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COMPOSITIONAL DISCRETE DIFFUSION FOR IMBAL-
ANCED 3D SCENE SYNTHESIS AND DATASET GENER-
ATION

Anonymous authors
Paper under double-blind review

Figure 1: Motivation for Comp-D3PM. (a) The background invasion into objects observed in previ-
ous methods. (b)Our Compositional framework that disentangles the generation of background and
foreground elements. (c) The pipeline for dataset generation (K is the default projection matrix of
the camera). In this process, we employ ControlNet Zhang et al. (2023) to generate images.

ABSTRACT

3D semantic scene synthesis using discrete diffusion models faces severe chal-
lenges due to extreme class imbalance, where background voxels vastly outnum-
ber foreground objects. This imbalance becomes particularly problematic in dis-
crete diffusion for two reasons: (1) the denoising process operates in probability
space rather than feature space, making minority classes vulnerable to majority
absorption, and (2) learned transition probabilities exhibit systematic bias toward
backgrounds, which compounds across diffusion steps, causing irreversible loss
of foreground information. We identify this phenomenon as probabilistic flow
collapse—a fundamental limitation of existing methods. To address this, we pro-
pose the Compositional Discrete Denoising Diffusion Probabilistic Model (Comp-
D3PM), which synthesizes 3D scenes by compositionally denoising foreground
and background voxels through separate transition dynamics. Our contributions
are threefold: (1) we formally characterize probabilistic flow collapse and intro-
duce a two-stream architecture that prevents minority-class absorption through
compositional modeling; (2) based on this architecture,we enable arange of ap-
plications, including the generation of image–semantic scene datasets; and (3) we
demonstrate on CarlaSC and SemanticKITTI that Comp-D3PM produces signifi-
cantly more realistic and diverse scenes while preserving semantic integrity.

1 INTRODUCTION

3D semantic scenes provide richer environmental representations than traditional bounding boxes
or sparse points, making them essential for autonomous driving and robotics perception Yao et al.
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(2023); Huang et al. (2023); Cao & De Charette (2022). However, annotating such scenes is pro-
hibitively expensive and labor-intensive, severely limiting the scalability of supervised approaches.
While generative models offer a promising alternative for synthesizing 3D scenes from limited data,
previous dataset generation approaches have primarily focused on 2D data Nguyen et al. (2024);
Zhang et al. (2021).

Figure 2: Percentage distribution of classes in the SemanticKITTI Behley et al. (2019) (a) and
CarlaSC Wilson et al. (2022) (b) datasets.

Recent advances Lee et al. (2024); Liu et al. (2024); Li et al. (2025); Zhang et al. (2024) have made
significant progress in semantic scene synthesis. However, these approaches often overlook a critical
challenge: the extreme voxel distribution imbalance between foreground objects and background.
This imbalance induces gradient asymmetry, causing models to favor background over foreground,
as illustrated in Fig. 3 (right), which in turn exacerbates background invasion into objects, as shown
in Fig. 1 (a). This issue is particularly severe in discrete diffusion models, where the denoising
process operates in probability space rather than feature space, and any tendency of diffusion steps
to favor background classes is further amplified through repeated steps in probability space, resulting
in irreversible loss of foreground information. We term this phenomenon probabilistic flow collapse,
a fundamental limitation of existing methods.

In this paper, we propose Compositional Discrete Denoising Diffusion Probabilistic Models (Comp-
D3PM), a framework that addresses the probabilistic flow collapse in discrete diffusion models
through principled decomposition of transition dynamics. Building on theoretical insights into dis-
crete state space modeling, Comp-D3PM separates the scene generation process into three progres-
sive stages: 1) generating a low-resolution background to capture the overall scene layout while
minimizing interference with potential foreground regions; 2) generating foreground objects condi-
tioned on the background, ensuring that dynamic entities respect background boundaries and main-
tain fine details;3) jointly refining both components through a compositional fusion network that
preserves the learned distributions while ensuring spatial coherence. By effectively resolving gra-
dient asymmetry and preventing background invasion, Comp-D3PM establishes a new benchmark
for realistic and semantically coherent 3D scene synthesis, highlighting its significance for future
research in structured scene generation.

Our contributions are summarized as follows:

• We identify and formalize the probabilistic flow collapse problem in discrete diffusion
models for 3D scene generation, showing how extreme voxel distribution imbalances fun-
damentally disrupt object learning, leading to systematic background invasion artifacts.

• We propose Comp-D3PM, a principled framework that addresses this issue by learning
separate transition dynamics for foreground and background, preserving the integrity of
each distribution’s denoising process while enabling flexible compositional generation.
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• We demonstrate Comp-D3PM’s practical impact by developing an automated SSC dataset
generation pipeline and other applications, constructing and validating a monocular SSC
dataset that enables training without manual annotation, showcasing the potential for scal-
able 3D scene understanding.

• We achieve state-of-the-art performance on CarlaSC Wilson et al. (2022) and Se-
manticKITTI Behley et al. (2019); Geiger et al. (2013), with significant improvements
in both generation quality and physical plausibility, validating our theoretical insights with
empirical results.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models have recently achieved great success in 2D image synthesis Ho et al. (2020);
Nichol & Dhariwal (2021); Dhariwal & Nichol (2021), generating high-quality results Rombach
et al. (2022); Peebles & Xie (2023) and enabling diverse tasks such as text-to-image generation
Ramesh et al. (2022); Kim et al. (2022) and prompt-based creation Zhang et al. (2023).

Based on iterative denoising, these models produce realistic outputs but at high computational cost.
Recent efforts Rombach et al. (2022); Nichol & Dhariwal (2021); Song et al. (2020) reduce this
burden, yet most work remains limited to continuous 2D data, with 3D and categorical generation
still underexplored.

Our work focus on generating 3D semantic scenes Behley et al. (2019); Tian et al. (2024); Tong
et al. (2023), discrete voxelized scenes with semantic labels.

Figure 3: Visualization of decoupling and downsampling. Raw Scene shows background decou-
pling without downsampling and resulting holes (left) and the normalized class distribution in
10,000 generated CarlaSC samples with a comparison to the baseline Lee et al. (2024) (right).

2.2 CATEGORICAL DATA GENERATION

Generating categorical data is challenging due to the non-differentiable argmax and unordered cate-
gories. Traditional continuous-data methods don’t apply directly, so a common solution is mapping
categories to a continuous latent space for differentiation, then converting back to discrete labelsLee
et al. (2024); Regol & Coates (2023).

Another approach involves using techniques like Gumbel-Softmax Hoogeboom et al. (2021) or
leveraging Markov transition matrices Austin et al. (2021); Lee et al. (2023). Alternatively, cate-
gorical data can be generated alongside its corresponding image, treating the task as a segmentation
problem Zhang et al. (2021); Nguyen et al. (2024).

2.3 3D DATA GENERATION

Existing methods for 3D generation primarily focus on generating individual objectsVahdat et al.
(2022); Luo & Hu (2021), point cloudsCaccia et al. (2019); Shu et al. (2019); Yang et al. (2019);
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Ran et al. (2024), and rendering-based scene representationsTang et al. (2024); Paschalidou et al.
(2021); Gege Gao (2024), while the generation of semantic scenes remains a relatively new area.

For semantic scenes, recent works such as the two-stage three-plane approach Lee et al. (2024) and
the three-stage super-resolution approach Liu et al. (2024) have shown promising results. Despite
these advances, these methods treat the scene as a whole, overlooking the probabilistic flow collapse.
This neglect can cause background invasion into foreground regions, eroding fine object details and
limiting the realism of generated semantic scenes.

Additional methods like Zhang et al. (2024) generate scenes conditioned on BEV representations
or jointly generate point clouds and images Li et al. (2025), but both rely on BEV distributions
compressed from real scenes as conditions. Other methods, such as Bian et al. (2025), attempt to
extend semantic scene generation to four dimensions, while Wei et al. (2024) explores integrating
scene generation with language models.

2.4 DATASET GENERATION

Current dataset generation efforts mainly focus on 2D domains, using GANs Zhang et al. (2021); Li
et al. (2022) or diffusion models Nguyen et al. (2024); Wu et al. (2023) to generate data for tasks
such as image classification Azizi et al. (2023); Sarıyıldız et al. (2023) and segmentation Zhang
et al. (2021); Nguyen et al. (2024). In this work, we present a simple semantic scene-to-image
dataset generation framework based on the proposed Comp-D3PM, and validate it through SSC
experiments, offering a practical foundation for future research.

3 PRELIMINARIES

3.1 D3PM BACKGROUND

D3PM Austin et al. (2021) generates structured discrete data like semantic scenes and text via a
denoising process. Unlike Gaussian noise in traditional diffusion models Ho et al. (2020), D3PM
uses discrete-specific noise applied through transition matrices Qt. For a discrete variable xt with
K categories, the forward process at step t given x0 is described by the cumulative transition matrix
Q̄t = Q0Q1 . . .Qt:

q(xt|x0) = Cat(xt; p = x0Q̄t) (1)
where x0 is represented by the one-hot row vector, and Cat(x; p) is a categorical distribution over x
with the probabilities given by the row vector p.

Since the transition matrix Qt is bidirectional, irreducible, and aperiodic, xt converges to a station-
ary distribution as t grows. The reverse process uses a model with parameters θ to predict pθ(x0|xt),
approximating x0 from the true posterior q(xt−1|xt, x0), which can be expressed as:

q(xt−1|xt, x0) = Cat
(
xt−1; p =

xtQ
T
t ⊙ x0Q̄t−1

x0Q̄txT
t

)
(2)

where the denominator x0Q̄tx
T
t is a normalization term ensuring that the probabilities sum to 1.

3.2 PROBABILISTIC FLOW COLLAPSE IN IMBALANCED DISTRIBUTIONS

While D3PM performs well on balanced categorical distributions, severe class imbalances in 3D
semantic scenes give rise to a phenomenon we term probabilistic flow collapse. In typical scenes,
background voxels constitute over 90% of the volume (95.8% in CarlaSC Wilson et al. (2022) and
90.7% in SemanticKITTI Behley et al. (2019)), leaving foreground objects with less than 10%.
This extreme imbalance fundamentally distorts the learned transition dynamics. In D3PM, the re-
verse process relies on approximating the posterior q(xt−1|xt, x0) through the model’s prediction
pθ(x0|xt). Since the training objective is dominated by background voxels—which appear in over
90% of positions—the model learns to preferentially predict background classes. This manifests as
systematic bias in the effective transition probabilities:

P (xt−1 = j|xt = i) ∝
∑
x0

pθ(x0|xt = i)q(xt−1 = j|xt = i, x0) (3)
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Due to the imbalanced training data, these transition probabilities exhibit strong asymmetry:

P (xt−1 = j|xt = i) ≈
{
αt if j ∈ B (background)
βt if j ∈ F (foreground)

(4)

where αt ≫ βt regardless of the current state i. This bias compounds over diffusion steps. After T
steps, the cumulative probability of transitioning from any foreground class to background becomes:∑

j∈B
P (x0 = j|xT ∈ F ) ≈ 1− ϵ, ϵ → 0 as T → ∞ (5)

This represents an irreversible collapse: once foreground information flows into background states,
the reverse process cannot recover it, as the model has learned to always predict background as the
most likely original state.

Consequences of Probabilistic Flow Collapse:

1. Irreversible Information Loss: Once foreground voxels transition to background, the re-
verse process cannot recover them.

2. Background Invasion: During generation, the model preferentially samples background
categories even in object regions, eroding boundaries and fine details, as shown in Fig.1(a).

3. Mode Collapse for Rare Classes: Classes with minimal voxel counts (e.g., motorcycles,
pedestrians) disappear entirely as their Probabilistic Flow collapse into dominant back-
grounds, as shown in Fig.3(right).

Figure 4: Framework of the proposed Compositional discrete diffusion Model.

4 METHOD

In this section, we introduce Compositional D3PM (Comp-D3PM) (see Fig. 4), a framework specif-
ically designed to address severe gradient imbalance between foreground and background and to
suppress background invasion into foreground objects. At the same time, we introduce a series of
controlled generation tasks, such as inpainting and dataset generation.

4.1 OBJECT-BACKGROUND DISENTANGLING

To address the gradient imbalance caused by uneven voxel distributions of object and background
in semantic scenes, following Kirillov et al. (2019), we separate object and background based on
their voxel counts and countability (Fig. 2). This decoupling effectively prevents the gradients of
objects with fewer voxels from being overwhelmed, thereby mitigating the background invasion into
foreground objects observed in baseline methods (Fig. 1(a)).

However, naively separating voxel categories into object and background distributions often results
in noticeable holes in the background, as shown in Fig.3(left). To mitigate this, we combine com-
positional modeling of categories with downsampling, effectively filling these holes and producing
a more coherent and seamless scene

5
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Downsampling categorical data is inherently challenging, as the discrete nature of the data prevents
interpolation, leading to potential voxel information loss. To address this, we adopt a score-based
downsampling strategy, which preserves scene information while maintaining coherence.

Specifically, for each voxel pool j to be downsampled, if the proportion of empty or invalid voxels
exceeds a threshold th, the downsampled value is set to either empty or invalid. Otherwise, the pool
is assigned the category k with the highest score skj , calculated in a TF-IDF (Term Frequency-Inverse
Document Frequency) manner, where the count of voxels belonging to category k is normalized by
its overall frequency F k in the dataset:

skj =
Countkj

3
√
F k

(6)

4.2 COMPOSITIONAL D3PM

The framework of our model is illustrated in the Fig. 4. We begin by separating the scene into
object and background voxel distributions. Each distribution is then downsampled to achieve more
coherent and seamless results. To further reduce the number of tokens while preserving maxi-
mal information, we introduce BEV-aware DiTPeebles & Xie (2023) (BEDiT), which compresses
height-space features and performs attention in the BEV space. Specifically, the diffusion process
for both distributions is modeled sequentially: (Emb denotes embedding operation.){

logitsBt−1 = BEDiTB
(
Emb(xB

t )
)

logitsFt−1 = BEDiTF
(
Emb(xB

0 )⊕ Emb(xF
t )

) (7)

For each distribution, we construct a conditional discrete diffusion process. The model for the back-
ground distribution BEDiTB employs self-conditioning, while the model for the object distribution
BEDiTF conditions on the background xB

0 . This decoupling prevents the gradients of sparse fore-
ground objects from being overwhelmed by the abundant background voxels, allowing the model
to learn more accurate and detailed object representations. Finally, the compositional fusion model
BEDiTC integrates both the background xB

0 and object distributions xF
0 as conditions, focusing on

producing a coherent and detailed compositional scene:

logitsCt−1 = BEDiTC
(
Emb(xt)⊕ Emb([xB

0 , x
F
0 ])

)
(8)

Figure 5: Visualization results of scene manipulation, including scene outpainting, scene inpainting,
SSC refinement(using SSC outputs from Cao & De Charette (2022)), and dataset generation.

4.3 APPLICATIONS WITH COMP-D3PM

Beyond its generative capabilities, Comp-D3PM is applicable to various tasks, including inpaint-
ing and outpainting, semantic scene completion (SSC) refinement, and, most importantly, dataset
generation, as illustrated in Fig.5.

6
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4.3.1 DATASET GENERATION

As illustrated in Fig.1 and Fig.5, we leverage the semantic scenes generated by Comp-D3PM to con-
struct a monocular SSC dataset. Specifically, we render each semantic scene onto the image plane
using a rendering engine with a default intrinsic matrix, producing paired RGB and depth images.
These serve as conditional inputs for training ControlNet Zhang et al. (2023) to synthesize realistic
images from 3D layouts. To further enhance semantic alignment, we follow the prompt construction
strategy of Nguyen et al. (2024), incorporating object category labels into natural language descrip-
tions. For instance, given scene labels such as ”car” and ”building”, we create prompts like ”a traffic
scene with: car, building” as textual guidance. Using this pipeline, we construct a new monocular
SSC dataset based on SemanticKITTI Behley et al. (2019) and validate its quality by training a rep-
resentative SSC model on the generated data. This validates the quality of our generated scenes and
highlights Comp-D3PM’s potential for 3D scene understanding dataset generation.

4.3.2 OTHER APPLICATIONS

We also employ Comp-D3PM for outpainting, inpainting, and SSC refinement, as illustrated in
Fig. 3. However due to space limitations, please refer to the Appendix for details.

Figure 6: Visualization comparison results of unconditioned generation on the Semantic
KITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets.

5 EXPERIMENTS

5.1 EVALUATION PROTOCOLS

Evaluating the quality of generated 3D scenes is challenging, as common 2D metrics like FID Heusel
et al. (2017) and KID Bińkowski et al. (2018) cannot be directly applied. To address this, we adopt
four specialized metrics, following the practices in Lee et al. (2024) and Liu et al. (2024).

F3D: An adaptation of the Fréchet Inception Distance (FID) for 3D data, F3D measures the distance
between real and generated scenes in the feature space of a pretrained 3D autoencoder.

K3D (MMD): Similarly, K3D adapts the Kernel Inception Distance (KID) to 3D data, computing
the Maximum Mean Discrepancy (MMD) between features of real and generated scenes.

2D Metrics: To leverage existing 2D evaluation methods, we render the 3D scenes into 2D images
(Fig.6) and compute FID, KID, and ISCSalimans et al. (2016), similar to Lee et al. (2024).

Background Invasion Score (BIS): To specifically evaluate background invasion into objects in
the generated results, we introduced a dedicated human evaluation metric. Five independent raters

7
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blindly scored 300 generated samples on a 0–10 scale, and the mean and variance of these scores
were computed to quantify this phenomenon.

Table 1: Comparison with state-of-the-art on Semantic KITTI Behley et al. (2019) dataset. (F3D is
measured in units of 10−2, and B denotes BEV (Bird’s Eye View). )

F3D↓ K3D ↓ FID ↓ KID ↓ ISC ↑ BIS ↑
D3PM 83.2 113.0 66.0 0.0644 2.50 6.37±0.44

Semcity(B) 65.7 34.3 58.5 0.0602 2.49 6.41±1.47
Semcity 62.3 32.4 48.2 0.0483 2.66 6.49±2.69

Ours 53.1 26.5 24.4 0.0179 3.32 6.86±0.80

Table 2: Comparison with state-of-the-art on CarlaSC Wilson et al. (2022) dataset.

F3D↓ K3D ↓ FID ↓ KID ↓ ISC ↑ BIS ↑
D3PM 96.5 30.4 59.2 0.0551 3.06 7.91±0.01

Semcity(B) 87.6 29.1 45.1 0.0370 2.96 7.78±0.14
Semcity 80.5 16.6 26.9 0.0178 2.72 7.88±0.04

PDD 101.5 26.2 42.0 0.0392 3.32 7.98±0.12
Ours 26.3 5.6 9.8 0.0041 3.33 8.18±0.01

5.2 EXPERIMENT SETTINGS

We conduct experiments on two datasets: CarlaSC Wilson et al. (2022) and Semantic KITTI Behley
et al. (2019). Semantic KITTI is a real-world outdoor dataset based on the KITTI dataset Geiger et al.
(2013), containing 20 classes and 3,824 scenes, each represented as a 256×256×32 occupancy grid.
CarlaSC is a synthetic dataset generated from the Carla simulator Dosovitskiy et al. (2017), featuring
32,400 scenes across 10 classes. In this paper, we use the updated version of CarlaSC, where each
scene has a resolution of 256 × 256 × 16. All experiments were conducted on an NVIDIA RTX
4090 GPU, and models were optimized using the AdamW optimizer Loshchilov (2017).

We apply BEV folding and downsampling to both objects and background (e.g., reducing a
256 × 256 × 32 voxel grid to 32 × 32), where the additional stage only consumes about one-
sixth the memory of full-resolution BEV methods, keeping the overall complexity comparable to
non-compositional baselines. As previously mentioned, we primarily categorize classes as objects
or backgrounds based on their percentage distribution and semantics, as shown in Fig. 2.

5.3 COMPARISONS

We mainly compare with semantic scene generation methods that do not require any condition-
ing Lee et al. (2023; 2024); Liu et al. (2024), as shown in Tab. 1 and Tab. 2. Among them,
Semcity Lee et al. (2024) is a discrete diffusion-based method, while Semcity BEV refers to its
BEV-based implementation using latent diffusion Rombach et al. (2022). Our method achieves
state-of-the-art performance across all metrics, demonstrating its effectiveness in capturing complex
scene structures and generating high-quality 3D reconstructions. To ensure a fair comparison, we
use the released weights of the involved methods for generation and keep all settings identical across
experiments, except for the generation method itself.

Furthermore, Fig. 6 compares our method with others, showing superior detail capture, structural
integrity, and accurate shape restoration of small objects. Our approach produces more realistic 3D
scenes with sharper boundaries and better spatial arrangement than baselines.

5.4 ABLATION STUDIES

Ablation studies on compositional foreground-background modeling. We conducted ablation
studies on the compositional modeling mechanism by developing a two-stage generation pipeline
on the CarlaSC dataset using the same diffusion model for comparison. In the first stage, a down-
sampled version of the scene is generated, and in the second stage, this intermediate output is used as

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation Study on Compositional Modeling Foreground/Background and Downsampling.

Method Resolution F3D↓ K3D ↓ FID↓ KID ↓ ISC ↑
Compositional h× w × d 88.3 74.2 51.6 0.0408 3.30
Compositional h

4
× w

4
× d

2
46.6 12.8 18.34 0.0162 3.32

Compositional h
16

× w
16

× d
8

49.5 17.9 19.25 0.0231 3.31
Non-compositional h

8
× w

8
× d

4
37.6 9.85 13.87 0.0073 3.30

Compositional h
8
× w

8
× d

4
26.3 5.6 9.83 0.0041 3.33

a condition to reconstruct the scene at full resolution. As summarized in Tab. 3, compositional mod-
eling of the foreground and background significantly improves the quality of the generated scenes.

To further investigate the necessity of compositional modeling for small object generation, we an-
alyzed the proportion of voxels for each category in the generated samples of the CarlaSC dataset
relative to the whole, as shown in Fig. 3(right). Our approach demonstrates a stronger preference for
generating objects, while the baseline method Lee et al. (2024), which processes the 3D scene as a
single entity, leans more towards generating background components. Additionally, Fig. 6 demon-
strates that our approach is capable of accurately generating the shapes of various small objects
within the 3D scene, particularly for the other-object category, which encompasses a diverse range
of shape distributions.

Ablation studies on downsampling during generation. As mentioned earlier, performing
background-object compositional modeling directly at the original resolution results in hollow re-
gions in the background, as shown in Fig. 3(left). This leads to the leakage of object positional
information, as the network can infer the location and category of objects through these hollow re-
gions, thereby reducing the richness of the generated output. At the same time, generating directly
at the original resolution also increases the difficulty of network convergence.

We conducted ablation studies on the downsampling process during compositional modeling, as
shown in Tab. 3. The method employing full resolution demonstrates significantly inferior results
compared to the approach that utilizes downsampling for both background and object generation,
highlighting the importance of downsampling.

Table 4: Ablation Analysis for Generated Dataset.

Method Real Dataset Synthetic Dataset
IoU↑ mIoU↑ IoU↑ mIoU↑

VisHall3D 46.14 17.06 34.33 7.17
MonoScene 37.12 11.50 24.23 4.72

Ablation Analysis for Generated Dataset. Based on Comp-D3PM, we construct a monocular SSC
dataset derived from SemanticKITTIBehley et al. (2019), ensuring no data leakage by training all
generative models solely on the training split. To evaluate the quality and utility of the generated
dataset, we conduct an ablation study with the state-of-the-art monocular SSC method VisHall3D
(ICCV 2025) Lu et al. (2025) and the representative baseline MonoScene (CVPR 2023) Cao &
De Charette (2022). Specifically, we evaluate the effectiveness of our generated dataset by compar-
ing zero-shot performance and validating on the original validation set. As shown in Tab. 4, although
models trained purely on synthetic data still underperform compared to those trained on real data,
the results highlight the promise of our approach as a foundation for future data generation efforts.

6 CONCLUSION

In this work, we identify probabilistic flow collapse and propose Comp-D3PM, a two-stream archi-
tecture separating foreground and background dynamics. Beyond enhancing generation quality, it
adapts to tasks like inpainting, outpainting, and SSC refinement, and enables Comp-D3PM to build
a monocular SSC dataset for scalable 3D data generation.
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guidelines. The methods proposed in this paper are intended for academic research purposes and
do not aim to enable harmful applications. We have taken care to minimize potential biases and
discrimination in the data and methods, and we transparently document all procedures to support
reproducibility and research integrity.
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materials. The datasets used are publicly available, and data processing steps are documented in the
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mentary material, enabling reviewers to reproduce the results. Any theoretical claims are supported
by detailed derivations included in the appendix. We encourage readers to refer to the main paper,
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Lucas Caccia, Herke Van Hoof, Aaron Courville, and Joelle Pineau. Deep generative modeling of
lidar data. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5034–5040. IEEE, 2019.

Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3991–4001, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.

Anpei Chen Andreas Geiger Bernhard Schölkopf Gege Gao, Weiyang Liu. Graphdreamer: Com-
positional 3d scene synthesis from scene graphs. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
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A APPENDIX

A.1 OTHER APLLICATIONS

A.1.1 INPAINTING AND OUTPAINTING

Scene inpainting and outpainting are techniques used to enhance and extend generated scenes. With
Comp-D3PM, which decouples object and background distributions, scene inpainting is achieved
by controlling object distribution generation. As shown in Fig.5, different object distributions can
be generated with the same background. Object control is further refined using a mask mechanism;
given a known object distribution xknown, we regenerate specific parts by applying a mask m,
overriding the input at time t with x̄t:

x̄t = m⊗ xt + (1−m)⊗ xknown (9)

A.1.2 SSC REFINEMENT

When reconstructing 3D occupancy from visual sensor data Yao et al. (2023); Huang et al. (2023);
Cao & De Charette (2022), networks often struggle to restore fine object details, as shown in Fig.5.
Previous work Lee et al. (2024) has attempted to refine network-predicted occupancy using gener-
ative models with promising results. In our approach, since shape and position are decoupled, we
downsample the predicted occupancy, separate object and background distributions, and input them
into the upsampling model to reconstruct the shape .

For more visualized inpainting and outpainting samples, please refer to the demo.mp4 in the supple-
mentary material.

Figure 7: Additional visualization results of the generated dataset.
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A.2 ADDITIONAL RESULTS AND TRAINING DETAILS

To further demonstrate the effectiveness of our approach, we present additional qualitative results
on the SemanticKITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets. As shown in
Fig.9 and Fig.8, our method achieves high performance in both scene-level coherence and object-
level detail. Notably, our results do not exhibit confusion between different object categories.

In addition to the examples presented in the main text, we also provide an expanded set of generated
samples from the OCC-Image dataset in the appendix as shown in Fig.7. These additional samples
are intended to give readers a more comprehensive view of the dataset’s characteristics, the diver-
sity of the generated outputs, and the effectiveness of our approach, thereby serving as a valuable
reference for further research and comparison.

As described in the main paper, we trained Comp-D3PM using AdamW Loshchilov (2017) opti-
mizer on both the SemanticKITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets for
500 epochs. The batch size was set to 4, and the learning rate was 1× 10−4. The learning rate was
decayed by a factor of 10 at the 320th and 420th epochs.

A.3 LLM USAGE STATEMENT

We confirm that large language models (LLMs) were used solely as a general-purpose writing assis-
tant to improve the clarity, grammar, and readability of the manuscript. The LLM did not contribute
to the research ideation, experimental design, data analysis, or interpretation of results, and all sci-
entific content, reasoning, and conclusions are entirely the authors’ own work.

Figure 8: Additional visualization results on the Semantic KITTI dataset.
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Figure 9: Additional visualization results on the CarlaSC dataset.
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