggesting that deep but narrow networks are preferred over wide but shallow networks for adver-
sarial robustness at a given FLOPs count. However, as the rp continues to increase beyond 0.7,
adversarial robustness starts to deteriorate rapidly. Accordingly, our compound scaling rule is ob-

i i - - D1+ Dy+D3 - 2D3+2D3+ D3
tained by solving rp = 0.7 = 55,7535, 97,77, = 30379551 s 10w, 1o 5w, T, Such that the

#FLOPs(Y. D;, Y. W;) ~ the target.

A pictorial illustration of the final compound scaling rule is provided in Figure 9c, along with the
standard scaling rule in Figure 9d as a reference. Finally, we present a comparison between the




Under review as a conference paper at ICLR 2023

Clbepth EoWidih | (E=Stage 1 aiStage 2 iStage 3 (EDepth EaWidth | (CiStage 1 GaStage 2CStage 3)

&2

) o P R HH

% CW* Robust Accuracy
5 5 L5 &
\O\\
.

oY% o
" g
q
7

5

03 56 106 156G 206 306 40G 56 106 156G 206 306 40G
FLOPs FLOPs

Contribition Ratio of Depth * Comtribution Ratio of Deptls
(a) 5G FLOPs (b) 20G FLOPs (c) Compound scaling (d) Standard scaling

Figure 9: (a, b) Adversarial robustness vs. contribution ratio of depth (rp) at different FLOPs levels,
where rp = > D;/(3. D; + >, W;). A larger rp indicates a deeper (more blocks) but narrower
(fewer channels) network. Distribution of depth and width among the three stages for the compound
scaling (c) and the standard scaling (d) rules. The secondary y-axis shows robust accuracy.

standard scaling, the independent depth/width scaling, and the compound scaling in Figure 10. We
observe that both the independent scaling of depth or width and the compound scaling lead to sub-
stantial improvements in robust accuracy over the standard scaling across a wide spectrum of model
capacities. This reaffirms our hypothesis that architecture design contributes significantly to adver-
sarial robustness. In general, among the four scaling strategies, compound scaling provides the best
trade-off between adversarial robustness and network complexity. In particular, the least complex
model from the compound scaling is more adversarially robust than the most complex model from
the standard scaling, while being 14 X more compact (parameters) and 8 x more efficient (FLOPs).

Summary of Our RobustResNet

Our Robust Residual Block (RobustResBlock): Building upon the empirical evidence
from §3.1.1 - §3.1.3, we propose a new residual block design, dubbed RobustRes-
Block, to substitute the basic block in architectures designed for adversarial robustness.

Hierarchically aggregated

— Block Topology: Bottleneck block with = _cgr‘wtzlw‘i_ou_‘___‘_l
pre-activation, hierarchically aggregated T B
convolution, and residual SE. ' o :
— Kernel Size: standard conv with 3 x 3 filter. | B |
— Activation: ReLU | TR . E

. . 9 g BN- ReLU- 1x1 i T i
— Normalization: Batch Normalization 3 RS ) A

Our Compound Scaling Rule: Network scaling contributes significantly to adversarial
robustness. The following rules are derived for a three-stage network:

— Ratio between Depth and Width: [ D; : > W;] = [7: 3] fori € {1,2,3} (§3.2.1)

— Depth/Width Distribution: D1 : Dy : D3 =2:2:1, Wy : W : W3 =2:2.5:1(8§3.2.2)

— Wide or Deep: For a given desired FLOPs budget, deep (but narrow) networks are adver-
sarially more robust than wide (but shallow) networks.

. 7

3.3 ADVERSARIALLY ROBUST RESIDUAL NETWORKS

‘We combine our RobustResBlock with the identified compound scaling rule to present a portfolio of
adversarially robust residual networks, dubbed RobustResNets, spanning a wide spectrum of model
capacities (5G - 40G FLOPs). For references, we name them as RobustResNet-Al to -A4, where
#FLOPs are doubled for every subsequent network of Al (see Table 2 for specifics). We then com-
pare RobustResNets to a set of representative robust architectures proposed in the literature. These
include, RobNet (Guo et al., 2020), RACL (Dong et al., 2020), AdvRush (Mok et al., 2021), and
WRN-34-R (Huang et al., 2021a). Specifically, we align the network complexity of AdvRush and
RACL models by adjusting the number of repetitions of the normal cell N and the input #channels
of the first normal cell C, denoted as (NQC). Table 2 presents the results. We observe that, overall,
RobustResNets consistently outperform alternative robust models across multiple datasets, attacks,
and model-capacity regions. In particular, RobustResNet-A1 achieves 2.5% higher AutoAttack
test accuracy with 2x fewer #parameters than AdvRush, a robust block designed by differentiable
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neural architecture search; RobustResNet-A2 achieves 2.3% higher AutoAttack test accuracy with

1.8 x fewer *parameters and #* FLOPs than WRN-34-R from Huang et al. (2021a), who also studied
the impact of network depth and width on adversarial attacks.

Table 2: Comparison of robust accuracy. Best results are in bold, and relative improvements over
274 best result in each section is colored in red. See text for details.

Mod #p #F | CIFAR-10 | CIFAR-100
el M G) .

| M@ |7 Clean PGD? cw AA | Clean PGD® cw AA
WRN-28-10 365 520 8462 55.90 53.15 51.66 56.30 20.01 26.22 25.26
RobNet-lrgev2 | 333 510 | 8457 52.79 18.94 47.48 55.27 20.23 24.63 23.69
AdvRush (7096) | 326 4.97 84.95 56.99 53.27 52.90 56.40 30.40 26.16 25.27
RACL (T104) | 325 493 | 8391 55.98 53.22 51.37 56.09 30.38 26.65 25.65
RobustResNet-Al | 19.2  5.11 | 85.46 (1 0.5) 58.74(1 1.8) 55.72(1 2.6) 54.42(1 2.5) | 59.34 (1 2.9) 32.70 (1 2.3) 27.76 (1 1.6) 26.75 (1 1.5)
WRN-34-12 065 9.60 | 8493 56.01 53.53 51.97 56.08 20.87 26.51 2547
WRN-34-R 68.1 191 85.80 57.35 54.77 53.23 58.78 3117 27.33 26.31
RobusiResNet-A2 | 30.0 10.8 | 85.80 (1 0.0) 59.72(12.4) 56.74(12.0) 55.49 (1 2.3) | 59.38(10.6) 33.0(1 1.8) 28.71(1 1.4) 27.68 (I 1.4)
WRN-46-14 128 186 |  85.22 56.37 54.19 52.63 56.78 30.03 27.27 26.28
RobustResNet-A3 | 75.9  19.9 | 86.79 (1 1.6) 60.10(13.7) 57.29(13.1) 55.84(13.2) | 60.16 (13.4) 33.59 (1 3.6) 20.58 (1 2.3) 28.48 (1 2.2)
WRN-70-16 267 388 | 8551 56.78 5452 52.80 56.93 29.76 27.20 26.12
RobustResNet-A4 | 147 394 | 87.10(1 1.6) 60.26 (1 3.5) 57.9(1 3.4) 56.20 (1 8.5) | 61.66 (] 4.7) 34.25(1 4.5) 30.04(1 2.8) 29.00 (1 2.9)

4 DISCUSSION AND RELATED WORK

There have been a few attempts to explore the impact of architectural components on adversarial
robustness. (1) Cazenavette et al. (2021) showed that residual connections significantly aid adver-
sarial robustness. (2) Huang et al. (2021a) showed that reducing the capacity of the third stage
leads to better adversarial robustness. (3) Xie et al. (2020) showed that smooth activation functions
leads to better adversarial robustness on ImageNet, with a similar observation by Pang et al. (2021)
on CIFAR-10 with ResNet-18. However, neither of them study the correlation between robust ac-
curacy and activation across weight decay, model capacity and dataset. Dai et al. (2022) identified
that parameterized activation functions have better robustness properties. (4) There is no clear con-
sensus on the impact of depth/width on adversarial robustness. Zhu ct al. (2022) conclude that
width helps robustness in the over-parameterized regime, but depth can help only under certain ini-
tialization. Gowal et al. (2020) conclude that deeper models perform better, while Mok et al. (2021)
conclude that there is no clear relationship between the width and the depth of an architecture and
its robustness. Finally, Xie et al. (2020) show that compound scaling will produce a much stronger
model than scaling up a single dimension with a simple strategy. None of the aforementioned work
study impact of all the architectural components, as this paper seeks to.

5 CONCLUSION

Novel architectural designs played a critical role in the overwhelming success of CNNss in a variety
of image analysis tasks. Despite this knowledge, studies on adversarial robustness have largely
been limited to a handful of basic residual networks, thus overlooking the impact of architecture on
adversarial robustness. However, as we demonstrate in this paper, architectural design does have a
significant effect on adversarial robustness. As an illustration, we considered residual networks and
observed through systematically designed experiments that many advancements of residual blocks
for standard tasks translate well to improve adversarial robustness, albeit with minor modifications
in some cases. Based on these observations, we design RobustResNets as an alternative baseline
for standard Wide Residual Networks, the de facto architecture of choice for designing adversarially
robust networks. We hope that our work inspires future exploration into the adversarial robustness
of the wide range of architectures that have already proven to be effective for standard tasks.
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