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ABSTRACT

The rapid growth of Large Language Models (LLMs) intensifies the need for
effective compression, with weight quantization being the most widely adopted
technique. Standard uniform quantizers assume that parameters are evenly dis-
tributed, an assumption at odds with the highly skewed distributions observed in
practice. We propose Benford-Quant (BENQ), a simple, data-free non-uniform
quantizer inspired by Benford’s Law, which predicts that leading digits follow
a logarithmic distribution. BENQ replaces the uniform grid with a log-spaced
codebook, dedicating more resolution to the frequent small-magnitude weights. We
provide both theoretical intuition and empirical evidence: (i) weights in transformer
transformational layers adhere closely to Benford statistics, while normalization
layers systematically deviate; (ii) on Small Language Models (SLMs), BENQ
consistently improves perplexity, reducing 4-bit perplexity on Gemma-270M by
more than 10%; and (iii) on larger LLMs, it remains competitive, with differences
explained by over-parameterization effects. Our results indicate that incorporating a
Benford-inspired prior into quantization grids is a low-cost modification that yields
accuracy gains in aggressive few-bit regimes. Although it is not able to surpass the
state of the art in tasks such as perplexity and LAMBADA, the BENQ approach
can be hybridized with other quantization methods—such as SmoothQuant and
Activation-Aware Quantization—without major pipeline modification, potentially
improving their performance.

1 INTRODUCTION

Large Language Models (LLMs) deliver state-of-the-art results across NLP tasks, yet their memory
and latency footprints hinder broad deployment (Touvron et al., 2023; Jiang et al., 2023). Post-training
quantization (PTQ) is a practical remedy: by mapping full-precision weights to few-bit integers, it
compresses models and often accelerates inference with modest accuracy loss (Frantar et al., 2022;
Dettmers et al., 2023). The de-facto baseline, round-to-nearest (RTN) on a uniform grid, is simple
and hardware-friendly—but it implicitly assumes that parameters occupy the dynamic range evenly.

Empirically, neural weights are highly non-uniform and concentrate near zero (Han et al., 2015).
In low-bit regimes (e.g., 3–4 bits), uniform grids spend disproportionate capacity on rare large
magnitudes while under-resolving dense near-zero regions; the mismatch is exacerbated in layers
whose weight magnitudes span multiple decades. This has spurred a broad literature on non-uniform
or distribution-aware quantization, from classic logarithmic level schedules (Miyashita et al., 2016)
to modern per-layer, learned or optimized codebooks for LLMs (Zhao & Yuan, 2025). In parallel,
activation-aware schemes (e.g., AWQ (Lin et al., 2024), SmoothQuant (Lin et al., 2024)) reduce
sensitivity to outliers and can be combined with weight-only PTQ (Lin et al., 2024; Xiao et al., 2023).

We revisit a classic regularity of natural data—Benford’s Law (Benford, 1938)—and show that many
transformational layers in modern transformers (linear/attention/FFN) exhibit Benford-like leading-
digit statistics, whereas normalization layers systematically do not, as illustrated in Figure 1b. Beyond
empirical evidence, we give a log-domain rationale: multiplicative stochastic optimization (SGD
with decay and adaptive preconditioning) induces broad mixtures in log |w|, yielding near-uniform
mantissas and thus Benford-like behavior. Notably, prior work has leveraged Benford’s Law as an
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analysis or training signal: Sahu et al. (2021) propose a model as a predictor of generalization and a
validation-free early-stopping criterion, while Ott et al. (2025a) regularize significant-digit histograms
to improve generalization in low-data regimes.

In this work, we propose BENQ, a data-free non-uniform quantizer that replaces the linear codebook
with a log-spaced grid derived from a Benford-inspired prior, and applies it selectively to transfor-
mational layers while leaving stability-critical parameters (e.g., LayerNorm scales, embeddings)
in higher precision. Conceptually, BENQ allocates more resolution to the statistically prevalent
small-magnitude weights, aligning representational capacity with observed weight statistics rather
than with a uniform dynamic range. To guide the development of this work, the following research
questions were established:

RQ1: Benford’s Law Compliance. Do the parameters and activations of large language models
adhere to Benford’s Law?

RQ2: Benford-Quant Efficacy. Can a non-uniform, Benford-inspired quantization scheme out-
perform standard uniform methods?

RQ3: Performance Benchmarks. What is the performance (e.g., perplexity) of a model quantized
with BENQ compared to other methods like RTN or GPTQ?

The experiments revealed that, on Small Language Models (SLMs), BENQ consistently improves
perplexity over uniform RTN at 3–4 bits (e.g., Gemma-3-270M: 32.3 vs. 39.5 at 4b; Gemma-3-1B-
it: 31.9 vs. 32.3 at 4b). On mid-large-sized LLMs (e.g., OPT-1.3B, BLOOM-1b1/1b7, OPT-66B,
Qwen-72B), BENQ remains competitive compared to uniform RTN or GPTQ. We analyze when
and why the Benford prior helps (distributional shape, layer role) and where it saturates (flattened
spectra in larger models), and we ablate level spacing to show the advantage of Benford/log grids over
naive non-uniform alternatives. Compared to learned/optimized non-uniform schemes (Zhao & Yuan,
2025), BENQ trades per-layer search for a principled, fixed geometry grounded in a well-studied
statistical law, avoiding heavy calibration or optimization.

Crucially, BENQ targets weight quantization and is orthogonal to activation-aware or calibration-
heavy methods (e.g., AWQ (Lin et al., 2024), SmoothQuant (Lin et al., 2024)) and second-order/PTQ
optimizers (e.g., GPTQ). This makes BENQ a drop-in codebook amenable to hybridization: it
can replace uniform grids inside group-wise PTQ, complement activation smoothing, or initialize
codebooks for optimized PTQ.

Contributions.

• Benford link & layer-wise dichotomy. We document that transformer transformational
weights exhibit Benford-like leading-digit statistics, whereas normalization layers do not;
we support this with a log-domain rationale based on multiplicative training dynamics
(Section 2).

• A simple, selective non-uniform quantizer. BENQ uses a Benford-inspired, log-spaced
codebook and a selective policy; it is data-free, hardware-friendly, and drop-in.

• Evidence across scales & positioning. BENQ yields consistent gains over uniform RTN on
SLMs and remains competitive on mid-large-sized LLMs; ablations confirm that Benford/log
spacing matters beyond “any” non-uniform grid. Unlike prior Benford-based training
signals (Sahu et al., 2021; Ott et al., 2025a), our approach uses Benford as a quantization
prior, enabling post-training compression without retraining. Relative to general non-
uniform quantization (Miyashita et al., 2016; Zhao & Yuan, 2025), we provide a principled,
calibration-light alternative derived from a pre-defined statistical law.

Overall, our results indicate that incorporating a Benford-informed prior into the codebook design
provides a low-overhead approach to recovering accuracy in aggressive few-bit regimes, particularly
for models whose weight magnitudes span multiple orders of magnitude, and natural building block
for hybrid quantization pipelines.
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Figure 1: The dichotomy of Benford’s Law compliance in Llama-3-8B. (a) The weights of a
transformational linear layer strongly adhere to the Benford distribution. (b) In contrast, the weights of
a ‘LayerNorm‘ layer systematically violate the law, with their first digits overwhelmingly concentrated
on a single value. Conclusion: This analysis provides the empirical motivation for both our log-
uniform grid and our selective quantization strategy.

2 WHY DO WE EXPECT BENFORD-LIKE WEIGHTS?

Benford preliminaries. Let S10(x) ∈ [1, 10) be the base-10 significand, x = S10(x) · 10k.
Benford’s Law gives

P(⌊S10(x)⌋ = d) = log10
(
1 + 1

d

)
, d = 1, . . . , 9. (1)

A standard characterization states: x is Benford⇔ the fractional part of log10 |x| is uniform on [0, 1)
(Hill, 1995b). Thus, Benford-like behavior reduces to equidistribution modulo 1 in the log domain.

Multiplicative training dynamics. For a scalar weight wt in a linear/affine map, a broad class of
optimizers admits

wt+1 = (1− ηtλ)wt − ηtϕtgt = Mt wt + εt, (2)
where λ≥ 0 (decoupled weight decay), ηt is the step size, ϕt > 0 a preconditioner (e.g., Adam),
gt a stochastic gradient, and εt an additive residual. When |Mtwt| dominates |εt| during nontrivial
epochs, the magnitude evolves approximately multiplicatively:

log |wt+1| ≈ log |wt|+ log |Mt|. (3)

Random fluctuations in ηt, ϕt and data/curvature induce a noisy random walk in log |wt|, producing
broad log-distributions (often close to lognormal). Aggregating across layers and training phases
yields mixtures of such log-broad components.

Matrix products and Benford. Beyond temporal evolution, the spatial structure of neural net-
works also promotes Benford-like behavior. Each forward pass involves repeated matrix–vector
multiplications,

hℓ+1 = Wℓhℓ, (4)

so entries of hℓ+1 are sums of products of the form
∏k

j=1 wjhj . Classical results (e.g., Hill 1995a;c)
show that products of independent, non-degenerate random variables tend to produce significands
that are uniformly distributed in the log domain, hence Benford. In deep networks, activations at later
layers accumulate multiplicative contributions from many random weights, further broadening the
log-distribution of effective coefficients. This complementary perspective explains why even static
weight matrices (not only their SGD trajectories) naturally exhibit Benford-like first-digit histograms.

Consequence: near-uniform log mantissas. Broad, continuous log-distributions and random
mixtures are classical mechanisms leading to equidistribution of {log10 |w|} modulo 1, hence
Benford-like leading digits. This rationale applies to transformational weights (linear/attention/FFN).
Parameters tightly anchored to a narrow scale—e.g., LayerNorm scales acting as learned damping
factors—violate the broadness condition and need not be Benford, matching our empirical dichotomy.
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Implication for quantization. If {log10 |w|} is near-uniform, mass is spread across decades, with
highest density near zero. A log-spaced grid allocates more levels where weights concentrate,
reducing expected distortion at fixed bit width. Conversely, for narrow-scale parameters (e.g.,
LayerNorm), log spacing is suboptimal, motivating selective application.

Note. Benford compliance (uniform mantissa in log10) does not imply a strictly log-uniform density;
our grid is a practical proxy that captures the near-zero concentration that matters for quantization.

3 PROBLEM SETTING

The rationale in Section 2 motivates non-uniform, log-spaced grids for transformational weights and
a selective policy for stability-critical parameters.

Post-training quantization maps a full-precision tensor W ∈ Rm×n to low-bit integers Wq via a
quantizer Q(·) and dequantizer DQ(·), minimizing ∥W −DQ(Q(W))∥.

Uniform RTN (baseline). A B-bit symmetric uniform quantizer uses 2B evenly spaced levels with
scale s:

Wq = Q(W) = min
(
max

(
round(W/s),−2B−1

)
, 2B−1 − 1

)
, DQ(Wq) = Wq · s. (5)

Choosing s by max |W|/(2B−1 − 1) is outlier-sensitive; group-wise scaling mitigates this by
partitioning W and using per-group scales (Dettmers et al., 2023).

Goal. Design a non-uniform set of levels L = {l1, . . . , l2B} that better matches the empirical
log-scale structure of weights, thereby reducing distortion at fixed B. In our case, L is log-spaced
and applied selectively (Section 5.1); the algorithmic details follow in Section 4.

4 THE BENFORD-QUANT METHOD

Benford-Quant is a post-training, data-free quantization method designed to align the quantization
grid with the empirically observed logarithmic distribution of transformer weights. The method
consists of three core components: (1) a distributional prior based on Benford’s Law, (2) a group-wise
quantization algorithm that maps weights to a non-uniform, log-spaced grid, and (3) a selective
application strategy that targets only transformational layers.

Benford’s Law as a Distributional Prior. Benford’s Law (Benford, 1938) states that the probability
of a number having a first significant digit d ∈ {1, . . . , 9} is given by:

P (d) = log10

(
1 +

1

d

)
. (6)

This distribution arises from processes involving scale invariance and implies that values are dis-
tributed logarithmically across orders of magnitude. We leverage this principle as a strong prior for
the distribution of neural network weights, using it to inform the geometry of our quantization grid.

Log-Uniform Quantization Grid. To match the prior from Equation (6), we construct a non-
uniform set of 2B quantization levels, L, that are spaced logarithmically. For symmetric quantization
with B bits, we first generate the 2B−1 positive levels, L+, within the normalized range (0, 1]. These
levels are spaced evenly in the log domain, concentrating them near zero:

L+ =

{
exp(x) | x ∈

{
log(ϵ) + i · log(1.0)− log(ϵ)

2B−1 − 1

∣∣∣∣ i = 0, 1, . . . , 2B−1 − 1

}}
(7)

where ϵ is a small constant (e.g., 10−7) to avoid numerical instability. The full, symmetric grid
L is then constructed as the union of the positive levels and their negations, L = L+ ∪ (−L+).
This design inherently allocates more representational capacity to the more frequent low-magnitude
weights.
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The Quantization and Dequantization Procedure. The core procedure applies this non-uniform
grid to a weight tensor W in a group-wise fashion. The full process is detailed in Algorithm 1. For
each block of weights wg of size G, we first compute a scale sg = max(|wg|) to normalize the block
to [−1, 1]. Then, each normalized weight is mapped to the index of the closest level in our static grid
L.

Algorithm 1 The Benford-Quant Quantization Procedure

Require: Weight tensor W, bit-width B, group size G.
Ensure: Quantized indices Wq , scales S.

1: L ← GenerateLogUniformLevels(B) ▷ Pre-compute the 2B non-uniform levels in [−1, 1]
2: W′ ← reshape(W, (−1, G)) ▷ Reshape W into blocks of size G
3: Initialize empty tensors Wq and S for outputs.
4: for each block wg in W′ do
5: sg ← max(|wg|) ▷ Compute the block’s scale
6: ŵg ← wg/sg ▷ Normalize block to [−1, 1]
7: ▷ Find index of nearest level for all values in the block (vectorized)
8: ig ← argminj∈{1,..,2B} |ŵ

unsqueeze
g − Lj |

9: Append ig to Wq; Append sg to S
10: end for
11: return Wq,S

The dequantization process is a simple reversal. Given the integer indices Wq and the scales S, the
reconstructed weight tensor W̃ is obtained by first performing a lookup into the level grid and then
rescaling each block:

w̃g = L[ig] · sg (8)

where L[ig] denotes the element-wise lookup operation for the indices corresponding to block g. In
the appendix we present a practical example of the method (Figure 5)

Selective Quantization Strategy. Our empirical findings in Section 5.1 reveal that ‘LayerNorm‘
weights do not follow the logarithmic distribution assumed by our method. Applying a log-uniform
quantizer to their tightly clustered, near-constant distributions is theoretically and practically subop-
timal. We therefore adopt a selective quantization strategy: only ‘nn.Linear‘ layers are quantized.
Critical stability layers, such as ‘nn.LayerNorm‘ and token ‘nn.Embedding‘ layers, are maintained
in their native FP16 precision. This surgical approach preserves model stability with a negligible
memory overhead, as these layers constitute a tiny fraction of the total model parameters.

5 EXPERIMENTS AND RESULTS

Our experiments are designed to answer our core research questions. We evaluate on several
transformer-based model families: Gemma3, Qwen, Llama, OPT and Bloom (Team et al., 2024;
Bai et al., 2023; Grattafiori et al., 2024; Zhang et al., 2022; Workshop et al., 2022). All perplexity
(defined as 2H(p), where H(p) is the entropy of the model’s prediction) evaluations are conducted on
the test split of WikiText-2 (Merity et al., 2016) on a single computer equipped with an AMD Ryzen
Threadripper 7960X 24-Cores @ 5360MHz, 256 GB of DDR5 RAM and a NVIDIA H200 GPU.

5.1 RQ1: INVESTIGATING BENFORD’S LAW IN TRANSFORMERS

Setup. To establish the foundation for our method, we first analyze the distribution of the first
significant digit for every parameter tensor in our test models. We compare the observed distribution
against the theoretical Benford distribution using Mean Absolute Deviation (MAD) metric, defined
by Cerqueti & Lupi (2023) as

MAD =
1

9

9∑
i=1

|pi − bi|, (9)

where pi denotes the probability of digit i empirically observed, and bi the corresponding Benford-
expected probability.

5
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Figure 2: Comparison of Benford’s Law non-compliance across weight families for two models. (a)
BLOOM-3B shows consistently higher deviations, particularly in LayerNorm weights. (b) Gemma-
3-270M exhibits overall lower deviations, although LayerNorm remains the dominant source of
non-compliance. Lines denote the mean MAD per family, with markers indicating the median.
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Figure 3: Benford compliance across layer types. Comparison of digit distributions between two
models (Gemma-3-270M vs. BLOOM-3B). Attention and MLP layers exhibit closer adherence to
Benford’s law, while other layers diverge more strongly.

Findings. Our primary finding is a strong dichotomy based on layer functionality, as illustrated in
Figure 2. We consistently observe (Figure 3) that weights from transformational ‘nn.Linear‘ layers
(e.g., in attention and feed-forward blocks) closely follow Benford’s distribution. This provides strong
motivation for a logarithmically-spaced quantizer. In contrast, ‘nn.LayerNorm‘ weights systematically
violate the law, with their values clustering around a single learned scalar (e.g., 0.35). We hypothesize
these weights function not as transformations, but as learned damping factors to ensure network
stability. This key finding motivates our selective quantization strategy, where ‘LayerNorm‘ layers
are excluded from quantization.

5.2 ABLATION STUDY: VALIDATING THE LOGARITHMIC GRID (RQ2)

Setup. Having established a potential link to logarithmic distributions in RQ1, we now validate the
core design of Benford-Quant. We ask: is the Benford-inspired logarithmic spacing of quantization
levels essential, or would any non-uniform grid suffice? To answer this, we conduct an ablation study
on three transformer-based models comparing our proposed ‘log-uniform‘ grid against a simpler
‘linear non-uniform‘ baseline.

For this baseline, the positive quantization levels L+
linear are spaced linearly within the normalized

range (0, 1], defined as:
L+

linear = {k/N
+ | k ∈ {1, . . . , N+}} (10)

where N+ = 2B−1 is the number of positive levels. This creates a non-uniform grid where the
absolute spacing between levels is constant, in contrast to our logarithmic grid where it is not. All
other hyperparameters (4-bit, group size 128, selective quantization) are held constant between the
two runs.

Findings. The results in Table 1 demonstrate the superiority of the logarithmic spacing. The ‘log-
uniform’ grid yields a lower perplexity, confirming that allocating more precision to lower-magnitude

6
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Figure 4: Perplexity vs Parameters. Results for OPT and BLOOM families across bit-widths. Our
method (Benford) compared against reported GPTQ baselines. FP16 is shown as reference.

values—as predicted by Benford’s Law—can boost performance. This supports the central hypothesis
of our method. However, an exception is observed in the results for Llama2: the perplexity of the
non-uniform linear distribution was lower than that of the log-uniform distribution. A plausible
hypothesis to explain this situation is related to the quality of the data and/or the training process,
given the direct correlation between the compliance of the weights with Benford’s law and the model’s
generalization capability (Ott et al., 2025b).

Table 1: Ablation on level distributions for 4-bit quantization. Takeaway: The Benford-inspired
log-uniform schedule is competitive and often better than a simple non-uniform linear baseline,
although the best choice is mildly model-dependent (e.g., LLaMA2-7B).

Model Level Distribution Perplexity WikiText2 ↓
QWEN-7B-CHAT

Linear Non-Uniform 9.15
Log-Uniform (Ours) 9.12

LLAMA2-7B Linear Non-Uniform 5.71
Log-Uniform (Ours) 5.76

GEMMA3-1B-IT
Linear Non-Uniform 32.37
Log-Uniform (Ours) 31.95

OPT-66B Linear Non-Uniform 9.79
Log-Uniform (Ours) 9.76

5.3 RQ3: COMPARISON WITH BASELINES

Setup. Finally, with our method’s premise and design validated, we compare the full Benford-Quant
algorithm (using selective quantization and log-uniform levels) against a strong uniform Round-to-
Nearest (RTN) baseline. We evaluate both methods in 4-bit and 3-bit settings across all five model
families.

Results. The results are summarized in Table 2. On the smaller Gemma-270M model, Benford-
Quant provides a substantial improvement, reducing 4-bit perplexity from 38.91 (uniform) to 32.28.
This confirms that for models with more “natural” weight distributions, our logarithmic grid is
superior. On medium/large size models BENQ remains competitive but is sometimes surpassed by
uniform RTN baseline. However, when analysing stability across bit quantities, our method has
proven to be a good replacement for uniform RTN. We discuss this nuance in Section 6.

Takeaway. Across small language models (SLMs), Benford-Quant consistently improves perplexity
over uniform RTN at 3–4 bits (e.g., Gemma-3-270M: 32.28 vs. 39.49 at 4b; Gemma-3-1B-it: 31.93
vs. 32.25 at 4b), supporting our hypothesis that SLM weight distributions benefit from a logarithmic
allocation of precision. On mid-sized LLMs (e.g., OPT-1.3B, BLOOM-1b1/1b7), Benford-Quant
remains competitive but does not universally dominate uniform RTN. We attribute this difference to a
distributional shift in larger models (Section 5.1) and to implementation-level packing constraints at
3b (physically stored as 4b). We provide detailed per-layer analyses and ablations in the Appendix.
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Table 2: Perplexity (WikiText-2) at low bit-widths. We report our results for Uniform-RTN and
Benford-Quant, both with group size 8, alongside baselines from the literature: GPTQ (Frantar
et al., 2022), SpQR and Qwen numbers (Jin et al., 2024), AFPQ (Zhang et al., 2023), AWQ (Lin
et al., 2024), and GANQ (Zhao & Yuan, 2025). Lower is better. A dagger (†) denotes divergence; “–”
= not available.

Method Bits
Small Medium Large

GEMMA-3
270M OPT-1.3B OPT-2.7B QWEN-14B

CHAT
OPT-30B OPT-66B QWEN-72B

CHAT

RTN 3 755.19 17.76 15.68 † 10.89 12.08 †

4 38.91 15.30 13.13 7.50 9.99 9.68 17.22

BENQ 3 70.87 23.51 19.92 10.76 10.63 11.40 9.77
4 32.28 15.67 13.14 7.90 9.99 9.76 7.02

AFPQ 4 – – – – – – –

AWQ 3 – 16.32 13.58 – 9.77 – –

GPTQ 3 – – 16.88 9.68 10.27 14.16 –
4 – 15.47 12.87 7.35 9.63 9.55 6.37

GANQ 4 – 14.94 12.33 – – – –

SpQR 3 – – – 7.31 – – –
4 – – – 7.07 – – 6.23

Our Uniform-RTN and Benford-Quant results use the same evaluation protocol but were run on a single H200.
Note the strong stability of Benford-Quant at low bits, while Uniform-RTN diverges or underperforms.

Table 3: Zero-shot LAMBADA accuracy for representative models. Higher is better. Values for
GPTQ are taken from the original papers (reported on A100), while Uniform-RTN and Benford-Quant
are from our runs on H200. “–” = not available.

Model Model Accuracy

QWEN-7B QWEN3-14B OPT-1.3B OPT-2.7B OPT-30B

Uniform-RTN (4bits) 38.75 38.01 29.20 31.59 36.67
Benford-Quant (4bits) 32.56 35.52 29.05 32.00 36.77

FP16 (16bits) 38.36 38.36 – – –
GPTQ (4bits,reported) – – 56.45 62.97 69.12

Reported GPTQ numbers from Frantar et al. (2022). Our Uniform-RTN and Benford-Quant results use the same
evaluation protocol.

6 DISCUSSION AND LIMITATIONS

The performance difference between SLMs and LLMs is a key finding. On SLMs such as Gemma-
270M, Benford-Quant substantially improves perplexity, indicating that their weight distributions
strongly benefit from a logarithmic grid. However, on larger models, the gains diminish and the
uniform baseline occasionally outperforms. We hypothesize that this is due to over-parameterization:
as models grow, their weight distributions flatten and diverge from the log-law structure, reducing the
benefit of our method. An alternative hypothesis would be related to the training and quality of the
data, as already pointed out by Ott et al. (2025a). This observation motivates further research into
hybrid quantization strategies that adapt grid spacing dynamically according to empirical distributions.

Our method is currently data-free. While this is an advantage in terms of simplicity and generality, it
also means we do not exploit activation statistics during calibration. Activation-aware quantization
methods such as AWQ (Lin et al., 2024) or SmoothQuant (Xiao et al., 2023) could be complementary
to our non-uniform weight quantization grid. Integrating Benford-Quant with these techniques is a
promising avenue for improving robustness in LLM-scale deployments.

7 CONCLUSION

We introduced BENQ, a non-uniform weight quantizer whose codebook is derived from Benford’s
law. Empirically, the Benford prior fits transformational layers (attention/MLP linears) but not

8
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Table 4: Perplexity (C4) (lower is better). Our results (Uniform-RTN, Benford-Quant) are
compared against reported baselines: GPTQ and SpQR from Jin et al. (2024), AWQ from Zhang
et al. (2023), and GANQ from Zhao & Yuan (2025). A dagger ( † ) denotes divergence; “—” = not
available.

Model Bits Uniform-RTN Benford-Quant Baselines (reported)

(ours) GPTQ AWQ/SpQR GANQ

LLAMA-2 7B 4 11.15 11.13 11.45 11.05 (AWQ) 11.25

QWEN-14B-CHAT
3 † 22.60 14.59 10.92 (SpQR) —
4 13.09 14.15 10.99 10.64 (SpQR) —

Values under “Baselines (reported)” are taken directly from the cited papers. Our runs use a single NVIDIA
H200; the reported baselines typically use a single A100.

Table 5: Runtime for full PTQ on evaluated models. Our times are on a single NVIDIA H200
(weight-only PTQ; W4 shown). GPTQ times (displayed in parenthesis) are as reported by the
original paper on a single NVIDIA A100. This highlights the order-of-magnitude efficiency gap,
even when CPU quantization was needed. * = Quantized on CPU due to lack of GPU memory.

Method GEMMA-3-270M GEMMA-3-1B-IT QWEN-7B QWEN3-14B QWEN-7B-CHAT QWEN-14B-CHAT
BENQ 0.22s 0.34s 0.92s 1.29s 1.45s 2.37s
RTN 0.11s 0.15s 0.60s 0.70s 0.87s 1.23s

BLOOM-560M BLOOM-1.1B BLOOM-1.7B BLOOM-3B BLOOM-7.1B QWEN-72B-CHAT
BENQ 0.25s 0.29s 0.29s 0.51s 0.74s 11,36m*
RTN 0.11s 0.13s 0.15s (2.9m) 0.21s (5.2m) 0.38s (10m) 4,77m*

OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B OPT-30B OPT-66B
BENQ 0.45s 0.29s 0.45s 0.92s 2.66s 7,91m*
RTN 0.22s 0.17s 0.25s 0.55s 1.57s (44.9m) 3,79m* (1.6h)

normalization or embedding layers, motivating a selective, layer-aware application that preserves
accuracy while retaining efficiency.

Across scales, BENQ is a strong drop-in alternative to uniform RTN. On small models (Gemma-
3 270M, OPT-1.3B), it consistently improves 3–4 bit perplexity over Uniform-RTN. On medium
models (OPT-2.7B, Qwen-14B-Chat), BENQ is competitive with GPTQ on Qwen-14B. On large mod-
els (OPT-30B/66B, Qwen-72B-Chat) BENQ performs very strongly— near GPTQ at 4 bits. These
trends align with our hypothesis: a logarithmic, weight-prior-aware grid reduces error where the mass
of weights is concentrated at small magnitudes, complementing activation-aware preconditioning.

Because BENQ only replaces the level-generation step, it is orthogonal to methods that operate in
different scopes (e.g., SmoothQuant’s activation smoothing; AWQ’s activation-driven scaling). This
makes hybridization straightforward: AWQ/SmoothQuant can precondition activations, while BENQ
supplies a data-free, non-uniform codebook for the weights.

REPRODUCIBILITY STATEMENT

The code related to this work was submitted alongside this paper in the Supplementary Materials
field. We also make available, in the Appendix, a description of the technology stack we used.
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A APPENDIX

LLM USAGE

We used large language models as assistive tools for proofreading the manuscript and for code
documentation or refactoring. All suggestions were reviewed and edited by the authors, who take full
responsibility for the final content.

A.1 QUANTIZATION/DEQUANTIZATION EXAMPLE

Figure 5 presents a numerical example of BENQ.

Group 
Division

Calculate
Scales

Generate Log-Uniform
Quantization Levels

Normalize

Quantize

Dequantize

^

^

Quantization Error

Figure 5: A numerical example of BENQ in a 2-bit scenario. Our main contribution resides on the
log-uniform quantization levels.

A.2 EXPERIMENT/IMPLEMENTATION DETAILS

This section provides additional information on how we conducted our experiments and implementa-
tion.

A.2.1 TECHNOLOGY STACK

Our implementation used the following libraries/frameworks with the following versions: PyTorch
2.7.0; Numpy 2.1.3; Transformers 4.56.1; Datasets 4.1.0; Accelerate 1.10.1; Evaluate 0.4.5; Scikit
Learn 1.7.2; Scipy 1.16.2; Matplotlib 3.10.6; and Seaborn 0.13.2. The operating system of the
machine was Ubuntu 22.04.5 LTS and CUDA drivers were at version 13.0.
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A.2.2 PERPLEXITY EVALUATION

To ensure a fair comparison of results, we calculate perplexity the same as Frantar et al. (2022)
(GPTQ authors), which in turn is the method defined by Radford et al. (2019). It consists of the
following consecutive steps: 1. Concatenate the validation dataset with two linebreaks as separators;
2. Encode it with the model’s tokenizer; 3. Split it into non-overlapping segments of size 2048; 4.
Feed them to the model and collect the log-probabilities of each next token; and 5. finally report
perplexity as their exponentiated average.

A.3 ADDITIONAL RESULTS

Additional Analysis by Layer Families To complement the main results, we analyzed the adher-
ence of different layer families to Benford’s Law across several models. Figures 6 and 7 summarize
family-level deviations using the MAD score, as well as digit-wise signed deviations.

A consistent pattern emerges across models: LayerNorm layers are systematically the worst offend-
ers, showing large deviations from Benford’s expected distribution, while MLP intermediate layers
tend to be the most Benford-like. Embeddings and bias terms exhibit intermediate behavior. These
findings suggest that quantization strategies could benefit from selectively adapting to the family of
the layer (e.g., using more conservative quantization for LayerNorm and embeddings, while applying
more aggressive compression to MLP layers).

This family-level perspective highlights that distributional properties of weights are not uniform
across the architecture, opening space for hybrid quantization heuristics that combine statistical laws
with structural priors.

A.4 PER-FAMILY BENFORD ADHERENCE (MAD)
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Figure 6: Family-level Benford adherence (MAD; lower is better). Bars show mean MAD per
family; black dots trace the median. Normalization families (LayerNorm) consistently show the
largest deviation from Benford; attention/MLP families show smaller MAD.

A.5 LAYER-WISE BENFORD ADHERENCE ANALYSIS

To complement the family-level analysis presented in the main paper, we report a layer-wise view of
Benford adherence, ordered by the Mean Absolute Deviation (MAD) score of each layer. Figures 8–
14 show, for several model sizes and families (OPT, Gemma, BLOOM), how much each individual
layer deviates from Benford’s Law.

A consistent pattern emerges: only a small fraction of layers exhibit strong violations of Benford’s
Law, while the majority remain relatively well aligned. This results in a characteristic “long-tail”
distribution: a short plateau of high-MAD layers (worst offenders), followed by a steep drop and then
a flat region with near-zero deviation. Importantly, the worst cases are disproportionately large in
magnitude compared to typical layers, often dominating the overall deviation score.

Practical implications. These results suggest that most of the quantization difficulties can be
attributed to a handful of layers. From an engineering perspective, this means that selective strategies—
such as allocating higher precision, applying per-layer calibration, or excluding a small subset of layers
from aggressive quantization—may achieve most of the benefits of fine-grained quantization, without
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Figure 7: Digit-wise signed deviation heatmaps. Models BLOOM 1.7B, BLOOM 1.1B and
Gemma 3 270M respectively. The plots reveal systematic over- and under-representation of leading
digits across families. LayerNorm layers deviate the most, while MLP layers follow Benford closely.

increasing the cost across the entire model. Moreover, the elbow-shape visible in the distributions
provides a natural thresholding criterion (either top-k layers or MAD > τ ) for automated layer
selection.
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Figure 8: Layer-wise Benford MAD scores for OPT-1.3B. A small number of layers dominate the
deviation.
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Figure 9: Layer-wise Benford MAD scores for Gemma-3 270M. Similar elbow-shaped pattern
emerges, with a few high-MAD layers.
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Figure 10: Layer-wise Benford MAD scores for Gemma-3 1B-it. Stronger deviations appear
concentrated in a few layers.
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Figure 11: Layer-wise Benford MAD scores for BLOOM-560M. Most layers adhere well, with a few
clear outliers.
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Figure 12: Layer-wise Benford MAD scores for BLOOM-3B. The elbow pattern is even sharper.
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Figure 13: Layer-wise Benford MAD scores for BLOOM-1.7B. Again, a minority of layers account
for most of the deviation.
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Figure 14: Layer-wise Benford MAD scores for BLOOM-1.1B. Consistent long-tail structure with
few high-MAD outliers.

A.6 ADDITIONAL RESULTS
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Table 6: LLaMA-2-7B (HF): extra quantization results (appendix). Perplexities are on WikiText-2
(PPL) and C4 (PPL-C4). A dash (–) indicates not reported. Group size (G).

Model Method Bits G PPL PPL-C4 Quant. Time (s)

Llama-2-7b-hf benford-quant 4 8 5.7583 11.1317 1.477
Llama-2-7b-hf benford-quant 4 64 5.8754 11.5087 1.409
Llama-2-7b-hf benford-quant 4 128 5.9186 11.6277 1.387
Llama-2-7b-hf benford-quant 4 256 6.7802 14.6787 1.317

Llama-2-7b-hf uniform-rtn 4 8 5.7550 11.1515 0.777
Llama-2-7b-hf uniform-rtn 4 64 5.8871 11.5447 0.756
Llama-2-7b-hf uniform-rtn 4 128 5.9465 11.7606 0.731
Llama-2-7b-hf uniform-rtn 4 256 6.0631 12.1334 0.717

Table 7: Qwen family: extra quantization results (appendix). Perplexities are on WikiText-2 (PPL)
and C4 (PPL-C4); LAMBADA is accuracy. A dash (–) indicates not reported. Very large PPL values
denote divergence.

Model Method Bits G PPL PPL-C4 LAMBADA Quant. Time (s)

Qwen-14B-Chat
Qwen-14B-Chat fp16 0 – 7.1678 12.3494 – –
Qwen-14B-Chat benford-quant 2 – 28.6590 80.3259 – 2.393
Qwen-14B-Chat benford-quant 3 – 10.7628 22.6016 – 2.374
Qwen-14B-Chat benford-quant 4 – 7.9022 14.1532 – 2.367
Qwen-14B-Chat uniform-rtn 2 – 8.6069e+08 2.8897e+08 – 1.263
Qwen-14B-Chat uniform-rtn 3 – 1.2513e+07 5.0969e+06 – 1.218
Qwen-14B-Chat uniform-rtn 4 – 7.4953 13.0932 – 1.232

Qwen-72B-Chat
Qwen-72B-Chat benford-quant 2 – 61.5665 – – 629.195
Qwen-72B-Chat benford-quant 3 – 9.7680 – – 636.147
Qwen-72B-Chat benford-quant 4 – 7.0215 – – 681.663
Qwen-72B-Chat uniform-rtn 2 – 1.0691e+16 – – 280.460
Qwen-72B-Chat uniform-rtn 3 – 4.0689e+07 – – 272.021
Qwen-72B-Chat uniform-rtn 4 – 17.2168 – – 286.651

Qwen-7B
Qwen-7B fp16 0 – 7.7116 – 0.3837 –
Qwen-7B benford-quant 2 – 3029.3801 – 0.00019 1.142
Qwen-7B benford-quant 3 – 20.1101 – 0.22763 1.130
Qwen-7B benford-quant 4 – 9.1908 – 0.32564 0.924
Qwen-7B uniform-rtn 2 – 1.2695e+09 – 0.00000 0.435
Qwen-7B uniform-rtn 3 – 8.0331e+07 – 0.01669 0.474
Qwen-7B uniform-rtn 4 – 8.2733 – 0.38754 0.602

Qwen-7B-Chat
Qwen-7B-Chat fp16 0 – 8.8441 17.1559 – –
Qwen-7B-Chat benford-quant 2 – 382.5186 1248.8378 – 1.547
Qwen-7B-Chat benford-quant 3 – 16.6403 43.7811 – 1.450
Qwen-7B-Chat benford-quant 4 – 9.1198 18.1345 – 1.451
Qwen-7B-Chat uniform-rtn 2 – 1.2658e+09 1.6446e+08 – 0.857
Qwen-7B-Chat uniform-rtn 3 – 8.6900e+07 1.5832e+07 – 0.699
Qwen-7B-Chat uniform-rtn 4 – 9.2380 18.0762 – 0.875

Qwen3-14B
Qwen3-14B fp16 0 – 9.1166 – 0.38366 –
Qwen3-14B benford-quant 2 – 48.6012 – 0.05492 1.469
Qwen3-14B benford-quant 3 – 16.2297 – 0.20357 1.458
Qwen3-14B benford-quant 4 – 10.3096 – 0.35319 1.292
Qwen3-14B uniform-rtn 2 – – – 0.00000 0.763
Qwen3-14B uniform-rtn 3 – 2.7310e+08 – 0.00000 0.706
Qwen3-14B uniform-rtn 4 – 9.2654 – 0.38017 0.704
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Table 8: BLOOM family: extra quantization results (appendix). Perplexities are on WikiText-2 (PPL).
LAMBADA is accuracy (not reported here). “G” (group size); if absent we show “–”.

Model Method Bits G PPL PPL-C4 LAMBADA Quant. Time (s)

bloom-560m
bloom-560m benford-quant 2 – 9.2628e+20 – – 0.224
bloom-560m benford-quant 3 – 7.7121e+14 – – 0.472
bloom-560m benford-quant 4 – 44689.2422 – – 0.249
bloom-560m none 0 – 23.3777 – – –
bloom-560m uniform-rtn 2 – 2.0271e+09 – – 0.128
bloom-560m uniform-rtn 3 – 690.2278 – – 0.116
bloom-560m uniform-rtn 4 – 306.0358 – – 0.113

bloom-1b1
bloom-1b1 benford-quant 2 – 1619.4325 – – 0.297
bloom-1b1 benford-quant 3 – 48.4888 – – 0.246
bloom-1b1 benford-quant 4 – 23.1349 – – 0.286
bloom-1b1 none 0 – 18.4693 – – –
bloom-1b1 uniform-rtn 2 – 52705.0742 – – 0.134
bloom-1b1 uniform-rtn 3 – 34.0214 – – 0.157
bloom-1b1 uniform-rtn 4 – 20.3793 – – 0.133

bloom-1b7
bloom-1b7 benford-quant 2 – 8.1138e+06 – – 0.294
bloom-1b7 benford-quant 3 – 652.8582 – – 0.338
bloom-1b7 benford-quant 4 – 36.9484 – – 0.293
bloom-1b7 none 0 – 16.0000 – – –
bloom-1b7 uniform-rtn 2 – 150178.5938 – – 0.197
bloom-1b7 uniform-rtn 3 – 32.2100 – – 0.153
bloom-1b7 uniform-rtn 4 – 18.6635 – – 0.151

bloom-3b
bloom-3b benford-quant 2 – 17717.9648 – – 0.437
bloom-3b benford-quant 3 – 86.3477 – – 1.055
bloom-3b benford-quant 4 – 22.2959 – – 0.515
bloom-3b uniform-rtn 2 – 941.3247 – – 0.219
bloom-3b uniform-rtn 3 – 22.2131 – – 6.227
bloom-3b uniform-rtn 4 – 16.0303 – – 0.209

bloom-7b1
bloom-7b1 benford-quant 2 – 113.3383 – – 0.718
bloom-7b1 benford-quant 3 – 22.2725 – – 0.728
bloom-7b1 benford-quant 4 – 13.8043 – – 0.741
bloom-7b1 uniform-rtn 2 – 231.0221 – – 0.406
bloom-7b1 uniform-rtn 3 – 16.7797 – – 0.377
bloom-7b1 uniform-rtn 4 – 12.6477 – – 0.381
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