
How effective is TabStructNet in capturing the structure of a
table-image into an XML? : A reproducibility report

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

2

Scope of Reproducibility3

In this submission, findings when attempting to reproduce the results from the EECV 2020 article (3) by using the4

corresponding code-repository github.com/sachinraja13/TabStructNet (made available by the authors of (3), i.e., by Raja5

et al.) are reported. Each challenge encountered, along with the corresponding solution – which was either discovered6

or was learnt from the first author of (3) himself – is described step-by-step. As a consequence, the intermediate files7

that one would manage to (and one needs to) generate at those steps, along with their inter-relationships with the rest8

of the code-repository have also been detailed. A few recommendations are put forward in process which might help9

the authors to make the repository more consistent with the paper, user-friendly, and as a consequence, to make the10

experiments more easily reproducible. In this submission, a few minor deviations of the model architecture from what11

is described in (3) to what is observed in the TabStructNet code repository are also reported. It is hoped that this report12

will make it easier for everyone to use and/or rebuild the described TabStructNet model.13

Methodology14

Evaluated the model proposed by Raja et al. (3), using the code repository they made available at TabStructNet on own15

LATEX-generated table-images.16

Results17

The TabStructNet model was found to be quite good at achieving precise detection of all of the cells present in a table.18

The evaluation tests reported herein were done on a few table-images generated by the author of this paper himself,19

which therefore, the TabStructNet pretrained model has never seen.20

What was easy21

Reading and understanding both the paper and the code implementation was easy. Both the writing and the scripting22

by the authors of (3) were clear and concise, which made it easier to find the missing blocks, a few inconsistencies23

between the paper and the implementation.24

What was difficult25

Some of the codeblocks, particularly JSON and XML generation modules, were missing from the code-repository.26

Also, the code repository structure also had to be modified a little for the predictions to work. Particularly, ‘TabStruct-27

Net/mrcnn’ folder needs to be moved to ‘TabStructNet/samples/tab/.’ JSON and XML file generation also necessitates28

explicit movement of the intermediate files by the user currently, going by the advice from the first author of (3).29

Communication with original authors30

Upon hitting a roadblock in running the scripts in the provided repository on own test-images (detailed in this report,31

primarily due to missing JSON and XML generation modules), authors of (3) were contracted. While there was32

some delay in getting the initial response (20 days), the first author of (3) addressed the stated queries by email quite33

professionally, providing the missing modules.34

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

Structure
recognition

network

Cell
detection
network

Structure
recognition

networkInput
Image

Cell
detection
network

Post-
Processing

JSON
generating

module

Figure 1: Table-image to XML-based table generation process pipeline.

1 Introduction35

Tables are effective at summarising and communicating a complex information through only the precise and necessary36

data – getting rid of the otherwise grammar- and language-induced verbosity. They are, thus, ubiquitous; especially in37

the finance and science sectors, e.g., we find them in invoices, tax- and bank-statements, medical records, equipment-38

and facility-related logs. Owing to the multitudes of possibilities that exist for a table template in terms of various39

foreground and background colours, font sizes and font types, presence and absence of various vertical and horizontal40

line types, widths and designs, possible existence of multicolumn or multiline cells, i. e., vertical and horizontal cell41

merges, various levels of column- and row-spacings, different vertical and horizontal text alignments possible. Machine-42

understanding and regeneration of the scanned hand-written and printed tables is where arguably lies the core and a43

battlefield for the multi-million document analysis industry. This is not only because the table information extraction is44

challenging, but also because the task is highly demanding in terms of the accuracy and precision requirements, thanks45

to the criticality of the data that the tables typically represent . Importance of this task is quite evident from the fact46

that at least one special session on this particular topic is held in almost every International Conference on Document47

Analysis and Recognition (ICDAR). Two separate table information extraction challenges have been organized as part48

of the ICDAR 2021 as well.49

1.1 Table-image to XML generation pipeline from (3), and the deviations discovered50

The authors of (3) propose an end-to-end system to recognise the structure of a table present in any given image, to51

ultimately generate an XML containing that predicted strucutre in terms of the bounding boxes, spanning information,52

and the cell contents. A redrawn version of the XML table generation pipeline is presented in Figure 1. The authors53

describe the process of generating XML from a table image by splitting it into three distinct components, namely the54

‘Cell detection network’, ‘Structure recognition network’ and the ‘Post-processing’ module that generates the XML55

output (3).56

Deviation 1: The crucial ‘Post-processing’ XML-generating module was missing from the TabStructNet.57

Looking at the TabStructNet repository, one can see that it did not feature the crucial ‘Post-processing’ module initially.58

Deviation 2: The necessary JSON generation module missing from the TabStructNet repository, also not59

described in (3).60

Evaluating the TabStructNet model on any test image necessitates that a JSON file with mock labels be provided as an61

input to the model, generation block of which is not included in the repository.62

As we would see later in Section 2, failure to provide this JSON file results into an early termination of the program63

with an error. The first author of (3) kindly responded by email and provided the zipped directory structures for both the64

script-modules, along with the detailed instructions. However, the two components are still not part of the repository,65

which is currently the biggest limitation of the provided code-base.66

It is an easily avoidable, yet a severe stumbling block of the repository invariably leading user to an error message.67

Because this problem – while a major one leading one to an early script termination – can be easily avoided, the68

reproducibility of the claims and the results presented in (3) cannot be challenged on the basis of this issue alone. Only69

upon taking care of the necessary dependencies manually, one can make any strong claims regarding the reproducibility70

and capability of the TabStructNet presented in (3). In order to make sure that the model works on any real-life test71

data, i. e., there is no hack (e. g., remembering and recording the instances labels provided in the repository as part of72

the h5 file with further obfuscation), one needs to test the performance of the model on unseen test images. The test73

2

https://github.com/sachinraja13/TabStructNet/blob/master/mrcnn/model.py
https://github.com/sachinraja13/TabStructNet/blob/master/mrcnn/model.py
https://github.com/sachinraja13/TabStructNet/blob/master/mrcnn/model.py

+ Conv2D
(3x3)

Conv2D
(1x1)

P3BU

Conv2D
(1x1)

MaxP2D
(2x2)

P3TD

Conv2D
(1x1)

UpSamp2D
(2x2)

P2BU

Conv2D
(1x1)

P4BU

Conv2D
(1x1)

MaxP2D
(2x2)

+

P4TD

Conv2D
(1x1)

UpSamp2D
(2x2)

+

P2TDUpSamp2D
(2x2)

Conv2D
(3x3)

Conv2D
(3x3)

Conv2D
(3x3)

C2

C3

C4

C5
Conv2D
(1x1)

P5BU
MaxP2D
(2x2)

+

P5TD

P3
C2

C4

Conv2D
(1x1)

+

P3TD

Conv2D
(1x1)

UpSamp2D
(2x2)

+

P4TD

Conv2D
(1x1)

UpSamp2D
(2x2)P5TD

Conv2D
(1x1)

+

P2TDUpSamp2D
(2x2)

Conv2D
(3x3)

Conv2D
(3x3)

Conv2D
(3x3)

Conv2D
(3x3)

C5

P5C3 P2 P4

P3 P5P2 P4

(a)

(b)

+

+

+
+

(c)C2

C3

C5

C4

P3

P5

P2

P4

No
MaxP2D
here

No
UpSamp2D

here

Figure 2: (a) The Feature pyramid network (FPN) from (2, 1) as implemented in the Matterport’s Mask_RCNN
repository, modifying which the FPN present in TabStructNet is built. We note that the computational graphs for
P2, P3 and P4 are similar. While the tensor placeholders P{N}TD do not even exist in Matterport’s Mask_RCNN,
these have been marked in gray above at equivalent places, to help simplify the comparison between these two FPN
architectures.
(b) The FPN from TabStructNet (3) that includes both the ‘Bottom Up’ and ‘Top Down’ pathways. Notice that, while
P3 and P4 computation graphs are similar (i. e., a summation of 3 inputs, followed by a 2-d convolution), P2 and P5
computation graphs are both different, featuring a summation operation over only two inputs. This, of course, is not a
criticism of the architecture. We only note the perceived contradictions with respect to what the Figure 5 from (3) leads
one to believe. (c) Redrawn Figure 5 from (3) for an easy comparison.

images could come from private resources that Raja et al. have no access to. We should ideally generate these ourselves74

for model testing, so that we are even more sure that the model is presented with an image it has never seen.75

Deviation 3: Feature pyramid network (FPN) implementation is different than what it appears to be from76

Figure 5 of (3).77

The key difference between the FPN from the Matterport Mask-RNN and that from the TabStructNet pretrained model is78

the newly introduced bottom-up pathway in the FPN of TabStructNet. Notice from Figure 2(b) that the graph structures79

in the top-down and bottom-up pathways are different for the {C2, C3, C4, C5} to {P2, P3, P4, P5} computations.80

Specifically, for N = {3, 4}, P{N} tensors are results of a 2-d convolution operation over a summation of three81

tensors, Conv2D(C{N}), P{N}TD and P{N}BU . However, for N = {2, 5}, P{N} tensors are results of a 2-d82

convolution operation over a summation of only two tensors each. Formally,83

P2 = Conv2D(Conv2D(C2)(:= P2BU) + P2TD),

P3 = Conv2D(Conv2D(C3) + P3TD + P3BU),

P4 = Conv2D(Conv2D(C4) + P4TD + P4BU),

P5 = Conv2D(Conv2D(C5)(:= P5TD) + P5BU),

where, P2BU = Conv2D(C2) , P5TD = Conv2D(C5),

P3BU =MaxPool2D(Conv2D(P2BU)) , P4TD = UpSample2D(P5TD),

P4BU =MaxPool2D(Conv2D(P3BU)) , P3TD = UpSample2D(P4TD),

P5BU =MaxPool2D(Conv2D(P4BU)) , P2TD = UpSample2D(P3TD).

The inconsistency reported here is merely a result of a somewhat incorrect illustration describing a TabStructNet84

component. This in itself does not pose a serious concern or suspicion in terms of reproducibility of the model, or its85

effectiveness. The correction is presented for the sake of completeness, and as a quick caveat in the interest of those86

looking to rebuild the model from scratch.87

3

https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py
https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py
https://github.com/sachinraja13/TabStructNet/blob/master/mrcnn/model.py
https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py
https://github.com/sachinraja13/TabStructNet/blob/master/mrcnn/model.py

2 Setting up to evaluate TabStructNet: The challenges and the solutions88

2.1 Make sure that the mrcnn package is NOT installed89

If one has some mrcnn package preinstalled in the python working environment, running ‘samples/tabnet/tabnet.py’90

would instantiate the installed mrcnn module components and not the custom mrcnn modules provided in the TabStruct-91

Net repository. While one is still able to load the model and the model weights, the script ‘tabnet.py’ tries to access92

r[“row_adj”] where r is the model detect output. Because the default mrcnn package as part of the Python Packaging93

Authority (PyPA) does not return detections that featuring “row_adj” and “col_adj” as keys, the evaluation would94

terminate with a KeyError.95

Running TAB e v a l u a t i o n on 1 images .96

Traceback (most r e c e n t c a l l l a s t) :97

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 624 , in <module >98

l i m i t = i n t (a r g s . l i m i t))99

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 394 , in e v a l u a t e _ t a b n e t100

row_adj = r [" row_adj "]101

KeyError : ' row_adj '102

2.2 Make sure to generate a JSON file at ‘/trained_model/tab/annotations/’103

If you do not provide a JSON file, you run into the following error104

l o a d i n g a n n o t a t i o n s i n t o memory . . .105

Traceback (most r e c e n t c a l l l a s t) :106

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 575 , in <module >107

r e t u r n _ t a b =True ,108

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 101 , in l o a d _ t a b109

d a t a s e t _ d i r , s u b s e t , y e a r))110

F i l e " / home / < username >/ anaconda2 / envs / t f 1 / l i b / py thon3 . 7 / s i t e −p a c k a g e s /111

p y c o c o t o o l s / coco . py " , l i n e 84 , in _ _ i n i t _ _112

wi th open (a n n o t a t i o n _ f i l e , ' r ') a s f :113

F i l e N o t F o u n d E r r o r : [Er rno 2] No such f i l e o r d i r e c t o r y : ' t r a i n e d _ m o d e l114

/ t a b / a n n o t a t i o n s / i n s t a n c e s _ v a l 2 0 1 4 . j son '115

Step-by-step process for JSON generation is detailed at tableimg_to_xml repository, as learnt from the first author of116

(3).117

2.3 Memory issues118

With tensorflow-gpu on a laptop with Nvidia 1050 TI 4GB, I kept running into memory allocation issue, with no119

output. CPU-based script run generated jpg results output. Reducing hyperparameters, e. g., reducing ‘DETEC-120

TION_MAX_INSTANCES’ seems to help.121

2.4 The current script leads to ‘TypeError’, minor fix necessary122

With a CPU-based run, while one does manage to get the jpg result with the detected cells (cf. Figure 3), one gets a123

TypeError.124

Traceback (most r e c e n t c a l l l a s t) :125

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 592 , in <module >126

l i m i t = i n t (a r g s . l i m i t))127

F i l e " samples / t a b n e t / t a b n e t . py " , l i n e 404 , in e v a l u a t e _ t a b n e t128

t a b _ r e s u l t s = t a b . loadRes (r e s u l t s)129

F i l e " / home / < use r > / anaconda2 / envs / t f 1 / l i b / py thon3 . 7 / s i t e −p a c k a g e s /130

p y c o c o t o o l s / coco . py " , l i n e 325 , in l oadRes131

anns ImgIds = [ann [' image_id '] f o r ann in anns]132

F i l e " / home / < use r > / anaconda2 / envs / t f 1 / l i b / py thon3 . 7 / s i t e −p a c k a g e s /133

p y c o c o t o o l s / coco . py " , l i n e 325 , in < l i s t c o m p >134

anns ImgIds = [ann [' image_id '] f o r ann in anns]135

TypeEr ro r : l i s t i n d i c e s must be i n t e g e r s o r s l i c e s , n o t s t r136

Changing ‘tab_results = tab.loadRes(results)’ to ‘tab_results = tab.loadRes(results[0])’ fixes the problem of running into137

the TypeError above, and of the consequent early termination of the program.138

4

https://github.com/dikuiiq/tableimg_to_xml

(a) Table 1 (b) Table 1 predictions

(c) Table 2 (d) Table 2 predictions

Figure 3: Table images provided as the test inputs to the model, and the corresponding outputs. The input images were
zero-padded to approximately 8-times their original size going by the default configuration of the model. The white
spaces from the images in the second column above are cropped out to make the output image look the same size as the
input for an easy comparison.

2.5 XML generation module139

Step-by-step process for JSON generation is detailed at tableimg_to_xml repository, as learnt from the first author of140

(3).141

3 Results142

For the test images provided as an input, the outputs were obtained as shown in Figure 3. We notice that the table cells143

have all been mostly correctly identified.144

3.1 Image output145

We also note that, there is likely a fix necessary in the pre-processing module, since both the images have been observed146

to expand to a 1600x1600 pixel square, with zero padding. The two input image sizes were 772x422 pixels and 407x560147

pixels. While the default ‘IMAGE_RESIZE_MODE’ is ‘square’, the config.py clearly states the following:148

In t h i s mode , images a r e s c a l e d up such t h a t t h e149

s m a l l s i d e i s = IMAGE_MIN_DIM , b u t e n s u r i n g t h a t t h e150

s c a l i n g doesn ' t make t h e long s i d e > IMAGE_MAX_DIM.151

Interestingly, as per the config file, IMAGE_MIN_DIM = 800 and IMAGE_MAX_DIM = 1024, both less than 1600,152

contrary to what is said above. Unnecessarily high dimensions of the input image make the predictions memory153

intensive, i. e., computationally expensive.154

5

https://github.com/dikuiiq/tableimg_to_xml

3.2 TXT output155

There is also a text output of the following form.156

t a b l e c e l l 0 .9993474 682 370 771 416157

t a b l e c e l l 0 .9990779 334 369 406 416158

t a b l e c e l l 0 .99901736 0 74 159 139159

t a b l e c e l l 0 .99894994 543 369 607 416160

t a b l e c e l l 0 .998898 258 370 335 414161

3.3 XML output162

The xml outputs obtained were of the following form.163

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>164

< p r e d i c t i o n >165

< f o l d e r > images < / f o l d e r >166

< f i l e n a m e >input_images_SewaDemoTable < / f i l e n a m e >167

< p a t h > g t _ w i t h o u t _ b o x / input_images_SewaDemoTable .168

jpg input_ images_SewaDemoTable < / p a t h >169

< s o u r c e >170

< d a t a b a s e >Unknown< / d a t a b a s e >171

< / s o u r c e >172

< s i z e >173

< wid th >772< / wid th > < h e i g h t >422< / h e i g h t > < d e p t h >3< / d e p t h >174

< / s i z e >175

< s e g m e n t a t e d >0< / s e g m e n t a t e d >176

< o b j e c t >177

<name> t a b l e < / name>178

<pose > U n s p e c i f i e d < / pose >179

< t r u n c a t e d >0< / t r u n c a t e d >180

< d i f f i c u l t >0< / d i f f i c u l t >181

<bndbox>182

<xmin>0< / xmin> <ymin>0< / ymin> <xmax>772< / xmax> <ymax>422< / ymax>183

< / bndbox>184

< c e l l s >185

< t a b l e c e l l >186

< d o n t _ c a r e > F a l s e < / d o n t _ c a r e >187

< e n d _ c o l >11< / e n d _ c o l > <end_row>16< / end_row>188

< s t a r t _ c o l >11< / s t a r t _ c o l > < s t a r t _ r o w >11< / s t a r t _ r o w >189

<x0>682< / x0> <x1>771< / x1> <y0>370< / y0> <y1>416< / y1>190

< / t a b l e c e l l >191

< t a b l e c e l l >192

< d o n t _ c a r e > F a l s e < / d o n t _ c a r e >193

< e n d _ c o l >4< / e n d _ c o l > <end_row>16< / end_row>194

< s t a r t _ c o l >4< / s t a r t _ c o l > < s t a r t _ r o w >4< / s t a r t _ r o w >195

<x0>334< / x0> <x1>406< / x1> <y0>369< / y0> <y1>416< / y1>196

< / t a b l e c e l l >197

. . .198

< / t a b l e c e l l >199

< / c e l l s >200

< / o b j e c t >201

< / p r e d i c t i o n >202

We note that the XML output does not feature the contents of the cells, but it does feature the row and column ids, their203

start and end coordinate locations, with quite a high confidence score as listed in the text output copied above.204

4 Conclusion205

The TabStructNet was found to be quite good at detecting the locations of the cells in a table. JSON and XML generation206

module requires manual intervention. Some inconsistencies between the description in the paper and the implementation207

6

were discovered and reported. The process can be streamlined by invoking the corresponding scripts and the necessary208

file copying operations, as part of the main script itself. There is an unusual image expansion happening which might209

be further responsible for increasing the memory requiements. It is hoped that this report would help an average user as210

well as the authors of TabStructNet identify the core issues with the shared repository, fixing which would help raise211

the popularity of the model in the upcoming ICDAR challenges. Incremental improvements should be particularly212

interesting and to be look forward to, in making the model faster, more accirate and precise.213

References214

[1] Waleed Abdulla. Mask r-cnn for object detection and instance segmentation on keras and tensorflow. https:215

//github.com/matterport/Mask_RCNN, 2017.216

[2] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid217

networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,218

pages 2117–2125, 2017.219

[3] Sachin Raja, Ajoy Mondal, and CV Jawahar. Table structure recognition using top-down and bottom-up cues. In220

European Conference on Computer Vision, pages 70–86. Springer, 2020.221

7

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

	Introduction
	Table-image to XML generation pipeline from raja2020table, and the deviations discovered

	Setting up to evaluate TabStructNet: The challenges and the solutions
	Make sure that the mrcnn package is NOT installed
	Make sure to generate a JSON file at `/trained_model/tab/annotations/'
	Memory issues
	The current script leads to `TypeError', minor fix necessary
	XML generation module

	Results
	Image output
	TXT output
	XML output

	Conclusion

