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Abstract

Models trained on a labeled source domain (e.g., bright, nearby astronomical objects)
often generalize poorly when deployed on an out-of-distribution (OOD) target do-
main (e.g., faint, distant objects). In the domain adaptation setting where unlabeled
target data is available, self-supervised pretraining (e.g., masked autoencoding or
contrastive learning) is a promising method to mitigate this performance drop. Pre-
training improves OOD error when the generic data augmentations used (e.g., mask-
ing or cropping) connect the source and target domains, which may be far apart in the
input space. In this paper, we show on real-world tasks that standard fine-tuning after
pretraining does not consistently improve OOD error over just supervised learning on
labeled source data. To better leverage pretraining for distribution shifts, we propose
Connect Later: after pretraining with generic augmentations to learn good represen-
tations within the source and target domains, fine-tune with targeted augmentations
designed with knowledge of the distribution shift to better connect the domains.
Connect Later improves average OOD error over standard fine-tuning and supervised
learning with targeted augmentations on 4 real-world datasets: astronomical time-
series classification (ASTROCLASSIFICATION) by 12%, redshift prediction for as-
tronomical time-series (REDSHIFTS) by 0.03 RMSE (11% relative), wildlife species
identification (IWILDCAM-WILDS) by 0.9%, and tumor detection (CAMELYON17-
WILDS), achieving the state-of-the-art on ASTROCLASSIFICATION, IWILDCAM-
WILDS with ResNet-50, and CAMELYON17-WILDS with DenseNet121.

1 Introduction

Machine learning models are often deployed on data that differ significantly from the training data
[Quiñonero-Candela et al., 2009, Koh et al., 2021]. We focus on unsupervised domain adaptation
[Shimodaira, 2000, Blitzer et al., 2006, Sugiyama et al., 2007], where we have labeled data from a
source domain and unlabeled data from a target domain. We aim to learn a model that generalizes well to
the out-of-distribution (OOD) target domain. A real-world example of domain adaptation is predicting
properties of astronomical objects from telescope data, which are key to understanding the physical pro-
cesses of the universe [Boone, 2019, Lin and Pandya, 2020]. However, ground truth labels require expert
labeling, which is only feasible for a small subset of bright, nearby objects [LSST Science Collaboration
et al., 2009]. Thus, the labeled data is not representative of the full set of mostly faint, distant objects.

Self-supervised pretraining has shown promising results for domain adaptation [Caron et al., 2020,
Shen et al., 2022, Devlin et al., 2019, Radford et al., 2021, Sagawa et al., 2022]. In contrast to traditional
domain adaptation methods in deep learning that aim to learn domain-invariant features [Ganin et al.,
2016, Kang et al., 2019, Tzeng et al., 2017, Saenko et al., 2010, Sun et al., 2016, Hoffman et al., 2018],
pretraining learns transferable representations that decompose the class and domain information [Shen
et al., 2022]. A favorable decomposition depends on data augmentation to connect the source and
target domains without knowledge of the distribution shift.
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Figure 1: Overview of Connect Later for domain adaptation on a toy binary classification problem
with two domains (filled and unfilled points), showing pretrained representations in R2. (Left) After
pretraining with generic augmentations, the classes within each domain are linearly separable in
representation space. Since the domains are far apart in input space, generic augmentations may not
connect the domains, resulting in misalignment in the representation space. In this case, a classifier
(with a linearly extrapolating decision boundary, dashed line) learned on labeled source data will
misclassify the target data. (Right) Connect Later employs targeted augmentations (filled points with
black border) designed with knowledge of the distribution shift to connect the domains better for
improved generalization to the target domain.

In this paper, we find on real-world benchmarks that standard fine-tuning after pretraining does not con-
sistently improve OOD error over just supervised learning with labeled source data (Section 3). On the
other hand, supervised learning with targeted augmentations [Gao et al., 2023] designed for the distribu-
tion shift consistently improves OOD error over the supervised learning baseline. Thus, pretraining with
generic augmentations is not sufficient to learn transferable representations for all distribution shifts.

To better leverage pretraining for domain adaptation, we propose to Connect Later (Figure 1): after
pretraining with generic augmentations, fine-tune with targeted augmentations (Section 4). Pretraining
learns good representations within each domain, while targeted augmentations better connect the
domains. We also provide a general methodology for constructing these targeted augmentations, where
we match the augmented inputs and target data on a feature space.

We evaluate on 4 real-world datasets: wildlife identification [IWILDCAM-WILDS, Beery et al., 2020,
Sagawa et al., 2022], tumor detection [CAMELYON17-WILDS, Sagawa et al., 2022] and 2 astronomi-
cal time series tasks, ASTROCLASSIFICATION and REDSHIFTS, which we curate from The PLAsTiCC
team et al. [2018]. Connect Later improves ID and OOD performance over standard fine-tuning
or supervised learning with targeted augmentations across all datasets (Section 5). Connect Later
achieves the state-of-the-art on ASTROCLASSIFICATION by 3% [Boone, 2019], IWILDCAM-WILDS
with ResNet-50 by 0.9%, and CAMELYON17-WILDS with DenseNet121 by 1.1%.

2 Setup

Consider a prediction problem from inputs x ∈ X to labels y ∈ Y . In domain adaptation, we have
access to a labeled source domain and an unlabeled target domain. In pretraining for domain adaptation
(Appendix A), the pretraining dataset consists of the unlabeled source and target inputs, with possible
extra data from other sources.

Augmentations. Augmented inputs x′ are drawn from an augmentation distribution A(·|x). In
this work, we define two distinct augmentation distributions, Apre and Aft, for the pretraining and
fine-tuning steps, respectively.

Standard fine-tuning. We refer to standard fine-tuning as the pretraining+fine-tuning procedure
where Aft(x

′ | x) = 1 if x′ = x (no fine-tuning augmentations). In our experiments, the standard
fine-tuning procedure is linear probing then fine-tuning (LP-FT) [Kumar et al., 2022], which has been
shown to improve ID and OOD performance over vanilla fine-tuning.

ERM with augmentations. As a baseline, we consider empirical risk minimization (ERM) with
data augmentation, which optimizes the fine-tuning objective on labeled source data with randomly
initialized parameters. In this paper, we refer to ERM as the instantiation where Aft(x

′ | x) = 1 if

2



Table 1: Standard fine-tuning produces substantial gains in ID and OOD performance on ASTROCLAS-
SIFICATION compared to an ERM baseline, but IWILDCAM-WILDS does not benefit from pretraining.
Results are averaged over 5 trials, rows with means within 1 STD of the best mean are shown in bold.

AstroClassification iWildCam
ID Test Acc OOD Acc ID Test Macro F1 OOD Test Macro F1

ERM 71.59±1.10 61.26±1.10 46.4±0.5 30.4±0.6
Standard fine-tuning 78.84±0.97 67.84±0.70 46.4±0.8 31.2±0.6

x′ = x (no augmentations) and ERM + targeted augmentations as the instantiation with Aft that
is designed with knowledge of the distribution shift.

3 Pretraining Produces Inconsistent OOD Performance

We compare ERM, ERM+targeted augmentations, and standard fine-tuning on 4 real-world datasets:
ASTROCLASSIFICATION, REDSHIFTS, IWILDCAM-WILDS, and CAMELYON17-WILDS. For
pretraining, we use SwAV contrastive learning [Caron et al., 2020] with cropping at multiple
resolutions for IWILDCAM-WILDS and CAMELYON17-WILDS, and masked autoencoding with
60% of observations masked for ASTROCLASSIFICATION and REDSHIFTS.

Table 1 shows that standard fine-tuning after pretraining with strong generic augmentations does
not produce consistent OOD performance. Standard fine-tuning in IWILDCAM-WILDS does not
improve either ID or OOD performance over ERM. However, pretraining is clearly beneficial in
ASTROCLASSIFICATION, where standard fine-tuning improves both ID and OOD accuracy by 6-7%
over ERM. We hypothesize that the generic pretraining augmentations connect the domains better
for some tasks and distribution shifts than others.

4 Connect Later: Pretrain First, Targeted Augmentations Later

To better leverage pretraining for domain adaptation, we propose Connect Later (Figure 1):

1. Pretrain on unlabeled data with generic augmentations as in Appendix Equation 1, producing
pretrained parameters θpre. This step learns good representations of the source and target
and allows us to reuse the pretrained model for multiple downstream tasks.

2. Design a targeted augmentationAft and fine-tune the pretrained model with augmented inputs
(Appendix Equation 2), initializing from θpre. The targeted augmentation better connects
the domains for the distribution shift.

4.1 Designing targeted augmentations

How do we design these targeted augmentations? We provide a general methodology based on
matching the target distribution on a feature space:

1. Identify a feature space Z . We assume that we can label z ∈ Z for each input and that
the source and target domains largely differ on this feature space. One such example is
the space of spurious, domain-dependent features (e.g., camera angle or resolution for
IWILDCAM-WILDS), which is the approach followed by Gao et al. [2023].

2. Fit a transformed feature distribution p̂T (z
′|z) to the target feature distribution.

3. Create a transformation distribution T (x′|x,z′) where x′ is the augmented version of x with
z=z′. In this paper, we define T with domain knowledge.

4. Given an input x, generate augmentations by sampling a new feature z′ from p̂T (z
′ | z),

then sampling an augmentation from T (x′|x, z′). The resulting targeted augmentation
probabilities are Aft(x

′ |x)=
∑

z′T (x′ |x,z′)p̂T (z′ |z).

A concrete example of designing a targeted augmentation used in this work can be found in Appendix C.

3



Table 2: ID and OOD accuracy (%) for ASTROCLASSIFICATION and RMSE for REDSHIFTS of each
method. Results are averaged over 5 trials, rows with means within 1 STD of the best mean are bolded.

AstroClassification Redshift
ID Test Acc (↑) OOD Acc (↑) ID Test RMSE (↓) OOD RMSE (↓)

ERM 71.59±1.10 61.26±1.10 0.274±0.016 0.320±0.009
Standard fine-tuning 78.84±0.97 67.84±0.70 0.246±0.015 0.277±0.004
ERM + targeted augs 68.75±0.95 67.54±0.32 0.310±0.006 0.286±0.007
Self-Training 77.72±0.59 65.15±0.67 0.304±0.010 0.289±0.003
Connect Later 80.54±1.20 79.90±0.60 0.256±0.005 0.247±0.005

Table 3: ID and OOD performance for each method on IWILDCAM-WILDS and CAMELYON17-
WILDS. Results are averaged over 15 trials for IWILDCAM-WILDS and 20 trials for CAMELYON17-
WILDS, and we report 95% confidence intervals on each mean estimate. Rows with means within 1
interval of the best mean are bolded.

iWildCam (Macro F1, ↑) Camelyon17 (Avg Acc, ↑)
ID Test OOD Test ID Val OOD Test

ERM 46.4±0.5 30.4±0.6 89.3±0.9 65.2±1.1
Standard fine-tuning 46.4±0.8 31.2±0.6 92.3±0.2 91.4±0.9
ERM + targeted augs 51.4±0.6 36.1±0.7 96.7±0.0 90.5±0.4
DANN [Sagawa et al., 2022] 48.5±3.2 31.9±1.6 86.1±1.3 64.5±1.2
CORAL [Sagawa et al., 2022] 40.5±1.6 27.9±0.5 92.3±0.7 62.3±1.9
Noisy Student [Sagawa et al., 2022] 47.5±1.0 32.1±0.8 - -
Connect Later 51.7±0.8 36.9±0.7 98.5±0.0 94.9±0.4

Simple example where Connect Later achieves 0 OOD error. In Appendix G, we provide a
binary classification example where contrastive pretraining fails for domain adaptation, following
a similar augmentation graph construction to Shen et al. [2022]. We show that when the connectivity
structure is misaligned, both standard fine-tuning with contrastive pretraining and ERM + targeted
augmentations have high OOD error, while Connect Later achieves 0 OOD error. In this setting,
ERM with targeted augmentations has high OOD error since some target inputs are “unreachable” via
targeted augmentations of source inputs. The pretraining step in Connect Later uses unlabeled target
data to learn representations where label information from source data can propagate to all target inputs.

5 Experiments

We evaluate Connect Later on 4 real-world tasks: object type classification (ASTROCLASSIFICATION)
and redshift regression (REDSHIFTS) of astronomical time-series, wildlife identification from static
camera trap images (IWILDCAM-WILDS), and tumor detection from slide images (CAMELYON17-
WILDS). The labeled source data for ASTROCLASSIFICATION and REDSHIFTS consists of bright,
nearby objects, while the unlabeled target dataset mostly contains faint and distant objects. For
IWILDCAM-WILDS, only a subset of the cameras are labeled, requiring models to generalize to
unseen habitats and camera properties. Models trained on labeled data from CAMELYON17-WILDS
must generalize to data from new hospitals, which sees different patients and uses different slide
staining procedures. Further details on these datasets are provided in Appendix B and Appendix
Figure 2. Experimental details including baselines are provided in Appendix D.

Main results. Tables 2 and 3 compare the results of Connect Later with baseline methods. For
ASTROCLASSIFICATION and REDSHIFTS, standard fine-tuning provides a significant performance
boost over ERM, while ERM+targeted augs performs similarly to standard fine-tuning OOD.
Connect Later outperforms the best baseline, standard fine-tuning, by 12% OOD and 2% ID on
ASTROCLASSIFICATION and 0.03 RMSE (11% relative) OOD with comparable ID performance
on REDSHIFTS. Connect Later improves the state-of-the-art OOD performance on ASTROCLAS-
SIFICATION by 3% over a random forest model with expert-designed features [Boone, 2019]. On
IWILDCAM-WILDS, standard fine-tuning does not improve over ERM in either ID or OOD
performance, while ERM+targeted augmentations improves by about 6% ID and 6% OOD over
ERM and standard fine-tuning. While DANN and Noisy Student made ID and OOD improvements
over standard fine-tuning, both fall short of ERM+targeted augs. Connect Later improves over both
standard fine-tuning (30.9%→37.2%) and ERM+targeted augmentations (36.3%→37.2%) in OOD
performance, achieving a new state-of-the-art performance for ResNet-50 on the IWILDCAM-WILDS
benchmark. On CAMELYON17-WILDS, standard fine-tuning produces significant gains over ERM
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in both ID (89.3%→92.3%) and OOD (65.2%→91.4%) average accuracy, while ERM+targeted aug-
mentations outperforms standard fine-tuning in ID accuracy (92.3%→96.7%), but does not improve
OOD. DANN and CORAL both underperform standard fine-tuning and ERM + targeted augs. Connect
Later outperforms the best baseline ID performance by 1.8% (ERM+targeted augs, 96.7%→98.5%)
and the best OOD performance by 3.5% (standard fine-tuning, 91.4%→94.9%). Connect Later also
outperforms the current state-of-the-art on DenseNet121, ICON, by 1.1% OOD (93.8%→94.9%).

Ablation Studies. We performed ablations on the model size, strength of pretraining augmentations
(masking percentage for masked autoencoding), and LP-FT on ASTROCLASSIFICATION. We find that
downstream performance is quite robust to masking percentage (Appendix Figure 4), while scaling up
model size and LP-FT improve performance for pretrained models (Appendix Tables 4 and 5). Further
details on our ablation studies are provided in Appendix E.

6 Conclusion

Connect Later better leverages pretraining for domain adaptation by using targeted augmentations to
connect the domains during fine-tuning. Future directions include learning the targeted augmentations
from data and improving pretraining augmentations for domain adaptation.
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A Setup

We consider a prediction problem from an input space X to a label space Y , where Y={1,...,k} for
classification and Y∈R for regression.

Domain adaptation. Let PS and PT be the source and target input distributions over X , respectively.
We consider unsupervised domain adaptation, where we have access to source inputs x∼PS , with
corresponding labels y ∈ Y sampled from the label distribution p∗(· | x), along with unlabeled
target inputs x ∼ PT . Let the unlabeled distribution PU = βPS + (1− β)PT be a mixture of the
source and target, where β ∈ [0,1]. In some practical cases, PU may also be a broader unlabeled
distribution. The goal is to learn a model fθ : X → Y that minimizes error on the target domain
LT (f)=Ex∼PT ,y∼p∗(·|x)[loss(f(x),y)]. For example, loss :Y×Y→R is the 0-1 loss in classification
and squared loss in regression.

Pretraining for domain adaptation. Pretraining for domain adaptation consists of two steps:
self-supervised pretraining on unlabeled data, then supervised fine-tuning on labeled source data [Shen
et al., 2022]. For simplicity below, we consider the population objectives. During the pretraining step,
we optimize model parameters θ with the pretraining objective

Lpretrain(θ)=EB∼Pm
U
[losspretrain(B,Apre;θ)], (1)

whereB is a batch ofm inputs. The pretraining loss losspretrain encompasses both masked autoencoding,
which operates on a single example, and contrastive learning, which operates on a batch. The output
of pretraining is a set of pretrained parameters θpre.

Fine-tuning then uses labeled source data to adapt the parameters, initialized with the pretrained
parameters θpre, to a specific downstream task with the objective

Lft(θ)=Ex∼PS ,y∼p∗(·|x),x′∼Aft(·|x)[lossft(x
′,y;θ)] (2)

where lossft is a fine-tuning objective such as softmax cross entropy loss for classification or squared
error for regression.

Typically, the pretraining augmentations Apre are generic transformations, such as random cropping
in vision or masking in NLP [Caron et al., 2020, Chen et al., 2020, He et al., 2020, Radford et al., 2021,
Shen et al., 2022, He et al., 2022, Devlin et al., 2019]. Fine-tuning augmentations Aft have not been
studied extensively and are typically also generic or simply the identity transformation [Sagawa et al.,
2022, Devlin et al., 2019].

B Datasets

We consider 4 real-world tasks using astronomical time-series, wildlife camera trap images, and
histopathology slide images. We show examples from the source, augmented, and target datasets in
Figure 2.

B.1 Tasks

Astronomical object classification (ASTROCLASSIFICATION). Astronomical object classification
[Boone, 2019, Allam Jr. and McEwen, 2022] involves predicting the object type (e.g., type II
supernova) from a time series of an object’s brightness at multiple wavelengths (light curves). We
curate this dataset from the Photometric LSST Astronomical Time Series Classification Challenge
[PLAsTiCC, The PLAsTiCC team et al., 2018] (details in Appendix B).

• Source: Time-series of bright, nearby objects with expert labels
• Target: Time-series of all observed objects from the telescope, often faint and distant (higher redshift).

Follow-up observation, which is required for expert labeling, is too expensive for these objects.
• Targeted Augmentation: We augment the labeled dataset by redshifting each object, i.e., simulating

its observed properties as if it were further away (Section 4).
• Task: 14-class astronomical object classification
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Figure 2: An example from the source dataset (left), an augmented version of the source example
(middle), and an example from the target dataset (right) for our 3 tasks. (Top row) The target dataset in
ASTROCLASSIFICATION and REDSHIFTS is much higher redshift than the source dataset. We apply
the redshifting augmentation to simulate placing source objects at a higher redshift to better match the
target dataset. The flux errors and flux values of the augmented example (middle) show much better
resemblance of the target example. (Middle row) The IWILDCAM-WILDS target dataset comes
from unseen cameras placed in potentially new habitats, so we randomize the habitat background
by applying the Copy-Paste Same Y augmentation. This algorithm places source dataset animals
into empty backgrounds from other cameras that have observed the same species. (Bottom row)
The CAMELYON17-WILDS target dataset comes from unseen hospitals. We apply the Stain Color
Jitter augmentation to simulate a different staining procedure that may be used by other hospitals.
IWILDCAM-WILDS and CAMELYON17-WILDS image examples are from Gao et al. [2023].

Redshift regression (REDSHIFTS). Similar to object type, redshift information is also available
only for bright, nearby objects. We predict the scalar redshift value of each object and minimize mean
squared error. This task has been studied for individual object types, such as quasars [Nakoneczny et al.,
2021] and type Ia supernovae [Qu and Sako, 2023], but we consider a more realistic set of multiple
object types. The labeled and unlabeled data are derived from the PLAsTiCC dataset. REDSHIFTS
is a new dataset that we contribute as part of this work.

• Source: Time-series of bright, nearby labeled objects.
• Target: Time-series of all observed objects from the telescope, often faint and distant (higher

redshift).
• Targeted Augmentation: Redshifting (example in Section 4).
• Task: Redshift regression

Wildlife Species Classification (IWILDCAM-WILDS). For IWILDCAM-WILDS [Beery et al.,
2020, Sagawa et al., 2022], the task is to identify the wildlife species from static camera trap images.
These cameras are placed in a wide variety of environments, which all have unique habitat conditions
and camera positions (e.g., African savannah vs. tropical rainforest). In this dataset, we use labeled
data from 243 camera traps to learn a model that can generalize to data from 48 unseen camera traps.

• Source: 243 camera traps
• Target: 48 camera traps from unseen locations
• Targeted Augmentation: We augment the labeled dataset with the Copy-Paste Same Y algorithm,

which uses image segmentation to copy-paste the animal onto different background images from
cameras that have observed the same species [Gao et al., 2023].
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• Task: 182-class wildlife species classification

Tumor Detection (CAMELYON17-WILDS). The task in CAMELYON17-WILDS [Bandi et al.,
2018] is to classify whether a patch of a histopathology slide contains a tumor. These slides are
contributed from multiple hospitals, which use different stain colors and also vary in distributions
of patient cancer stage.

• Source: Hospitals 1-3.
• Target: Hospitals 4 and 5.
• Targeted Augmentation: We augment the labeled dataset with the Stain Color Jitter algorithm,

which jitters the color of the slide image in the hematoxylin and eosin staining color space [Tellez
et al., 2018].

• Task: Binary classification of whether a slide contains a tumor.

B.2 Additional Details for AstroClassification, Redshifts

The ASTROCLASSIFICATION and REDSHIFTS datasets were adapted from the 2019 Photometric LSST
Astronomical Time-Series Classification Challenge [The PLAsTiCC team et al., 2018] 1. This diverse
dataset contains 14 types of astronomical time-varying objects, simulated using the expected instrument
characteristics and survey strategy of the upcoming Legacy Survey of Space and Time [LSST Ivezić
et al., 2019] conducted at the Vera C. Rubin Observatory. It includes two overall categories of time-series
objects: transients, short-lived events such as supernovae, and variable sources, those with fluctuating
brightness such as pulsating stars. Specifically, the dataset includes the following transients: type Ia su-
pernovae (SNIa), SNIax, SNIa-91bg, SNIbc, SNII, superluminous supernovae (SLSN), tidal disruption
events (TDE), and single lens microlensing events (µLens-Single); and the following variable objects:
active galactic nuclei (AGN), Mira variables, eclipsing binary systems (EB), and RR Lyrae (RRL).

Millions of potential new objects are discovered per observing night, and important metadata such as
object type, redshift, or other physical parameters, require astronomers to take time-intensive spectra
of each object. Spectra are a granular brightness vs. wavelength measurement at a single point in time,
and are typically only taken for bright, nearby objects which require less exposure time than faint,
faraway objects. The vast majority of discovered objects will only have a time series of imaging data
taken in 6 broad wavelength ranges, or photometric bands. The time variation of these objects in these
coarse wavelength bands does offer important clues about these physical parameters, but the labeled
training data for both ASTROCLASSIFICATION and REDSHIFTS come from the unrepresentative
subset of objects with spectra.

In these tasks, we are specifically interested in predicting the object type (e.g. type II supernova) and
the cosmological redshift of these objects in the unlabeled dataset. Cosmological redshift is a proxy
for distance in the universe, and an important piece of metadata for understanding an object’s physical
processes as well as other applications, such as estimating the expansion rate of the universe with type
Ia supernovae.

Problem Setting. The task is to predict object type for ASTROCLASSIFICATION (redshift for
REDSHIFTS) from time-series of object brightness. The input x consists of flux measurements and
associated uncertainties at times t and photometric band that each measurement was taken in b:
{F (ti,bj)}T,W

i=1,j=1,{Ferr(ti,bj)}T,W
i=1,j=1. For this work, we map each b∈b to the central wavelength

of the b band, which we denote w. The domain d is binary, corresponding to whether the object has
a spectrum (and thus a label). The labels y are available only for objects with spectra, and are one
of 14 types of astronomical time-varying objects for ASTROCLASSIFICATION (redshift of the object
for REDSHIFTS). We seek to optimize performance on the unlabeled data, which are generally fainter
and further away than the labeled subset. We evaluate on these examples as well as held-out examples
from the labeled subset.

Data. The training set of 7,846 objects is designed to emulate a sample of objects with spectra and
thus biased toward brighter, more nearby objects compared to the test set of 3,492,888 objects. A
random subset of 10,000 test set objects was selected for evaluation.

1. Source: 6,274 objects
2. ID Test: 782 objects

1https://zenodo.org/record/2539456
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3. OOD Test: 10,000 objects

All data were simulated with the SuperNova ANAlysis [SNANA, Kessler et al., 2009] software
library. Further details about the astrophysical models and LSST instrument characteristics used in
the simulation can be found in Kessler et al. [2019].

C Data Augmentations

C.1 Generic Augmentations for Pretraining

AstroClassification and Redshifts. For the ASTROCLASSIFICATION and REDSHIFTS datasets,
we randomly mask a subset of the input sequence using the masked language modeling paradigm
introduced by Devlin et al. [2019]. Given an unlabeled input sequence x, a training input x′ can be
generated by randomly masking elements of x while the associated label y consists of the original,
unmasked values. The model is trained to use contextual information (unmasked elements) to
successfully reconstruct most of the sequence. From our ablation experiments, we find that a masking
percentage of 60% produces the best downstream results. We follow an existing implementation for
astronomical time-series [Donoso-Oliva et al., 2023] and set 80% of the masked elements to 0, replace
10% with a random element from the sequence, and keep the remaining 10% unchanged.

iWildCam. We use a ResNet-50 model pretrained on ImageNet with SwAV, a contrastive learning
algorithm Caron et al. [2020]. SwAV uses random cropping augmentations of different resolutions.

C.2 Targeted Augmentations for Fine-Tuning

Targeted augmentation example. We follow the procedure outlined in Section 4 to design a
targeted augmentation for ASTROCLASSIFICATION and REDSHIFTS. Recall that in these datasets,
expert labels are only available for bright, nearby objects, while the unlabeled dataset contains mostly
faint, distant objects. Nearby objects have lower redshift values than distant objects, causing the source
and target redshift distributions to be mismatched (Figure 3).

1. The source and target domains primarily differ on their redshift distributions, so we identify
this scalar feature as z.

2. We roughly fit the target redshift distribution while constraining the transformed redshift
value to not be too far from the original redshift z, such that p̂T (z′ | z) is distributed as
loguniform(0.95z,min(1.5(1+z)−1,5z)), following Boone [2019].

3. We define a transformation distribution T (x′|x,z′), where x is a time-series of flux values
at multiple wavelengths and z′ is a new redshift value to transform to. We first fit a Gaussian
process that models x as a function of time and wavelength. Given z′, we rescale the
timestamps and wavelengths of the original input to account for the physical effects of the
new redshift value. Then, we sample x̃′ from the Gaussian process at these new timestamps
and wavelengths. Finally, we produce the transformed input x′ by scaling the flux values
to account for z′.

4. We sample z′ from p̂T (z
′ |z) and then sample augmentations x′ from T (x′|x,z′).

Redshifting for AstroClassification and Redshifts. We describe the redshifting augmentation
procedure in more detail below. Redshifting places each object at a new redshift and recomputes its
light curve sampling, fluxes, and flux uncertainties accordingly. This augmentation algorithm was
adapted from Boone [2019].

An input X ∈ RT×W is a multivariate time series of flux values at specified times and observed
wavelengths, {F (ti, wj)}T,W

i=1,j=1. We also have Xerr ∈ RT×W , representing the flux errors
corresponding to each element of X . We denote the elements of X ′

err by {Ferr(ti,wj)}T,W
i=1,j=1.Our

goal is to model F,Ferr :R×R→R at a new chosen redshift, z′, to produce augmented inputs X ′,X ′
err.

• We first construct a distribution from which to sample the new redshift, taking into account the
current redshift of the object zorig as well as the target redshift distribution. We then sample a new
redshift, z′∼ loguniform(0.95zorig,min(1.5(1+zorig)−1,5zorig)).

• We fit a Gaussian process (GP) model for F with training observations X queried at the training
input values (t,w), and denote the predictive mean and variance of the GP as F ′,F ′

err.
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Figure 3: Redshift distributions of source, augmented, and target datasets for the ASTROCLASSIFICA-
TION and REDSHIFTS tasks. KL-divergence between target and source (KL(target∥source)) binned
histogram distributions (30 bins) is 0.45, while the KL-divergence between target and augmented is
0.22, a 2x reduction.

• Given the new redshift value z′, we rescale the timestamps and wavelengths of the original
observations to account for the physical effects of the new redshift value: tnew = 1+z′

1+zorig
t,

wnew=
1+z′

1+zorig
w. We also randomly drop out 10% as well as a large swath of (tnew,wnew) to simulate

distinct observing seasons (telescope observing only occurs in the winter).
• We obtain GP predictions at test inputs {F ′(tnew,i,wnew,j)}T,W

i=1,j=1, {F ′
err(tnew,i,wnew,i)}T,W

i=1,j=1 and
scale them by the log ratio of the new and original distances:

X̃ ′=100.4(d(z
′)−d(zorig)){F ′(tnew,i,wnew,j)}T,W

i=1,j=1,

X̃ ′
err=100.4(d(z

′)−d(zorig)){F ′
err(tnew,i,wnew,j)}T,W

i=1,j=1,

where d(z) is the distance corresponding to redshift z.
• We roughly model the observational noise of the telescope from the target data as a function of

wavelength and sample ϵ∈RW from it. We define

X ′={X̃ ′
:,j+ϵj}Wj=1,X

′
err=

{√
X̃ ′2

err,:,j+ϵ2j

}W

j=1

.

• We model the observational capabilities of the telescope to ensure that our augmented input X ′,X ′
err

does not fall below the threshold of detection. We “accept" an augmented input X ′,X ′
err if the

signal-to-noise ratio (SNR) of at least two observations is over 5, i.e. SNR(X ′
i,j ,X

′
err,i,j)≥ 5 for

at least 2 of i∈{1,...,T},j∈{1,...,W}. We define SNR(x,xerr)=
|x|
xerr

.

Copy-Paste (Same Y) for iWildCam. This augmentation strategy randomizes the backgrounds of
wildlife images to reduce the model’s dependence on these spurious features for species classification.
Specifically, a segmentation mask is applied to each image to separate the animal from the background,
and the animal is “copy-pasted" into a new background from a camera that has observed that animal
species. This was the best performing augmentation strategy from Gao et al. [2023].

Stain Color Jitter for Camelyon17. This augmentation, originally from Tellez et al. [2018], alters
the pixel values of the slide images to emulate different staining procedures used by different hospitals.
The augmentation uses a pre-specified Optical Density (OD) matrix to project images from RGB space
to a three-channel hematoxylin, eosin, and DAB space before applying a random linear combination.
This was the best performing augmentation strategy from Gao et al. [2023].

D Experimental Details

Training procedure. For ASTROCLASSIFICATION and REDSHIFTS, we perform pretraining with
the masked autoencoding objective, masking 60% of the observations from each light curve. The
same pretrained model is used for both tasks to demonstrate the reusability of pretrained features. For
IWILDCAM-WILDS, we use a ResNet-50 model pretrained on unlabeled ImageNet data with the
SWaV contrastive learning algorithm [Caron et al., 2020]. We use a DenseNet121 pretrained on the
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unlabeled data provided in Sagawa et al. [2022] with SwAV for CAMELYON17-WILDS. We fine-tune
the pretrained models with linear probing then fine-tuning (LP-FT) [Kumar et al., 2022], which has
been shown to improve OOD performance.

Baselines. We evaluate our framework against three baselines: ERM, ERM+targeted augs, and stan-
dard fine-tuning. We also include a self-training baseline for ASTROCLASSIFICATION and REDSHIFTS,
which has been shown to perform well on some real-world datasets [Sagawa et al., 2022]. For the
self-training baseline, we pseudo-label the target dataset with a trained ERM+targeted augs model, then
perform the same targeted augmentation on the pseudo-labeled target dataset. We then train a model
with the pseudo-labeled and augmented target dataset combined with the labeled source dataset. We
include additional domain adaptation baselines for IWILDCAM-WILDS and CAMELYON17-WILDS:
domain-adversarial neural networks (DANN) [Ganin et al., 2016], correlation alignment (CORAL)
[Sun et al., 2016], and Noisy Student [Xie et al., 2020a, IWILDCAM-WILDS only].

AstroClassification and Redshifts Model. We use an encoder-only Informer model [Zhou et al.,
2021] with 8 encoder layers of 12 attention heads each. The model hidden dimension was chosen
to be 768 and the layer MLPs have hidden dimension 256. Due to the 2-dimensional position data
(each element of the time-series has an associated time and photometric band/wavelength) and
irregular sampling of our dataset, we train a positional encoding based on learnable Fourier features
following Li et al. [2021]. We also select a random window of length 300 from each example (and
zero-pad examples with fewer than 300 observations) to produce inputs of uniform shape. We perform
pretraining with a batch size of 256 and learning rate 1e-4 (selected from 1e-3 ∼ 1e-6) for 75,000
steps. We finetune the pretrained model with linear probing for 20,000 steps (for pretrained models
only) and learning rate 1e-4, then fine-tuning for 10,000 steps at learning rate of 4e-5. We increase
the learning rate for models without pretraining to 1e-4 for FT. The REDSHIFTS task uses LP learning
rate of 5e-4 and FT learning rate of 1e-4. We decrease the learning rate per step with a linear scheduler.

iWildCam Model. For pretraining, we use ResNet-50 pretrained on ImageNet with SwAV [Caron
et al., 2020]. During fine-tuning, we train all models for 15 epochs with early stopping on OOD
validation performance, following Gao et al. [2023]. For pretrained models, we also do 10 epochs
of linear probing before fine-tuning [LP-FT, Kumar et al., 2022] for 15 epochs, where the linear probe
is trained with Adam and the linear probe weights used to initialize the fine-tuning stage is chosen with
OOD validation performance. To reduce the noise in OOD results, for all methods we select the epoch
in the last 5 epochs with the best OOD validation performance and report OOD test results with that
version of the model. Following Gao et al. [2023], we allow for 10 hyperparameter tuning runs, where
we sample the following hyperparameters independently from the following distributions: the linear
probe learning rate (10Uniform[−3,−2]), fine-tuning learning rate (10Uniform[−5,−2]), and probability of
applying the augmentation (Uniform[0.5,0.9]) and pick the hyperparameter configuration with the
best OOD validation performance. For ERM and ERM+targeted augmentations, we use the tuned
hyperparameters from Gao et al. [2023]. To decrease the confidence interval, all reported performances
for ERM, ERM+targeted augs, standard fine-tuning, and Connect Later are averaged over 15 seeds.
DANN, CORAL, and Noisy Student results are averaged over 5 seeds.

Camelyon17 Model. For pretraining, we use DenseNet121 pretrained on the unlabeled
CAMELYON17-WILDS dataset presented in Sagawa et al. [2022] with SwAV [Caron et al., 2020].
During fine-tuning, we train all models for 15 epochs with early stopping on OOD validation
performance, following Gao et al. [2023]. For pretrained models, we also do 10 epochs of linear
probing before fine-tuning [LP-FT, Kumar et al., 2022] for 15 epochs, where the linear probe is trained
with Adam and the linear probe weights used to initialize the fine-tuning stage is chosen with OOD
validation performance. To reduce the noise in OOD results, for all methods we select the epoch
with the best OOD validation performance and report OOD test results with that version of the model.
Following Gao et al. [2023], we allow for 10 hyperparameter tuning runs, where we sample the fol-
lowing hyperparameters independently from the following distributions: the linear probe learning rate
(10Uniform[−3,−2]), fine-tuning learning rate (10Uniform[−5,−2]), probability of applying the augmentation
(Uniform[0.5,0.9]), and augmentation strength (Uniform[0.05,0.1]), and pick the hyperparameter
configuration with the best OOD validation performance. All results are averaged over 20 seeds.

E Ablations

We performed ablations on the model size, strength of pretraining augmentations (masking percentage
for masked autoencoding), and LP-FT on ASTROCLASSIFICATION. We find that downstream
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Figure 4: On the ASTROCLASSIFICATION task, Connect Later is relatively robust to pretraining
masking percentage both ID and OOD, but 60% masking performs best out of the percentages we
tested.

performance is quite robust to masking percentage, while scaling up model size and LP-FT improve
performance for pretrained models.

Model scale. We tested Connect Later with a larger model (∼3× the parameters of our model, 21M→
69M), and find that scaling up model size improves both ID and OOD accuracy (Table 4). This suggests
that scaling up the model is a promising way to further improve performance with Connect Later.

Strength of pretraining augmentations (masking percentage). We vary the strength of pretraining
augmentations, which changes the connectivity between domains. We tested pretraining masking
percentages {20, 40, 60, 80, 90}% while keeping the masking strategy unchanged (replace 10% of
masked indices with random values from the lightcurve, another 10% are kept unchanged, and 80%
are replaced with the mask token, which we choose to be 0). We show the ID and OOD test accuracy
of each variant in Figure 4. Both ID and OOD performance peak at 60% masking, although we find
that the performance of Connect Later is quite robust to the masking percentage, particularly for OOD
performance. All of the masking percentages we tried improve on OOD performance over standard
fine-tuning or ERM with targeted augmentations. Particularly, even with the strongest pretraining
augmentations (90% masking), which should connect the domains more, the OOD performance
did not improve over weaker augmentations. We hypothesize that increasing the strength of generic
augmentations may indiscriminately increase the connectivity between all source and target examples,
including examples from different classes that should not be strongly connected.

Linear probing then fine-tuning. Kumar et al. [2022] showed that linear probing (with fixed
neural embeddings) and then fine-tuning (LP-FT) the entire model improves both ID and OOD
performance. Intuitively, full fine-tuning with a randomly initialized linear probe can destroy the
pretrained features, and training the linear probe first mitigates this. We test LP-FT against FT only
(all model weights are fine-tuned) with the Connect Later model and the ERM+targeted augs baseline.
We find that LP-FT improves OOD accuracy by 0.9% over FT only when applied to Connect Later
on ASTROCLASSIFICATION (Table 5). On the other hand, LP-FT decreased OOD accuracy by 1.4%

Table 4: Scaling up model size of Connect Later produces improvements in both ID and OOD
performance on the ASTROCLASSIFICATION task.

Number of Parameters ID Accuracy (↑) OOD Accuracy (↑)

21M (default) 78.47 79.49
69M 80.38 80.55

Table 5: Linear probing (LP) in addition to fine-tuning (FT) hurts performance for the ERM+targeted
augs model but improves performance for Connect Later (tested on the ASTROCLASSIFICATION task).

Connect Later ERM+targeted augs
ID Accuracy (↑) OOD Accuracy (↑) ID Accuracy (↑) OOD Accuracy (↑)

FT only 78.07 78.6 77.88 68.43
LP-FT 78.47 79.49 65.68 67.07
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when applied to ERM+targeted augs, which uses random initialization (no pretraining). As a result, we
use LP-FT on pretrained models but not on ERM or ERM+targeted augs.

F Discussion and Related Work

Augmentations for pretraining. Data augmentations such as cropping or masking have been
vital to semi- and self-supervised learning objectives. Masking or noising the data and training a
model to reconstruct the original inputs have been shown to produce useful pretrained representations
across multiple modalities [Devlin et al., 2019, Lewis et al., 2020, He et al., 2022, Raffel et al., 2019,
Chen et al., 2020, He et al., 2020, Caron et al., 2020]. In contrastive learning, models are trained to
distinguish augmented “views” of the same input from views of a different input [Chen et al., 2020,
Caron et al., 2020, He et al., 2020]. Our results demonstrating inconsistent OOD performance across
datasets brings up the important future question of how to choose the best pretraining augmentation
and algorithm for learning transferable representations.

Augmentations for robustness. Data augmentation has been used to improve model robustness and
avoid catastrophic failures due to spurious, label-independent changes (e.g. translation or rotation in vi-
sion) [Hendrycks et al., 2019, Rebuffi et al., 2021, Ng et al., 2020]. The augmentation strategies used in
prior work are generic perturbations that aim to increase the diversity of inputs [e.g., Simard et al., 2003,
Krizhevsky et al., 2012, Cubuk et al., 2019, 2020, DeVries and Taylor, 2017, Zhang et al., 2017], though
a number of studies have shown that the type of data augmentations matters for performance [Chen et al.,
2020, Xie et al., 2020b]. Augmentations have also been leveraged in the self-training paradigm, which
improves generalization to unseen data by training on the pseudo-labeled full dataset [Xie et al., 2020a,
Sohn et al., 2020, Yang et al., 2021]. We show that a self-training baseline with pseudo-labels from an
ERM+targeted augs model does not outperform Connect Later, indicating that pretraining is an impor-
tant component of the framework. Connect Later exposes targeted augmentations as a design interface
for improving robustness with knowledge of the distribution shift, leveraging pretrained representations.

Targeted augmentations. In problems with domain shift, Gao et al. [2023] show that targeted
augmentations outperform generic augmentations on unseen data. They identify spurious domain-
dependent, label-independent features in the source dataset and construct targeted augmentations
by randomizing these features. Gao et al. [2023] consider the domain generalization setting, in
which no data from the target dataset is available. We consider targeted augmentations in the domain
adaptation setting, in which we can model the target distribution of these spurious features with the
unlabeled target data. In general, designing targeted augmentations specific to each distribution shift
may be difficult and require expert guidance. As part of the Connect Later framework, we provide
a general methodology for the design of such augmentations. Certain aspects, such as the selection
of feature space z and transformation distribution T could be learned from the unlabeled data itself,
which we leave for future work. We also show that targeted augmentations better leverage pretrained
representations for complementary gains in OOD performance.

G Simple construction where
Connect Later improves over pretraining or targeted augmentations alone.

We give a simple construction for constrastive pretraining based on the construction in Proposition
3 (Appendix A.2) of Shen et al. [2022], where Connect Later improves over pretraining (standard
fine-tuning) or targeted augmentations alone.

Data distribution. We consider binary classification with 2 domains. Let S = {x ∈X : dx = 1}
and T = {x ∈ T : dx = 2}, and assume that PS and PT are uniform over S and T . The unlabeled
distribution for pretraining is the uniform distribution over X . The source domain S={1,2} contains
2 points and the target domain T ={3,4,5,6,7,8} contains 6 points. For simplicity, we let the labels yx
be a deterministic function of the input x. The label space is Y={−1,1}. The label for x∈{1,3,5,7}
is yx=1 and the label for x∈{2,4,6,8} is yx=−1. Only the source data is labeled.

ERM with targeted augmentations. ERM with targeted augmentations applies the fine-tuning
objective (Equation 2) without prior pretraining on unlabeled data. To specialize to this section, the
ERM objective is

LERM(f)=Ex∼PS ,x′∼Aft(·|x)[ℓ(f(x
′),yx)]. (3)
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Figure 5: Example distribution of data and augmentations for contrastive learning where Connect Later
improves OOD performance over contrastive pretraining+standard fine-tuning and ERM+targeted
augmentations. The augmentation graph is similar to Shen et al. [2022] except the edge weights
connecting 1,2 and 3,4 are swapped. The shapes represent classes, while the labeled data is shaded
in green. The generic augmentation probabilities are marked as edge weights, where we assume that
α>γ+β. Here, targeted augmentations which first swap inputs 1 and 2 before applying a generic
augmentation help to align the source and target. However, some target inputs are not reachable via
augmentations from source inputs. Standard fine-tuning can generalize throughout the target domain,
but only in conjunction with targeted augmentations that align the source and target. The orange dotted
lines on the far ends connect to each other (the graph wraps around).

ERM returns a classifier f̂erm∈argminfLERM(f).

Spectral contrastive learning. Following HaoChen et al. [2021] and Shen et al. [2022], we analyze
contrastive learning from an augmentation graph perspective, where inputs x are connected via
augmentations with edge weights S+(x,x

′), which represent the probability of x,x′ being a positive
pair (augmentations of the same input x). For theoretical analysis, we analyze the spectral contrastive
learning objective:

Lpretrain(ϕ)=−2·E(x,x+)∼S+

[
ϕ(x)⊤ϕ(x+)

]
+Ex,x′∼PU

[(
ϕ(x)⊤ϕ(x′)

)2]
. (4)

The result of pretraining to optimize the above objective is an encoder ϕ̂ :X →Rk.

Linear probing (fine-tuning step). Instead of analyzing fine-tuning, we follow Shen et al. [2022]
and analyze linear probing on top of the pretrained representations from the encoder. We train a linear
model with parameters B∈Rr×k, where r is the number of classes. We minimize the objective:

L(B)=Ex∼PS

[
ℓ(Bϕ̂(x),yx)

]
+η∥B∥2F , (5)

where ℓ is the squared loss and we take yx ∈ Rk to be a one-hot encoding of the class label. The
resulting classifier is f̂(x)=argmaxi∈[r](B̂ϕ̂(x))i.

Pretraining augmentations (Figure 5) We define the pretraining augmentation distribution
Apre(· |x) to be

Apre(x
′ |x)=


ρ′ x=x′

α′ {x′,x}∈{{1,4},{3,5},{5,7},{2,5},{4,6},{6,8},{1,8},{2,7}
β′ {x′,x}∈{{1,2},{3,4},{5,6},{7,8}}
γ′ {x′,x}∈{{1,3},{2,4},{3,6},{4,5},{5,8},{6,7},{1,7},{2,8}}

. (6)

Notice that the weight between 1,3 is γ′ and the weight between 1,4 is α′, and the weights are similarly
swapped for 2,4, and 2,5. We assume that ρ′,α′,β′, and γ′ are in (0,1) and are distinct. We also assume
that the augmentation probabilities satisfy ρ′>max{α′,β′} and min{α′,β′}>γ′. Following Shen
et al. [2022], we can convert these to positive pair probabilities ρ,α,β,γ with similar properties by
renormalizing.
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Given the above setting, the following is a simplified form of Proposition 3 from Shen et al. [2022],
if we instead use the following augmentation distribution, which swaps the edge weight magnitudes
that involve nodes 1 and 2:

Aprop(x
′ |x)=


ρ′ x=x′

α′ {x′,x}∈{{1,3},{3,5},{5,7},{2,4},{4,6},{6,8},{1,7},{2,8}
β′ {x′,x}∈{{1,2},{3,4},{5,6},{7,8}}
γ′ {x′,x}∈{{1,4},{2,3},{3,6},{4,5},{5,8},{6,7},{1,8},{2,7}}

. (7)

Proposition 1 (Shen et al. [2022]) With the above construction for the input space X , unlabeled
distribution PU , and data augmentation Aprop, for some feature dimension k ∈ Z+ a linear probe
trained on contrastive pre-trained features achieves 0 target error: L0−1(f̂) = 0. However, for all
k ∈Z+, there exists a minimizer f̂erm of the ERM objective (with data augmentations according to
Aprop) that has non-zero error: L0−1(f̂erm)=1/3.

ERM with targeted augmentations can get high OOD error. In general, we proceed by defining
the following targeted augmentation, which allows us to reduce to the setting of Proposition 1:

Aft(x
′ |x)=


1 {x′,x}∈{1,4},{2,3}
1 x=x′ and x /∈{1,2}
0 otherwise

(8)

which transforms input 1 to 4 and the input 2 to 3, while keeping all other inputs the same. Since the
ERM with augmentations objective will not contain a term involving inputs 5,6,7, or 8 and thus the
prediction on these inputs do not affect the objective, there exists a minimizer of the ERM objective
(Equation 3) that predicts the wrong label for inputs 5,6,7,8 and has target error 2/3. This is because
these nodes are unreachable via augmentations of the source inputs, and thus the ERM objective can
be minimized with any arbitrary prediction on these inputs.

Standard fine-tuning has high OOD error. By Proposition 1, standard fine-tuning after contrastive
pretraining has zero target (OOD) error when the pretraining augmentations do not have swapped edges.
By symmetry, standard fine-tuning (contrastive pretraining + linear probing) on our augmentation graph
with pretraining augmentationsApre outputs the opposite label for all target inputs, resulting in an OOD
error of 1. This is because the source and target domains are misaligned in our augmentation graph.

Connect Later achieves zero OOD error. Connect Later applies targeted augmentations Aft during
the linear probing step (on top of contrastive pretrained representations). This choice of targeted augmen-
tations reduces to the setting of Proposition 1 where the labeled source domain consists of the inputs 3,4
instead. By the symmetry of the graph and applying Proposition 1, Connect Later achieves 0 OOD error.
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