
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL MESSAGE-PASSING ON ATTENTION GRAPHS
FOR HALLUCINATION DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often generate incorrect or unsupported content,
known as hallucinations. Existing detection methods rely on heuristics or simple
models over isolated computational traces such as activations, or attention maps.
We unify these signals by representing them as attributed graphs, where tokens
are nodes, edges follow attentional flows, and both carry features from attention
scores and activations. Our approach, CHARM, casts hallucination detection as a
graph learning task and tackles it by applying GNNs over the above attributed
graphs. We show that CHARM provably subsumes prior attention-based heuristics
and, experimentally, it consistently outperforms other leading approaches across
diverse benchmarks. Our results shed light on the relevant role played by the graph
structure and on the benefits of combining computational traces, whilst showing
CHARM exhibits promising zero-shot performance on cross-dataset transfer1.

1 INTRODUCTION

Despite their impressive capabilities, LLMs frequently produce outputs that are factually inaccurate,
logically inconsistent, or unsupported by the input context, broadly referred to as hallucinations
(Pagnoni et al., 2021; Cao et al., 2022; Qiu et al., 2023). As LLMs are increasingly applied in diverse
domains, detecting hallucinations becomes crucial for ensuring their safe and reliable use. This
phenomenon is inherently complex and multi-faceted, and methods for automated hallucination
detection (HD) have recently received significant attention (Yin et al., 2024; Bar-Shalom et al., 2025).

A straightforward approach for HD is to query LLMs multiple times, either by asking them to judge
their own outputs (Kadavath et al., 2022) or by sampling alternative generations to measure semantic
variability (Kuhn et al., 2023). While effective in some cases, this strategy requires repeated rollouts,
making it both slow and computationally expensive, and thus unsuitable for real-time or large-scale
use. A more scalable line of work leverages the internal signals produced by LLMs during decoding,
which we refer to as computational traces. In particular, most works focus on linearly probing
residual stream activations on selected layers and token positions (Orgad et al., 2024; Azaria &
Mitchell, 2023; Belinkov, 2022). More recently, attention maps have shown to provide an additional
perspective on model behaviour, e.g., by leveraging prompt-response attention ratios (Chuang et al.,
2024). Although providing meaningful, alternative cues on hallucinations existing attention-based
techniques rely on simple models or handcrafted heuristics (Sriramanan et al., 2024; Binkowski
et al., 2025). Furthermore, all the above methods treat computational traces in isolation, despite
capturing complementary aspects of hallucinations. To date, a systematic exploration of the interplay
of computational traces is still lacking. More broadly, the field currently lacks a framework applying
modern deep learning techniques to structured, holistic representations of computational traces,
leaving the community to rely on heuristic, single-signal approaches.

In this paper, we propose a unified framework that represents LLM computational traces as attributed
graphs, a natural, yet under-explored perspective in the HD literature. Similarly to recent works
dealing with the analysis of learnt attention computational flows (Barbero et al., 2024; El et al.,
2025), this formulation considers tokens as nodes and draws connections between them based on
the structure of attention maps calculated during text generation. Crucially, both nodes and edges
can be endowed with features derived from the values of computational traces across layers (and

1Code will be released upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a

b

c

w

x

z

attentions activations

a b c w x y z

LLM
prompt response

GNN

comp. trace
graph

prompt response

a

b

c

w

x

y

z

hallucination preds

y

Figure 1: Overview of CHARM. We extract attention and activation matrices from LLM computations
and build an attributed graph from them: edges and their features are derived from off-diagonal
attention scores; node features are based on activations, and diagonal attention values. The resulting
graph is processed by a GNN-based architecture, which outputs either token-level hallucination
scores (as illustrated) or a global hallucination score for the entire sentence.

heads): node features capture token-wise signals such as activations and self-scores (the attention
a token assigns to itself), while edge features encode pairwise interactions, most prominently the
attention between distinct tokens. This perspective casts HD as a graph learning problem, which
has recently obtained successes in broad-ranging domains (Monti et al., 2019; Gonzalez et al., 2021;
Liu et al., 2023) and, we argue, is well suited to this task. First, representing computational traces
as attributed graphs allows to naturally integrate heterogeneous signals, which may hold varying
predictive value across generation tasks. Second, the framework accommodates different levels of
detection granularity, with the standard setup of graph classification corresponding to response-level
detection, and that of node classification to the token-level one. Finally, this formulation directly
leverages the rich body of work on Graph Neural Networks (GNNs) and their code-libraries (Fey &
Lenssen, 2019), providing principled and well-studied tools for tailored HD models.

Motivated by these advantages, we introduce CHARM (see Figure 1), an HD approach based on a
Graph Neural Network operating on computational trace graphs (Gilmer et al., 2017). Our framework
can jointly process different computational traces, and subsumes known detection heuristics: we
prove that it can express recent attention-based methods (Chuang et al., 2024; Sriramanan et al., 2024)
either at the token or response granularity levels. Experimentally, CHARM consistently outperforms
these heuristics, as well as other leading methods across benchmarks and detection resolutions.
Our analyses further reveal that incorporating activations into computational trace graphs alongside
attention-features may improve detection of non-contextual hallucinations. Beyond state-of-the-art
comparisons, our ablation studies demonstrate the importance of the graph structure, the main princi-
ple driving CHARM. Finally, we report promising zero-shot cross-dataset transfer results and observe
robustness to graph sparsifications, indicating viable trade-offs between accuracy and efficiency.

Contributions are summarised as follows. (1) We introduce a unified view of LLM computational
traces as attributed graphs, where tokens are nodes connected by attention-induced edges, and
both nodes and edges are enriched with features such as activations and attention scores. (2) We
introduce CHARM, which casts HD as graph learning on computational trace graphs. It uses a GNN
that provably subsumes attention-based heuristics, opening new application frontiers for machine
learning on graphs. (3) We show that CHARM consistently outperforms leading HD methods across
diverse benchmarks and granularities, while exhibiting promising zero-shot transfer capabilities.

2 RELATED WORK

Hallucinations and their detection in LLMs. The term “hallucinations” in LLMs broadly refers to
errors in text generation where outputs are unfaithful to the input or external facts (Orgad et al., 2024).
These include knowledge inaccuracies, flawed reasoning, biases, and references to non-existing
entities Liu et al. (2021); Huang et al. (2023a); Ji et al. (2023); Rawte et al. (2023). Hallucinations
can involve complex failures and manifest in subtle ways, including at the granularity of single
tokens (Orgad et al., 2024). Early detection approaches leverage uncertainty measures in next-token
prediction or semantic consistency of responses Kadavath et al. (2022); Varshney et al. (2023);

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Kuhn et al. (2023); Manakul et al. (2023). Alternatively, recent work propose detectors on LLM
computational traces; prominent examples include (hidden) activations Kadavath et al. (2022); Snyder
et al. (2024); Yuksekgonul et al. (2023); Zou et al. (2023); Yin et al. (2024); Chen et al. (2024);
Simhi et al. (2024); Li et al. (2024); Marks & Tegmark (2023); Burns et al. (2022); Rateike et al.
(2023) and attention matrices Sriramanan et al. (2024); Chuang et al. (2024); Binkowski et al. (2025);
Bazarova et al. (2025); Zhang et al. (2023). Different traces may be more or less informative for
different types of hallucinations: e.g., attention-based heuristics have been evidenced to be predictive
in contextual hallucination settings Chuang et al. (2024). Existing methods mostly rely on heuristics
or simple classifiers on specific traces; some are also constrained to coarse detection levels (e.g.,
whole responses) (Sriramanan et al., 2024; Binkowski et al., 2025; Kuhn et al., 2023).

Attention-based HD. Irregular or skewed attention behaviours have been observed to often signal
pathological text generation (Xu et al., 2023; Chuang et al., 2024; Binkowski et al., 2025; Bazarova
et al., 2025). E.g., hallucinated translations may exhibit localised scores on narrow context win-
dows (Xu et al., 2023); hallucinations in contextual question answering may correlate with excessive
focus on response tokens w.r.t. context ones (Chuang et al., 2024). The recent Lookback Lens proposes
a detection feature based on this intuition. Other works extract spectral or structural features from
attention matrices, e.g., via graph Laplacians combined with logistic regression (Binkowski et al.,
2025). These approaches, however, remain limited by fixed heuristics and shallow classifiers. Our
work generalises this line by employing attention matrices to construct attributed graphs, a formula-
tion that supports predictions at multiple levels of granularity, integrates additional computational
signals and unlocks the application of modern (graph-based) deep learning techniques.

Graphs of LLM computation and Graph Neural Networks. Recent works have applied graph-
theoretic perspectives to neural computations (Vitvitskyi et al., 2025), often graphs induced by
attention matrices (Barbero et al., 2024; El et al., 2025). Notably, Barbero et al. (2024) analyse
signal propagation on attention graphs, uncovering phenomena such as representational collapse and
oversquashing (Alon & Yahav, 2021; Topping et al., 2022). These studies highlight the value of
attention graphs, but are limited to descriptive and structural analyses. In contrast, we extend attention
graphs to more general attributed graphs to integrate other computational traces and, importantly, we
propose to directly learn on these graphs for the task of HD. To this end, we leverage Graph Neural
Networks (Kipf & Welling, 2017; Gilmer et al., 2017; Battaglia et al., 2018), a family of architectures
which have recently achieved remarkable results in relevant structured domains (Qasim et al., 2019;
Monti et al., 2019; Stokes et al., 2020; Gonzalez et al., 2021; Liu et al., 2023).

3 LLM COMPUTATIONAL TRACES AS ATTRIBUTED GRAPHS

Preliminaries. Throughout this paper, we focus on attention-based, decoder-only LLMs. Ab-
stracting away architectural specifics, we treat them as sharing a common backbone: a stack of
transformer-decoder blocks. Let L denote a reference LLM consisting of L decoder-block layers of
H heads each2, p⃗ refer to a prompt in input, and r⃗ to the response L generates. We consider p⃗, r⃗ to
be sequences of tokens of size, resp., np, nr (n := np + nr). We use Ti to refer to token at position
i in the concatenation p⃗ | r⃗. Within each transformer block, multi-head attention produces scores,
which we collect in attention matrices Al,h ∈ [0, 1]n×n for layer l and head h. Due to the causal
structure of decoder-only transformers, these matrices are lower-triangular. For convenience, we
define αi,j ∈ [0, 1]L·H as the vector of attention scores between Ti and Tj across all layers and heads.
In addition to multi-head attention values, residual stream activations constitute another key source
of information about the computation performed by L. For each token Ti, we denote by ali ∈ Rd

its d-dimensional activation vector at layer l; this captures the computational state of the model at
such token position and processing stage. Together, attention values and activations form the primary
signals we use to describe the computational traces of LLMs. While our framework focuses on these
two, it can also naturally accommodate additional sources of information, such as logits.

From computational traces to attributed graphs. The attention values calculated along the way
are, in fact, pairwise scores that induce a (non-symmetric) binary relation between tokens. In fact,
they define a directed graph G = (V,E) on any sequence of tokens s⃗ = p⃗ | r⃗, where:

2One can also consider, without loss of generality, a different number of heads for each layer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• V , the node (vertex) set, is the set of all tokens in s⃗, namely {Ti}n−1
i=0 ;

• E, the edge set, is the set of ordered pairs (Ti, Tj), i > j, signifying Ti attends to Tj in the
generation of next tokens: αl,h

i,j > 0 for some of L’s layers and corresponding heads.

We consider these graphs as attributed, in the sense that nodes and edges can host features representing
L’s computational traces. Edge features are given by the set of attention scores between distinct
tokens, i.e., xE,(i,j) = αi,j’s, with i ̸= j. Node features are given by the attention scores “paid”
by a token to itself, i.e, xV,i = αi,i. Node features can also host other token-wise computational
traces; we consider residual stream activations ali at any layer l, so that node / token Ti is endowed
with feature vector xV,i = (αi,i | ali). Formally, we gather node and edge features in matrices
XV ∈ Rn×(L·H+d) (or Rn×(L·H) should activations be neglected), and XE ∈ RnE×L·H . The
resulting graph is G = (V,E,XV , XE). This representation captures both token interactions and
per-token computational states, and can be extended to incorporate other traces, e.g., activations from
multiple layers or output logits. We leave investigating these aspects to future research endeavours.

Sparsifying computational trace graphs. Very small attention scores convey noisy and weak
contribution to updating the representation of a token. To reduce computational overhead, we
threshold attention scores at τ , zeroing values below it and dropping edges unsupported by any head
or layer after this process. In formulae, new graph is defined as G = (V,E,XV , X

τ
E), with:

(Xτ
E)(i,j),(l,h) =

{
0 if αl,h

i,j ≤ τ,

αl,h
i,j otherwise.

E = {(Ti, Tj) | i > j and ∃d s.t. (Xτ
E)(i,j),d > 0}. (1)

As we experimentally show in Section 5.3, sparsifying the graph in this way may significantly improve
the efficiency of our yet-to-be-described model, while retaining information about the most relevant
token interactions. In the next section we illustrate how, starting from the above formalism, we can
instantiate problems such as automated HD as graph learning tasks.

4 NEURAL MESSAGE PASSING FOR HALLUCINATION DETECTION

4.1 HALLUCINATION DETECTION IS A GRAPH MACHINE LEARNING TASK

Problem formulation. Computational trace graphs can be naturally associated with labels one
seeks to predict for the underlying text generation process. In our specific use-case of HD, these
can indeed reflect hallucination annotations at the level of response tokens or the overall response.
Concretely, our reference graph G — encoding the computation of L on prompt p⃗ and response r⃗ as
per the above Section 3 — can be annotated as (G, y), where:

(i) y ∈ {0, 1},y =

{
1, if r⃗, contains hallucinating passages
0, otherwise

, or

(ii) y ∈ {0, 1}nr ,yi =

{
1, if token Ti, i > np is part of a hallucinating passage within r⃗,

0, otherwise
.

Here, (i) stands for a graph-wise label, while (ii) represents labels at the granularity of single
(response) tokens. With these premises, we formalise HD as learning a parametric function f(G) = ŷ
mapping a computational trace graph G to predictions ŷ of the corresponding labels y. Depending on
the task, ŷ ∈ [0, 1]k with k = 1 for graph-wise or k = nr for token-wise detection.

Our CHARM architecture. We parameterise f in the family of message-passing Graph Neural
Network (GNN) (Kipf & Welling, 2017; Gilmer et al., 2017). These networks are, to date, the
de-facto standard for learning on attributed graphs, while possessing an architectural pattern which,
as we show next, well aligns them to generalise known approaches. Message-passing networks, in
particular, implement local computations reflecting the structure of the input graph, hence benefitting
from the aforementioned sparsification and offering a compelling advantage in terms of computational
complexity. In particular, we structure f as: f = fpred ◦ fpool ◦ fmp (see Figure 2), where:

• fmp stacks learnable message-passing layers to compute updated token representations from
the input graph G;

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

prompt response

msg

up

msg

GNN
prompt response

a

b

c

w

x

y

z

a

b

c

w

x

y

z

w

x

y

z

w

x

y

z

token-lv preds.

response-lv pred.

aaa
aaa

Figure 2: HD with CHARM. The input is an attributed graph (shown in the bottom left). First fmp
obtains refined node / token representations via msg-passing. Next, fpool aggregates these if response
level predictions are required. Finally, a projection head, fpred, outputs the detection score.

• fpool aggregates token representations into a single graph representation (e.g., via averaging
or summation), or acts as the identity for token-wise detection;

• fpred applies dense layers to compute graph- or token-wise hallucination predictions.

Starting from the original node (token) features XV , each layer in fmp calculates and updates hidden
node representations by aggregating them (possibly, non-linearly) along the connectivity defined by
the attention scores as per Equation (1). That is, the t-th layer updates token i’s embedding as:

h
(t+1)
i = upt

(
h
(t)
i ,

j: (i,j)∈E

msgt
(
h
(t)
i , h

(t)
j , xτ

E,(i,j), pi,j
))

(2)

where: is a permutation invariant3 aggregator such as sum, average, or max; xτ
E,(i,j) corresponds

to the features of edge (i, j) in Xτ
E ; h(0)

i = xV,i are the initial node features; pi,j is a one-hot vector
indicating whether edge (i, j) connects prompt to response or response to response tokens. Functions
upt,msgt are parameterised as Multi-Layer Perceptrons (MLPs) running on the concatenation of
their arguments. We refer to our overall approach as CHARM, a mnemonic formula for “Catching
HAllucinated Responses via (learnable) Message-passing”.

This formulation offers two main advantages. First, it provides a unified framework capable of
handling both token-level and response-level HD, in contrast to prior approaches that target a single
granularity. Second, by leveraging message-passing over computational trace graphs, CHARM can
flexibly integrate multiple signals and naturally subsume heuristic-based detectors. As we exemplify
next, rather than discarding prior meaningful intuitions, our approach can generalise them.

4.2 EXPRESSIVENESS

Here, we demonstrate how hand-crafted heuristics emerge as special cases of our CHARM. To
illustrate this, we focus on two representative methods: (i) Lookback Lens (Chuang et al., 2024),
which produces tokenwise hallucination scores, and (ii) LLM-Check (Sriramanan et al., 2024), which
outputs global sentence-level (graphwise) scores. We show that both heuristics can be approximated,
to arbitrary precision and under mild assumptions, by CHARM, highlighting its expressiveness.

Lookback Lens extracts, for each response token i = np, . . . , nr + np − 1, layer l and head h, a
heuristic feature ℓl,hi quantifying the average proportion of attention paid to prompt w.r.t. previously

3Permutation invariance ensures that calculated message does not depend on the ordering of nodes in the
neighbourhood.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

generated response tokens (Chuang et al., 2024). Precisely, Lookback Lens outputs scores:

P l,h
i =

1

np

np−1∑
j=0

αl,h
i,j , Rl,h

i =
1

i− np

i−1∑
j=np

αl,h
i,j ; ℓl,hi =

P l,h
i

P l,h
i +Rl,h

i

. (3)

where P l,h
i , Rl,h

i correspond to the average attention paid by response tokens to, resp., the prompt
and the (previously) generated response. We argue that this heuristic can, in fact, be interpreted in the
form of message-passing on the (non-thresholded) attention graph described in Section 3, and can
thus be captured by our approach:

Proposition (informal) 1. Equipped with a single-layer message-passing stack fmp, CHARM running
on a non-tresholded computational trace graph (τ = 0) can arbitrarily well approximate token-wise
Lookback Lens features ℓi for bounded prompt and response lengths.

Proof idea. The ability to perform such approximation relies on the following: (1) aggregation over
previous tokens, as required by P l,h

i ’s and Rl,h
i ’s, is naturally captured by propagating (and aggre-

gating) attention features on the neighbourhoods of the directed attention graph as per Equation (2);
(2) conditioned on mark input pi,j , MLP msg can differently route attention features from prompt
vs. response tokens in separate subspaces of the internal representations; (3) message summation
can separately accumulate attention to prompt versus response tokens (non-normalised P l,h

i , Rl,h
i);

(4) MLP up can normalise and combine these aggregated scores as required, calculating the ratio
in Equation (3). A formal statement of informal proposition 1 is, along with its proof, in Appendix A.

LLM-Check proposes to detect hallucinations at the level of entire responses: for a chosen LLM
layer l, LLM-Chk-l obtains an “Attention Score” cl by averaging the log-determinants of attention
matrices across the set of corresponding heads (Sriramanan et al., 2024). Given the peculiar lower-
triangular structure of these matrices, such scores can be calculated as:

cl =
1

H

H−1∑
h=0

n−1∑
i=0

log(αl,h
i,i), (4)

i.e., by summing the log-transformed attentions paid by each token to itself, averaged across heads.
In practice, the inner summation is replaced with averaging, more robust to prompt and response
lengths. We note, in our CHARM, these “self-scores” are gathered and processed as node features,
which can be transformed and then later aggregated by our architecture to reproduce scores cl’s.

Proposition (informal) 2. With a single-layer message-passing stack fmp, CHARM can arbitrarily
well approximate global LLM-Chk-l features cl, provided attentions are clipped away from zero4.

Proof idea. Intuitively: (1) up MLPs can calculate the initial log-transform on the features of the
receiving node/token i — that is, on each token’s “self-scores” — while discarding information from
neighbours; (2) fpool, set to summation — or averaging, if required — can aggregate these values
across tokens; (3) last, fpred can average these values across heads and selectively for the desired
layer l to implement the outer averaging in Equation (4). Again, a formal statement of informal
proposition 2 is reported and proved in Appendix A.

Both the two above propositions guarantee that, while general and learnable, our approach can
also provably default to known, hand-crafted heuristics (under mild, reasonable assumptions). This
showcases the expressiveness of the CHARM framework, further evidencing how graph representations
and message-passing networks can offer a valid and compelling perspective into the task of HD.

5 EXPERIMENTS

We evaluate different aspects of learning with CHARM through the following research questions: (Q1)
Is our GNN-based formulation effective in practice? (Q2) Is CHARM effective at detecting different
types of hallucinations and across different granularities (e.g., token-level and full-response)? (Q3)

4This assumption ensures the log is continuous on an appropriate compact set, rendering its approximation
amenable (see Appendix A); in practice we also did observe it was necessary to ensure numerical stability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Does CHARM exhibit any zero-shot transferability across datasets? (Q4) How crucial is the underlying
graph structure for CHARM’s performance? (Q5) Can CHARM handle large/dense graphs? (Q6) Can
the combination of attention and activations be effective in CHARM?

We initialise training of CHARM with 3 different random seeds, and, in the following, report the
mean test performance along with std. All results are obtained by models optimising validation
performance (AUPR, see below). Additional information, including dataset details, hyperparameter
searches, implementation notes, and extended results, are available in Appendices B to D.

5.1 CONTEXTUAL TOKEN-LEVEL HALLUCINATION DETECTION

Datasets. We first evaluate our approach at a token-level granularity on the NQ (Kwiatkowski
et al., 2019) and CNN (See et al., 2017) datasets. These consists of prompt-response pairs with
hallucination annotations available at the level of single response tokens (see Section 4.1). These pairs
are obtained by prompting a target LLM to perform either document-based question answering (NQ)
or text summarisation (CNN). These datasets contain instances of contextual hallucinations: although
the relevant and correct facts are provided in the input context, the target LLM is still observed to
generate incorrect responses (Chuang et al., 2024). Original generations and annotations for this
dataset are derived from (Chuang et al., 2024)5; coherently with the setup in the same work, we take
LLaMa-2-7B-chat as the reference LLM on both datasets. More details are in Appendix B.1.

Table 1: Test AUROC and AUPR (%) for NQ and CNN (token-
wise, higher is better). Bold: best, Underlined: runner-up. †:
we also tune the regular. strength, diff. than the original.

Method NQ CNN
AUROC AUPR AUROC AUPR

Probas 49.8 16.2 54.4 8.2

Act-24 73.0 36.2 71.3 20.3
Act-28 71.6 34.6 70.1 18.4
Act-32 67.4 28.6 67.7 15.4

Lookback Lens 70.8 31.0 71.9 17.4
Lookback Lens † 71.9 34.3 74.4 19.7

Neigh-Avg(N) 66.0 24.5 70.1 14.9
Neigh-Avg(E) 66.8 30.4 70.5 18.6

ou
rs CHARM (att) 74.8±0.6 40.3±1.7 75.4±0.2 22.7±0.4

CHARM (att+act-24) 72.2±1.2 35.5±1.6 70.9±0.2 19.8±0.5

Method comparisons. We com-
pare against a set of representative
baselines. Probability-based detec-
tors (Probas) (Guerreiro et al.,
2022; Kadavath et al., 2022; Varsh-
ney et al., 2023; Huang et al., 2023b)
leverage the next-token probabili-
ties to estimate LLM uncertainty
and predict hallucinations; Activa-
tion probes (Orgad et al., 2024;
Azaria & Mitchell, 2023; Belinkov,
2022) (Act-*) train a logistic classi-
fier on activations at specific layers;
the attention-based, Lookback
Lens heuristic (Chuang et al.,
2024) fits the same model on hand-
crafted token-wise features calcu-
lated over all layers and heads (see Equation (3)). We run Act-*’s on the common choice of
LLM layers 24, 28, 32, motivated by the findings in (Chuang et al., 2024; Azaria & Mitchell, 2023).
As for CHARM, we instantiate it in two configurations: one only employing attention features (att),
another also utilising activations from a specific layer, which we set to 24 (att+act-24) due to its
consistently superior performance in Act-*’s We run CHARM on graphs sparsified with a fixed
τ = 0.05 (see Equation (1) and related ablations in Section 5.3). The HD task is at the level of single
nodes/tokens, so fpool is set to identity. We additionally consider two ablated versions of CHARM
(att): Neigh-Avg(N), Neigh-Avg(E). These extract token-wise features through a single, non-
learnable msg-passing step, aggregating, resp., either node or edge features across neighbourhoods in
the same computational trace graphs considered in CHARM (details are in Appendix D.1.1). Compar-
ing with these allows us to evaluate the relevance of our multi-layer, learnable procedure. All methods
in comparison have their hyperparameters tuned on the Val. set. Performance is measured in terms of
Test AUROC and AUPR.

Results, reported in Table 1, show our approach consistently outperforms all baselines across
both datasets and metrics in the att.-only configuration. The significant margins over Lookback
Lens, Neigh-Avg(N) and Neigh-Avg(E) underscore the benefits of an expressive, learnable
graph-based method over attention-based heuristics. This pure attention configuration also surpasses

5Differently than (Chuang et al., 2024), however, we construct and experiment with a different split ensuring
full textual disjointness between train, test, and validation, see more in Appendix B.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

all activation-based Act-* probes, this contributing to answer positively to Q1. We interestingly
report that including activations from an intermediate layer into CHARM reveals detrimental. We
hypothesise that, on these contextual benchmarks, attention features alone carry most of the relevant
predictive signal — an expressive enough model like ours can leverage it at best and struggle to find
additional complementary signals on activations, which could, instead lead to fit spurious correlations.

5.2 RESPONSE-LEVEL HALLUCINATION DETECTION

Datasets. We next evaluate CHARM at the coarser response-level HD on three datasets: Movies (Or-
gad et al., 2024), WinoBias (Zhao et al., 2018), and Math (Sun et al., 2024). Unlike NQ and CNN,
these benchmarks address failure modes different than contextual grounding, namely: factual knowl-
edge recall (Movies), intrinsic bias in coreference resolution (WinoBias), and arithmetic reasoning
(Math). This allows to assess generalisation across fundamentally different hallucination types. The
relative role of attention thereon is not obviously clear, but we hypothesise they can provide infor-
mative signals, e.g. by capturing systematic biases in attention to demographic cues or by reflecting
unusual patterns in intermediate calculations steps. Exploring their interplay with other computational
traces is thus a insightful direction. For these experiments we derive text generations and hallucination
annotations following the procedure in (Orgad et al., 2024) and, consistently with this work, we target
a different LLM, Mistral-7B-instruct. More dataset details are in Appendix B.2.

Method comparisons. As for CHARM and its non-learnable counterparts (iv), we set component
fpool to average. We compare our method to Act-*’s probing activations in notoriously relevant
token positions, e.g., the last token of the prompt, or the last of the response (Orgad et al., 2024)
(see Appendix C.2). Here, we compare against the response-level attention-based LLM-Check (Sri-
ramanan et al., 2024) (LLM-Chk-*) and the spectral-method proposed in (Binkowski et al., 2025)
(LapEig). We also run an enhanced counterpart of (LLM-Chk++-*) whereby per-head scores are
considered as inputs to logistic regression, rather than being averaged (Equation (4)).

Table 2: Test AUROC and AUPR (%) for Movies, Winobias, Math (response-
lv, higher is better). Bold: best, Underlined: runner-up.

Method Movies Winobias Math
AUROC AUPR AUROC AUPR AUROC AUPR

Probas 58.6 81.6 64.5 20.0 54.5 57.4

Act-24 77.0 90.4 76.6 37.8 77.7 77.5
Act-28 77.0 90.4 73.9 34.3 78.1 77.8
Act-32 76.3 90.2 72.7 35.3 76.6 77.9

LLM-Chk-24 47.5 74.6 38.9 10.9 64.5 68.2
LLM-Chk-28 51.1 76.7 41.6 11.4 65.5 69.2
LLM-Chk-32 61.5 82.1 41.6 11.3 64.0 67.6
LLM-Chk++-24 66.3 84.5 64.6 20.5 67.3 69.1
LLM-Chk++-28 67.8 86.3 64.8 21.0 67.0 70.6
LLM-Chk++-32 73.0 88.8 67.2 24.1 68.6 72.5
LapEig 72.9 88.4 74.1 33.3 73.6 76.3

Neigh-Avg(N) 78.6 91.2 63.8 23.0 77.4 79.2
Neigh-Avg(E) 54.9 78.5 65.8 21.9 76.7 78.3

ou
rs CHARM (att) 80.3±0.2 92.0±0.1 70.4±0.7 29.1±1.0 76.5±1.1 79.7±0.5

CHARM (att+act-24) 79.7±0.3 91.8±0.2 77.8±0.4 39.8±1.3 80.8±0.7 83.1±0.7

Results are re-
ported in Table 2.
Overall, CHARM
attains the best perfor-
mance across these
benchmarks, with
particularly notable
gaps in Math. To-
gether with the above,
these results answer
positively to Q1 and
Q2. Interestingly, we
observe a markedly
different behaviour
than in the previously
considered contex-
tual HD datasets.
Other than Movies
— where both our
configurations work
equally well — on both Winobias and Math, activation-based features work in synergy with
attention-based ones. Instead of leading to fit spurious correlations as hypothesised for NQ and CNN
(Section 5.1), they contribute to strongly boost performance over the att.-only CHARM, and over
all considered att.- and act.-based methods. This is particularly pronounced on Winobias — there,
CHARM (att.) is surpassed by Act-*’s, but the inclusion of activations leads it (att. & act.-24) to
significantly outperform them both. Overall these datasets provide cases leading to a positive answer
to Q6. We last note that Math is the only dataset where Act− 24 outperformed by other variants,
namely Act-32. We thus also ran CHARM (att+act-32), which scored Test AUROC of 81.7 ± 0.2,
and AUPR of 83.8± 0.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ADDITIONAL ANALYSES

Table 3: Results from ablating the graph structure.
Method CNN Math

AUROC AUPR AUROC AUPR

CHARM (no g.) 70.8 ±0.5 19.2 ±0.5 80.6 ±0.7 82.7 ±0.1

CHARM 75.4 ±0.2 22.7 ±0.4 81.7 ±0.2 83.8 ±0.3

The role of the graph. To what extent
does message-passing on the attention-
induced graph contribute to the perfor-
mance of CHARM? To answer this, we ab-
late the connectivity in our input samples
and train CHARM on two representative
datasets: CNN and Math. In this setup, CHARM defaults to a set model which, instead of message-
passing, applies a stack of dense layers over node features. We train and extensively tune this baseline,
denoted “CHARM (no g.)”, considering both att.-only and att. & act. configurations. We report its
best results in Table 3 compared to the best corresponding CHARM. Results clearly show the positive
contribution of message-passing on the constructed topology, answering positively to Q4.

Table 4: Avg. graph stats. on NQ at different thresholds,
along with GPU memory footprint and Test AUPR.
τ Num. Edges Sparsity Mem. (MB) AUPR

0.5 1,118.80 0.993 22.99±3.71 38.4±0.4

0.1 7,458.67 0.952 60.44±11.79 41.0±1.2

0.05 14,884.44 0.906 104.15±23.05 40.3±1.7

0.01 58,998.88 0.645 363.02±98.39 40.3±0.9

0.001 19,7784.82 0.026 1177.20±523.61 40.1±0.0

Efficiency and robustness. We experi-
ment with different values of the attention
threshold τ (Equation (1)), studying how
graph sparsity and (inference) memory con-
sumption vary in relation to performance.
We run this study on NQ, with results in Ta-
ble 4. Test AUPR is reported along with
the number of edges, sparsity and infer-
ence memory footprint averaged over test
graphs. We observe CHARM’s performance is robust to various levels of sparsifications, whilst this
can provide dramatic reduction in resource consumption. Performance drops more notably only for
τ = 0.5, which, we note, still outperforms the best competitor, i.e., Act-24 (see Table 1). Overall
our default τ = 0.05 attains a good trade-off, whilst we note it maximises val. AUPR. These results
answers positively to Q5. We finally measure a distinctly contained inference latency of ≈ 1e−3 secs.
Refer to Appendix C.1 for run-time and performance comparisons with other popular HD methods
relying on multiple prompting, which incur significantly higher latency.

Table 5: Cross-dataset zero-shot transf. NQ ↔ CNN.

Method NQ → CNN CNN → NQ
AUROC AUPR AUROC AUPR

LkbLens † 68.6 14.9 62.0 26.5
Act-24 63.4 11.3 63.8 29.7

CHARM 64.1 ±1.1 12.0 ±0.98 65.5 ±0.14 31.6 ±0.10

Zero-shot transfer. CHARM is a learn-
able, expressive multi-layer approach —
this raises a natural question: To what ex-
tent can it generalise cross-datasets zero-
shot? To investigate this, we follow the
setup in (Chuang et al., 2024): we train on
NQ and evaluate on CNN, and vice-versa.
Results are in in Table 5. Overall no single method consistently outperforms the others in this
challenging setup. In fact, despite its larger expressiveness, CHARM demonstrates promising generali-
sation: it outperforms activation-based probes, ranks best in CNN → NQ, and places second in NQ
→ CNN (behind Lookback Lens, which conversely performs the worst in CNN → NQ). These
results suggest that zero-shot transfer remains an open challenge, but our graph-based formulation is
competitive and can capture generalisable signals, answering positively to Q3.

6 CONCLUSIONS

In this work, we proposed attributed graphs as a principled formulation of LLM computational traces,
showing how diverse signals can be unified in this framework and how neural message passing can
be applied thereon for diverse HD tasks. We showed our approach, CHARM, can provably generalise
prior methods and that it achieves strong empirical performance, consistently outperforming existing
methods. Additional analyses underscored the importance of graph structure and demonstrated
promising zero-shot generalization across datasets.

Future endeavours will consider integrating other computational traces (e.g., logits), as well as
extensions to new tasks such as detecting data contamination, identifying LLM-generated text, or
flagging jailbreak attempts. Future work may also explore alternative message-passing architectures,
including positional and structural encodings tailored to these attributed graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our code will be released upon acceptance, along with all training and evaluation scripts. Section 5,
as well as Appendices B to D provide the required implementation details to reproduce our results.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
International Conference on Learning Representations, 2021.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when it’s lying. In Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 967–976, 2023.

Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal
Chechik, and Haggai Maron. Learning on llm output signatures for gray-box behavior analysis.
arXiv:2503.14043, 2025.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G.M. Araújo, Alex
Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information over-
squashing in language tasks. In Advances in Neural Information Processing Systems, volume 37,
pp. 98111–98142, 2024.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018.

Alexandra Bazarova, Aleksandr Yugay, Andrey Shulga, Alina Ermilova, Andrei Volodichev, Kon-
stantin Polev, Julia Belikova, Rauf Parchiev, Dmitry Simakov, Maxim Savchenko, Andrey
Savchenko, Serguei Barannikov, and Alexey Zaytsev. Hallucination detection in llms via topologi-
cal divergence on attention graphs. arXiv:2504.10063, 2025.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

Jakub Binkowski, Denis Janiak, Albert Sawczyn, Bogdan Gabrys, and Tomasz Kajdanowicz. Hallu-
cination detection in llms using spectral features of attention maps. arXiv:2502.17598, 2025.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision. arXiv:2212.03827, 2022.

Meng Cao, Yue Dong, and Jackie Cheung. Hallucinated but factual! inspecting the factuality of
hallucinations in abstractive summarization. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3340–3354, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
Llms’ internal states retain the power of hallucination detection. arXiv:2402.03744, 2024.

Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ranjay Krishna, Yoon Kim, and James R. Glass.
Lookback lens: Detecting and mitigating contextual hallucinations in large language models using
only attention maps. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 1419–1436. Association for Computational Linguistics, 2024.

Batu El, Deepro Choudhury, Pietro Liò, and Chaitanya K. Joshi. Towards mechanistic interpretability
of graph transformers via attention graphs. In ICLR 2025 Workshop on Explainable AI for Science
(XAI4Science), 2025.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272. PMLR, 2017.

Guadalupe Gonzalez, Shunwang Gong, Ivan Laponogov, Michael M. Bronstein, and Kirill Veselkov.
Predicting anticancer hyperfoods with graph convolutional networks. Human Genomics, 15(33),
2021.

Nuno M Guerreiro, Elena Voita, and André FT Martins. Looking for a needle in a haystack: A
comprehensive study of hallucinations in neural machine translation. arXiv:2208.05309, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 2023a.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu,
and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large
language models. arXiv:2307.10236, 2023b.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv:2310.06825, 2023.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv:2207.05221, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv:2302.09664, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024.

Gary Liu, Denise Catacutan, Khushi Rathod, Kyle Swanson, Wengong Jin, Jody Mohammed, Anush
Chiappino-Pepe, Saad Syed, Meghan Fragis, Kenneth Rachwalski, Jakob Magolan, Michael Surette,
Brian Coombes, Tommi Jaakkola, Regina Barzilay, James Collins, and Jonathan Stokes. Deep
learning-guided discovery of an antibiotic targeting acinetobacter baumannii. Nature Chemical
Biology, pp. 1–9, 2023.

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, and Bill Dolan.
A token-level reference-free hallucination detection benchmark for free-form text generation.
arXiv:2104.08704, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101, 2017.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. arXiv:2303.08896, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv:2310.06824, 2023.

Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein.
Fake news detection on social media using geometric deep learning. In ICLR 2019 Workshop on
Representation Learning on Graphs and Manifolds, 2019.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan
Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations.
arXiv:2410.02707, 2024.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. Understanding factuality in abstrac-
tive summarization with FRANK: A benchmark for factuality metrics. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4812–4829, Online, June 2021. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143–195,
1999.

Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. Learning representations
of irregular particle-detector geometry with distance-weighted graph networks. The European
Physical Journal C, 79(7), 2019.

Yifu Qiu, Yftah Ziser, Anna Korhonen, Edoardo Ponti, and Shay Cohen. Detecting and mitigating
hallucinations in multilingual summarisation. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 8914–8932, Singapore, December 2023. Association for Computational Linguistics.

Miriam Rateike, Celia Cintas, John Wamburu, Tanya Akumu, and Skyler Speakman. Weakly
supervised detection of hallucinations in llm activations. arXiv:2312.02798, 2023.

Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, SM Tonmoy, Aman Chadha,
Amit P Sheth, and Amitava Das. The troubling emergence of hallucination in large language
models–an extensive definition, quantification, and prescriptive remediations. arXiv:2310.04988,
2023.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada, 2017.

Adi Simhi, Jonathan Herzig, Idan Szpektor, and Yonatan Belinkov. Constructing benchmarks and
interventions for combating hallucinations in llms. arXiv:2404.09971, 2024.

Ben Snyder, Marius Moisescu, and Muhammad Bilal Zafar. On early detection of hallucinations in
factual question answering. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2721–2732, 2024.

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda,
and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language models.
In Advances in Neural Information Processing Systems, volume 37, pp. 34188–34216, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Yuhong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Hui Zhao. Benchmarking hal-
lucination in large language models based on unanswerable math word problem. arXiv:2403.03558,
2024.

Jake Topping, Francesco Di Giovanni, Benjamin P. Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288, 2023.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves
nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation.
arXiv:2307.03987, 2023.

Alex Vitvitskyi, João G. M. Araújo, Marc Lackenby, and Petar Veličković. What makes a good
feedforward computational graph? In Proceedings of the 42nd International Conference on
Machine Learning, Proceedings of Machine Learning Research. PMLR, 2025.

Weijia Xu, Sweta Agrawal, Eleftheria Briakou, Marianna J. Martindale, and Marine Carpuat. Un-
derstanding and detecting hallucinations in neural machine translation via model introspection.
Transactions of the Association for Computational Linguistics, 11:546–564, 2023.

Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model
generations with local intrinsic dimension. arXiv:2402.18048, 2024.

Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar, Ranjita Naik, Hamid
Palangi, Ece Kamar, and Besmira Nushi. Attention satisfies: A constraint-satisfaction lens on
factual errors of language models. arXiv:2309.15098, 2023.

Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu Zhou,
Xinbing Wang, and Luoyi Fu. Enhancing uncertainty-based hallucination detection with stronger
focus. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 915–932. Association for Computational Linguistics, 2023.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pp. 15–20, New Orleans, Louisiana, 2018. Association for
Computational Linguistics.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv:2310.01405, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPRESSIVENESS: CLAIMS AND PROOFS

Proposition (informal) 1. Equipped with a single-layer message-passing stack fmp, CHARM running
on a non-tresholded computational trace graph (τ = 0) can arbitrarily well approximate token-wise
Lookback Lens features ℓi for bounded prompt and response lengths.

Proposition 1. Let ℓi(s⃗;L) denote the Lookback Lens features calculated, for token i on string
s⃗ = p⃗ | r⃗ for LLM L(Equation (3)). Also, let h(t)

i (Gs⃗) denote the t-layer representation for the same
token in output from t CHARM msg-passing layers (Equation (2)) on the corresponding computational
trace graph Gs⃗. For any precision ϵ > 0, there exists a 1-layer stack of CHARM’s layers which
approximate Lookback Lens features up to precision ϵ, for maximum allowed prompt-length n̄p and
response length n̄r. That is, for any prompt p⃗, response r⃗ of the aforementioned maximum lengths,
and for any response token i, ∥h(1)

i (Gp⃗|r⃗)− ℓi(p⃗ | r⃗;L)∥∞ < ϵ.

Proof. To prove the above we show that, by setting hyperparameters ≡
∑

(summation) and τ = 0
(no thresholding), there exist a single-layer stack fmp which compute the desired approximation. In
the following we will consider the attention scores across the L layers and H heads to be arranged
in our node and edge features in a flattened manner. We will conveniently denote with ♭(l, h) the
function which evaluates the index of layer l and head h in this flattened representation.

(0) Setup and inputs. As our stack is made up of one single message-passing layer, our specific
interest is thus in showing the existence of appropriate MLPs msg0, up0 enabling fmp to realise the
target approximation. Being these components of the first — and only — message-passing layer in
fmp, its input node and edge representations effectively correspond to the original node and edge
features XV , XE . We are thus focussing on the following update:

h
(1)
i = up0︸︷︷︸

(2)

(
xV,i,

∑
j<i

msg0︸ ︷︷ ︸
(1)

(
xV,i, xV,j , xE,(i,j), pi,j

))
(5)

where the neighbourhood aggregation sums across all previous token positions (j < i) since no
thresholding is enforced (τ = 0) and due to the fact that attention values cannot exactly evaluate to 0
because of to the application of softmax normalisation.

(1) Message function. Let us first describe what we desire msg0 to calculate. We would like it to
map the concatenation of its arguments, with dimensionality 3d + 2, d = L · H , to a vector of
dimensionality 2d+ 2, where:

• The mark feature pi,j is replicated in the first two dimensions (channels 0, 1);

• Edge features xE,(i,j) are replicated either in channels 2 through 2 + d− 1 if pi,j = [1, 0]
(message from prompt token) or in channels 2 + d through 2d− 1 otherwise (message from
response token);

• Node features xV,i, xV,j are discarded.

Now, an MLP exactly implementing the above message function does exist; in fact, it can be explicitly
constructed.

First layer. Weight matrix W1 is in R(3d+2)×(2d+2). We will describe it in terms of columns slices.

• A first slice gathers the first two columns (0, 1); these are all zero except for the bottom 2×2
block, set as identity I2. This slice copies the pi,j mark features in the first two channels of
the hidden representation.

• A second slice gathers columns 2 through 2 + d − 1; these are all zero except for rows
2d through 3d − 1, set to identity Id, and row 3d, set to a 1⃗d one-only vector. This slice
calculates the sum between edge features xE,(i,j) and the first channel of the mark pi,j ,
indicating whether the message comes from a prompt token.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• A third — and last — slice gathers columns 2 + d through 2 + 2d− 1; these are all zero
except for rows 2d through 3d− 1, set to identity Id. This slice copies edge features xE,(i,j)

in the last d channels of the hidden representation.

Bias vector b1 in R2d+2 is all zero except for channels 2 through 2 + d − 1, set to vector −1⃗d.
Recapping, the hidden representation is a vector in R2d+2 with the following structure:[

pi,j | · · ·
(
xE,(i,j)

)
♭(l,h)

+
(
pi,j

)
0
− 1 · · ·︸ ︷︷ ︸

(h1)

| · · ·
(
xE,(i,j)

)
♭(l,h)

· · ·︸ ︷︷ ︸
(h2)

]
.

Second layer: Weight matrix W2 is in R(2d+2)×(2d+2). We will describe it in terms of columns slices
again.

• A first slice gathers the first two columns (0, 1); these are all zero except for the top 2× 2
block, set as identity I2. This slice replicates, again, the ReLU(pi,j) = pi,j mark features in
the first two channels of the output.

• A second slice gathers columns 2 through 2 + d − 1; these are zero in the first two rows,
rows 2 through 2 + d− 1 are set to identity−Id and the last d rows are set to Id. This slice
calculates, channel-by-channel, ReLU(h2)− ReLU(h1) = h2 − ReLU(h1).

• A third — and last — slice gathers columns 2 + d through 2 + 2d− 1; these are all zero
except for rows 2 through 2 + d− 1, set to identity Id. This slice copies ReLU(h1) in the
last d channels of the output.

Bias vector b2 is set to zero.

As a result, the output is a vector in R2d+2 with the following structure:[
pi,j | · · ·

(
xE,(i,j)

)
♭(l,h)

− ReLU(
(
xE,(i,j)

)
♭(l,h)

+
(
pi,j

)
0
− 1) · · ·︸ ︷︷ ︸

(o1)

| · · ·ReLU(
(
xE,(i,j)

)
♭(l,h)

+
(
pi,j

)
0
− 1) · · ·︸ ︷︷ ︸

(o2)

]
.

Now, note that, as desired:

• if
(
pi,j

)
0
= 1 (message from response token):

–
(
o1
)
♭(l,h)

=
(
xE,(i,j)

)
♭(l,h)

− ReLU(
(
xE,(i,j)

)
♭(l,h)

+ 1 − 1) =
(
xE,(i,j)

)
♭(l,h)

−(
xE,(i,j)

)
♭(l,h)

= 0

–
(
o2
)
♭(l,h)

= ReLU(
(
xE,(i,j)

)
♭(l,h)

+ 1− 1) =
(
xE,(i,j)

)
♭(l,h)

,

• if
(
pi,j

)
0
= 0 (message from prompt token):

–
(
o1
)
♭(l,h)

=
(
xE,(i,j)

)
♭(l,h)

−ReLU(
(
xE,(i,j)

)
♭(l,h)

+0−1) =
(
xE,(i,j)

)
♭(l,h)

−0 =(
xE,(i,j)

)
♭(l,h)

–
(
o2
)
♭(l,h)

= ReLU(
(
xE,(i,j)

)
♭(l,h)

+ 0− 1) = 0

Now, when aggregating these calculated messages through summation, it becomes clear that the
aggregated message vector mi will eventually hosts:

• The number of response tokens preceding token i, i.e., i− np − 1, in channel 0;

• The length of the prompt, i.e., np, in channel 1;

• Summation
∑np−1

j=0 αi,j
l,h in channel ♭(l, h) + 2, denoted P̂ l,h

i ;

• Summation
∑i−2

j=np
αi,j
l,h in channel ♭(l, h) + 2 + d, denoted

(
R̂l,h

i

)−
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(2) Update function. Next, we desire up0 to implement a function up∗ mapping the concatenation[
xV,i | mi

]
to a vector of dimension d corresponding to the Lookback Lens output scores

in Equation (3). Showing that up0 can approximate up∗ up to desired precision ϵ will complete the
proof.

We now describe up∗. We build it as a composition of two functions fA ◦ fB :

• fA is such that fA(xV,i,mi) = yi = ci +mi, where ci has the same dimensionality as mi

(2d + 2), and ci =
[
0 | 1 | 0⃗ | xV,i

]
— note that vector yi is an “updated” version of mi

whereby channel 1 now equals i− np and channels ♭(l, h) + 2 + d’s are now such that:(
R̂l,h

i

)−
+ xV,i =

i−1∑
j=np

αi,j
l,h = R̂l,h

i (6)

• fB is such that fB(yi) = zi where zi is of dimensionality d and:

(
zi
)
♭(l,h)

=

(
yi

)
♭(l,h)+2(
yi

)
1(

yi

)
♭(l,h)+2(
yi

)
1

+

(
yi

)
♭(l,h)+2+d(
yi

)
0

. (7)

Note that, importantly,
(
zi
)
♭(l,h)

=
P̂

l,h
i /np

P̂
l,h
i /np+R̂

l,h
i /(i−np)

=
P l,h

i

P l,h
i +Rl,h

i

= ℓl,hi .

First, fA can be realised by a single affine transformation. This has weight matrix WA in
R(3d+2)×(2d+2), described in terms of row slices as follows.

• A first slice gathers the first d rows; it is zero except for the last d-column block, set as
identity Id.

• A second slice gathers rows d through 3d+ 2− 1 and it set as an identity I(2+2d).

The above linear transformation has the effect of copying mi in the output and of summing xV,i in its
last d entries — where the aggregated message from response tokens is stored. Now, bias vector bA
is in R2+2d and is zero everywhere except for its first element which is set as 1. Adding bA has the
effect of simply increasing the second entry by one, thus “updating” the count of response messages
stored there.

Second, we note that fB computes the same exact scalar-valued function fs
B on each output compo-

nent; also, this fs
B is continuous on (the non-compact) domain {1, . . . , n̄p}×{1, . . . , n̄r}×(0, 1)2. We

note that fs
B can be trivially, continuously extended to the compact {1, . . . , n̄p}×{1, . . . , n̄r}×[0, 1]2:

it suffices to see that its limits exist and are finite on the boundary of [0, 1]2. This is indeed the case;
we note that denominators in each individual normalisation ratios are always greater or equal than
one; and that the two addenda in the denominator of the main ratio are always non-negative, can
never evaluate simultaneously to zero and their sum is bounded away from zero (given the maximum
allowed length for prompt and response).

Given this premise, term fs,ext
B this continuous extension; we can invoke the MLP Universal Approxi-

mation Theorem (Pinkus, 1999) to claim the existence of an MLP Ms
B with one hidden layer which

approximates the continuous fs,ext
B on the compact domain {1, . . . , n̄p} × {1, . . . , n̄r} × [0, 1]2 up

to precision ϵ. This implies the original fs
B is also ϵ-approximated in its original domain. Now,

it is possible to (easily,) appropriately replicate the weights of Ms
B to distribute its same exact

computation for each of the output coordinates, thus obtaining an MLP MB approximating the overall
fB : ∀y,∀i |Ms

B(y)−
(
fB(y)

)
i
| < ϵ, that is, ∀y,∀i |

(
MB(y)

)
i
−

(
fB(y)

)
i
| < ϵ. But, then:

∀y,∀i |
(
MB(y)

)
i
−
(
fB(y)

)
i
| < ϵ

=⇒ ∀y max
(
|
(
MB(y)

)
i
−

(
fB(y)

)
i
|
∣∣∣ i = 0, . . . , d− 1

)
< ϵ

=⇒ ∀y ∥MB(y)− fB(y)∥∞ < ϵ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Denote (W 1
B , b

1
B), (W

2
B , b

2
B) the weight and biases of, respectively, the first and second layers of

MB . Now, the above affine transformation exactly implementing fA can be “absorbed” into the first
layer of MB , by replacing the weight and bias as W 1 = W 1

B · WA, b1 = (W 1
B · bA + b1B). The

resulting MLP composed by
(
(W 1, b1), (W 2

B , b
2
B)

)
now ϵ-approximates the overall up∗, concluding

the proof.

Proposition (informal) 2. With a single-layer message-passing stack fmp, CHARM can arbitrarily
well approximate global LLM-Chk-l features cl, provided attentions are clipped away from zero6.

Proposition 2. Let cl(s⃗;L) denote the LLM-Check Attention Score (Equation (4)) calculated on
string s⃗ = p⃗ | r⃗ for LLM L(Equation (4)) and its layer l. Also, let y(Gs⃗) denote the prediction in
output from an CHARM stacking components fmsg, fpool, fpred, run on corresponding graph Gs⃗. For
any precision ϵ > 0, when fpool ≡

∑
and attention values are clipped from below to value αmin > 0,

there exists a 1-layered fmsg, and an MLP fpred such that CHARM approximates LLM-Check Attention
Scores up to precision ϵ. That is, for any prompt-response pair s⃗, |y(Gs⃗)− cl(s⃗;L)| < ϵ.

Proof. To prove the above we show that, in the setting described in the proposition, there exist a
single-layer stack fmp, as well as an MLP fpred which compute the desired approximation. Here we
consider the LLM-Chk-l variant which averages across heads instead of performing a summation,
but the proof below is easily extended to this alternative configuration.

(0) Setup, inputs and proof strategy. Our stack is made up, again, of one single message-passing
layer in fmp, followed by sum-based pooling and an MLP fpred. Our specific interest is in showing
the existence of appropriate MLPs msg0, up0, fpred enabling the full stack to realise the target
approximation. Again, msg0, up0 are the components of the first — and only — message-passing
layer in fmp, so its input node and edge representations effectively correspond to the original node
and edge features XV , XE . The whole computation then takes the form:

y = fpred︸︷︷︸
(3)

(n−1∑
i=0

up0︸︷︷︸
(2)

(
xV,i,

∑
(i,j)∈E

msg0︸ ︷︷ ︸
(1)

(
xV,i, xV,j , xE,(i,j), pi,j

)))
(8)

(1) Message function. The LLM-Chk-l method does not perform any aggregation on the attention
graph — for our purposes it suffices for MLP msg0 to simply implement a function which outputs
any constant non-negative vector v. W.l.o.g., set v = 0⃗; the MLP implementing msg0 is trivially
obtained by setting both its weights and biases to zero.

(2) Update function. Note that xV,i = αi,i; as it will be clearer next, it suffices for up0 to approximate
the log function applied thereon component-wise. Now, log is, in fact, operating on domain [αmin, 1)
in view of the applied clipping; there, the function is continuous. Consider the compact set [αmin, 1]
obtained as the closure of the above domain. The considered log is trivially continuously extended to
this new domain, since its limit exists finite as the argument approaches 1 from the left (it evaluates to
0). We therefore invoke the Universal Approximation Theorem (Pinkus, 1999), which guarantees the
existence of an MLP Mlog approximating the component-wise log function on the extended domain
and, in turn, on the original input domain [αmin, 1) up to arbitrary precision ϵ. We construct up0 by
appropriately replicating the weights of Mlog to output the approximated log-transform on each of
the first input d channels in parallel, whilst discarding the last d remaining channels in output from
the message function (see above).

(3) Prediction function. At this point, the input of fpred corresponds to: ẑ = 1
n

∑n−1
i=0 ŷi, where ŷi

is an ϵ-approximation of the log function applied element-wise to αi,i’s. If fpred implemented the
final averaging over l’s H heads (channels), then its output would be an overall approximation of
the desired quantity cl (of a certain precision yet to be quantified). We note that it easy to explicitly
construct such an MLP exactly implementing the outer averaging over the selected heads. We describe
its two layers in the following.

6This assumption ensures the log is continuous on an appropriate compact set, rendering its approximation
amenable (see Appendix A); in practice we also did observe it was necessary to ensure numerical stability.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• First layer: it features a weight matrix of the form [Id | −Id] and a zero-valued bias; this
layer expands the d-dimensional input to a 2d representation, where the the first d channels
host input ẑ, the last d channels the negated input −ẑ.

• Second layer: it features a weight matrix in R2d×1. The upper d× 1 block hosts a vector
where entries ♭(l, h) equal to 1/H if l = l̄, 0 otherwise. The lower d× 1 block has the same
exact structure, but non-zero entries are, instead, set to −1/H.

It is easy to see this construction exactly implements the required averaging, making the ReLU
activaction act neutrally.

Now, we ask to what precision does the final output approximate overall target cl. Note that the only
source of approximation is in the previously introduced up0; we are thus only required to quantify
how it “propagates” to the rest of the following computation. We have, by the triangular inequality:∣∣∣ 1

H

H−1∑
h=0

1

n

n−1∑
i=0

(
ŷi
)
♭(l,h)

− 1

H

H−1∑
h=0

1

n

n−1∑
i=0

log(αl,h
i,i)

∣∣∣ ≤
1

H

H−1∑
h=0

∣∣∣ 1
n

n−1∑
i=0

(
ŷi
)
♭(l,h)

− 1

n

n−1∑
i=0

log(αl,h
i,i)

∣∣∣ ≤
1

H

H−1∑
h=0

1

n

n−1∑
i=0

∣∣∣(ŷi)♭(l,h) − log(αl,h
i,i)

∣∣∣ ≤
1

H

H−1∑
h=0

nϵ

n
=

Hnϵ

Hn
= ϵ

which concludes the proof.

B DATASET DETAILS

B.1 NQ AND CNN

Dataset construction. These datasets are constructed precisely following the implementation
described in (Chuang et al., 2024) and provided as part as a supplementary codebase at https:
//github.com/voidism/Lookback-Lens. From this repository we derive both prompts
and pre-computed, annotated generations, which we re-use via teacher-forcing to hook out the
required computational traces, namely attention and activation matrices. We tested the fidelity of
these generated scores in early experiments: we recalculated original Lookback Lens features
using the generated data and managed to reproduce the original results in (Chuang et al., 2024).

Dataset details , including a description of the text generation and annotation process, are found
in (Chuang et al., 2024, Appendix A) and (Chuang et al., 2024, Appendix C.2), to which we refer the
interested reader.

Splitting. Chuang et al. (2024) originally split the data randomly and in a way that, potentially,
passages from the same response could appear across training and evaluation splits. We argue this is
an undesired side-effect and, in an effort to cast the HD in a more challenging setup, we instead split
the data at the level whole prompt-response pairs (graphs according to our framework). Specifically,
we fix the seed to 42 and randomly obtain a prompt-response level split in the proportion 60% / 20%
/ 20% (train / val / test).

B.2 MOVIES, WINOBIAS, MATH

Dataset construction. These datasets are constructed following the process described in (Orgad
et al., 2024), and by leveraging the authors’ code open-sourced at https://github.com/
technion-cs-nlp/LLMsKnow (MIT License). The prompts and ground truth labels of all the
three considered dataset, in particular, are provided by the authors themselves in the above codebase.

18

https://github.com/voidism/Lookback-Lens
https://github.com/voidism/Lookback-Lens
https://github.com/technion-cs-nlp/LLMsKnow
https://github.com/technion-cs-nlp/LLMsKnow

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As for hallucination labels, we run the annotation process whose code is provided therein. These
annotation routines are mostly based on string matching procedures.

Dataset details , including a description of the datasets and how prompts have been derived are
provided in (Orgad et al., 2024, Appendix A.3), to which we refer the interested reader.

Splitting. We use the same train/test splits provided by Orgad et al. (2024), and additionally carve
out a random sample of 20% of training data points, treated as our validation set. We perform this
sampling by setting random seed to 42.

C EXTENDED EXPERIMENTAL SECTION

C.1 COMPARISON WITH SELF-CHECK AND MULTIPLE-PROMPTING-BASED METHODS

In this section, we compare against baseline methods that rely on additional prompting, specifically
P(True) Kadavath et al. (2022) and Semantic Entropy (SE) Kuhn et al. (2023). Both approaches
operate over multiple LLM generations or prompts, which introduces a non-negligible computational
overhead and may hinder their applicability in real-time settings. Table 6 reports results on the Movies
dataset using Mistral-7B-instruct. For SE, we follow the original evaluation setup (Kuhn
et al., 2023), employing the DeBERTa entailment model as described in the referenced work.

Table 6: Comparison with methods relying on multiple prompting.
Method Mis-7B – Movies (AUC)
P(True) 62.00
Semantic Entropy 70.06

CHARM (att) (ours) 80.3±0.2
CHARM (att+act-24) (ours) 79.7±0.3

We observe that in all cases, CHARM variants substantially outperform the competing approaches.
To quantify the computational burden of these baselines, we measured the average runtime of SE
for producing a prediction. This process involves generating 10 additional responses and clustering
them by computing mutual entailments with an auxiliary DeBERTa model. On average, SE required
5.9± 1.7 seconds per evaluation. We minimised the overhead of auxiliary generations by running
them in parallel through batching. Nevertheless, the clustering step alone accounts for about 1.35
seconds of runtime, which is not negligible. These findings highlight the advantage of our method,
which not only achieves higher accuracy but also operates orders of magnitude faster, with detection
runtimes on this dataset in the range of 10−4 seconds.

C.2 HYPERPARAMETER GRIDS

We employed the same hyperparameter grid search across all datasets considered for CHARM, as
summarized in Table 7. When incorporating activations into CHARM, we additionally searched over a
separate weight decay parameter, applied only to the encoder of the activations, with candidate values
{0.0, 0.05, 0.1}.

C.2.1 BASELINE HYPERPARAMETER SEARCHES

All hyperparameters were selected based on validation performance and, in particular, in order to
maximise the AUPR metric. The details are provided below.

Probas We evaluated different readout functions — mean, max, and sum — applied to the next-
token probabilities.

Act-* We experimented with the following regularisation parameters for logistic regression: C ∈
{10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100, 105}. In addition, we probed token
positions in: {−3,−2,−1, 0, 1, 2}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameter search space for CHARM.
Hyperparameter Values
Learning Rate {0.001, 0.0005}
Learning Rate Sched. {Reduce On Plateau, Cosine w/ Warmup}
Batch Size 32
Dropout {0.25, 0.5}
Hidden Dimension {32, 64, 128}
Number of Layers {1, 2, 3}
Weight Decay {0.0, 0.001}
BatchNorm {yes, no}
Residual Connections {yes, no}

LLM-Chk-* We were required to clamp the attention scores from below using ϵ =
10−6 to avoid numerical errors. For LLM-Chk++-*, we experimented with C ∈
{10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100, 105}.

LapEig We experimented with the following values of k: {4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20}. For
datasets where the minimum number of tokens in the test split was less than k, we restricted
experiments to values of k below this threshold. As for logistic regression, we used C = 1, class
balancing, and a maximum of 2, 000 iterations, consistent with what prescribed in the original
paper (Sriramanan et al., 2024).

Neigh-Avg(N) and Neigh-Avg(E) We used mean readout exactly as in
our model and tuned the logistic regression regularisation parameter over C ∈
{10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100, 105}.

Lookback Lens. We implemented Lookback Lens exactly as described in the original paper,
using logistic regression with a regularization parameter of C = 1. For Lookback Lens †, we per-
formed a grid search over C ∈ {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100, 105}.

CHARM (no g.) We use the same exact grid as for CHARM (see Table 7), with the following
exceptions: (1) no msg-passing layers; (2) a readout / prediction head that is either linear or a
implemented as an MLP.

D IMPLEMENTATION DETAILS AND COMPUTATIONAL RESOURCES

D.1 DETAILED ARCHITECTURAL FORMS AND TRAINING PARAMETERS

D.1.1 NEIGHBOURHOOD AVERAGING BASELINES

Our baselines Neigh-Avg(N) and Neigh-Avg(E) calculate features in a non-learnable way as
described below.

Neigh-Avg(N).

h
(1)
i =

1

1 + degin(i)

(
h
(0)
i +

∑
j: (i,j)∈E

xE,(i,j)

)
=

=
1

1 + degin(i)

(
xV,i +

∑
j: (i,j)∈E

xE,(i,j)

)
=

=
1

1 + degin(i)

(
αi,i +

∑
j: (i,j)∈E

αj,j

)
(9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Neigh-Avg(E).

h
(1)
i =

1

1 + degin(i)

(
h
(0)
i +

∑
j: (i,j)∈E

h
(0)
j

)
=

=
1

1 + degin(i)

(
xV,i +

∑
j: (i,j)∈E

xV,j

)
=

=
1

1 + degin(i)

(
αi,i +

∑
j: (i,j)∈E

αi,j

)
(10)

Outputs h
(1)
i are then fed in input to a logistic regression model, regularised as illustrated in Ap-

pendix C.2.1. Before that, they are averaged-pooled in the case of response-wise predictions tasks.

D.1.2 EXPERIMENTAL CHARM FORM

Throughout all our experiments, CHARM implements the following msg-passing equation:

h
(t+1)
i = upt

([
h
(t)
i | 1

degin(i)

∑
j: (i,j)∈E

msgt

([
h
(t)
j | xτ

E,(i,j) | pi,j
])])

. (11)

Initial node features always include “reflexive attention”, i.e., that a token pays to itself. When
additionally including activations (CHARM (att+act-*)) we employed an additionally encoder to
preprocess these. The output of this module is concatenated to the original attention features before
message passing takes place. Note that, in all our experiments, for computational reasons and
in alignment with the computational flow of Lookback Lens, we remove all connections from
prompt to prompt tokens.

D.1.3 OPTIMIZER AND SCHEDULERS

For all datasets and tasks, we use the AdamW optimizer Loshchilov & Hutter (2017). We experi-
mented with two learning rate schedulers (see Table 6): “Reduce On Plateau” and “Cosine Annealing
with Warmup”, where warmup spanned 10% of the total training steps. The scheduler yielding the
best validation performance was selected.

D.2 CODE IMPLEMENTATION

Thee implementation of CHARM was realised by means of PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019) (available respectively under the BSD and MIT license). We
performed hyperparameter tuning using the Weight and Biases framework (Biewald, 2020). For
baselines and models running logistic regression, we resorted to the implementation exposed by
the Sci-Kit Learn library (BSD license). LapEig required also running the PCA dimensionality
reduction technique; we invoked the python implementation from the same library.

D.3 EXPERIMENTAL RESOURCES AND ARTEFACTS

We ran our all our experiments on NVIDIA L40 GPUs. The two employed LLMs were both accessed
via Hugging Face python API, in particular:

• LLaMa-2-7b-chat (Touvron et al., 2023) (License: LLaMa 2 Community License). Ac-
cessed at https://huggingface.co/meta-llama/Llama-2-7b-chat-hf.

• Mistral-7b-instruct (Jiang et al., 2023) (License: Apache-2.0). Accessed at
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3.

E LARGE LANGUAGE MODEL (LLM) USAGE

We employed large language models (LLMs) to support the writing process, specifically for improving
clarity in technical explanations, refining grammar and style, and enhancing overall readability. LLMs

21

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

were also used to a limited extent to aid the process of finding related works. All research contributions,
including the design of experiments, data analysis, and conclusions, are entirely our own. The LLMs
were used strictly as writing aids to improve presentation quality, not for generating research content
or shaping the substance of our work.

22

	Introduction
	Related Work
	LLM Computational Traces as Attributed Graphs
	Neural Message Passing for Hallucination Detection
	Hallucination Detection is a Graph Machine Learning Task
	Expressiveness

	Experiments
	Contextual Token-Level Hallucination Detection
	Response-Level Hallucination Detection
	Additional Analyses

	Conclusions
	Expressiveness: Claims and Proofs
	Dataset Details
	NQ and CNN
	Movies, Winobias, Math

	Extended Experimental Section
	Comparison with Self-Check and Multiple-Prompting-Based Methods
	Hyperparameter Grids
	Baseline Hyperparameter Searches

	Implementation Details and Computational Resources
	Detailed Architectural Forms and Training Parameters
	Neighbourhood Averaging Baselines
	Experimental CHARM Form
	Optimizer and Schedulers

	Code Implementation
	Experimental Resources and Artefacts

	Large Language Model (LLM) Usage

