

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPOSITIONAL DISCRETE DIFFUSION FOR IMBAL- ANCED 3D SCENE SYNTHESIS AND DATASET GENER- ATION

Anonymous authors

Paper under double-blind review

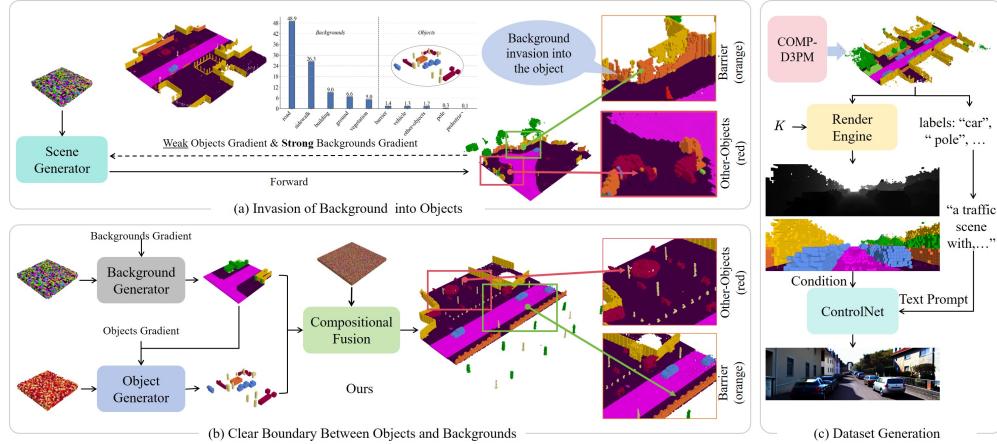


Figure 1: Motivation for Comp-D3PM. (a) The background invasion into objects observed in previous methods. (b) Our Compositional framework that disentangles the generation of background and foreground elements. (c) The pipeline for dataset generation (K is the default projection matrix of the camera). In this process, we employ ControlNet Zhang et al. (2023) to generate images.

ABSTRACT

3D semantic scene synthesis using discrete diffusion models faces severe challenges due to extreme class imbalance, where background voxels vastly outnumber foreground objects. This imbalance becomes particularly problematic in discrete diffusion for two reasons: (1) the denoising process operates in probability space rather than feature space, making minority classes vulnerable to majority absorption, and (2) learned transition probabilities exhibit systematic bias toward backgrounds, which compounds across diffusion steps, causing irreversible loss of foreground information. We identify this phenomenon as *probabilistic flow collapse*—a fundamental limitation of existing methods. To address this, we propose the Compositional Discrete Denoising Diffusion Probabilistic Model (Comp-D3PM), which synthesizes 3D scenes by compositionally denoising foreground and background voxels through separate transition dynamics. Our contributions are threefold: (1) we formally characterize probabilistic flow collapse and introduce a two-stream architecture that prevents minority-class absorption through compositional modeling; (2) based on this architecture, we enable a range of applications, including the generation of image–semantic scene datasets; and (3) we demonstrate on CarlaSC and SemanticKITTI that Comp-D3PM produces significantly more realistic and diverse scenes while preserving semantic integrity.

1 INTRODUCTION

3D semantic scenes provide richer environmental representations than traditional bounding boxes or sparse points, making them essential for autonomous driving and robotics perception Yao et al.

(2023); Huang et al. (2023); Cao & De Charette (2022). However, annotating such scenes is prohibitively expensive and labor-intensive, severely limiting the scalability of supervised approaches. While generative models offer a promising alternative for synthesizing 3D scenes from limited data, previous dataset generation approaches have primarily focused on 2D data Nguyen et al. (2024); Zhang et al. (2021).

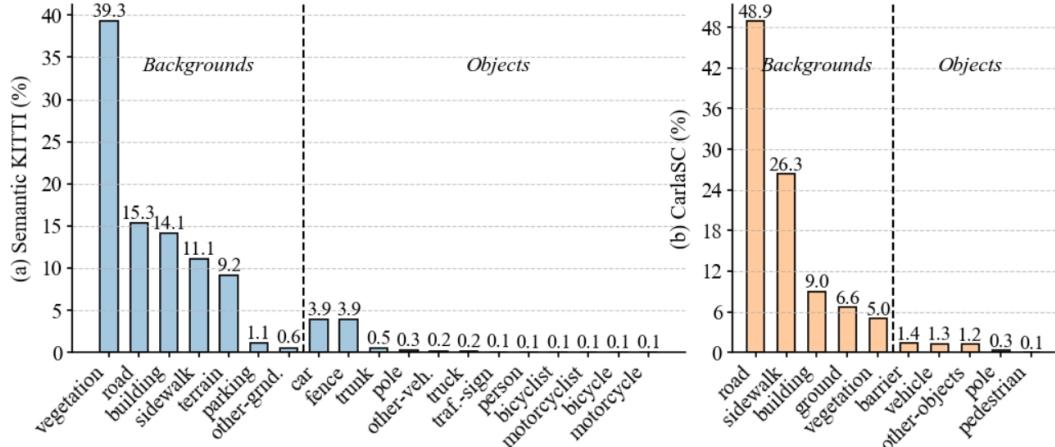


Figure 2: Percentage distribution of classes in the SemanticKITTI Behley et al. (2019) (a) and CarlaSC Wilson et al. (2022) (b) datasets.

Recent advances Lee et al. (2024); Liu et al. (2024); Li et al. (2025); Zhang et al. (2024) have made significant progress in semantic scene synthesis. However, these approaches often overlook a critical challenge: the extreme voxel distribution imbalance between foreground objects and background. This imbalance induces gradient asymmetry, causing models to favor background over foreground, as illustrated in Fig. 3 (right), which in turn exacerbates background invasion into objects, as shown in Fig. 1 (a). This issue is particularly severe in discrete diffusion models, where the denoising process operates in probability space rather than feature space, and any tendency of diffusion steps to favor background classes is further amplified through repeated steps in probability space, resulting in irreversible loss of foreground information. We term this phenomenon probabilistic flow collapse, a fundamental limitation of existing methods.

In this paper, we propose Compositional Discrete Denoising Diffusion Probabilistic Models (*Comp-D3PM*), a framework that addresses the probabilistic flow collapse in discrete diffusion models through principled decomposition of transition dynamics. Building on theoretical insights into discrete state space modeling, Comp-D3PM separates the scene generation process into three progressive stages: 1) generating a low-resolution background to capture the overall scene layout while minimizing interference with potential foreground regions; 2) generating foreground objects conditioned on the background, ensuring that dynamic entities respect background boundaries and maintain fine details; 3) jointly refining both components through a compositional fusion network that preserves the learned distributions while ensuring spatial coherence. By effectively resolving gradient asymmetry and preventing background invasion, Comp-D3PM establishes a new benchmark for realistic and semantically coherent 3D scene synthesis, highlighting its significance for future research in structured scene generation.

Our contributions are summarized as follows:

- We identify and formalize the *probabilistic flow collapse* problem in discrete diffusion models for 3D scene generation, showing how extreme voxel distribution imbalances fundamentally disrupt object learning, leading to systematic background invasion artifacts.
- We propose Comp-D3PM, a principled framework that addresses this issue by learning separate transition dynamics for foreground and background, preserving the integrity of each distribution’s denoising process while enabling flexible compositional generation.

- 108 • We demonstrate Comp-D3PM’s practical impact by developing an automated SSC dataset
109 generation pipeline and other applications, constructing and validating a monocular SSC
110 dataset that enables training without manual annotation, showcasing the potential for scal-
111 able 3D scene understanding.
- 112 • We achieve state-of-the-art performance on CarlaSC Wilson et al. (2022) and Se-
113 manticKITTI Behley et al. (2019); Geiger et al. (2013), with significant improvements
114 in both generation quality and physical plausibility, validating our theoretical insights with
115 empirical results.

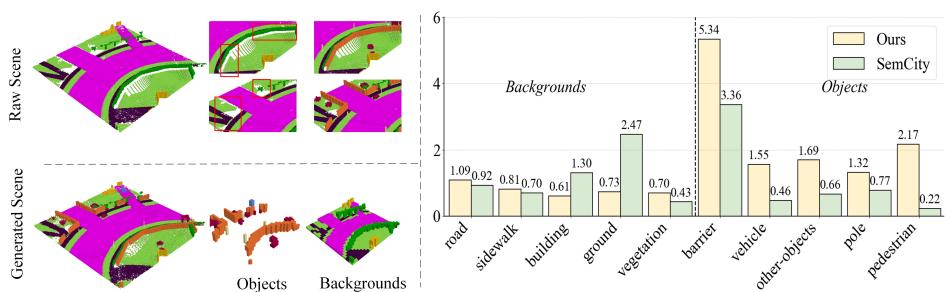
117 2 RELATED WORK

118 2.1 DIFFUSION MODELS

119 Diffusion models have recently achieved great success in 2D image synthesis Ho et al. (2020);
120 Nichol & Dhariwal (2021); Dhariwal & Nichol (2021), generating high-quality results Rombach
121 et al. (2022); Peebles & Xie (2023) and enabling diverse tasks such as text-to-image generation
122 Ramesh et al. (2022); Kim et al. (2022) and prompt-based creation Zhang et al. (2023).

123 Based on iterative denoising, these models produce realistic outputs but at high computational cost.
124 Recent efforts Rombach et al. (2022); Nichol & Dhariwal (2021); Song et al. (2020) reduce this
125 burden, yet most work remains limited to continuous 2D data, with 3D and categorical generation
126 still underexplored.

127 Our work focus on generating 3D semantic scenes Behley et al. (2019); Tian et al. (2024); Tong
128 et al. (2023), discrete voxelized scenes with semantic labels.



129 Figure 3: Visualization of decoupling and downsampling. **Raw Scene** shows background decou-
130 pling without downsampling and resulting **holes** (left) and the normalized class distribution in
131 10,000 generated CarlaSC samples with a comparison to the baseline Lee et al. (2024) (right).

142 2.2 CATEGORICAL DATA GENERATION

143 Generating categorical data is challenging due to the non-differentiable argmax and unordered cate-
144 gories. Traditional continuous-data methods don’t apply directly, so a common solution is mapping
145 categories to a continuous latent space for differentiation, then converting back to discrete labelsLee
146 et al. (2024); Regol & Coates (2023).

147 Another approach involves using techniques like Gumbel-Softmax Hoogeboom et al. (2021) or
148 leveraging Markov transition matrices Austin et al. (2021); Lee et al. (2023). Alternatively, cate-
149 gorical data can be generated alongside its corresponding image, treating the task as a segmentation
150 problem Zhang et al. (2021); Nguyen et al. (2024).

152 2.3 3D DATA GENERATION

154 Existing methods for 3D generation primarily focus on generating individual objectsVahdat et al.
155 (2022); Luo & Hu (2021), point cloudsCaccia et al. (2019); Shu et al. (2019); Yang et al. (2019);
156

162 Ran et al. (2024), and rendering-based scene representations Tang et al. (2024); Paschalidou et al.
 163 (2021); Gege Gao (2024), while the generation of semantic scenes remains a relatively new area.
 164

165 For semantic scenes, recent works such as the two-stage three-plane approach Lee et al. (2024) and
 166 the three-stage super-resolution approach Liu et al. (2024) have shown promising results. Despite
 167 these advances, these methods treat the scene as a whole, overlooking the probabilistic flow collapse.
 168 This neglect can cause background invasion into foreground regions, eroding fine object details and
 169 limiting the realism of generated semantic scenes.
 170

171 Additional methods like Zhang et al. (2024) generate scenes conditioned on BEV representations
 172 or jointly generate point clouds and images Li et al. (2025), but both rely on BEV distributions
 173 compressed from real scenes as conditions. Other methods, such as Bian et al. (2025), attempt to
 174 extend semantic scene generation to four dimensions, while Wei et al. (2024) explores integrating
 175 scene generation with language models.
 176

177 2.4 DATASET GENERATION

178 Current dataset generation efforts mainly focus on 2D domains, using GANs Zhang et al. (2021); Li
 179 et al. (2022) or diffusion models Nguyen et al. (2024); Wu et al. (2023) to generate data for tasks
 180 such as image classification Azizi et al. (2023); Sarıyıldız et al. (2023) and segmentation Zhang
 181 et al. (2021); Nguyen et al. (2024). In this work, we present a simple semantic scene-to-image
 182 dataset generation framework based on the proposed Comp-D3PM, and validate it through SSC
 183 experiments, offering a practical foundation for future research.
 184

185 3 PRELIMINARIES

186 3.1 D3PM BACKGROUND

187 D3PM Austin et al. (2021) generates structured discrete data like semantic scenes and text via a
 188 denoising process. Unlike Gaussian noise in traditional diffusion models Ho et al. (2020), D3PM
 189 uses discrete-specific noise applied through transition matrices \mathbf{Q}_t . For a discrete variable x_t with
 190 K categories, the forward process at step t given x_0 is described by the cumulative transition matrix
 191 $\mathbf{Q}_t = \mathbf{Q}_0 \mathbf{Q}_1 \dots \mathbf{Q}_t$:

$$q(x_t|x_0) = \text{Cat}(x_t; p = x_0 \bar{\mathbf{Q}}_t) \quad (1)$$

192 where x_0 is represented by the one-hot row vector, and $\text{Cat}(x; p)$ is a categorical distribution over x
 193 with the probabilities given by the row vector p .
 194

195 Since the transition matrix \mathbf{Q}_t is bidirectional, irreducible, and aperiodic, x_t converges to a stationary
 196 distribution as t grows. The reverse process uses a model with parameters θ to predict $p_\theta(x_0|x_t)$,
 197 approximating x_0 from the true posterior $q(x_{t-1}|x_t, x_0)$, which can be expressed as:
 198

$$q(x_{t-1}|x_t, x_0) = \text{Cat}\left(x_{t-1}; p = \frac{x_t \mathbf{Q}_t^T \odot x_0 \bar{\mathbf{Q}}_{t-1}}{x_0 \bar{\mathbf{Q}}_t x_t^T}\right) \quad (2)$$

200 where the denominator $x_0 \bar{\mathbf{Q}}_t x_t^T$ is a normalization term ensuring that the probabilities sum to 1.
 201

202 3.2 PROBABILISTIC FLOW COLLAPSE IN IMBALANCED DISTRIBUTIONS

203 While D3PM performs well on balanced categorical distributions, severe class imbalances in 3D
 204 semantic scenes give rise to a phenomenon we term *probabilistic flow collapse*. In typical scenes,
 205 background voxels constitute over 90% of the volume (95.8% in CarlaSC Wilson et al. (2022) and
 206 90.7% in SemanticKITTI Behley et al. (2019)), leaving foreground objects with less than 10%.
 207 This extreme imbalance fundamentally distorts the learned transition dynamics. In D3PM, the re-
 208 verse process relies on approximating the posterior $q(x_{t-1}|x_t, x_0)$ through the model’s prediction
 209 $p_\theta(x_0|x_t)$. Since the training objective is dominated by background voxels—which appear in over
 210 90% of positions—the model learns to preferentially predict background classes. This manifests as
 211 systematic bias in the effective transition probabilities:
 212

$$P(x_{t-1} = j|x_t = i) \propto \sum_{x_0} p_\theta(x_0|x_t = i) q(x_{t-1} = j|x_t = i, x_0) \quad (3)$$

Due to the imbalanced training data, these transition probabilities exhibit strong asymmetry:

$$P(x_{t-1} = j | x_t = i) \approx \begin{cases} \alpha_t & \text{if } j \in B \text{ (background)} \\ \beta_t & \text{if } j \in F \text{ (foreground)} \end{cases} \quad (4)$$

where $\alpha_t \gg \beta_t$ regardless of the current state i . This bias compounds over diffusion steps. After T steps, the cumulative probability of transitioning from any foreground class to background becomes:

$$\sum_{j \in \mathcal{B}} P(x_0 = j | x_T \in F) \approx 1 - \epsilon, \quad \epsilon \rightarrow 0 \text{ as } T \rightarrow \infty \quad (5)$$

This represents an irreversible collapse: once foreground information flows into background states, the reverse process cannot recover it, as the model has learned to always predict background as the most likely original state.

Consequences of Probabilistic Flow Collapse:

1. **Irreversible Information Loss:** Once foreground voxels transition to background, the reverse process cannot recover them.
2. **Background Invasion:** During generation, the model preferentially samples background categories even in object regions, eroding boundaries and fine details, as shown in Fig.1(a).
3. **Mode Collapse for Rare Classes:** Classes with minimal voxel counts (e.g., motorcycles, pedestrians) disappear entirely as their Probabilistic Flow collapse into dominant backgrounds, as shown in Fig.3(right).

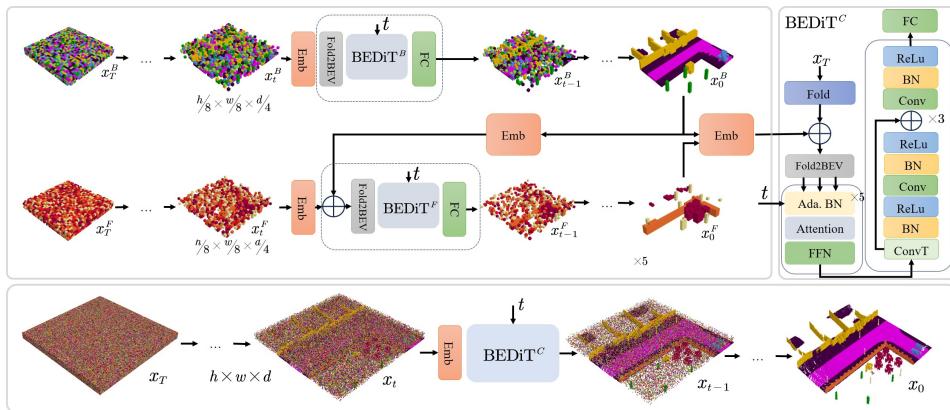


Figure 4: Framework of the proposed Compositional discrete diffusion Model.

4 METHOD

In this section, we introduce Compositional D3PM (Comp-D3PM) (see Fig. 4), a framework specifically designed to address severe gradient imbalance between foreground and background and to suppress background invasion into foreground objects. At the same time, we introduce a series of controlled generation tasks, such as inpainting and dataset generation.

4.1 OBJECT-BACKGROUND DISENTANGLING

To address the gradient imbalance caused by uneven voxel distributions of object and background in semantic scenes, following Kirillov et al. (2019), we separate object and background based on their voxel counts and countability (Fig. 2). This decoupling effectively prevents the gradients of objects with fewer voxels from being overwhelmed, thereby mitigating the background invasion into foreground objects observed in baseline methods (Fig. 1(a)).

However, naively separating voxel categories into object and background distributions often results in noticeable holes in the background, as shown in Fig.3(left). To mitigate this, we combine compositional modeling of categories with downsampling, effectively filling these holes and producing a more coherent and seamless scene.

Downsampling categorical data is inherently challenging, as the discrete nature of the data prevents interpolation, leading to potential voxel information loss. To address this, we adopt a score-based downsampling strategy, which preserves scene information while maintaining coherence.

Specifically, for each voxel pool j to be downsampled, if the proportion of empty or invalid voxels exceeds a threshold th , the downsampled value is set to either empty or invalid. Otherwise, the pool is assigned the category k with the highest score s_j^k , calculated in a TF-IDF (Term Frequency-Inverse Document Frequency) manner, where the count of voxels belonging to category k is normalized by its overall frequency F^k in the dataset:

$$s_j^k = \frac{\text{Count}_j^k}{\sqrt[3]{F^k}} \quad (6)$$

4.2 COMPOSITIONAL D3PM

The framework of our model is illustrated in the Fig. 4. We begin by separating the scene into object and background voxel distributions. Each distribution is then downsampled to achieve more coherent and seamless results. To further reduce the number of tokens while preserving maximal information, we introduce BEV-aware DiTPeebles & Xie (2023) (BEDiT), which compresses height-space features and performs attention in the BEV space. Specifically, the diffusion process for both distributions is modeled sequentially: (Emb denotes embedding operation.)

$$\begin{cases} \text{logits}_{t-1}^B = \text{BEDiT}^B(\text{Emb}(x_t^B)) \\ \text{logits}_{t-1}^F = \text{BEDiT}^F(\text{Emb}(x_0^B) \oplus \text{Emb}(x_t^F)) \end{cases} \quad (7)$$

For each distribution, we construct a conditional discrete diffusion process. The model for the background distribution BEDiT^B employs self-conditioning, while the model for the object distribution BEDiT^F conditions on the background x_0^B . This decoupling prevents the gradients of sparse foreground objects from being overwhelmed by the abundant background voxels, allowing the model to learn more accurate and detailed object representations. Finally, the compositional fusion model BEDiT^C integrates both the background x_0^B and object distributions x_0^F as conditions, focusing on producing a coherent and detailed compositional scene:

$$\text{logits}_{t-1}^C = \text{BEDiT}^C \left(\text{Emb}(x_t) \oplus \text{Emb}([x_0^B, x_0^F]) \right) \quad (8)$$

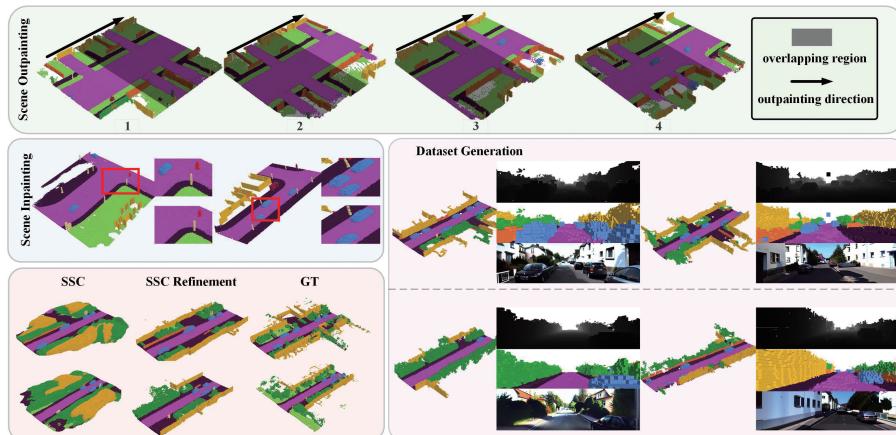


Figure 5: Visualization results of scene manipulation, including scene outpainting, scene inpainting, SSC refinement(using SSC outputs from Cao & De Charette (2022)), and dataset generation.

4.3 APPLICATIONS WITH COMP-D3PM

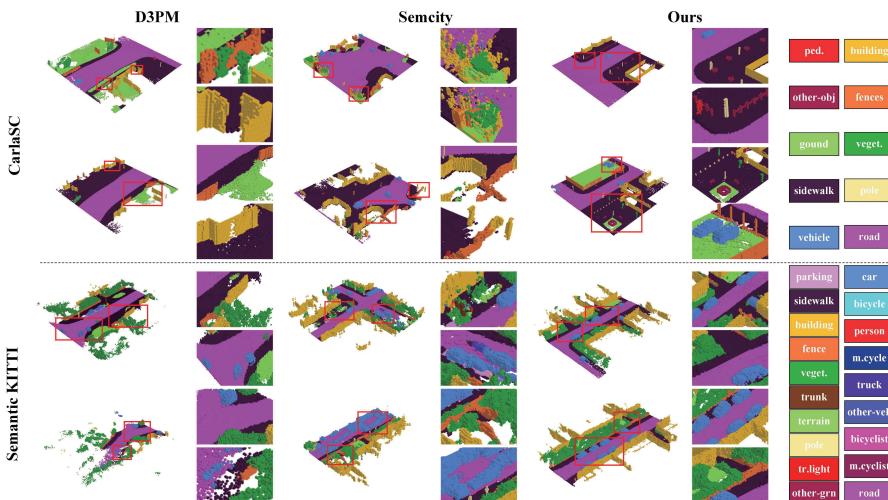
Beyond its generative capabilities, Comp-D3PM is applicable to various tasks, including inpainting and outpainting, semantic scene completion (SSC) refinement, and, most importantly, dataset generation, as illustrated in Fig.5.

324 4.3.1 DATASET GENERATION
325

326 As illustrated in Fig.1 and Fig.5, we leverage the semantic scenes generated by Comp-D3PM to con-
327 struct a monocular SSC dataset. Specifically, we render each semantic scene onto the image plane
328 using a rendering engine with a default intrinsic matrix, producing paired RGB and depth images.
329 These serve as conditional inputs for training ControlNet Zhang et al. (2023) to synthesize realistic
330 images from 3D layouts. To further enhance semantic alignment, we follow the prompt construction
331 strategy of Nguyen et al. (2024), incorporating object category labels into natural language descrip-
332 tions. For instance, given scene labels such as "car" and "building", we create prompts like "a traffic
333 scene with: car, building" as textual guidance. Using this pipeline, we construct a new monocular
334 SSC dataset based on SemanticKITTI Behley et al. (2019) and validate its quality by training a rep-
335 resentative SSC model on the generated data. This validates the quality of our generated scenes and
336 highlights Comp-D3PM's potential for 3D scene understanding dataset generation.
337

338 4.3.2 OTHER APPLICATIONS
339

340 We also employ Comp-D3PM for outpainting, inpainting, and SSC refinement, as illustrated in
341 Fig. 3. However due to space limitations, please refer to the Appendix for details.
342



350 351 352 353 354 355 356 357
358 Figure 6: Visualization comparison results of unconditioned generation on the Semantic
359 KITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets.
360
361
362

363 5 EXPERIMENTS
364365 5.1 EVALUATION PROTOCOLS
366

367 Evaluating the quality of generated 3D scenes is challenging, as common 2D metrics like FID Heusel
368 et al. (2017) and KID Bińkowski et al. (2018) cannot be directly applied. To address this, we adopt
369 four specialized metrics, following the practices in Lee et al. (2024) and Liu et al. (2024).
370

371 **F3D:** An adaptation of the *Fréchet Inception Distance* (FID) for 3D data, F3D measures the distance
372 between real and generated scenes in the feature space of a pretrained 3D autoencoder.
373

374 **K3D (MMD):** Similarly, K3D adapts the *Kernel Inception Distance* (KID) to 3D data, computing
375 the *Maximum Mean Discrepancy* (MMD) between features of real and generated scenes.
376

377 **2D Metrics:** To leverage existing 2D evaluation methods, we render the 3D scenes into 2D images
378 (Fig.6) and compute FID, KID, and ISCSalimans et al. (2016), similar to Lee et al. (2024).
379

380 **Background Invasion Score (BIS):** To specifically evaluate background invasion into objects in
381 the generated results, we introduced a dedicated human evaluation metric. Five independent raters
382

378 blindly scored 300 generated samples on a 0–10 scale, and the mean and variance of these scores
 379 were computed to quantify this phenomenon.
 380

381 Table 1: Comparison with state-of-the-art on Semantic KITTI Behley et al. (2019) dataset. (F3D is
 382 measured in units of 10^{-2} , and B denotes BEV (Bird’s Eye View).)
 383

	F3D↓	K3D ↓	FID ↓	KID ↓	ISC ↑	BIS ↑
D3PM	83.2	113.0	66.0	0.0644	2.50	6.37 ± 0.44
Semcity(B)	65.7	34.3	58.5	0.0602	2.49	6.41 ± 1.47
Semcity	62.3	32.4	48.2	0.0483	2.66	6.49 ± 2.69
Ours	53.1	26.5	24.4	0.0179	3.32	6.86 ± 0.80

389 Table 2: Comparison with state-of-the-art on CarlaSC Wilson et al. (2022) dataset.
 390

	F3D↓	K3D ↓	FID ↓	KID ↓	ISC ↑	BIS ↑
D3PM	96.5	30.4	59.2	0.0551	3.06	7.91 ± 0.01
Semcity(B)	87.6	29.1	45.1	0.0370	2.96	7.78 ± 0.14
Semcity	80.5	16.6	26.9	0.0178	2.72	7.88 ± 0.04
PDD	101.5	26.2	42.0	0.0392	3.32	7.98 ± 0.12
Ours	26.3	5.6	9.8	0.0041	3.33	8.18 ± 0.01

399 5.2 EXPERIMENT SETTINGS

400 We conduct experiments on two datasets: CarlaSC Wilson et al. (2022) and Semantic KITTI Behley
 401 et al. (2019). Semantic KITTI is a real-world outdoor dataset based on the KITTI dataset Geiger et al.
 402 (2013), containing 20 classes and 3,824 scenes, each represented as a $256 \times 256 \times 32$ occupancy grid.
 403 CarlaSC is a synthetic dataset generated from the Carla simulator Dosovitskiy et al. (2017), featuring
 404 32,400 scenes across 10 classes. In this paper, we use the updated version of CarlaSC, where each
 405 scene has a resolution of $256 \times 256 \times 16$. All experiments were conducted on an NVIDIA RTX
 406 4090 GPU, and models were optimized using the AdamW optimizer Loshchilov (2017).
 407

408 We apply BEV folding and downsampling to both objects and background (e.g., reducing a
 409 $256 \times 256 \times 32$ voxel grid to 32×32), where the additional stage only consumes about one-
 410 sixth the memory of full-resolution BEV methods, keeping the overall complexity comparable to
 411 non-compositional baselines. As previously mentioned, we primarily categorize classes as objects
 412 or backgrounds based on their percentage distribution and semantics, as shown in Fig. 2.
 413

5.3 COMPARISONS

415 We mainly compare with semantic scene generation methods that do not require any conditioning
 416 Lee et al. (2023; 2024); Liu et al. (2024), as shown in Tab. 1 and Tab. 2. Among them,
 417 Semcity Lee et al. (2024) is a discrete diffusion-based method, while Semcity BEV refers to its
 418 BEV-based implementation using latent diffusion Rombach et al. (2022). Our method achieves
 419 state-of-the-art performance across all metrics, demonstrating its effectiveness in capturing complex
 420 scene structures and generating high-quality 3D reconstructions. To ensure a fair comparison, we
 421 use the released weights of the involved methods for generation and keep all settings identical across
 422 experiments, except for the generation method itself.
 423

424 Furthermore, Fig. 6 compares our method with others, showing superior detail capture, structural
 425 integrity, and accurate shape restoration of small objects. Our approach produces more realistic 3D
 426 scenes with sharper boundaries and better spatial arrangement than baselines.
 427

5.4 ABLATION STUDIES

428 **Ablation studies on compositional foreground-background modeling.** We conducted ablation
 429 studies on the compositional modeling mechanism by developing a two-stage generation pipeline
 430 on the CarlaSC dataset using the same diffusion model for comparison. In the first stage, a down-
 431 sampled version of the scene is generated, and in the second stage, this intermediate output is used as

432 Table 3: Ablation Study on Compositional Modeling Foreground/Background and Downsampling.
433

Method	Resolution	F3D↓	K3D↓	FID↓	KID↓	ISC↑
Compositional	$h \times w \times d$	88.3	74.2	51.6	0.0408	3.30
Compositional	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{2}$	46.6	12.8	18.34	0.0162	3.32
Compositional	$\frac{h}{16} \times \frac{w}{16} \times \frac{d}{8}$	49.5	17.9	19.25	0.0231	3.31
Non-compositional	$\frac{h}{8} \times \frac{w}{8} \times \frac{d}{4}$	37.6	9.85	13.87	0.0073	3.30
Compositional	$\frac{h}{8} \times \frac{w}{8} \times \frac{d}{4}$	26.3	5.6	9.83	0.0041	3.33

440
441
442 a condition to reconstruct the scene at full resolution. As summarized in Tab. 3, compositional mod-
443 eling of the foreground and background significantly improves the quality of the generated scenes.

444 To further investigate the necessity of compositional modeling for small object generation, we an-
445 alyzed the proportion of voxels for each category in the generated samples of the CarlaSC dataset
446 relative to the whole, as shown in Fig. 3(right). Our approach demonstrates a stronger preference for
447 generating objects, while the baseline method Lee et al. (2024), which processes the 3D scene as a
448 single entity, leans more towards generating background components. Additionally, Fig. 6 demon-
449 strates that our approach is capable of accurately generating the shapes of various small objects
450 within the 3D scene, particularly for the *other-object* category, which encompasses a diverse range
451 of shape distributions.

452 **Ablation studies on downsampling during generation.** As mentioned earlier, performing
453 background-object compositional modeling directly at the original resolution results in hollow re-
454 gions in the background, as shown in Fig. 3(left). This leads to the leakage of object positional
455 information, as the network can infer the location and category of objects through these hollow re-
456 gions, thereby reducing the richness of the generated output. At the same time, generating directly
457 at the original resolution also increases the difficulty of network convergence.

458 We conducted ablation studies on the downsampling process during compositional modeling, as
459 shown in Tab. 3. The method employing full resolution demonstrates significantly inferior results
460 compared to the approach that utilizes downsampling for both background and object generation,
461 highlighting the importance of downsampling.

462
463 Table 4: Ablation Analysis for Generated Dataset.
464

Method	Real Dataset		Synthetic Dataset	
	IoU↑	mIoU↑	IoU↑	mIoU↑
VisHall3D	46.14	17.06	34.33	7.17
MonoScene	37.12	11.50	24.23	4.72

470 **Ablation Analysis for Generated Dataset.** Based on Comp-D3PM, we construct a monocular SSC
471 dataset derived from SemanticKITTI Behley et al. (2019), ensuring no data leakage by training all
472 generative models solely on the training split. To evaluate the quality and utility of the generated
473 dataset, we conduct an ablation study with the state-of-the-art monocular SSC method VisHall3D
474 (ICCV 2025) Lu et al. (2025) and the representative baseline MonoScene (CVPR 2023) Cao &
475 De Charette (2022). Specifically, we evaluate the effectiveness of our generated dataset by compar-
476 ing zero-shot performance and validating on the original validation set. As shown in Tab. 4, although
477 models trained purely on synthetic data still underperform compared to those trained on real data,
478 the results highlight the promise of our approach as a foundation for future data generation efforts.

479
480 6 CONCLUSION
481

482 In this work, we identify probabilistic flow collapse and propose Comp-D3PM, a two-stream archi-
483 tecture separating foreground and background dynamics. Beyond enhancing generation quality, it
484 adapts to tasks like inpainting, outpainting, and SSC refinement, and enables Comp-D3PM to build
485 a monocular SSC dataset for scalable 3D data generation.

486 7 ETHICS STATEMENT
487488 This research adheres to the ICLR Code of Ethics. No human subjects, personally identifiable
489 information, or sensitive private data were used in this study. All datasets employed are publicly
490 available or released with appropriate licenses, and their use complies with relevant legal and ethical
491 guidelines. The methods proposed in this paper are intended for academic research purposes and
492 do not aim to enable harmful applications. We have taken care to minimize potential biases and
493 discrimination in the data and methods, and we transparently document all procedures to support
494 reproducibility and research integrity.
495496 8 REPRODUCIBILITY STATEMENT
497498 We have made efforts to ensure the reproducibility of our results. All experimental setups, model
499 architectures, and training procedures are described in detail in the main text and supplementary
500 materials. The datasets used are publicly available, and data processing steps are documented in the
501 appendix. For the proposed models and algorithms, code will be provided as anonymous supple-
502 mentary material, enabling reviewers to reproduce the results. Any theoretical claims are supported
503 by detailed derivations included in the appendix. We encourage readers to refer to the main paper,
504 appendix, and supplementary materials for full reproducibility.
505506 REFERENCES
507508 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
509 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
Systems*, 34:17981–17993, 2021.
510
511 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
512 Synthetic data from diffusion models improves imagenet classification. *arXiv preprint
arXiv:2304.08466*, 2023.
513
514 Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
515 Jürgen Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In
516 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9297–9307, 2019.
517
518 Hengwei Bian, Lingdong Kong, Haozhe Xie, Liang Pan, Yu Qiao, and Ziwei Liu. Dynamiccity:
519 Large-scale 4d occupancy generation from dynamic scenes. In *Proceedings of the International
Conference on Learning Representations (ICLR)*, 2025.
520
521 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
522 gans. *arXiv preprint arXiv:1801.01401*, 2018.
523
524 Lucas Caccia, Herke Van Hoof, Aaron Courville, and Joelle Pineau. Deep generative modeling of
525 lidar data. In *2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
526 pp. 5034–5040. IEEE, 2019.
527
528 Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
529 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
3991–4001, 2022.
530
531 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
in neural information processing systems*, 34:8780–8794, 2021.
532
533 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
534 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017.
535
536 Anpei Chen, Andreas Geiger, Bernhard Schölkopf, Gege Gao, Weiyang Liu. Graphdreamer: Com-
537 positional 3d scene synthesis from scene graphs. In *Conference on Computer Vision and Pattern
Recognition (CVPR)*, 2024.
538
539 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013.

540 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 541 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 542 *neural information processing systems*, 30, 2017.

543

544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 545 *neural information processing systems*, 33:6840–6851, 2020.

546 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 547 and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information*
 548 *Processing Systems*, 34:12454–12465, 2021.

549

550 Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view
 551 for vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF conference*
 552 *on computer vision and pattern recognition*, pp. 9223–9232, 2023.

553 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 554 for robust image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision*
 555 *and pattern recognition*, pp. 2426–2435, 2022.

556 Alexander Kirillov, Kaiming He, and Others. Panoptic segmentation. In *CVPR*, pp. 9404–9413,
 557 2019.

558

559 Jumin Lee, Woobin Im, Sebin Lee, and Sung-Eui Yoon. Diffusion probabilistic models for scene-
 560 scale 3d categorical data. *arXiv preprint arXiv:2301.00527*, 2023.

561 Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Juhyeong Seon, and Sung-Eui Yoon. Semicity:
 562 Semantic scene generation with triplane diffusion. In *Proceedings of the IEEE/CVF Conference*
 563 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 28337–28347, June 2024.

564

565 Bohan Li, Jiazhe Guo, Hongsi Liu, Yingshuang Zou, Yikang Ding, Xiwu Chen, Hu Zhu, Feiyang
 566 Tan, Chi Zhang, Tiancai Wang, et al. Uniscene: Unified occupancy-centric driving scene gener-
 567 ation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 11971–
 568 11981, 2025.

569 Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis, Sanja Fidler, and Antonio Torralba. Big-
 570 datasetgan: Synthesizing imagenet with pixel-wise annotations. In *Proceedings of the IEEE/CVF*
 571 *Conference on Computer Vision and Pattern Recognition*, pp. 21330–21340, 2022.

572 Yuheng Liu, Xinkai Li, Xuetong Li, Lu Qi, Chongshou Li, and Ming-Hsuan Yang. Pyramid diffusion
 573 for fine 3d large scene generation. 2024.

574

575 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

576

577 Haoang Lu, Yuanqi Su, Xiaoning Zhang, Longjun Gao, Yu Xue, and Le Wang. Vishall3d: Mono-
 578 cular semantic scene completion from reconstructing the visible regions to hallucinating the invisible
 579 regions, 2025. URL <https://arxiv.org/abs/2507.19188>.

580 Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In *Proceed-
 581 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2837–2845,
 582 2021.

583

584 Quang Nguyen, Truong Vu, Anh Tran, and Khoi Nguyen. Dataset diffusion: Diffusion-based syn-
 585 thetic data generation for pixel-level semantic segmentation. *Advances in Neural Information*
 586 *Processing Systems*, 36, 2024.

587

588 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

589

590 Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja Fi-
 591 dler. Atiss: Autoregressive transformers for indoor scene synthesis. *Advances in Neural Infor-
 592 mation Processing Systems*, 34:12013–12026, 2021.

593

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 595 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

594 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 595 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
 596

597 Haoxi Ran, Vitor Guizilini, and Yue Wang. Towards realistic scene generation with lidar diffusion
 598 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-*
 599 *tion*, pp. 14738–14748, 2024.

600 Florence Regol and Mark Coates. Diffusing gaussian mixtures for generating categorical data. In
 601 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 9570–9578, 2023.
 602

603 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 604 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 605 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

606 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 607 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 608 2016.

609 Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it till you make
 610 it: Learning transferable representations from synthetic imagenet clones. In *Proceedings of the*
 611 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 8011–8021, 2023.

612

613 Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d point cloud generative adversarial net-
 614 work based on tree structured graph convolutions. In *Proceedings of the IEEE/CVF international*
 615 *conference on computer vision*, pp. 3859–3868, 2019.

616

617 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 618 *preprint arXiv:2010.02502*, 2020.

619

620 Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
 621 fuscene: Denoising diffusion models for generative indoor scene synthesis. In *Proceedings of the*
 622 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 20507–20518, 2024.

623

624 Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, and
 625 Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving.
 626 *Advances in Neural Information Processing Systems*, 36, 2024.

627

628 Wenwen Tong, Chonghao Sima, Tai Wang, Li Chen, Silei Wu, Hanming Deng, Yi Gu, Lewei Lu,
 629 Ping Luo, Dahua Lin, et al. Scene as occupancy. In *Proceedings of the IEEE/CVF International*
 630 *Conference on Computer Vision*, pp. 8406–8415, 2023.

631

632 Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion: La-
 633 tent point diffusion models for 3d shape generation. *Advances in Neural Information Processing*
 634 *Systems*, 35:10021–10039, 2022.

635

636 Julong Wei, Shanshuai Yuan, Pengfei Li, Qingda Hu, Zhongxue Gan, and Wenchao Ding. Occlama:
 637 An occupancy-language-action generative world model for autonomous driving. *arXiv preprint*
 638 *arXiv:2409.03272*, 2024.

639

640 Joey Wilson, Jingyu Song, Yuewei Fu, Arthur Zhang, Andrew Capodieci, Paramsothy Jayakumar,
 641 Kira Barton, and Maani Ghaffari. Motionsc: Data set and network for real-time semantic mapping
 642 in dynamic environments. *IEEE Robotics and Automation Letters*, 7(3):8439–8446, 2022.

643

644 Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou, and Chunhua Shen. Diffumask: Syn-
 645 thesizing images with pixel-level annotations for semantic segmentation using diffusion models.
 646 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1206–1217,
 647 2023.

648

649 Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
 650 Pointflow: 3d point cloud generation with continuous normalizing flows. In *Proceedings of the*
 651 *IEEE/CVF international conference on computer vision*, pp. 4541–4550, 2019.

648 Jiawei Yao, Chuming Li, Keqiang Sun, Yingjie Cai, Hao Li, Wanli Ouyang, and Hongsheng Li.
 649 Ndc-scene: Boost monocular 3d semantic scene completion in normalized device coordinates
 650 space. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9421–9431.
 651 IEEE Computer Society, 2023.

652 Junge Zhang, Qihang Zhang, Li Zhang, Ramana Rao Kompella, Gaowen Liu, and Bolei Zhou.
 653 Urban scene diffusion through semantic occupancy map. *arXiv preprint arXiv:2403.11697*, 2024.

654 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 655 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 656 pp. 3836–3847, 2023.

657 Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio
 658 Torralba, and Sanja Fidler. Datasetgan: Efficient labeled data factory with minimal human effort.
 659 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 660 10145–10155, 2021.

661

662 A APPENDIX

663 A.1 OTHER APLPLICATIONS

664 A.1.1 INPAINTING AND OUTPAINTING

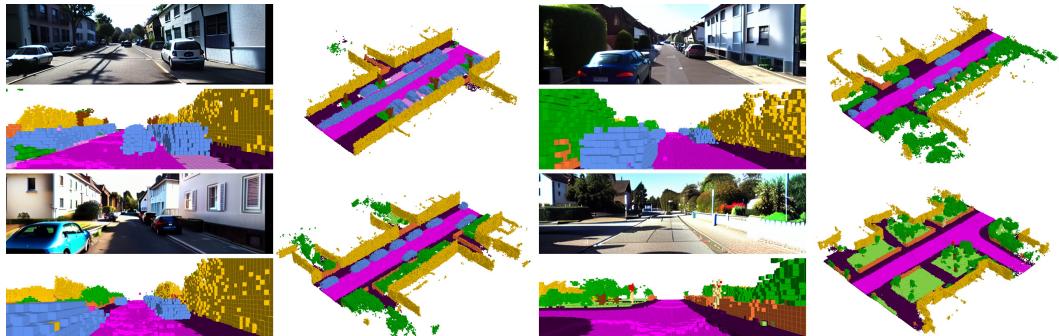
665 Scene inpainting and outpainting are techniques used to enhance and extend generated scenes. With
 666 Comp-D3PM, which decouples object and background distributions, scene inpainting is achieved
 667 by controlling object distribution generation. As shown in Fig.5, different object distributions can
 668 be generated with the same background. Object control is further refined using a mask mechanism;
 669 given a known object distribution x_{known} , we regenerate specific parts by applying a mask m ,
 670 overriding the input at time t with \bar{x}_t :

$$671 \bar{x}_t = m \otimes x_t + (1 - m) \otimes x_{known} \quad (9)$$

672 A.1.2 SSC REFINEMENT

673 When reconstructing 3D occupancy from visual sensor data Yao et al. (2023); Huang et al. (2023);
 674 Cao & De Charette (2022), networks often struggle to restore fine object details, as shown in Fig.5.
 675 Previous work Lee et al. (2024) has attempted to refine network-predicted occupancy using gener-
 676 ative models with promising results. In our approach, since shape and position are decoupled, we
 677 downsample the predicted occupancy, separate object and background distributions, and input them
 678 into the upsampling model to reconstruct the shape .

679 For more visualized inpainting and outpainting samples, please refer to the demo.mp4 in the supple-
 680 mentary material.



700 Figure 7: Additional visualization results of the generated dataset.
 701

702 A.2 ADDITIONAL RESULTS AND TRAINING DETAILS
703

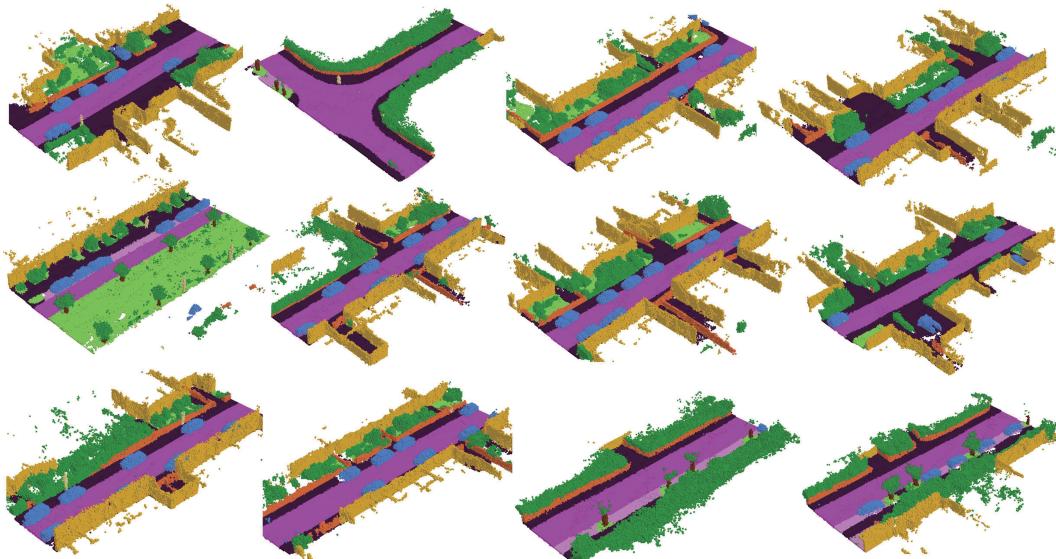
704 To further demonstrate the effectiveness of our approach, we present additional qualitative results
705 on the SemanticKITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets. As shown in
706 Fig.9 and Fig.8, our method achieves high performance in both scene-level coherence and object-
707 level detail. Notably, our results do not exhibit confusion between different object categories.

708 In addition to the examples presented in the main text, we also provide an expanded set of generated
709 samples from the OCC-Image dataset in the appendix as shown in Fig.7. These additional samples
710 are intended to give readers a more comprehensive view of the dataset’s characteristics, the diver-
711 sity of the generated outputs, and the effectiveness of our approach, thereby serving as a valuable
712 reference for further research and comparison.

713 As described in the main paper, we trained Comp-D3PM using AdamW Loshchilov (2017) opti-
714 mizer on both the SemanticKITTI Behley et al. (2019) and CarlaSC Wilson et al. (2022) datasets for
715 500 epochs. The batch size was set to 4, and the learning rate was 1×10^{-4} . The learning rate was
716 decayed by a factor of 10 at the 320th and 420th epochs.
717

718 A.3 LLM USAGE STATEMENT
719

720 We confirm that large language models (LLMs) were used solely as a general-purpose writing assis-
721 tant to improve the clarity, grammar, and readability of the manuscript. The LLM did not contribute
722 to the research ideation, experimental design, data analysis, or interpretation of results, and all sci-
723 entific content, reasoning, and conclusions are entirely the authors’ own work.



743 Figure 8: Additional visualization results on the Semantic KITTI dataset.
744
745
746
747
748
749
750
751
752
753
754
755

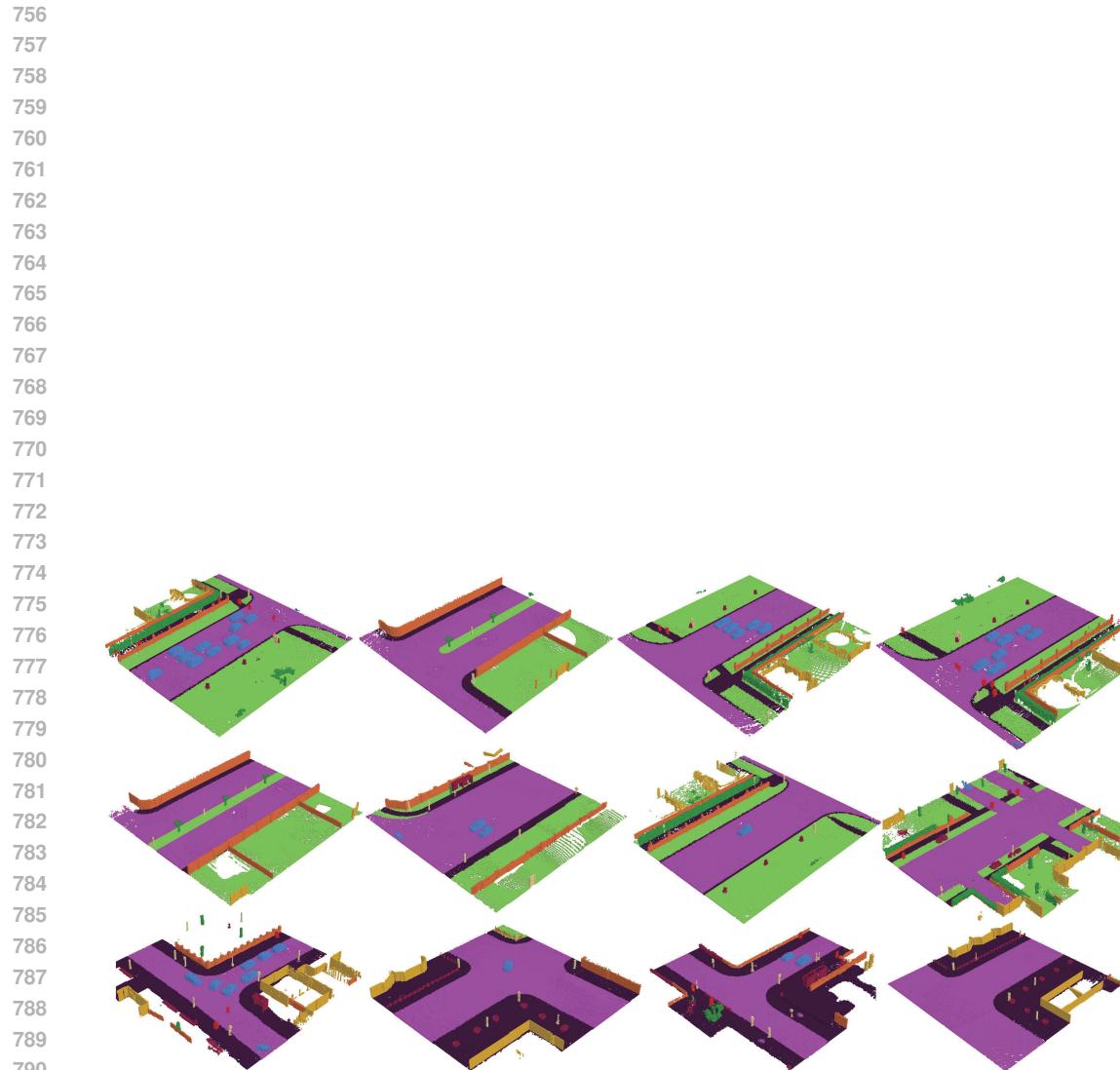


Figure 9: Additional visualization results on the CarlaSC dataset.