NEURAL MESSAGE-PASSING ON ATTENTION GRAPHS FOR HALLUCINATION DETECTION

Anonymous authorsPaper under double-blind review

ABSTRACT

Large Language Models (LLMs) often generate incorrect or unsupported content, known as hallucinations. Existing detection methods rely on heuristics or simple models over isolated computational traces such as activations, or attention maps. We unify these signals by representing them as *attributed graphs*, where tokens are nodes, edges follow attentional flows, and both carry features from attention scores and activations. Our approach, CHARM, casts hallucination detection as a graph learning task and tackles it by applying GNNs over the above attributed graphs. We show that CHARM provably subsumes prior attention-based heuristics and, experimentally, it consistently outperforms other leading approaches across diverse benchmarks. Our results shed light on the relevant role played by the graph structure and on the benefits of combining computational traces, whilst showing CHARM exhibits promising zero-shot performance on cross-dataset transfer¹.

1 Introduction

Despite their impressive capabilities, LLMs frequently produce outputs that are factually inaccurate, logically inconsistent, or unsupported by the input context, broadly referred to as *hallucinations* (Pagnoni et al., 2021; Cao et al., 2022; Qiu et al., 2023). As LLMs are increasingly applied in diverse domains, detecting hallucinations becomes crucial for ensuring their safe and reliable use. This phenomenon is inherently complex and multi-faceted, and methods for *automated hallucination detection* (HD) have recently received significant attention (Yin et al., 2024; Bar-Shalom et al., 2025).

A straightforward approach for HD is to query LLMs multiple times, either by asking them to judge their own outputs (Kadavath et al., 2022) or by sampling alternative generations to measure semantic variability (Kuhn et al., 2023). While effective in some cases, this strategy requires repeated rollouts, making it both slow and computationally expensive, and thus unsuitable for real-time or large-scale use. A more scalable line of work leverages the internal signals produced by LLMs during decoding, which we refer to as *computational traces*. In particular, most works focus on *linearly* probing residual stream activations on selected layers and token positions (Orgad et al., 2024; Azaria & Mitchell, 2023; Belinkov, 2022). More recently, attention maps have shown to provide an additional perspective on model behaviour, e.g., by leveraging prompt-response attention ratios (Chuang et al., 2024). Although providing meaningful, alternative cues on hallucinations existing attention-based techniques rely on simple models or handcrafted heuristics (Sriramanan et al., 2024; Binkowski et al., 2025). Furthermore, all the above methods treat computational traces in isolation, despite capturing complementary aspects of hallucinations. To date, a systematic exploration of the interplay of computational traces is still lacking. More broadly, the field currently lacks a framework applying modern deep learning techniques to structured, holistic representations of computational traces, leaving the community to rely on heuristic, single-signal approaches.

In this paper, we propose a unified framework that represents LLM computational traces as *attributed graphs*, a natural, yet under-explored perspective in the HD literature. Similarly to recent works dealing with the analysis of learnt attention computational flows (Barbero et al., 2024; El et al., 2025), this formulation considers tokens as nodes and draws connections between them based on the structure of attention maps calculated during text generation. Crucially, both nodes and edges can be endowed with features derived from the values of computational traces across layers (and

¹Code will be released upon acceptance.

Figure 1: **Overview of CHARM.** We extract attention and activation matrices from LLM computations and build an attributed graph from them: edges and their features are derived from off-diagonal attention scores; node features are based on activations, and diagonal attention values. The resulting graph is processed by a GNN-based architecture, which outputs either token-level hallucination scores (as illustrated) or a global hallucination score for the entire sentence.

heads): node features capture token-wise signals such as activations and self-scores (the attention a token assigns to itself), while edge features encode pairwise interactions, most prominently the attention between distinct tokens. This perspective casts HD as a *graph learning* problem, which has recently obtained successes in broad-ranging domains (Monti et al., 2019; Gonzalez et al., 2021; Liu et al., 2023) and, we argue, is well suited to this task. First, representing computational traces as attributed graphs allows to naturally integrate heterogeneous signals, which may hold varying predictive value across generation tasks. Second, the framework accommodates different levels of detection granularity, with the standard setup of graph classification corresponding to response-level detection, and that of node classification to the token-level one. Finally, this formulation directly leverages the rich body of work on Graph Neural Networks (GNNs) and their code-libraries (Fey & Lenssen, 2019), providing principled and well-studied tools for tailored HD models.

Motivated by these advantages, we introduce CHARM (see Figure 1), an HD approach based on a Graph Neural Network operating on computational trace graphs (Gilmer et al., 2017). Our framework can jointly process different computational traces, and subsumes known detection heuristics: we prove that it can express recent attention-based methods (Chuang et al., 2024; Sriramanan et al., 2024) either at the token or response granularity levels. Experimentally, CHARM *consistently outperforms* these heuristics, as well as other leading methods across benchmarks and detection resolutions. Our analyses further reveal that incorporating activations into computational trace graphs alongside attention-features may improve detection of non-contextual hallucinations. Beyond state-of-the-art comparisons, our ablation studies demonstrate the importance of the graph structure, the main principle driving CHARM. Finally, we report promising zero-shot cross-dataset transfer results and observe robustness to graph sparsifications, indicating viable trade-offs between accuracy and efficiency.

Contributions are summarised as follows. (1) We introduce a unified view of LLM *computational traces* as *attributed graphs*, where tokens are nodes connected by attention-induced edges, and both nodes and edges are enriched with features such as activations and attention scores. (2) We introduce CHARM, which casts HD as graph learning on computational trace graphs. It uses a GNN that provably subsumes attention-based heuristics, opening new application frontiers for machine learning on graphs. (3) We show that CHARM consistently outperforms leading HD methods across diverse benchmarks and granularities, while exhibiting promising zero-shot transfer capabilities.

2 Related Work

Hallucinations and their detection in LLMs. The term "hallucinations" in LLMs broadly refers to errors in text generation where outputs are unfaithful to the input or external facts (Orgad et al., 2024). These include knowledge inaccuracies, flawed reasoning, biases, and references to non-existing entities Liu et al. (2021); Huang et al. (2023a); Ji et al. (2023); Rawte et al. (2023). Hallucinations can involve complex failures and manifest in subtle ways, including at the granularity of single tokens (Orgad et al., 2024). Early detection approaches leverage uncertainty measures in next-token prediction or semantic consistency of responses Kadavath et al. (2022); Varshney et al. (2023);

Kuhn et al. (2023); Manakul et al. (2023). Alternatively, recent work propose detectors on LLM computational traces; prominent examples include (hidden) activations Kadavath et al. (2022); Snyder et al. (2024); Yuksekgonul et al. (2023); Zou et al. (2023); Yin et al. (2024); Chen et al. (2024); Simhi et al. (2024); Li et al. (2024); Marks & Tegmark (2023); Burns et al. (2022); Rateike et al. (2023) and attention matrices Sriramanan et al. (2024); Chuang et al. (2024); Binkowski et al. (2025); Bazarova et al. (2025); Zhang et al. (2023). Different traces may be more or less informative for different types of hallucinations: e.g., attention-based heuristics have been evidenced to be predictive in contextual hallucination settings Chuang et al. (2024). Existing methods mostly rely on heuristics or simple classifiers on specific traces; some are also constrained to coarse detection levels (e.g., whole responses) (Sriramanan et al., 2024; Binkowski et al., 2025; Kuhn et al., 2023).

Attention-based HD. Irregular or skewed attention behaviours have been observed to often signal pathological text generation (Xu et al., 2023; Chuang et al., 2024; Binkowski et al., 2025; Bazarova et al., 2025). E.g., hallucinated translations may exhibit localised scores on narrow context windows (Xu et al., 2023); hallucinations in contextual question answering may correlate with excessive focus on response tokens w.r.t. context ones (Chuang et al., 2024). The recent *Lookback Lens* proposes a detection feature based on this intuition. Other works extract spectral or structural features from attention matrices, e.g., via graph Laplacians combined with logistic regression (Binkowski et al., 2025). These approaches, however, remain limited by fixed heuristics and shallow classifiers. Our work generalises this line by employing attention matrices to construct attributed graphs, a formulation that supports predictions at multiple levels of granularity, integrates additional computational signals and unlocks the application of modern (graph-based) deep learning techniques.

Graphs of LLM computation and Graph Neural Networks. Recent works have applied graph-theoretic perspectives to neural computations (Vitvitskyi et al., 2025), often graphs induced by attention matrices (Barbero et al., 2024; El et al., 2025). Notably, Barbero et al. (2024) analyse signal propagation on attention graphs, uncovering phenomena such as representational collapse and *oversquashing* (Alon & Yahav, 2021; Topping et al., 2022). These studies highlight the value of attention graphs, but are limited to descriptive and structural analyses. In contrast, we extend attention graphs to more general *attributed graphs* to integrate other computational traces and, importantly, we propose to directly *learn* on these graphs for the task of HD. To this end, we leverage Graph Neural Networks (Kipf & Welling, 2017; Gilmer et al., 2017; Battaglia et al., 2018), a family of architectures which have recently achieved remarkable results in relevant structured domains (Qasim et al., 2019; Monti et al., 2019; Stokes et al., 2020; Gonzalez et al., 2021; Liu et al., 2023).

3 LLM COMPUTATIONAL TRACES AS ATTRIBUTED GRAPHS

Preliminaries. Throughout this paper, we focus on attention-based, decoder-only LLMs. Abstracting away architectural specifics, we treat them as sharing a common backbone: a stack of transformer-decoder blocks. Let \mathcal{L} denote a reference LLM consisting of L decoder-block layers of H heads each², \vec{p} refer to a prompt in input, and \vec{r} to the response \mathcal{L} generates. We consider \vec{p}, \vec{r} to be sequences of tokens of size, resp., n_p, n_r ($n := n_p + n_r$). We use T_i to refer to token at position i in the concatenation $\vec{p} \mid \vec{r}$. Within each transformer block, multi-head attention produces scores, which we collect in attention matrices $A^{l,h} \in [0,1]^{n \times n}$ for layer l and head h. Due to the causal structure of decoder-only transformers, these matrices are lower-triangular. For convenience, we define $\alpha_{i,j} \in [0,1]^{L \cdot H}$ as the vector of attention scores between T_i and T_j across all layers and heads. In addition to multi-head attention values, residual stream activations constitute another key source of information about the computation performed by \mathcal{L} . For each token T_i , we denote by $\mathbf{a}_i^l \in \mathbb{R}^d$ its d-dimensional activation vector at layer l; this captures the computational state of the model at such token position and processing stage. Together, attention values and activations form the primary signals we use to describe the computational traces of LLMs. While our framework focuses on these two, it can also naturally accommodate additional sources of information, such as logits.

From computational traces to attributed graphs. The attention values calculated along the way are, in fact, *pairwise scores* that induce a (non-symmetric) binary relation between tokens. In fact, they define a *directed graph* G = (V, E) on any sequence of tokens $\vec{s} = \vec{p} \mid \vec{r}$, where:

²One can also consider, without loss of generality, a different number of heads for each layer.

• V, the node (vertex) set, is the set of all tokens in \vec{s} , namely $\{T_i\}_{i=0}^{n-1}$;

164

166

167

168

169

170

• E, the edge set, is the set of ordered pairs (T_i, T_j) , i > j, signifying T_i attends to T_j in the generation of next tokens: $\alpha_{i,j}^{l,h} > 0$ for some of \mathcal{L} 's layers and corresponding heads.

172 173 174

171

175

176

177 178 179

180 181

182 183

185 186 187

189 190 191

188

192 193 194

195

196 197

200 201 202

203 204 205

214 215

We consider these graphs as attributed, in the sense that nodes and edges can host features representing L's computational traces. Edge features are given by the set of attention scores between distinct tokens, i.e., $x_{E,(i,j)} = \alpha_{i,j}$'s, with $i \neq j$. Node features are given by the attention scores "paid" by a token to itself, i.e, $x_{V,i} = \alpha_{i,i}$. Node features can also host other token-wise computational traces; we consider residual stream activations \mathbf{a}_i^l at any layer l, so that node / token T_i is endowed with feature vector $x_{V,i} = (\boldsymbol{\alpha}_{i,i} \mid \mathbf{a}_i^l)$. Formally, we gather node and edge features in matrices $X_V \in \mathbb{R}^{n \times (L \cdot H + d)}$ (or $\mathbb{R}^{n \times (L \cdot H)}$ should activations be neglected), and $X_E \in \mathbb{R}^{n_E \times L \cdot H}$. The

resulting graph is $G = (V, E, X_V, X_E)$. This representation captures both token interactions and per-token computational states, and can be extended to incorporate other traces, e.g., activations from multiple layers or output logits. We leave investigating these aspects to future research endeavours.

Sparsifying computational trace graphs. Very small attention scores convey noisy and weak contribution to updating the representation of a token. To reduce computational overhead, we threshold attention scores at τ , zeroing values below it and dropping edges unsupported by any head or layer after this process. In formulae, new graph is defined as $G = (V, E, X_V, X_E^{\tau})$, with:

$$(X_E^{\tau})_{(i,j),(l,h)} = \begin{cases} 0 & \text{if } \alpha_{i,j}^{l,h} \leq \tau, \\ \alpha_{i,j}^{l,h} & \text{otherwise.} \end{cases} \quad E = \{ (T_i, T_j) \mid i > j \text{ and } \exists d \text{ s.t. } (X_E^{\tau})_{(i,j),d} > 0 \}. \quad (1)$$

As we experimentally show in Section 5.3, sparsifying the graph in this way may significantly improve the efficiency of our yet-to-be-described model, while retaining information about the most relevant token interactions. In the next section we illustrate how, starting from the above formalism, we can instantiate problems such as automated HD as graph learning tasks.

NEURAL MESSAGE PASSING FOR HALLUCINATION DETECTION

4.1 HALLUCINATION DETECTION IS A GRAPH MACHINE LEARNING TASK

Problem formulation. Computational trace graphs can be naturally associated with *labels* one seeks to predict for the underlying text generation process. In our specific use-case of HD, these can indeed reflect hallucination annotations at the level of response tokens or the overall response. Concretely, our reference graph G — encoding the computation of \mathcal{L} on prompt \vec{p} and response \vec{r} as per the above Section 3 — can be *annotated* as (G, y), where:

$$({\rm i}) \quad y \in \{0,1\}, \\ y = \begin{cases} 1, & \text{if \vec{r}, contains $hallucinating$ passages} \\ 0, & \text{otherwise} \end{cases}, \quad {\rm or}$$

(i)
$$y \in \{0,1\}, y = \begin{cases} 1, & \text{if } \vec{r}, \text{ contains } \textit{hallucinating passages} \\ 0, & \text{otherwise} \end{cases}$$
, or
(ii) $y \in \{0,1\}^{n_r}, y_i = \begin{cases} 1, & \text{if token } T_i, i > n_p \text{ is part of a } \textit{hallucinating passage within } \vec{r}, \\ 0, & \text{otherwise} \end{cases}$.

Here, (i) stands for a graph-wise label, while (ii) represents labels at the granularity of single (response) tokens. With these premises, we formalise HD as learning a parametric function $f(G) = \hat{y}$ mapping a computational trace graph G to predictions \hat{y} of the corresponding labels y. Depending on the task, $\hat{y} \in [0,1]^k$ with k=1 for graph-wise or $k=n_r$ for token-wise detection.

Our CHARM architecture. We parameterise f in the family of message-passing Graph Neural Network (GNN) (Kipf & Welling, 2017; Gilmer et al., 2017). These networks are, to date, the de-facto standard for learning on attributed graphs, while possessing an architectural pattern which, as we show next, well aligns them to generalise known approaches. Message-passing networks, in particular, implement local computations reflecting the structure of the input graph, hence benefitting from the aforementioned sparsification and offering a compelling advantage in terms of computational complexity. In particular, we structure f as: $f = f_{pred} \circ f_{pool} \circ f_{mp}$ (see Figure 2), where:

ullet f_{mp} stacks learnable message-passing layers to compute updated token representations from the input graph G;

Figure 2: **HD** with **CHARM.** The input is an attributed graph (shown in the bottom left). First f_{mp} obtains refined node / token representations via msg-passing. Next, f_{pool} aggregates these if response level predictions are required. Finally, a projection head, f_{pred} , outputs the detection score.

- f_{pool} aggregates token representations into a single graph representation (e.g., via averaging or summation), or acts as the identity for token-wise detection;
- ullet f_{pred} applies dense layers to compute graph- or token-wise hallucination predictions.

Starting from the original node (token) features X_V , each layer in $f_{\rm mp}$ calculates and updates hidden node representations by aggregating them (possibly, non-linearly) along the connectivity defined by the attention scores as per Equation (1). That is, the t-th layer updates token i's embedding as:

$$h_i^{(t+1)} = \operatorname{up}_t \left(h_i^{(t)}, \bigsqcup_{j: \ (i,j) \in E} \operatorname{msg}_t \left(h_i^{(t)}, h_j^{(t)}, x_{E,(i,j)}^{\tau}, p_{i,j} \right) \right) \tag{2}$$

where: \square is a permutation invariant³ aggregator such as sum, average, or max; $x_{E,(i,j)}^{\tau}$ corresponds to the features of edge (i,j) in X_E^{τ} ; $h_i^{(0)} = x_{V,i}$ are the initial node features; $p_{i,j}$ is a one-hot vector indicating whether edge (i,j) connects prompt to response or response to response tokens. Functions up_t , msg_t are parameterised as Multi-Layer Perceptrons (MLPs) running on the concatenation of their arguments. We refer to our overall approach as CHARM, a mnemonic formula for "Catching HAllucinated Responses via (learnable) Message-passing".

This formulation offers two main advantages. First, it provides a unified framework capable of handling both token-level and response-level HD, in contrast to prior approaches that target a single granularity. Second, by leveraging message-passing over computational trace graphs, CHARM can flexibly integrate multiple signals and naturally subsume heuristic-based detectors. As we exemplify next, rather than discarding prior meaningful intuitions, our approach can generalise them.

4.2 EXPRESSIVENESS

Here, we demonstrate how hand-crafted heuristics emerge as special cases of our CHARM. To illustrate this, we focus on two representative methods: (i) Lookback Lens (Chuang et al., 2024), which produces tokenwise hallucination scores, and (ii) LLM-Check (Sriramanan et al., 2024), which outputs global sentence-level (graphwise) scores. We show that both heuristics can be approximated, to arbitrary precision and under mild assumptions, by CHARM, highlighting its expressiveness.

Lookback Lens extracts, for each *response* token $i = n_p, \dots, n_r + n_p - 1$, layer l and head h, a heuristic feature $\ell_i^{l,h}$ quantifying the average proportion of attention paid to prompt w.r.t. previously

³Permutation invariance ensures that calculated message does not depend on the ordering of nodes in the neighbourhood.

generated response tokens (Chuang et al., 2024). Precisely, Lookback Lens outputs scores:

$$P_i^{l,h} = \frac{1}{n_p} \sum_{j=0}^{n_p - 1} \alpha_{i,j}^{l,h} , \quad R_i^{l,h} = \frac{1}{i - n_p} \sum_{j=n_p}^{i - 1} \alpha_{i,j}^{l,h} ; \qquad \ell_i^{l,h} = \frac{P_i^{l,h}}{P_i^{l,h} + R_i^{l,h}}.$$
 (3)

where $P_i^{l,h}$, $R_i^{l,h}$ correspond to the average attention paid by response tokens to, resp., the prompt and the (previously) generated response. We argue that this heuristic can, in fact, be interpreted in the form of message-passing on the (non-thresholded) attention graph described in Section 3, and can thus be captured by our approach:

Proposition (informal) 1. Equipped with a single-layer message-passing stack f_{mp} , CHARM running on a non-tresholded computational trace graph $(\tau = 0)$ can arbitrarily well approximate token-wise Lookback Lens features ℓ_i for bounded prompt and response lengths.

Proof idea. The ability to perform such approximation relies on the following: (1) aggregation over previous tokens, as required by $P_i^{l,h}$'s and $R_i^{l,h}$'s, is naturally captured by propagating (and aggregating) attention features on the neighbourhoods of the directed attention graph as per Equation (2); (2) conditioned on mark input $p_{i,j}$, MLP msg can differently route attention features from prompt vs. response tokens in *separate* subspaces of the internal representations; (3) message summation can separately accumulate attention to prompt versus response tokens (non-normalised $P_i^{l,h}$, $R_i^{l,h}$); (4) MLP up can normalise and combine these aggregated scores as required, calculating the ratio in Equation (3). A formal statement of informal proposition 1 is, along with its proof, in Appendix A.

LLM-Check proposes to detect hallucinations at the level of *entire responses*: for a chosen LLM layer l, LLM-Chk-l obtains an "Attention Score" c^l by averaging the log-determinants of attention matrices across the set of corresponding heads (Sriramanan et al., 2024). Given the peculiar lower-triangular structure of these matrices, such scores can be calculated as:

$$c^{l} = \frac{1}{H} \sum_{h=0}^{H-1} \sum_{i=0}^{n-1} \log(\alpha_{i,i}^{l,h}), \tag{4}$$

i.e., by summing the log-transformed attentions paid by each token to itself, averaged across heads. In practice, the inner summation is replaced with averaging, more robust to prompt and response lengths. We note, in our CHARM, these "self-scores" are gathered and processed as node features, which can be transformed and then later aggregated by our architecture to reproduce scores c^l 's.

Proposition (informal) 2. With a single-layer message-passing stack f_{mp} , CHARM can arbitrarily well approximate global LLM-Chk-l features c^l , provided attentions are clipped away from zero⁴.

Proof idea. Intuitively: (1) up MLPs can calculate the initial log-transform on the features of the receiving node/token i — that is, on each token's "self-scores" — while discarding information from neighbours; (2) f_{pool} , set to summation — or averaging, if required — can aggregate these values across tokens; (3) last, f_{pred} can average these values across heads and selectively for the desired layer l to implement the outer averaging in Equation (4). Again, a formal statement of informal proposition 2 is reported and proved in Appendix A.

Both the two above propositions guarantee that, while general and learnable, our approach can also provably default to known, hand-crafted heuristics (under mild, reasonable assumptions). This showcases the expressiveness of the CHARM framework, further evidencing how graph representations and message-passing networks can offer a valid and compelling perspective into the task of HD.

5 EXPERIMENTS

We evaluate different aspects of learning with CHARM through the following research questions: (Q1) Is our GNN-based formulation effective in practice? (Q2) Is CHARM effective at detecting different types of hallucinations and across different granularities (e.g., token-level and full-response)? (Q3)

⁴This assumption ensures the log is continuous on an appropriate compact set, rendering its approximation amenable (see Appendix A); in practice we also did observe it was necessary to ensure numerical stability.

Does CHARM exhibit any zero-shot transferability across datasets? (Q4) How crucial is the underlying graph structure for CHARM's performance? (Q5) Can CHARM handle large/dense graphs? (Q6) Can the combination of attention and activations be effective in CHARM?

We initialise training of CHARM with 3 different random seeds, and, in the following, report the mean test performance along with std. All results are obtained by models optimising validation performance (AUPR, see below). Additional information, including dataset details, hyperparameter searches, implementation notes, and extended results, are available in Appendices B to D.

5.1 CONTEXTUAL TOKEN-LEVEL HALLUCINATION DETECTION

Datasets. We first evaluate our approach at a token-level granularity on the NQ (Kwiatkowski et al., 2019) and CNN (See et al., 2017) datasets. These consists of prompt-response pairs with hallucination annotations available at the level of single response tokens (see Section 4.1). These pairs are obtained by prompting a target LLM to perform either document-based question answering (NQ) or text summarisation (CNN). These datasets contain instances of *contextual hallucinations*: although the relevant and correct facts are provided in the input context, the target LLM is still observed to generate incorrect responses (Chuang et al., 2024). Original generations and annotations for this dataset are derived from (Chuang et al., 2024)⁵; coherently with the setup in the same work, we take LLaMa-2-7B-chat as the reference LLM on both datasets. More details are in Appendix B.1.

Method comparisons. We compare against a set of representative baselines. Probability-based detectors (Probas) (Guerreiro et al., 2022; Kadavath et al., 2022; Varshney et al., 2023; Huang et al., 2023b) leverage the next-token probabilities to estimate LLM uncertainty and predict hallucinations; Activation probes (Orgad et al., 2024; Azaria & Mitchell, 2023; Belinkov, 2022) (Act-*) train a logistic classifier on activations at specific layers; the attention-based, Lookback Lens heuristic (Chuang et al., 2024) fits the same model on handcrafted token-wise features calcu-

Table 1: Test AUROC and AUPR (%) for NQ and CNN (tokenwise, higher is better). **Bold**: best, <u>Underlined</u>: runner-up. †: we also *tune* the regular. strength, diff. than the original.

	Method	N	Q	CNN	
	Withing	AUROC	AUPR	AUROC	AUPR
	Probas	49.8	16.2	54.4	8.2
	Act-24 Act-28 Act-32	73.0 71.6 67.4	36.2 34.6 28.6	71.3 70.1 67.7	20.3 18.4 15.4
	Lookback Lens Lookback Lens [†]	70.8 71.9	31.0 34.3	71.9 <u>74.4</u>	17.4 19.7
	Neigh-Avg(N) Neigh-Avg(E)	66.0 66.8	24.5 30.4	70.1 70.5	14.9 18.6
onrs	CHARM (att) CHARM (att+act-24)	74.8 ± 0.6 72.2±1.2	40.3±1.7 35.5±1.6	75.4±0.2 70.9±0.2	22.7±0.4 19.8±0.5

lated over all layers and heads (see Equation (3)). We run Act^* s on the common choice of LLM layers 24, 28, 32, motivated by the findings in (Chuang et al., 2024; Azaria & Mitchell, 2023). As for CHARM, we instantiate it in two configurations: one only employing attention features (att), another also utilising activations from a specific layer, which we set to 24 (att+act-24) due to its consistently superior performance in Act^* s We run CHARM on graphs sparsified with a fixed $\tau=0.05$ (see Equation (1) and related ablations in Section 5.3). The HD task is at the level of single nodes/tokens, so f_{pool} is set to identity. We additionally consider two ablated versions of CHARM (att): Neigh-Avg(N), Neigh-Avg(E). These extract token-wise features through a single, non-learnable msg-passing step, aggregating, resp., either node or edge features across neighbourhoods in the same computational trace graphs considered in CHARM (details are in Appendix D.1.1). Comparing with these allows us to evaluate the relevance of our multi-layer, learnable procedure. *All methods* in comparison have their hyperparameters tuned on the Val. set. Performance is measured in terms of Test AUROC and AUPR.

Results, reported in Table 1, show our approach consistently outperforms all baselines across both datasets and metrics in the att.-only configuration. The significant margins over Lookback Lens, Neigh-Avg (N) and Neigh-Avg (E) underscore the benefits of an expressive, learnable graph-based method over attention-based heuristics. This pure attention configuration also surpasses

⁵Differently than (Chuang et al., 2024), however, we construct and experiment with a different split ensuring full textual disjointness between train, test, and validation, see more in Appendix B.1.

all activation-based Act-* probes, this contributing to answer positively to Q1. We interestingly report that including activations from an intermediate layer into CHARM reveals detrimental. We hypothesise that, on these contextual benchmarks, attention features alone carry most of the relevant predictive signal — an expressive enough model like ours can leverage it at best and struggle to find additional complementary signals on activations, which could, instead lead to fit spurious correlations.

5.2 RESPONSE-LEVEL HALLUCINATION DETECTION

Datasets. We next evaluate CHARM at the coarser response-level HD on three datasets: Movies (Orgad et al., 2024), WinoBias (Zhao et al., 2018), and Math (Sun et al., 2024). Unlike NQ and CNN, these benchmarks address failure modes different than contextual grounding, namely: factual knowledge recall (Movies), intrinsic bias in coreference resolution (WinoBias), and arithmetic reasoning (Math). This allows to assess generalisation across fundamentally different hallucination types. The relative role of attention thereon is not obviously clear, but we hypothesise they can provide informative signals, e.g. by capturing systematic biases in attention to demographic cues or by reflecting unusual patterns in intermediate calculations steps. Exploring their interplay with other computational traces is thus a insightful direction. For these experiments we derive text generations and hallucination annotations following the procedure in (Orgad et al., 2024) and, consistently with this work, we target a different LLM, Mistral-7B-instruct. More dataset details are in Appendix B.2.

Method comparisons. As for CHARM and its non-learnable counterparts (iv), we set component f_{pool} to *average*. We compare our method to Act-*'s probing activations in notoriously relevant token positions, e.g., the last token of the prompt, or the last of the response (Orgad et al., 2024) (see Appendix C.2). Here, we compare against the response-level attention-based LLM-Check (Sriramanan et al., 2024) (LLM-Chk-*) and the spectral-method proposed in (Binkowski et al., 2025) (LapEig). We also run an enhanced counterpart of (LLM-Chk++-*) whereby per-head scores are considered as inputs to logistic regression, rather than being averaged (Equation (4)).

Results are reported in Table 2. Overall. CHARM attains the best performance across these benchmarks, with particularly notable gaps in Math. Together with the above, these results answer positively to Q1 and **Q2**. Interestingly, we observe a markedly different behaviour than in the previously considered contextual HD datasets. Other than Movies — where both our configurations work

Table 2: Test AUROC and AUPR (%) for Movies, Winobias, Math (responsely, higher is better). **Bold**: best, <u>Underlined</u>: runner-up.

	/					
Method	Movies		Winobias		Math	
	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR
Probas	58.6	81.6	64.5	20.0	54.5	57.4
Act-24	77.0	90.4	76.6	37.8	77.7	77.5
Act-28	77.0	90.4	73.9	34.3	78.1	77.8
Act-32	76.3	90.2	72.7	35.3	76.6	77.9
LLM-Chk-24	47.5	74.6	38.9	10.9	64.5	68.2
LLM-Chk-28	51.1	76.7	41.6	11.4	65.5	69.2
LLM-Chk-32	61.5	82.1	41.6	11.3	64.0	67.6
LLM-Chk++-24	66.3	84.5	64.6	20.5	67.3	69.1
LLM-Chk++-28	67.8	86.3	64.8	21.0	67.0	70.6
LLM-Chk++-32	73.0	88.8	67.2	24.1	68.6	72.5
LapEig	72.9	88.4	74.1	33.3	73.6	76.3
Neigh-Avg(N)	78.6	91.2	63.8	23.0	77.4	79.2
Neigh-Avg(E)	54.9	78.5	65.8	21.9	76.7	78.3
CHARM (att) CHARM (att+act-24)	80.3 ± 0.2 79.7 ± 0.3	92.0±0.1 91.8±0.2	$70.4{\pm}0.7$ 77.8 ${\pm}0.4$	29.1±1.0 39.8±1.3	$76.5{\pm}1.1$ 80.8 ${\pm}0.7$	$\frac{79.7 \pm 0.5}{83.1 \pm 0.7}$
	Act-24 Act-28 Act-32 LLM-Chk-24 LLM-Chk-28 LLM-Chk-32 LLM-Chk++24 LLM-Chk++-28 LLM-Chk++-32 LapEig Neigh-Avg(N) Neigh-Avg(E) CHARM(att)	Method AUROC Probas 58.6 Act-24 77.0 Act-28 77.0 Act-32 76.3 LLM-Chk-24 47.5 LLM-Chk-28 51.1 LLM-Chk-32 61.5 LLM-Chk++24 66.3 LLM-Chk++-28 67.8 LLM-Chk++-32 73.0 LapEig 72.9 Neigh-Avg(N) 78.6 Neigh-Avg(E) 54.9 CHARM(att) 80.3±0.2	Method AUROC AUPR Probas 58.6 81.6 Act-24 77.0 90.4 Act-28 77.0 90.4 Act-32 76.3 90.2 LLM-Chk-24 47.5 74.6 LLM-Chk-28 51.1 76.7 LLM-Chk-32 61.5 82.1 LLM-Chk++24 66.3 84.5 LLM-Chk++28 67.8 86.3 LLM-Chk++32 73.0 88.8 LapEig 72.9 88.4 Neigh-Avg(N) 78.6 91.2 Neigh-Avg(E) 54.9 78.5 CHARM (att) 80.3±0.2 92.0±0.1	Method AUROC AUPR AUROC Probas 58.6 81.6 64.5 Act-24 77.0 90.4 76.6 Act-28 77.0 90.4 73.9 Act-32 76.3 90.2 72.7 LLM-Chk-24 47.5 74.6 38.9 LLM-Chk-32 51.1 76.7 41.6 LLM-Chk-32 61.5 82.1 41.6 LLM-Chk++24 66.3 84.5 64.6 LLM-Chk++28 67.8 86.3 64.8 LLM-Chk++32 73.0 88.8 67.2 LapEig 72.9 88.4 74.1 Neigh-Avg (N) 78.6 91.2 63.8 Neigh-Avg (E) 54.9 78.5 65.8 CHARM (att) 80.3±0.2 92.0±0.1 70.4±0.7	Method AUROC AUPR AUROC AUPR Probas 58.6 81.6 64.5 20.0 Act-24 77.0 90.4 76.6 37.8 Act-28 77.0 90.4 73.9 34.3 Act-32 76.3 90.2 72.7 35.3 LLM-Chk-24 47.5 74.6 38.9 10.9 LLM-Chk-28 51.1 76.7 41.6 11.4 LLM-Chk-32 61.5 82.1 41.6 11.3 LLM-Chk++-24 66.3 84.5 64.6 20.5 LLM-Chk++-28 67.8 86.3 64.8 21.0 LLM-Chk++-32 73.0 88.8 67.2 24.1 LapEig 72.9 88.4 74.1 33.3 Neigh-Avg(N) 78.6 91.2 63.8 23.0 Neigh-Avg(E) 54.9 78.5 65.8 21.9 CHARM (att) 80.3±0.2 92.0±0.1 70.4±0.7 29.1±1.0	Method AUROC AUPR AUROC AUPR AUROC Probas 58.6 81.6 64.5 20.0 54.5 Act-24 77.0 90.4 76.6 37.8 77.7 Act-28 77.0 90.4 73.9 34.3 78.1 Act-32 76.3 90.2 72.7 35.3 76.6 LLM-Chk-24 47.5 74.6 38.9 10.9 64.5 LLM-Chk-28 51.1 76.7 41.6 11.4 65.5 LLM-Chk-32 61.5 82.1 41.6 11.3 64.0 LLM-Chk++-24 66.3 84.5 64.6 20.5 67.3 LLM-Chk++-28 67.8 86.3 64.8 21.0 67.0 LLM-Chk++-32 73.0 88.8 67.2 24.1 68.6 LapEig 72.9 88.4 74.1 33.3 73.6 Neigh-Avg (N) 78.6 91.2 63.8 23.0 77.4

equally well — on both Winobias and Math, activation-based features work in synergy with attention-based ones. Instead of leading to fit spurious correlations as *hypothesised* for NQ and CNN (Section 5.1), they contribute to strongly boost performance over the att.-only CHARM, and over all considered att.- and act.-based methods. This is particularly pronounced on Winobias — there, CHARM (att.) is surpassed by Act-*'s, but the inclusion of activations leads it (att. & act.-24) to significantly outperform them both. Overall these datasets provide cases leading to a positive answer to **Q6**. We last note that Math is the only dataset where Act — 24 outperformed by other variants, namely Act-32. We thus also ran CHARM (att+act-32), which scored Test AUROC of 81.7 \pm 0.2, and AUPR of 83.8 \pm 0.3.

5.3 Additional Analyses

The role of the graph. To what extent does message-passing on the attention-induced graph contribute to the performance of CHARM? To answer this, we ablate the connectivity in our input samples and train CHARM on two representative

Table 3: Results from ablating the graph structure.

			<u> </u>	
Method	CNN		Ma	ath
	AUROC	AUPR	AUROC	AUPR
CHARM (no g.)	70.8 ± 0.5	19.2 ± 0.5	80.6 ± 0.7	82.7 ± 0.1
CHARM	75.4 ±0.2	22.7 ± 0.4	81.7 ± 0.2	83.8 ± 0.3

datasets: CNN and Math. In this setup, CHARM defaults to a set model which, instead of message-passing, applies a stack of dense layers over node features. We train and extensively tune this baseline, denoted "CHARM (no g.)", considering both att.-only and att. & act. configurations. We report its best results in Table 3 compared to the best corresponding CHARM. Results clearly show the positive contribution of message-passing on the constructed topology, answering positively to **Q4**.

Efficiency and robustness. We experiment with different values of the attention threshold τ (Equation (1)), studying how graph sparsity and (inference) memory consumption vary in relation to performance. We run this study on NQ, with results in Table 4. Test AUPR is reported along with the number of edges, sparsity and inference memory footprint averaged over test

Table 4: Avg. graph stats. on NQ at different thresholds, along with GPU memory footprint and Test AUPR.

τ	Num. Edges	Sparsity	Mem. (MB)	AUPR
0.5	1,118.80	0.993	22.99±3.71	38.4±0.4
0.1	7,458.67	0.952	60.44 ± 11.79	41.0 ± 1.2
0.05	14,884.44	0.906	104.15 ± 23.05	40.3 ± 1.7
0.01	58,998.88	0.645	363.02 ± 98.39	40.3 ± 0.9
0.001	19,7784.82	0.026	$1177.20{\scriptstyle\pm523.61}$	$40.1{\scriptstyle\pm0.0}$

graphs. We observe CHARM's performance is robust to various levels of sparsifications, whilst this can provide dramatic reduction in resource consumption. Performance drops more notably only for $\tau=0.5$, which, we note, still outperforms the best competitor, i.e., Act-24 (see Table 1). Overall our default $\tau=0.05$ attains a good trade-off, whilst we note it maximises val. AUPR. These results answers positively to Q5. We finally measure a distinctly contained inference latency of $\approx 1e^{-3}$ secs. Refer to Appendix C.1 for run-time and performance comparisons with other popular HD methods relying on multiple prompting, which incur significantly higher latency.

Zero-shot transfer. CHARM is a learnable, expressive multi-layer approach — this raises a natural question: *To what extent can it generalise cross-datasets zero-shot?* To investigate this, we follow the setup in (Chuang et al., 2024): we train on NQ and evaluate on CNN, and vice-versa.

Table 5: Cross-dataset zero-shot transf. NQ \leftrightarrow CNN.

Method	NQ -	→ CNN	$\textbf{CNN} \rightarrow \textbf{NQ}$	
11201104	AUROC	AUPR	AUROC	AUPR
LkbLens † Act-24	68.6 63.4	14.9 11.3	62.0 <u>63.8</u>	26.5 29.7
CHARM	64.1 ±1.1	<u>12.0</u> ±0.98	65.5 ±0.14	31.6 ±0.10

Results are in in Table 5. Overall no single method consistently outperforms the others in this challenging setup. In fact, despite its larger expressiveness, CHARM demonstrates promising generalisation: it outperforms activation-based probes, ranks best in CNN \rightarrow NQ, and places second in NQ \rightarrow CNN (behind Lookback Lens, which conversely performs the worst in CNN \rightarrow NQ). These results suggest that zero-shot transfer remains an open challenge, but our graph-based formulation is competitive and can capture generalisable signals, answering positively to Q3.

6 Conclusions

In this work, we proposed attributed graphs as a principled formulation of LLM computational traces, showing how diverse signals can be unified in this framework and how neural message passing can be applied thereon for diverse HD tasks. We showed our approach, CHARM, can provably generalise prior methods and that it achieves strong empirical performance, consistently outperforming existing methods. Additional analyses underscored the importance of graph structure and demonstrated promising zero-shot generalization across datasets.

Future endeavours will consider integrating other computational traces (e.g., logits), as well as extensions to new tasks such as detecting data contamination, identifying LLM-generated text, or flagging jailbreak attempts. Future work may also explore alternative message-passing architectures, including positional and structural encodings tailored to these attributed graphs.

REPRODUCIBILITY STATEMENT

Our code will be released upon acceptance, along with all training and evaluation scripts. Section 5, as well as Appendices B to D provide the required implementation details to reproduce our results.

REFERENCES

- Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. *International Conference on Learning Representations*, 2021.
- Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 967–976, 2023.
- Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal Chechik, and Haggai Maron. Learning on llm output signatures for gray-box behavior analysis. *arXiv:2503.14043*, 2025.
- Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G.M. Araújo, Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information oversquashing in language tasks. In *Advances in Neural Information Processing Systems*, volume 37, pp. 98111–98142, 2024.
- Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. *arXiv:1806.01261*, 2018.
- Alexandra Bazarova, Aleksandr Yugay, Andrey Shulga, Alina Ermilova, Andrei Volodichev, Konstantin Polev, Julia Belikova, Rauf Parchiev, Dmitry Simakov, Maxim Savchenko, Andrey Savchenko, Serguei Barannikov, and Alexey Zaytsev. Hallucination detection in Ilms via topological divergence on attention graphs. *arXiv:2504.10063*, 2025.
- Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. *Computational Linguistics*, 48(1):207–219, 2022.
- Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from wandb.com.
- Jakub Binkowski, Denis Janiak, Albert Sawczyn, Bogdan Gabrys, and Tomasz Kajdanowicz. Hallucination detection in llms using spectral features of attention maps. *arXiv*:2502.17598, 2025.
- Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language models without supervision. *arXiv*:2212.03827, 2022.
- Meng Cao, Yue Dong, and Jackie Cheung. Hallucinated but factual! inspecting the factuality of hallucinations in abstractive summarization. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pp. 3340–3354, Dublin, Ireland, May 2022. Association for Computational Linguistics.
- Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside: Llms' internal states retain the power of hallucination detection. *arXiv:2402.03744*, 2024.
- Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ranjay Krishna, Yoon Kim, and James R. Glass. Lookback lens: Detecting and mitigating contextual hallucinations in large language models using only attention maps. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1419–1436. Association for Computational Linguistics, 2024.
- Batu El, Deepro Choudhury, Pietro Liò, and Chaitanya K. Joshi. Towards mechanistic interpretability of graph transformers via attention graphs. In *ICLR 2025 Workshop on Explainable AI for Science (XAI4Science)*, 2025.
- Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric. In *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.

- Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 message passing for quantum chemistry. In *International Conference on Machine Learning*,
 volume 70 of *Proceedings of Machine Learning Research*, pp. 1263–1272. PMLR, 2017.
 - Guadalupe Gonzalez, Shunwang Gong, Ivan Laponogov, Michael M. Bronstein, and Kirill Veselkov. Predicting anticancer hyperfoods with graph convolutional networks. *Human Genomics*, 15(33), 2021.
 - Nuno M Guerreiro, Elena Voita, and André FT Martins. Looking for a needle in a haystack: A comprehensive study of hallucinations in neural machine translation. *arXiv:2208.05309*, 2022.
 - Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information Systems*, 2023a.
 - Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large language models. *arXiv*:2307.10236, 2023b.
 - Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM Computing Surveys*, 55(12):1–38, 2023.
 - Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv:2310.06825*, 2023.
 - Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. *arXiv*:2207.05221, 2022.
 - Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2017.
 - Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. *arXiv:2302.09664*, 2023.
 - Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:452–466, 2019.
 - Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Gary Liu, Denise Catacutan, Khushi Rathod, Kyle Swanson, Wengong Jin, Jody Mohammed, Anush Chiappino-Pepe, Saad Syed, Meghan Fragis, Kenneth Rachwalski, Jakob Magolan, Michael Surette, Brian Coombes, Tommi Jaakkola, Regina Barzilay, James Collins, and Jonathan Stokes. Deep learning-guided discovery of an antibiotic targeting acinetobacter baumannii. *Nature Chemical Biology*, pp. 1–9, 2023.
 - Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, and Bill Dolan. A token-level reference-free hallucination detection benchmark for free-form text generation. *arXiv*:2104.08704, 2021.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101, 2017.
 - Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallucination detection for generative large language models. *arXiv:2303.08896*, 2023.

- Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language model representations of true/false datasets. *arXiv:2310.06824*, 2023.
- Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein. Fake news detection on social media using geometric deep learning. In *ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds*, 2019.
- Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations. *arXiv*:2410.02707, 2024.
- Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. Understanding factuality in abstractive summarization with FRANK: A benchmark for factuality metrics. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 4812–4829, Online, June 2021. Association for Computational Linguistics.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems 32*, pp. 8024–8035. Curran Associates, Inc., 2019.
- Allan Pinkus. Approximation theory of the mlp model in neural networks. *Acta Numerica*, 8:143–195, 1999.
- Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. Learning representations of irregular particle-detector geometry with distance-weighted graph networks. *The European Physical Journal C*, 79(7), 2019.
- Yifu Qiu, Yftah Ziser, Anna Korhonen, Edoardo Ponti, and Shay Cohen. Detecting and mitigating hallucinations in multilingual summarisation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 8914–8932, Singapore, December 2023. Association for Computational Linguistics.
- Miriam Rateike, Celia Cintas, John Wamburu, Tanya Akumu, and Skyler Speakman. Weakly supervised detection of hallucinations in llm activations. *arXiv:2312.02798*, 2023.
- Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, SM Tonmoy, Aman Chadha, Amit P Sheth, and Amitava Das. The troubling emergence of hallucination in large language models—an extensive definition, quantification, and prescriptive remediations. *arXiv:2310.04988*, 2023.
- Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, Vancouver, Canada, 2017.
- Adi Simhi, Jonathan Herzig, Idan Szpektor, and Yonatan Belinkov. Constructing benchmarks and interventions for combating hallucinations in llms. *arXiv*:2404.09971, 2024.
- Ben Snyder, Marius Moisescu, and Muhammad Bilal Zafar. On early detection of hallucinations in factual question answering. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2721–2732, 2024.
- Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda, and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language models. In *Advances in Neural Information Processing Systems*, volume 37, pp. 34188–34216, 2024.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann, Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory, George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins. A deep learning approach to antibiotic discovery. *Cell*, 180(4):688–702, 2020.

- Yuhong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Hui Zhao. Benchmarking hallucination in large language models based on unanswerable math word problem. *arXiv:2403.03558*, 2024.
- Jake Topping, Francesco Di Giovanni, Benjamin P. Chamberlain, Xiaowen Dong, and Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International Conference on Learning Representations*, 2022.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288, 2023.
- Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation. *arXiv:2307.03987*, 2023.
- Alex Vitvitskyi, João G. M. Araújo, Marc Lackenby, and Petar Veličković. What makes a good feedforward computational graph? In *Proceedings of the 42nd International Conference on Machine Learning*, Proceedings of Machine Learning Research. PMLR, 2025.
- Weijia Xu, Sweta Agrawal, Eleftheria Briakou, Marianna J. Martindale, and Marine Carpuat. Understanding and detecting hallucinations in neural machine translation via model introspection. *Transactions of the Association for Computational Linguistics*, 11:546–564, 2023.
- Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model generations with local intrinsic dimension. *arXiv:2402.18048*, 2024.
- Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar, Ranjita Naik, Hamid Palangi, Ece Kamar, and Besmira Nushi. Attention satisfies: A constraint-satisfaction lens on factual errors of language models. *arXiv*:2309.15098, 2023.
- Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu Zhou, Xinbing Wang, and Luoyi Fu. Enhancing uncertainty-based hallucination detection with stronger focus. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 915–932. Association for Computational Linguistics, 2023.
- Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in coreference resolution: Evaluation and debiasing methods. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 15–20, New Orleans, Louisiana, 2018. Association for Computational Linguistics.
- Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A top-down approach to ai transparency. *arXiv:2310.01405*, 2023.

A EXPRESSIVENESS: CLAIMS AND PROOFS

Proposition (informal) 1. Equipped with a single-layer message-passing stack f_{mp} , CHARM running on a non-tresholded computational trace graph $(\tau = 0)$ can arbitrarily well approximate token-wise Lookback Lens features ℓ_i for bounded prompt and response lengths.

Proposition 1. Let $\ell_i(\vec{s};\mathcal{L})$ denote the Lookback Lens features calculated, for token i on string $\vec{s} = \vec{p} \mid \vec{r}$ for LLM $\mathcal{L}(Equation~(3))$. Also, let $h_i^{(t)}(G_{\vec{s}})$ denote the t-layer representation for the same token in output from t CHARM msg-passing layers (Equation (2)) on the corresponding computational trace graph $G_{\vec{s}}$. For any precision $\epsilon > 0$, there exists a 1-layer stack of CHARM's layers which approximate Lookback Lens features up to precision ϵ , for maximum allowed prompt-length \bar{n}_p and response length \bar{n}_r . That is, for any prompt \vec{p} , response \vec{r} of the aforementioned maximum lengths, and for any response token i, $\|h_i^{(1)}(G_{\vec{p}|\vec{r}}) - \ell_i(\vec{p} \mid \vec{r}; \mathcal{L})\|_{\infty} < \epsilon$.

Proof. To prove the above we show that, by setting hyperparameters $\Box \equiv \sum$ (summation) and $\tau = 0$ (no thresholding), there exist a single-layer stack f_{mp} which compute the desired approximation. In the following we will consider the attention scores across the L layers and H heads to be arranged in our node and edge features in a flattened manner. We will conveniently denote with $\flat(l,h)$ the function which evaluates the index of layer l and head h in this flattened representation.

(0) Setup and inputs. As our stack is made up of one single message-passing layer, our specific interest is thus in showing the existence of appropriate MLPs msg_0 , up_0 enabling f_{mp} to realise the target approximation. Being these components of the first — and only — message-passing layer in f_{mp} , its input node and edge representations effectively correspond to the original node and edge features X_V, X_E . We are thus focussing on the following update:

$$h_i^{(1)} = \underbrace{\mathsf{up}_0}_{(2)} \left(x_{V,i}, \sum_{j < i} \underbrace{\mathsf{msg}_0}_{(1)} \left(x_{V,i}, x_{V,j}, x_{E,(i,j)}, p_{i,j} \right) \right) \tag{5}$$

where the neighbourhood aggregation sums across *all* previous token positions (j < i) since no thresholding is enforced $(\tau = 0)$ and due to the fact that attention values cannot exactly evaluate to 0 because of to the application of softmax normalisation.

- (1) Message function. Let us first describe what we desire msg_0 to calculate. We would like it to map the concatenation of its arguments, with dimensionality 3d + 2, $d = L \cdot H$, to a vector of dimensionality 2d + 2, where:
 - The mark feature $p_{i,j}$ is replicated in the first two dimensions (channels 0, 1);
 - Edge features $x_{E,(i,j)}$ are replicated either in channels 2 through 2+d-1 if $p_{i,j}=[1,0]$ (message from prompt token) or in channels 2+d through 2d-1 otherwise (message from response token);
 - Node features $x_{V,i}, x_{V,j}$ are discarded.

Now, an MLP exactly implementing the above message function does exist; in fact, it can be *explicitly constructed*.

First layer. Weight matrix W_1 is in $\mathbb{R}^{(3d+2)\times(2d+2)}$. We will describe it in terms of columns slices.

- A first slice gathers the first two columns (0, 1); these are all zero except for the bottom 2×2 block, set as identity I_2 . This slice copies the $p_{i,j}$ mark features in the first two channels of the hidden representation.
- A second slice gathers columns 2 through 2+d-1; these are all zero except for rows 2d through 3d-1, set to identity I_d , and row 3d, set to a $\vec{1}_d$ one-only vector. This slice calculates the sum between edge features $x_{E,(i,j)}$ and the first channel of the mark $p_{i,j}$, indicating whether the message comes from a prompt token.

• A third — and last — slice gathers columns 2+d through 2+2d-1; these are all zero except for rows 2d through 3d-1, set to identity I_d . This slice copies edge features $x_{E,(i,j)}$ in the last d channels of the hidden representation.

Bias vector b_1 in \mathbb{R}^{2d+2} is all zero except for channels 2 through 2+d-1, set to vector $-\vec{1}_d$. Recapping, the hidden representation is a vector in \mathbb{R}^{2d+2} with the following structure:

$$\left[p_{i,j} \mid \underbrace{\cdots \left(x_{E,(i,j)}\right)_{\flat(l,h)} + \left(p_{i,j}\right)_{0} - 1 \cdots}_{(h_{1})} \mid \underbrace{\cdots \left(x_{E,(i,j)}\right)_{\flat(l,h)} \cdots}_{(h_{2})}\right].$$

Second layer: Weight matrix W_2 is in $\mathbb{R}^{(2d+2)\times(2d+2)}$. We will describe it in terms of columns slices again.

- A first slice gathers the first two columns (0,1); these are all zero except for the top 2×2 block, set as identity I_2 . This slice replicates, again, the $\text{ReLU}(p_{i,j}) = p_{i,j}$ mark features in the first two channels of the output.
- A second slice gathers columns 2 through 2+d-1; these are zero in the first two rows, rows 2 through 2+d-1 are set to identity— I_d and the last d rows are set to I_d . This slice calculates, channel-by-channel, $\operatorname{ReLU}(h_2) \operatorname{ReLU}(h_1) = h_2 \operatorname{ReLU}(h_1)$.
- A third and last slice gathers columns 2+d through 2+2d-1; these are all zero except for rows 2 through 2+d-1, set to identity I_d . This slice copies $\operatorname{ReLU}(h_1)$ in the last d channels of the output.

Bias vector b_2 is set to zero.

As a result, the output is a vector in \mathbb{R}^{2d+2} with the following structure:

$$\left[p_{i,j} \mid \underbrace{\cdots \left(x_{E,(i,j)}\right)_{\flat(l,h)} - \text{ReLU}(\left(x_{E,(i,j)}\right)_{\flat(l,h)} + \left(p_{i,j}\right)_{0} - 1)\cdots}_{(o_{1})} \mid \underbrace{\cdots \text{ReLU}(\left(x_{E,(i,j)}\right)_{\flat(l,h)} + \left(p_{i,j}\right)_{0} - 1)\cdots}_{(o_{2})}\right].$$

Now, note that, as desired:

• if $(p_{i,j})_0 = 1$ (message from response token):

$$\begin{split} &- \ (o_1)_{\flat(l,h)} = \big(x_{E,(i,j)}\big)_{\flat(l,h)} - \text{ReLU}(\big(x_{E,(i,j)}\big)_{\flat(l,h)} + 1 - 1) = \big(x_{E,(i,j)}\big)_{\flat(l,h)} - \\ & (x_{E,(i,j)})_{\flat(l,h)} = 0 \\ &- \ (o_2)_{\flat(l,h)} = \text{ReLU}(\big(x_{E,(i,j)}\big)_{\flat(l,h)} + 1 - 1) = \big(x_{E,(i,j)}\big)_{\flat(l,h)}, \end{split}$$

• if $(p_{i,j})_{\Omega} = 0$ (message from prompt token):

$$\begin{split} & - \ \, \big(o_1\big)_{\flat(l,h)} = \big(x_{E,(i,j)}\big)_{\flat(l,h)} - \text{ReLU}(\big(x_{E,(i,j)}\big)_{\flat(l,h)} + 0 - 1) = \big(x_{E,(i,j)}\big)_{\flat(l,h)} - 0 = \\ & \big(x_{E,(i,j)}\big)_{\flat(l,h)} \\ & - \ \, \big(o_2\big)_{\flat(l,h)} = \text{ReLU}(\big(x_{E,(i,j)}\big)_{\flat(l,h)} + 0 - 1) = 0 \end{split}$$

Now, when aggregating these calculated messages through summation, it becomes clear that the aggregated message vector m_i will eventually hosts:

- The number of response tokens preceding token i, i.e., $i n_p 1$, in channel 0;
- The length of the prompt, i.e., n_p , in channel 1;
- Summation $\sum_{j=0}^{n_p-1} \alpha_{l,h}^{i,j}$ in channel $\flat(l,h)+2$, denoted $\hat{P}_i^{l,h}$;
- Summation $\sum_{j=n_p}^{i-2} \alpha_{l,h}^{i,j}$ in channel $\flat(l,h)+2+d$, denoted $\left(\hat{R}_i^{l,h}\right)^-$.

 (2) Update function. Next, we desire up₀ to implement a function up* mapping the concatenation $\begin{bmatrix} x_{V,i} \mid m_i \end{bmatrix}$ to a vector of dimension d corresponding to the Lookback Lens output scores in Equation (3). Showing that up₀ can approximate up* up to desired precision ϵ will complete the proof.

We now describe up*. We build it as a composition of two functions $f_A \circ f_B$:

• f_A is such that $f_A(x_{V,i},m_i)=y_i=c_i+m_i$, where c_i has the same dimensionality as m_i (2d+2), and $c_i=\begin{bmatrix}0\mid 1\mid \vec{0}\mid x_{V,i}\end{bmatrix}$ — note that vector y_i is an "updated" version of m_i whereby channel 1 now equals $i-n_p$ and channels $\flat(l,h)+2+d$'s are now such that:

$$(\hat{R}_{i}^{l,h})^{-} + x_{V,i} = \sum_{j=n_n}^{i-1} \alpha_{l,h}^{i,j} = \hat{R}_{i}^{l,h}$$
(6)

• f_B is such that $f_B(y_i) = z_i$ where z_i is of dimensionality d and:

$$(z_i)_{\flat(l,h)} = \frac{\frac{(y_i)_{\flat(l,h)+2}}{(y_i)_1}}{\frac{(y_i)_{\flat(l,h)+2}}{(y_i)_1} + \frac{(y_i)_{\flat(l,h)+2+d}}{(y_i)_0}}.$$
 (7)

Note that, importantly, $(z_i)_{\flat(l,h)} = \frac{\hat{P}_i^{l,h}/n_p}{\hat{P}_i^{l,h}/n_p + \hat{R}_i^{l,h}/(i-n_p)} = \frac{P_i^{l,h}}{P_i^{l,h} + R_i^{l,h}} = \ell_i^{l,h}$.

First, f_A can be realised by a single affine transformation. This has weight matrix W_A in $\mathbb{R}^{(3d+2)\times(2d+2)}$, described in terms of row slices as follows.

- A first slice gathers the first d rows; it is zero except for the last d-column block, set as identity I_d .
- A second slice gathers rows d through 3d + 2 1 and it set as an identity $I_{(2+2d)}$.

The above linear transformation has the effect of copying m_i in the output and of summing $x_{V,i}$ in its last d entries — where the aggregated message from response tokens is stored. Now, bias vector b_A is in \mathbb{R}^{2+2d} and is zero everywhere except for its first element which is set as 1. Adding b_A has the effect of simply increasing the second entry by one, thus "updating" the count of response messages stored there.

Second, we note that f_B computes the same exact scalar-valued function f_B^s on each output component; also, this f_B^s is continuous on (the non-compact) domain $\{1,\ldots,\bar{n}_p\}\times\{1,\ldots,\bar{n}_r\}\times(0,1)^2$. We note that f_B^s can be trivially, continuously extended to the compact $\{1,\ldots,\bar{n}_p\}\times\{1,\ldots,\bar{n}_r\}\times[0,1]^2$: it suffices to see that its limits exist and are finite on the boundary of $[0,1]^2$. This is indeed the case; we note that denominators in each individual normalisation ratios are always greater or equal than one; and that the two addenda in the denominator of the main ratio are always non-negative, can never evaluate simultaneously to zero and their sum is bounded away from zero (given the maximum allowed length for prompt and response).

Given this premise, term $f_B^{s,\text{ext}}$ this continuous extension; we can invoke the MLP Universal Approximation Theorem (Pinkus, 1999) to claim the existence of an MLP M_B^s with one hidden layer which approximates the continuous $f_B^{s,\text{ext}}$ on the compact domain $\{1,\dots,\bar{n}_p\}\times\{1,\dots,\bar{n}_r\}\times[0,1]^2$ up to precision ϵ . This implies the original f_B^s is also ϵ -approximated in its original domain. Now, it is possible to (easily,) appropriately *replicate* the weights of M_B^s to distribute its same exact computation for each of the output coordinates, thus obtaining an MLP M_B approximating the overall f_B : $\forall y, \forall i \mid M_B^s(y) - (f_B(y))_i \mid \epsilon$, that is, $\forall y, \forall i \mid (M_B(y))_i - (f_B(y))_i \mid \epsilon$. But, then:

$$\forall y, \forall i \mid (M_B(y))_i - (f_B(y))_i \mid \epsilon$$

$$\implies \forall y \max \left(\mid (M_B(y))_i - (f_B(y))_i \mid i = 0, \dots, d - 1 \right) < \epsilon$$

$$\implies \forall y \mid |M_B(y) - f_B(y)|_{\infty} < \epsilon$$

Denote $(W_B^1, b_B^1), (W_B^2, b_B^2)$ the weight and biases of, respectively, the first and second layers of M_B . Now, the above affine transformation exactly implementing f_A can be "absorbed" into the *first* layer of M_B , by replacing the weight and bias as $W^1 = W_B^1 \cdot W_A, b_1 = (W_B^1 \cdot b_A + b_B^1)$. The resulting MLP composed by $\left((W^1, b^1), (W_B^2, b_B^2)\right)$ now ϵ -approximates the overall up*, concluding the proof.

Proposition (informal) 2. With a single-layer message-passing stack f_{mp} , CHARM can arbitrarily well approximate global LLM-Chk-l features c^l , provided attentions are clipped away from zero⁶.

Proposition 2. Let $c^l(\vec{s};\mathcal{L})$ denote the LLM-Check Attention Score (Equation (4)) calculated on string $\vec{s} = \vec{p} \mid \vec{r}$ for LLM $\mathcal{L}(\text{Equation (4)})$ and its layer l. Also, let $y(G_{\vec{s}})$ denote the prediction in output from an CHARM stacking components f_{msg} , f_{pool} , f_{pred} , run on corresponding graph $G_{\vec{s}}$. For any precision $\epsilon > 0$, when $f_{pool} \equiv \sum$ and attention values are clipped from below to value $\alpha_{min} > 0$, there exists a 1-layered f_{msg} , and an MLP f_{pred} such that CHARM approximates LLM-Check Attention Scores up to precision ϵ . That is, for any prompt-response pair \vec{s} , $|y(G_{\vec{s}}) - c^l(\vec{s};\mathcal{L})| < \epsilon$.

Proof. To prove the above we show that, in the setting described in the proposition, there exist a single-layer stack $f_{\rm mp}$, as well as an MLP $f_{\rm pred}$ which compute the desired approximation. Here we consider the LLM-Chk-l variant which averages across heads instead of performing a summation, but the proof below is easily extended to this alternative configuration.

(0) Setup, inputs and proof strategy. Our stack is made up, again, of one single message-passing layer in $f_{\rm mp}$, followed by sum-based pooling and an MLP $f_{\rm pred}$. Our specific interest is in showing the existence of appropriate MLPs ${\rm msg}_0$, ${\rm up}_0$, $f_{\rm pred}$ enabling the full stack to realise the target approximation. Again, ${\rm msg}_0$, ${\rm up}_0$ are the components of the first — and only — message-passing layer in $f_{\rm mp}$, so its input node and edge representations effectively correspond to the original node and edge features X_V , X_E . The whole computation then takes the form:

$$y = \underbrace{f_{\text{pred}}}_{(3)} \left(\sum_{i=0}^{n-1} \underbrace{\mathsf{up}_0}_{(2)} \left(x_{V,i}, \sum_{(i,j) \in E} \underbrace{\mathsf{msg}_0}_{(1)} \left(x_{V,i}, x_{V,j}, x_{E,(i,j)}, p_{i,j} \right) \right) \right) \tag{8}$$

- (1) Message function. The LLM-Chk-l method does not perform any aggregation on the attention graph for our purposes it suffices for MLP msg_0 to simply implement a function which outputs any constant non-negative vector v. W.l.o.g., set $v=\vec{0}$; the MLP implementing msg_0 is trivially obtained by setting both its weights and biases to zero.
- (2) Update function. Note that $x_{V,i} = \alpha_{i,i}$; as it will be clearer next, it suffices for up₀ to approximate the log function applied thereon component-wise. Now, log is, in fact, operating on domain $[\alpha_{\min}, 1)$ in view of the applied clipping; there, the function is continuous. Consider the compact set $[\alpha_{\min}, 1]$ obtained as the closure of the above domain. The considered log is trivially continuously extended to this new domain, since its limit exists finite as the argument approaches 1 from the left (it evaluates to 0). We therefore invoke the Universal Approximation Theorem (Pinkus, 1999), which guarantees the existence of an MLP M_{\log} approximating the component-wise log function on the extended domain and, in turn, on the original input domain $[\alpha_{\min}, 1)$ up to arbitrary precision ϵ . We construct up₀ by appropriately replicating the weights of M_{\log} to output the approximated log-transform on each of the first input d channels in parallel, whilst discarding the last d remaining channels in output from the message function (see above).
- (3) Prediction function. At this point, the input of f_{pred} corresponds to: $\hat{z} = \frac{1}{n} \sum_{i=0}^{n-1} \hat{y}_i$, where \hat{y}_i is an ϵ -approximation of the log function applied element-wise to $\alpha_{i,i}$'s. If f_{pred} implemented the final averaging over l's H heads (channels), then its output would be an overall approximation of the desired quantity c^l (of a certain precision yet to be quantified). We note that it easy to explicitly construct such an MLP exactly implementing the outer averaging over the selected heads. We describe its two layers in the following.

⁶This assumption ensures the log is continuous on an appropriate compact set, rendering its approximation amenable (see Appendix A); in practice we also did observe it was necessary to ensure numerical stability.

- First layer: it features a weight matrix of the form $[I_d \mid -I_d]$ and a zero-valued bias; this layer expands the d-dimensional input to a 2d representation, where the first d channels host input \hat{z} , the last d channels the negated input $-\hat{z}$.
- Second layer: it features a weight matrix in $\mathbb{R}^{2d \times 1}$. The upper $d \times 1$ block hosts a vector where entries $\flat(l,h)$ equal to $^1\!/_H$ if $l=\bar{l},0$ otherwise. The lower $d \times 1$ block has the same exact structure, but non-zero entries are, instead, set to $^{-1}\!/_H$.

It is easy to see this construction exactly implements the required averaging, making the ReLU activaction act neutrally.

Now, we ask to what precision does the final output approximate overall target c^l . Note that the only source of approximation is in the previously introduced up₀; we are thus only required to quantify how it "propagates" to the rest of the following computation. We have, by the triangular inequality:

$$\left| \frac{1}{H} \sum_{h=0}^{H-1} \frac{1}{n} \sum_{i=0}^{n-1} (\hat{y}_i)_{\flat(l,h)} - \frac{1}{H} \sum_{h=0}^{H-1} \frac{1}{n} \sum_{i=0}^{n-1} \log(\alpha_{i,i}^{l,h}) \right| \le \frac{1}{H} \sum_{h=0}^{H-1} \left| \frac{1}{n} \sum_{i=0}^{n-1} (\hat{y}_i)_{\flat(l,h)} - \frac{1}{n} \sum_{i=0}^{n-1} \log(\alpha_{i,i}^{l,h}) \right| \le \frac{1}{H} \sum_{h=0}^{H-1} \frac{1}{n} \sum_{i=0}^{n-1} \left| (\hat{y}_i)_{\flat(l,h)} - \log(\alpha_{i,i}^{l,h}) \right| \le \frac{1}{H} \sum_{h=0}^{H-1} \frac{n\epsilon}{n} = \frac{Hn\epsilon}{Hn} = \epsilon$$

which concludes the proof.

B DATASET DETAILS

B.1 NQ AND CNN

Dataset construction. These datasets are constructed precisely following the implementation described in (Chuang et al., 2024) and provided as part as a supplementary codebase at https://github.com/voidism/Lookback-Lens. From this repository we derive both prompts and pre-computed, annotated generations, which we re-use via teacher-forcing to hook out the required computational traces, namely attention and activation matrices. We tested the fidelity of these generated scores in early experiments: we recalculated original Lookback Lens features using the generated data and managed to reproduce the original results in (Chuang et al., 2024).

Dataset details , including a description of the text generation and annotation process, are found in (Chuang et al., 2024, Appendix A) and (Chuang et al., 2024, Appendix C.2), to which we refer the interested reader.

Splitting. Chuang et al. (2024) originally split the data randomly and in a way that, potentially, passages from the same response could appear across training and evaluation splits. We argue this is an undesired side-effect and, in an effort to cast the HD in a more challenging setup, we instead split the data at the level whole prompt-response pairs (graphs according to our framework). Specifically, we fix the seed to 42 and randomly obtain a prompt-response level split in the proportion 60% / 20% / 20% (train / val / test).

B.2 MOVIES, WINOBIAS, MATH

Dataset construction. These datasets are constructed following the process described in (Orgad et al., 2024), and by leveraging the authors' code open-sourced at https://github.com/technion-cs-nlp/LLMsKnow (MIT License). The prompts and ground truth labels of all the three considered dataset, in particular, are provided by the authors themselves in the above codebase.

As for hallucination labels, we run the annotation process whose code is provided therein. These annotation routines are mostly based on string matching procedures.

Dataset details , including a description of the datasets and how prompts have been derived are provided in (Orgad et al., 2024, Appendix A.3), to which we refer the interested reader.

Splitting. We use the same train/test splits provided by Orgad et al. (2024), and additionally carve out a random sample of 20% of training data points, treated as our validation set. We perform this sampling by setting random seed to 42.

C EXTENDED EXPERIMENTAL SECTION

C.1 COMPARISON WITH SELF-CHECK AND MULTIPLE-PROMPTING-BASED METHODS

In this section, we compare against baseline methods that rely on additional prompting, specifically P(True) Kadavath et al. (2022) and Semantic Entropy (SE) Kuhn et al. (2023). Both approaches operate over multiple LLM generations or prompts, which introduces a non-negligible computational overhead and may hinder their applicability in real-time settings. Table 6 reports results on the Movies dataset using Mistral-7B-instruct. For SE, we follow the original evaluation setup (Kuhn et al., 2023), employing the DeBERTa entailment model as described in the referenced work.

Table 6: Comparison with methods relying on multiple prompting.

Method	Mis-7B – Movies (AUC)
P(True) Semantic Entropy	62.00 70.06
CHARM (att) (ours) CHARM (att+act-24) (ours)	80.3 ± 0.2 79.7±0.3

We observe that in all cases, CHARM variants substantially outperform the competing approaches. To quantify the computational burden of these baselines, we measured the average runtime of SE for producing a prediction. This process involves generating 10 additional responses and clustering them by computing mutual entailments with an auxiliary DeBERTa model. On average, SE required 5.9 ± 1.7 seconds per evaluation. We minimised the overhead of auxiliary generations by running them in parallel through batching. Nevertheless, the clustering step alone accounts for about 1.35 seconds of runtime, which is not negligible. These findings highlight the advantage of our method, which not only achieves higher accuracy but also operates orders of magnitude faster, with detection runtimes on this dataset in the range of 10^{-4} seconds.

C.2 Hyperparameter Grids

We employed the same hyperparameter grid search across all datasets considered for CHARM, as summarized in Table 7. When incorporating activations into CHARM, we additionally searched over a separate weight decay parameter, applied only to the encoder of the activations, with candidate values $\{0.0, 0.05, 0.1\}$.

C.2.1 BASELINE HYPERPARAMETER SEARCHES

All hyperparameters were selected based on validation performance and, in particular, in order to maximise the AUPR metric. The details are provided below.

Probas We evaluated different readout functions — mean, max, and sum — applied to the next-token probabilities.

Act-* We experimented with the following regularisation parameters for logistic regression: $C \in \{10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 10^{5}\}$. In addition, we probed token positions in: $\{-3, -2, -1, 0, 1, 2\}$.

Table 7: Hyperparameter search space for CHARM.

Hyperparameter	Values		
Learning Rate	{0.001, 0.0005}		
Learning Rate Sched.	{Reduce On Plateau, Cosine w/ Warmup}		
Batch Size	32		
Dropout	$\{0.25, 0.5\}$		
Hidden Dimension	$\{32, 64, 128\}$		
Number of Layers	$\{1, 2, 3\}$		
Weight Decay	$\{0.0, 0.001\}$		
BatchNorm	{yes, no}		
Residual Connections	{yes, no}		

LLM-Chk-* We were required to clamp the attention scores from below using $\epsilon = 10^{-6}$ to avoid numerical errors. For LLM-Chk++-*, we experimented with $C \in \{10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 10^{5}\}.$

LapEig We experimented with the following values of k: $\{4,5,6,7,8,9,10,11,12,15,20\}$. For datasets where the minimum number of tokens in the test split was less than k, we restricted experiments to values of k below this threshold. As for logistic regression, we used C=1, class balancing, and a maximum of 2,000 iterations, consistent with what prescribed in the original paper (Sriramanan et al., 2024).

Neigh-Avg (N) and **Neigh-Avg (E)** We used mean readout exactly as in our model and tuned the logistic regression regularisation parameter over $C \in \{10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 10^{5}\}.$

Lookback Lens. We implemented Lookback Lens exactly as described in the original paper, using logistic regression with a regularization parameter of C=1. For Lookback Lens † , we performed a grid search over $C \in \{10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 10^{5}\}$.

CHARM (no g.) We use the same exact grid as for CHARM (see Table 7), with the following exceptions: (1) no msg-passing layers; (2) a readout / prediction head that is either linear or a implemented as an MLP.

D IMPLEMENTATION DETAILS AND COMPUTATIONAL RESOURCES

D.1 DETAILED ARCHITECTURAL FORMS AND TRAINING PARAMETERS

D.1.1 NEIGHBOURHOOD AVERAGING BASELINES

Our baselines Neigh-Avg (N) and Neigh-Avg (E) calculate features in a non-learnable way as described below.

Neigh-Avg(N).

$$h_{i}^{(1)} = \frac{1}{1 + \deg_{\text{in}}(i)} \left(h_{i}^{(0)} + \sum_{j: (i,j) \in E} x_{E,(i,j)} \right) =$$

$$= \frac{1}{1 + \deg_{\text{in}}(i)} \left(x_{V,i} + \sum_{j: (i,j) \in E} x_{E,(i,j)} \right) =$$

$$= \frac{1}{1 + \deg_{\text{in}}(i)} \left(\alpha_{i,i} + \sum_{j: (i,j) \in E} \alpha_{j,j} \right)$$
(9)

Neigh-Avg(E).

$$h_{i}^{(1)} = \frac{1}{1 + \deg_{\text{in}}(i)} \left(h_{i}^{(0)} + \sum_{j: (i,j) \in E} h_{j}^{(0)} \right) =$$

$$= \frac{1}{1 + \deg_{\text{in}}(i)} \left(x_{V,i} + \sum_{j: (i,j) \in E} x_{V,j} \right) =$$

$$= \frac{1}{1 + \deg_{\text{in}}(i)} \left(\alpha_{i,i} + \sum_{j: (i,j) \in E} \alpha_{i,j} \right)$$
(10)

Outputs $h_i^{(1)}$ are then fed in input to a logistic regression model, regularised as illustrated in Appendix C.2.1. Before that, they are averaged-pooled in the case of response-wise predictions tasks.

D.1.2 EXPERIMENTAL CHARM FORM

Throughout all our experiments, CHARM implements the following msg-passing equation:

$$h_i^{(t+1)} = \mathsf{up}_t \Big(\Big[h_i^{(t)} \mid \frac{1}{\mathsf{deg}_{\mathsf{in}}(i)} \sum_{j: \ (i,j) \in E} \mathsf{msg}_t \big(\big[h_j^{(t)} \mid x_{E,(i,j)}^\tau \mid p_{i,j} \big] \big) \Big] \Big). \tag{11}$$

Initial node features always include "reflexive attention", i.e., that a token pays to itself. When additionally including activations (CHARM (att+act-*)) we employed an additionally encoder to preprocess these. The output of this module is concatenated to the original attention features before message passing takes place. Note that, in all our experiments, for computational reasons and in alignment with the computational flow of Lookback Lens, we remove all connections from prompt to prompt tokens.

D.1.3 OPTIMIZER AND SCHEDULERS

For all datasets and tasks, we use the AdamW optimizer Loshchilov & Hutter (2017). We experimented with two learning rate schedulers (see Table 6): "Reduce On Plateau" and "Cosine Annealing with Warmup", where warmup spanned 10% of the total training steps. The scheduler yielding the best validation performance was selected.

D.2 CODE IMPLEMENTATION

Thee implementation of CHARM was realised by means of PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) (available respectively under the BSD and MIT license). We performed hyperparameter tuning using the Weight and Biases framework (Biewald, 2020). For baselines and models running logistic regression, we resorted to the implementation exposed by the Sci-Kit Learn library (BSD license). LapEig required also running the PCA dimensionality reduction technique; we invoked the python implementation from the same library.

D.3 EXPERIMENTAL RESOURCES AND ARTEFACTS

We ran our all our experiments on NVIDIA L40 GPUs. The two employed LLMs were both accessed via Hugging Face python API, in particular:

- LLaMa-2-7b-chat (Touvron et al., 2023) (License: LLaMa 2 Community License). Accessed at https://huggingface.co/meta-llama/Llama-2-7b-chat-hf.
- Mistral-7b-instruct (Jiang et al., 2023) (License: Apache-2.0). Accessed at https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3.

E LARGE LANGUAGE MODEL (LLM) USAGE

We employed large language models (LLMs) to support the writing process, specifically for improving clarity in technical explanations, refining grammar and style, and enhancing overall readability. LLMs

were also used to a limited extent to aid the process of finding related works. All research contributions, including the design of experiments, data analysis, and conclusions, are entirely our own. The LLMs were used strictly as writing aids to improve presentation quality, not for generating research content or shaping the substance of our work.