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ABSTRACT

Learning individualized treatment effects (ITE) from observational data is a chal-
lenging task due to the existence of unobserved confounders. Previous methods
mostly focus on assuming the Ignorability assumption ignoring the unobserved
confounders or overlooking the impact of an apriori knowledge on the generation
process of the latent variable, which can be quite impractical in real-world scenar-
ios. Motivated by the recent advances in the latent variable modeling, we propose
to capture the unobserved latent space using diffusion model, and accordingly
to estimate the causal effect. More concretely, we build on the reverse diffusion
process for the unobserved confounders as a Markov chain conditioned on an
apriori knowledge. In order to implement our model in a feasible way, we derive
the variational bound in closed form. In the experiments, we compare our model
with the state-of-the-art methods based on both synthetic and benchmark datasets,
where we can empirically demonstrate consistent improvements of our model on√
ϵPEHE and ϵATE , respectively. To benefit this research direction, we release

our project at https://github-dfite.github.io/dfite/.

1 INTRODUCTION

Estimating the Individual Treatment Effect (ITE) from observational data is a fundamental problem
across a wide variety of domains. For example, re-weighting the training instances with the inverse
propensity score (IPS) in recommender system Wang et al. (2021; 2022), measuring the effect of a
certain medicine against a disease in healthcare Shalit (2020) and providing counterfactual visual
explanations in computer vision Goyal et al. (2019). In this paper, we focus on these measure
problems from confounders perspective.

How to measure the confounder is an essential problem in estimating ITE of an treatment A
(e.g.,medicine) on an individual with features X (e.g., demographic characteristics ). A confounder
is a variable which affects both the treatment and the outcome. On the one hand, one can account
for ITE by controlling it with the Ignorability assumption in mind, i.e., there does not exists the
unobserved confounder. The most crucial mechanism lie in balance the distribution among groups,
usually through inverse propensity weighting (IPW) or covariate adjustment Yao et al. (2021); Louizos
et al. (2017). While quite a lot of promising models have been proposed and achieved impressive
performance, such as, the representative CFR Shalit et al. (2017), the augmented IPW estimator
DR Funk et al. (2011) and so on, these methods build on the Ignorability assumption, which can be
impractical in real-world scenarios. On the other hand, exactly collecting all of valid confounders
is impossible in the general case. For example, demographic characteristics and genetic factor can
both affect the choice of medication to a patient, and the patient’s health. However we can only have
access to the former in the observational data. As illustrated in Figure 1, the genetic factor acts as
an unobserved confounder Z both affecting the treatment A and health outcomes Y , and without
controlling it we can not block the backdoor path: A← Z → Y as of estimating the causal effect of
treatments on health measures.

In the past few years, some prominent generative models have been proposed to generate such
unobserved confounder that we could utilize it to isolate the causal effect of treatment on outcome.
For instance, VAE-based method CEVAE Louizos et al. (2017) assume that there exists a proxy
variable in causal graph, and then generates the hidden confounder Z by optimizing the variational
lower bound of this graphical model, GANITE Yoon et al. (2018) aims to generate the counterfactual
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Figure 1: Motivating example on the generation process of the unobserved confounders. A is a
treatment, X is an observed confounder, Y denotes an outcome, Z is an unobserved confounders and
η represents the common prior variable of X and Z.

distributions using GAN, and accordingly to infer the ITE in an unbiased settings. Additionally,
some advanced techniques are also applied to reconstruct or generate the hidden confounder, like
Gaussian Processes Witty et al. (2020), Imitation Learning Zhang et al. (2020), deep latent variable
models Josse et al. (2020) and more Li & Zhu (2022); Yao et al. (2021).

While great success has been made, these methods have some intrinsic limitations for modeling
hidden confounder. For examples, GAN-based methods could be unstable in modeling ITE due to
the adversarial losses. VAEs make substantially weaker assumptions in generating the structure of
the hidden confounders Louizos et al. (2017), which could restrict the model’s flexibility. In order to
address these challenges, in this paper, we propose to generate the unobserved confounders using
diffusion model. We aim to exploit two types of generation process called forward diffusion process
and reverse diffusion process, respectively. The former process converts the observed confounders
to a simple noise distribution by adding noise at each time step, in which the useful decomposition
information can be preserved in transition kernel. And then the transition kernel are utilized to the
unobserved confounder generation. The latter process are regarded as a Markov chain which is
responsible for converting the noise distribution to our target latent distribution. By integrating these
two processes, we can learn its transition kernel and accordingly reconstruct the desired unobserved
confounders. Furthermore, we also design a generation factor as the condition for learning the
transition kernel. The generation factor follows a prior distribution in our setting of generation. As
illustrated in Figure 1, we assume that the generation factor η can simultaneously affect the generation
process of the observed confounder and the unobserved confounder. For examples, the environment
in which the patient live and work can both affect the patient socio-economic status and gene for a
certain disease. Therefore, the environment can be regarded as a generation factor, which plays a
significant role in generating unobserved confounders.

The main contributions of this paper can be concluded as follows: (1) We propose to solve the task of
unobserved confounders in causal inference with the diffusion model. (2) To realize the above idea,
we first derive a variational lower bound of the likelihoodof the unobserved confounders conditional
on the generation factor, and then reformulate that bound into a tractable expression in closed form.
(3) We verify the effectiveness and generality of our framework by comparing with 12 state-of-the
art methods on four datasets. The empirical studies manifest that the proposed method can achieve
competitive gains both on synthetic and benchmark datasets.

2 PROBLEM FORMULATION

Under the Neyman-Rubin potential outcomes framework Rubin (2005), ITE estimation aims to
measure the causal effect of a treatment or intervention a ∈ A on the outcome y ∈ Y for given
the unit’s confounders or descriptions x ∈ X . Throughout this paper, we only focus on the binary
treatment case, where A = {0, 1}, y represents the factual outcome. We treat units which received
treatment, i.e., a = 1 as treated units and the other units with a = 0 as control units. The Individual
Treatment Effect (ITE), also known as Conditional Average Treatment Effect (CATE) for unit x
is Shalit et al. (2017):

τ(x) := E[Y1 − Y0|x] (1)

Where Ya denotes the potential outcome for treatment a. In practice, we can only observe the factual
outcome with respect to treatment assignment, i.e., y = Y0 if a = 0, otherwise y = Y1. Usually, we
build on three significant assumptions to guarantee that the potential outcomes are identifiable from
observational study.
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Assumption 1. Consistency. For a given patient with treatment assignment a, then the potential
outcome for the treatment a is the same as the observed (factual) outcome: Ya = y

Assumption 2. Positivity (Overlap) . if P (X = x) ̸= 0, then P (A = a|X = x) > 0, ∀ a and x.

Assumption 3. Strong ignorability. For a given patient (i), the treatment are independent of the
potential outcomes if given the confounders X : A ⊥⊥ Y1, Y0|X .

With these assumptions in mind, the estimation on potential outcomes could be transformed into
identifiable estimation from a statistical point of view. In other words, we call that the counterfactual
outcomes can be identified under these assumptions, i.e, τ(x) = E[Y |X = x,A = 1]− E[Y |X =
x,A = 0]. From machine learning perspective, these observational dataset can be modeled via
a standard supervised learning model, such as SVM, for estimating τ(x). However, this model
could be unreliable and unviable employed to estimate the future counterfactual outcomes under the
fact that without adjusting for the bias introduced by the unobserved confounders and imbalanced
distribution between treated groups and control groups. The existing generative-based models
can achieve promising results in generating unobserved confounders Louizos et al. (2017) and
counterfactuals Yoon et al. (2018), which indeed eliminate the influence from backdoor between
treatment and outcome. However, they have some inherent limitations, which would hinder the
model’s flexibility and performance. In this paper, we build on the prominent diffusion model to
generate the unobserved confounders, and accordingly align the distribution between treated groups
and control groups and measure the ITE. We proceed in two steps: (1) Generate the unobserved
confounders conditioned on generation factor; (2) Balance the confounder’s representation in latent
space and measuring the ITE based on the observed and unobserved confounders.

3 DIFFUSION MODEL FOR UNOBSERVED CONFOUNDERS

In this section, we first formulate the diffusion model of both the forward and the reverse diffusion
processes for unobserved confounders. Then, we reformulate the objective as a variational bound in
closed form for training the model. In this end, we present our algorithm for estimating ITE. The
implementation of the model is provided in the experiment section.

3.1 FORMULATION

In the observational study, we can only observe a set of full observational data with factual outcomes.
In this case, we formulate the problem as follows: Let D = {(xi, ai, yi)}mi=1 denote the collected
datasets, in which m is the total number of observational data, i is i-th unit with observed confounder
xi, ai and yi are its corresponding treatment and factual outcome, respectively. We assume that each
point xi are sampled independently from a certain distribution, which we denote as q(xi|η). As
discussed in the introduction, η is regarded as generation factor that affects the generation process.
Since the observed confounders {xi}mi=1 are regarded as the initial samples in diffusion model, we
add a superscript (0) to it to indicate the time mark, i.e. {x(0)

i }mi=1. Additionally, for the sake of
brevity, we ignore subscripts of characters unless otherwise specified. The forward diffusion process
aims to converts the initial distribution into a noise distribution. Formally, the forward diffusion
process is defined as a Markov chain Luo & Hu (2021); Ho et al. (2020):

q(x(1:T )|x(0)) =

T∏
t=1

q(x(t)|x(t−1)) (2)

where q(x(t)|x(t−1)) is the handcraft transition kernel. At the previous time step, the kernel are
responsible for adding noise to the points and at the next time step, which capable of modeling the
distribution of points. One typical design for the transition kernel is Gaussian perturbation Yang et al.
(2022); Luo & Hu (2021):

q(x(t)|x(t−1)) = N (x(t);
√

1− βtx
(t−1), βtI) (3)

where βt ∈ (0, 1) is a hyper-parameter that control the rate of the forward diffusion process. More
specifically, with αt = 1− βt and ᾱ =

∏t
i=1 αi, we have:

q(x(t)|x(t−1)) = N (x(t);
√
ᾱtx

(0), (1− ᾱ)I) (4)
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Through the above parameterization trick, we can easily obtain a sample of x(t) with noise for given
a observed confounders x(0):

x(t) =
√
ᾱtx

(0) +
√
1− ᾱtϵt, ϵt ∼ N (0, I) (5)

Our goal is to generate unobserved confounders with a meaningful generation factor encoded by
the latent η. In our generation process, the reverse diffusion is capable of approximating the q(x

(T )
i )

from a simple noise distribution p(x
(T )
i ) that are given as the input. Therefore, with the latent

representation η and the preserved information from forward diffusion process, we can generate the
desired unobserved confounders through the reverse Markov chain. Formally, the reverse diffusion
process for generating unobserved confounders is:

pθ(x
(0:T )|η) = p(x(T ))

T∏
t=1

pθ(x
(t−1)|x(t),η) (6)

where pθ(x(t−1)|x(t),η) is learnable transition kernel and θ is the model parameters. The learnable
transition kernel takes the form of

pθ(x
(t−1)|x(t),η) = N (x(t−1);µθ(x

(t), t,η), βtI)) (7)

where the mean µθ(x
(t), t,η) are parameterized by deep neural networks learned in the optimization

process and η is the latent representation encoding the generation factor. In practice, we treat the noise
distribution p(x

(T )
i ) as a standard normal distributionN (0, I). By applying the reverse Markov chain

which given the generation factor and starting distribution p(x
(T )
i ), we can obtain the unobserved

confounders with target distribution.

3.2 VARIATIONAL LOWER BOUND

With the formulated forward and reverse diffusion processes for unobserved confounders in mind, we
now aims to formalize the training objective. Since directly optimizing the exact log-likelihood is
intractable, we instead maximize its variational lower bound (VLB)(the detailed derivation is present
in the Appendix):

E[− log pθ(x
(0))] ≤ Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]
︸ ︷︷ ︸

V LB

(8)

Where LV LB is a common objective for training probabilistic generative models Luo & Hu (2021);
Ho et al. (2020). We can further derive the LV LB as:

LV LB = Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]

= Eq

 T∑
t=2

DKL

q(x(t−1)|x(t),x(0))︸ ︷︷ ︸
A

|| pθ(x(t−1)|x(t),η)︸ ︷︷ ︸
B


− log pθ(x

(0)|x(1),η)︸ ︷︷ ︸
C

+DKL

qφ(η|x(0))︸ ︷︷ ︸
D

|| p(η)︸︷︷︸
E


(9)

The above training objective can be optimized efficiently since each term in this objective is tractable.
In order to make the objective more clear, we elaborate on the terms as following:

A q(x(t−1)|x(t),x(0)) is usually computed by a closed-form Gaussian Luo & Hu (2021); Ho et al.
(2020):

q(x(t−1)|x(t),x(0)) = N (x(t−1);µt(x
(t),x(0)), γtI) (10)

Where µt(x
(t),x(0)) =

√
āt−1βt

1−āt
x(0) +

√
at(1−āt−1)

1−āt
x(t) and γt =

1−āt−1

1−āt
βt.

B, C pθ(x
(t−1)|x(t),η) where t ∈ {1, 2, ..., T} are trainable Gaussian distribution shown in Eq. 7. D

qφ(η|x(0)) are learnable posterior distribution, which aims to encode the input observed confounders
x(0) into the distribution of the latent generation factor η. Usually, we define it as: qφ(η|x(0)) =

N (η;µφ(x
(0)),

∑
φ(x

(0))). The last term E p(η) is the prior distribution defined as isotropic
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Gaussian N (0, I), which is the most common choice for approximating the target distribution. In
the next section, we will show how to optimize this objective for generating the desired unobserved
confounders and accordingly estimating ITE.

3.3 ALGORITHM FOR ESTIMATING ITE

The generation processs in the previous section lay the foundation for accurate ITE estimation tasks.
In this section, we first give the widely used definitions in estimating ITE, and then present our
methods.

Let Φ : X → R be a representation function, f : R× {0, 1} → Y be an hypothesis predicting the
outcome of a patient’s confounders x given the representation confounders Φ(x) and the treatment
assignment a. Let L : Y × Y → R+ be a loss function. The estimation of ITE by an hypothesis f
and a representation function Φ is:

τ̂(x) = f(Φ(x), 1)− f(Φ(x), 0) (11)
We utilize the expected Precision in Estimation of Heterogeneous Effect (PEHE) Hill (2011) to train

our model. We define it as following:

ϵPEHE(f) =

∫
X
(τ̂(x)− τ(x))2p(x)dx (12)

Based on the above analysis, we propose a method called DFITE ( Estimation of Individual Treatment
Effect Using Diffusion Model), which take into account the unobserved confounders to estimate the
ITE.

The optimization problem in our framework is shown as the following:

min
f,Φ,θ,φ

m∑
i=1

wi · L(yi, f(Φ(xi, zi), ai)) + LV LB(xi) + α · IPMG(p̂
a=1
Φ , p̂a=0

Φ ) (13)

where wi is used to compensates for the difference in treatment group size. It can be calculated
be the proportion of treated units in the population, the loss funcation L is PEHE. the unobserved
confounder zi is derived by diffusion model, i.e., zi ∼ µθ(c, t, ηi) + βtϵ where ϵ, c ∼ N (0, I),
t is the time step in reverse Markov chain and qφ(ηi|xi) is the generation factor. Here, we use
reparameterization trick to make the generation process more feasible. LV LB is the VLB loss that
aims to learn the transition kernel. In practice, optimizing LV LB in our main objective is still a
challenging task, since it requires to sum the expectation of the KL terms on all time steps. To make
the training more efficient, we adopt the works in Ho et al. (2020) randomly choosing one term to
optimize at each training step. The detailed training algorithm is present in Appendix. p̂t=1

Φ and p̂t=0
Φ

are learned high-dimensional representation for treated and control groups respectively, IPMG(·, ·)
is the (empirical) integral probability metric w.r.t. a function family G. We adopt it to balance the
treated and control distribution. The imbalance penalty α are used to weight the magnitude of the
two distribution.

Based on above optimization, we can generate the latent confounders that are affected by a meaningful
generation factor from a noise distribution and accordingly obtain the accurate ITE estimation.

We refer to the model minimizing equation 13 with the observed and unobserved confounders as
DFITE. The model are trained by the adaptive moment estimation (Adam) Kingma & Ba (2014).
The details are described in the Appendix.

4 IDENTIFYING INDIVIDUAL TREATMENT EFFECT

Our goal in this paper is to estimate the ITE. To do that, we assume that there exist the unobserved
confounders that can both affect the treatment and outcome. As there exists the hidden confounder, we
can not block the backdoor path A← Z → Y , which results in p(Ya|X = x,A = a) ̸= p(Y |X =
x,A = a). In order to make the potential outcomes identifiable, we derive following theory:

Theorem 1. If we can recover the latent confounders distribution p(Z), then we can identify the ITE.
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Proof. If we can make the potential outcome with A = a identifiable, then the ITE is identical. With
the definitions of potential outcomes, we have:

p(Ya|A = a) =

∫
Z×X

p(Ya|A = a,X,Z)p(X,Z|A = a)dZdX

(a)
=

∫
Z×X

p(Y |A = a,X,Z)p(X,Z)dZdX

(14)

Where we use the independent conditions of Ya and A = a for given the complete confounders
(X,Z) in (a). The theoretical results demonstrate that the potential outcome can be identified from
the distribution p(X,Z).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

ITE estimation is more difficult compared to machine learning tasks, the reason is that we rarely
have access to ground-truth treatment effect in real-world scenario. In order to measure the accurate
estimation of ITE, we conduct experiments based on two types of synthetic datasets and two standard
benchmark datasets. The detailed description about these datasets are shown as follows:

ACIC 2016. This is a common benchmark dataset introduced by Dorie et al. (2019), which was
developed for the 2016 Atlantic Causal Inference Conference competition data Dorie et al. (2019).
It comprises 4,802 units (28% treated, 72% control) and 82 confounders measuring aspects of the
linked birth and infant death data (LBIDD). The dataset are generated randomly according to the data
generating process setting. We conduct experiments over randomly picked 100 realizations with
63/27/10 train/validation/test splits.

IHDP. Hill (2011) introduced a semi-synthetic dataset for causal effect estimation. The dataset
was based on the Infant Health and Development Program (IHDP), in which the confounders were
generated by a randomized experiment investigating the effect of home visits by specialists on future
cognitive scores. it consists of 747 units(19% treated, 81% control ) and 25 confounders measuring
the children and their mothers. Following the common settings in Qin et al. (2021); Shalit et al.
(2017), We average over 1000 replications of the outcomes with 63/27/10 train/validation/test splits.

Sim-z. This synthetic dataset is based on observed and unobserved confounders that are both obtained
from an normal Gaussian distribution. We adopt the generation process proposed in Assaad et al.
(2021); Louizos et al. (2017) to simulate the treatment effect as:

xi ∼ N (0, σ2
X); zi ∼ N (0.5, σ2

Z);

ai|xi, zi ∼ Bernoulli(σ(0.5xT
i βX + 0.5zTi βZ))

ϵi ∼ N (0, σ2
Y ); yi(0) = xT

i βa + zTi βb − r + ϵi

yi(1) = xT
i βa + zTi βb + xT

i βc + zTi βd + r + ϵi

(15)

where σ is the logistic sigmoid function. This generation process satisfies the assumptions of
ignorability and positivity. We randomly construct 100 replications of such datasets with 10,000
units (50% treated, 50% control) and 50 confounders by setting σX and σY both to 0.5, βT , β0 and
β1 are all sampled from N (0, 1).

Sim-η. This synthetic dataset aims to mimic the causal data generating process in terms of a prior
distribution specified in advance. We simulate the treatment effect as:

ηi ∼ N (0, I);

xi|η ∼ N (ηi, σ
2
x1
ηi + σ2

x0
(1− ηi));

zi|η ∼ N (ηi + 0.5, σ2
z1ηi + σ2

z0(1− ηi));

(16)
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Table 1: Individual treatment effect estimation on ACIC, IHDP and two types of Sim datasets. The
top module consists of baselines from recent works. The bottom module consists of our proposed
method. In each module, we present each of the result with form mean ± standard deviation and we
use bold fonts to label the best performance. Lower is better.

Datasets ACIC IHDP Sim-z Sim-η

Metric
√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

RF 3.09 ± 1.48 1.16 ± 1.40 4.61 ± 6.56 0.70 ± 1.50 4.92 ± 0.00 0.61 ± 0.01 12.13 ± 0.00 3.21 ± 0.02
CF 1.86 ± 0.73 0.28 ± 0.27 4.46 ± 6.53 0.81 ± 1.36 4.70 ± 0.00 0.74 ± 0.00 6.96 ± 0.00 1.25 ± 0.00

S-learner 3.86 ± 1.45 0.41 ± 0.35 5.76 ± 8.11 0.96 ± 1.80 4.96 ± 0.00 0.84 ± 0.00 11.74 ± 0.00 0.92 ± 0.00
T-learner 2.33 ± 0.86 0.79 ± 0.68 4.38 ± 7.85 2.16 ± 6.17 5.68 ± 0.08 0.94 ± 0.10 6.87 ± 0.12 1.05 ± 0.29
CEVAE 5.63 ± 1.58 3.96 ± 1.37 7.87 ± 7.41 4.39 ± 1.63 5.20 ± 0.03 1.78 ± 0.12 12.83 ± 0.61 5.37 ± 0.47

BNN 2.00 ± 0.86 0.43 ± 0.36 3.17 ± 3.72 1.14 ± 1.70 5.09 ± 0.04 1.37 ± 0.19 12.49 ± 0.21 5.04 ± 0.52
DragonNet 1.26 ± 0.32 0.15 ± 0.13 1.46 ± 1.52 0.28 ± 0.35 4.09 ± 0.10 0.50 ± 0.32 6.16 ± 0.10 0.47 ± 0.30

TARNet 1.30 ± 0.46 0.15 ± 0.12 1.49 ± 1.56 0.29 ± 0.40 4.10 ± 0.11 0.52 ± 0.34 6.16 ± 0.10 0.44 ± 0.36
GANITE 4.27 ± 1.34 3.27 ± 1.37 6.79 ± 5.60 4.43 ± 1.43 4.07 ± 0.06 1.92 ± 0.09 10.78 ± 0.15 5.83 ± 0.20

CFRMMD 1.24 ± 0.31 0.17 ± 0.14 1.51 ± 1.66 0.30 ± 0.52 4.06 ± 0.09 0.40 ± 0.32 6.16 ± 0.11 0.45 ± 0.33
CFRWASS 1.27 ± 0.38 0.15 ± 0.12 1.43 ± 1.61 0.27 ± 0.41 4.10 ± 0.09 0.52 ± 0.36 6.18 ± 0.11 0.49 ± 0.35

QHTE 1.32 ± 0.41 0.19 ± 0.18 1.83 ± 1.90 0.34 ± 0.43 6.05 ± 0.23 0.58 ± 0.26 7.39 ± 0.38 0.84 ± 0.43

DFITE 1.20 ± 0.07 0.20 ± 0.14 0.59 ± 0.08 0.17 ± 0.11 4.05 ± 0.08 0.41 ± 0.3 6.17 ± 0.12 0.44 ± 0.34

Figure 2: Performance comparison between our model and its variants on the unobserved confounders.
The performances of different types of unobserved confounders are labeled with different colors.
Lower is better.
We sample the generation factor η from a standard normal distribution and accordingly generate
the confounder x and z . The remaining generation process is the same as Sim-η. This generation
process satisfies the conditions of Theorem 1. We randomly construct 100 replications of such
datasets with 10,000 units (50% treated, 50% control) and 50 confounders by setting σ2

x1
, σ2

x0
, σ2

z1 ,
and σ2

z0 to 0.5,0.3,0.7 and 0.9 respectively.

Baselines. We compare our model with the following 12 representative baselines: Random Forests
(RF) Breiman (2001), Causal Forests (CF) Wager & Athey (2018), Causal Effect Variational
Autoencoder (CEVAE) Louizos et al. (2017), DragonNet Shi et al. (2019), Meta-Learner algorithms
S-Learner Nie & Wager (2021) and T-Learner Künzel et al. (2019), Balancing Neural Network
(BNN) Johansson et al. (2016), Treatment-Agnostic Representation Network (TARNet) Shalit
et al. (2017), Estimation of individualized treatment effects using generative adversarial nets
(GANITE) Yoon et al. (2018) as well as CounterFactual Regression with the Wasserstein metric
(CFRWASS) Shalit et al. (2017) and the squared linear MMD metric (CFRMMD) Shalit et al. (2017),
along with a extension of CRF method Query-based Heterogeneous Treatment Effect estimation
(QHTE) Qin et al. (2021).

Implementation details. We implement our methods based on QHTE Qin et al. (2021). We adopt
the commonly used metrics including Rooted Precision in Estimation of Heterogeneous Effect
(PEHE) Hill (2011) and Mean Absolute Error (ATE) Shalit et al. (2017) for evaluating the quality of
ITE. Formally, they are defined as:

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τ̂i − τi)
2
, ϵATE = | 1

n

n∑
i=1

(τ̂)− 1

n

n∑
i=1

(τ)| (17)
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Figure 3: t-SNE visualization of the balanced representations of ACIC learned by our algorithm
DFITE with 4 types of unobserved confounders.

where τ̂i and τi stand for the predicted ITE and the ground truth ITE for the i-th instance respectively.
The more details about the implementation of all adopted baselines and our methods and full
experimental settings are presented in Appendix

5.2 OVERALL RESULTS

The overall comparison results are presented in Table 1, from which we can see: among the baselines,
distance metric methods like CFRWASS and CFRMMD, can obtain more performance gain both than
the non-distance metric ones like GANITE and CEVAE, and traditional machine learning models
like RF and CF, in most cases. This observation is consistent to our expections and also agrees with
the previous work Shalit et al. (2017), and verify that minimizing the distance between the treated
and control groups on the studied latent space can effectively eliminate the distribution shift and lead
to better performance on ITE estimation.

It is encouraging to see that our model DFITE can achieve the best performance on different datasets
and evaluation metrics in more cases. The results verify the effectiveness of our idea. Comparing
with the baselines, we take advantages of both the observed and unobserved confounders, which
enable us to not only facilitate the identification of potential outcome, but also enhance to balance the
studied representations between the treated and control groups. As a result, our model can always
achieve the better performance on the estimation of ITE.

5.3 CONFOUNDERS CERTIFICATION

In this section, we would like to study whether different unobserved confounders in our model
are necessary. To this end, we compare our model with four different unobserved confounders:
DFITE(Gaussian) is a method with the unobserved confounders sampled randomly from the normal
Gaussian N (0, 1), DFITE(Uniform) is based on Uniform U(−1.5, 1.5), DFITE(Generation) is
our method, in which the unobserved confounder are generated by a reverse diffusion model and
DFITE(None) is the typical representation methods with the ignorability assumption hold. Due to
the space limitation, we present the results based on

√
ϵPEHE and ϵATE and the datasets of ACIC

and IHDP. From the results shown in Figure 2, we can see: DFITE(Gaussian) performs better than
DFITE(Uniform). We speculate that the unobserved confounders sampled from normal Gaussian is
more common than sampled from Uniform in practice. Nevertheless, both of which performs worse
than DFITE(None). This maybe because by randomly drawing unprovable unobserved confounders,
the ITE model are forced to encode the the noise samples, which result in a biased estimation. It is
interesting to see that when we add the generated confounders in estimating ITE, the performance of
DFITE(Generation) is better than DFITE(None) in more cases. This observation demonstrates the
effectiveness of our idea on capturing the unobserved confounders.

5.4 LEARNED REPRESENTATIONS

In this section, we investigate the influence of different types of unobserved confounders in balanc-
ing the studied representations between treated and control groups, where the parameter settings
follow the above experiments, and we compare the explanations generated by DFITE(Gaussian),
DFITE(Uniform),DFITE(Generation) and DFITE(None). From the results shown in Figure 3 and
Figure 4 we can see: all of these methods can perform several regions where the representations
are indeed balanced. Such that they appear equal in studied high-dimension space. The results
demonstrate that the distance metric used to balance two distributions play a significant role in

8
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Figure 4: t-SNE visualization of the balanced representations of IHDP learned by our algorithm
DFITE with 4 types of unobserved confounders.

Figure 5: Influence of the imbalance penalty α on our model performance in terms of
√
ϵPEHE and

ϵATE . The performances of different types of confounders are labeled with different colors. Lower is
better.

improving the estimation of ITE. Furthermore, in the illustration of representations generated by
DFITE(Generation), we can find that some regions appear a strip-like representation on IHDP,
whereas some regions appear rod-like shape on ACIC, where both of which have a smaller overlap.
This observation demonstrate that the unobserved confounders generated by reverse diffusion model
can contribute to balancing the studied distribution between treated and control groups.

5.5 PARAMETER STUDY

In this section, we analyze the influence of the key hyper parameters in our objective 13, we report the
results on the same datasets and evaluation metric as the above experiments. The imbalance penalty α
determines the magnitude of IPM in overall loss function. We tune α in [0, 1e−4, 1e−2, 1, 1e2, 1e4].
In order to investigate the influence of the unobserved confounders in parameter study, we compare
our model with its two combinations of confounders: DFITE(X) is a model based on the observed
confounder X and DFITE(X+Z) is based on both the observed and unobserved confounders X and
Z, where Z is generated by a reverse diffusion model. The results are presented in Figure 5, from
which we can see: for both methods of DFITE(X) and DFITE(X+Z), the performance fluctuates a lot
as α varies, but the best performance is usually achieved when α is moderate. This agrees with our
expectation, i.e., too small α may lead to the imbalanced studied representation, while too large α
may hinder the accurate estimation of ITE. Between DFITE(X) and DFITE(X+Z), we can find that
the red line usually appears below blue line. The intuitive example suggests that the performance of
DFITE(X+Z) tend to better than DFITE(X) as α varies. As expected, the unobserved confounders
generated by our methods contributes to the estimation of ITE and should not be ignored.

6 CONCLUSION

In this paper, we propose to generate the unobserved confounders, and accordingly to facilitate the
identification of potential outcome, as well as enhancing the learned representations. To achieve
this goal, we first reconstruct the unobserved confounders by a reverse diffusion model, and then
to estimation the ITE and balance the distribution between the treated and control groups based
on the combination of the observed and unobserved confounders. In the experiments, we evaluate
our framework based on both synthetic and real-world datasets to demonstrate its effectiveness
and generality. This paper makes a first step on applying the idea of diffusion model to the field
of estimating ITE. There is still much room for improvement. To begin with, one can incorporate
different prior knowledge into the generation process, and at the same time devise effective mechanism
for encouraging identification to causal inference. In addition, in order to reduce the time-consuming,
people can also investigate the specific time step in generating the unobserved confounders.
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A APPENDIX

A.1 RELATED WORK

Estimating individual treatment effect. Accurate and correct estimation of individual treatment
effect is an challenging task in real-world scenarios, since the lack of counterfactuals can lead to an
biased estimation from observational study. To alleviate this problem, early methods, like re-weighting

11
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models Austin (2011); Imai & Ratkovic (2014); Fong et al. (2018), use the Inverse propensity
weighting (IPW) mechanism to reduce selection bias based on covariates. Another active top line of
research is to incorporate traditional machine learning into the study of estimating ITE, like Bayesian
Additive Regression Trees (BART) Hill (2011), Random Forests (RF) Breiman (2001), Causal Forests
(CF) Wager & Athey (2018), etc. In order to balance the distribution among groups in representation
space, some advanced models are designed, like DragonNet Shi et al. (2019) , CFR Shalit et al.
(2017), QHTE Qin et al. (2021),etc. There models use more flexibility and sophisticated technique,
like Integral Probability Metric (IPM), to pull in that distributions and while minimize generalization
bound for ITE estimation. While remarkable progresses have made by these models, the premise
that they need to get the Ignorability assumption hold. However, the Ignorability assumption is
untestable in practice. To this end, some promising deep generative models are proposed to generate
latent variables. For example, Causal Effect Variational Autoencoder (CEVAE) Louizos et al. (2017)
leverage Variational Autoencoders to obtain the unobserved confounders and simultaneously infer
causal effects, GAITE Yoon et al. (2018) use Generative Adversarial Nets (GANs) framework to
capture the uncertainty in the counterfactual distributions. While remarkable progresses have made
by these models, here are some intrinsic limitations for modeling latent variables. For examples,
GAN-based methods could be unstable in modeling ITE due to the adversarial losses. VAEs make
substantially weaker assumptions in generating the structure of the hidden confounders Louizos et al.
(2017), which could restrict the model’s flexibility. In this paper, we build on diffusion model to
generate the unobserved confounders and accordingly to measure ITE. The benefits are presented in
two aspects; (1) Comparing to CEVAE, diffusion model has less assumptions in our settings, which
is great of importance for estimating ITE; (2) Diffusion model has a comparative stable loss function,
which indeed contribute to the generation process of unobserved confounders.

Diffusion Model. Diffusion Model is a concept describing the study of the deep generative process. It
basically involves two types of Markov chains, called forward diffusion process and reverse diffusion
process respectively. The former is capable of converting any data distribution into a simple or
noise prior distribution, while the latter aims to reconstruct the original data distribution by a reverse
Markov chain. In that process, the goal is to learn a transition kernels parameterized by deep neural
networks Yang et al. (2022) and accordingly to generate the desired data. Due to its flexibility and
strength, recent years have witnessed many studies on incorporating diffusion model into a variety of
challenging domains Yang et al. (2022); Luo & Hu (2021); Ho et al. (2020) and achieved impressive
results. For example, inspired by the diffusion model in computer vision, Luo & Hu (2021) proposes
to generate 3D point cloud by a Markov chain conditioned on certain shape latent. In natural language
processing, in order to handle more complex controls in generating text, Diffusion-LM Li et al.
(2022) is proposed as a new language model based on continuous diffusion. Additionally, Adaptive
Denoising Purification Yoon et al. (2021) proposes an effective randomized purification scheme to
purify attacked images in robust learning. Similar to these applications, in this paper, we proposed
to generate the unobserved confounders by a Markov chain conditioned on the generate factor that
is derived from the observed confounders. To the best of our knowledge, this is the first work on
estimating individual treatment effect.

A.2 EXPERIMENT DETAILS.

We implement our methods based on QHTE Qin et al. (2021). We use the same set of hyperparameters
for DFITE across four datasets. More precisely, we employ 3 similar fully-connected exponential-
linear layers for the encoder qφ(η|x(0)), the transition kernel pθ(x(t−1)|x(t),η), representation
function Φ, and the ITE prediction function f respectively. The difference is that layer sizes are 128 for
both qφ(η|x(0)) and pθ(x

(t−1)|x(t),η), 200 for Φ, and 100 for f . we use Batch normalization Ioffe
& Szegedy (2015) to facilitate training, and all but the output layer use ReLU (Rectified Linear Unit)
Agarap (2018) as activation functions. In the main optimization objective, we set α and β both to 1.
We adopt the commonly used metrics including Rooted Precision in Estimation of Heterogeneous
Effect (PEHE) Hill (2011) and Mean Absolute Error (ATE) Shalit et al. (2017) for evaluating the
quality of ITE. Formally, they are defined as:

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τ̂i − τi)
2
, ϵATE = | 1

n

n∑
i=1

(τ̂)− 1

n

n∑
i=1

(τ)| (18)

where τ̂i and τi stand for the predicted ITE and the ground truth ITE for the i-th instance respectively.
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B DETAILED DERIVATIONS.

The variational lower bound (VLB)is :

E[− log pθ(x
(0))] ≤ Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]
︸ ︷︷ ︸

V LB

(19)

Proof. We present the detailed derivations of the Negative Log-Likelihood in Eq. 19.

− log pθ(x
(0))

≤ − log pθ(x
(0)) +DKL(q(x

(1:T ),η|x(0))||pθ(x(1:T )|x(0),η))︸ ︷︷ ︸
A

≤ log pθ(x
(0)) + Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(1:T )|x(0),η))

]
︸ ︷︷ ︸

B

≤ − log pθ(x
(0)) + Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]
+ log pθ(x

(0))︸ ︷︷ ︸
C

≤ Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]
︸ ︷︷ ︸

V LB

(20)

We can further derive the LV LB as:

LV LB = Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]

= Eq

 T∑
t=2

DKL

q(x(t−1)|x(t),x(0))︸ ︷︷ ︸
A

|| pθ(x(t−1)|x(t),η)︸ ︷︷ ︸
B


− log pθ(x

(0)|x(1),η)︸ ︷︷ ︸
C

+DKL

qφ(η|x(0))︸ ︷︷ ︸
D

|| p(η)︸︷︷︸
E


(21)
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Table 2: Statistics of the datasets used in our experiments.
Dataset #Replications #Units #confounders Treated Ratio Control Ratio
ACIC 100 4,802 82 28% 72%
IHDP 1,000 747 25 19% 81%
Sim-z 100 10,000 50 50% 50%
Sim-η 100 10,000 50 50% 50%

Proof. We present the detailed derivations of the VLB in Eq. 21.

LV LB = Eq

[
log

q(x(1:T ),η|x(0))

pθ(x(0:T ),η))

]
= Eq

[
log

q(η|x(0))
∏T

t=1 q(x
(t)|x(t−1))

pθ(η)p(x(T ))
∏T

t=1 pθ(x
(t−1)|x(t),η)

]

= Eq

[
− log p(x(T )) +

T∑
t=1

log
q(x(t)|x(t−1))

pθ(x(t−1)|x(t),η)
+ log

qφ(η|x(0))

pθ(η)

]

= Eq

[
− log p(x(T )) + log

q(x(1))|x(0))

pθ(x(0)|x(1)),η)
+

T∑
t=2

log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t),η)
· q(x(t)|x(0))

q(x(t−1)|x(0))

)
+ log

qφ(η|x(0))

pθ(η)

]

= Eq

[
− log p(x(T )) + log

q(x(1))|x(0))

pθ(x(0)|x(1)),η)
+

T∑
t=2

log
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t),η)
+ log

q(x(T )|x(0))

q(x(1)|x(0))
+ log

qφ(η|x(0))

pθ(η)

]

= Eq

[
− log

p(x(T ))

q(x(T )|x(0))
− log pθ(x

(0)|x(1)),η) +

T∑
t=2

log
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t),η)
+ log

qφ(η|x(0))

pθ(η)

]

= Eq

[
T∑

t=2

DKL

(
q(x(t−1)|x(t),x(0))||pθ(x(t−1)|x(t),η)

)
− log pθ(x

(0)|x(1),η) +DKL

(
qφ(η|x(0))||pθ(η)

)]
(22)

B.1 PSEUDO-CODE OF DFITE

We present the diffusion model training algorithm in Algorithm 1, the sampling algorithm in Algo-
rithm 2, and our ITE estimation algorithm in Algorithm 3. The statistics of the datasets are presented
in Table 2.
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Algorithm 1: Training
1 Indicate the observational data X .
2 Initialize all the model parameters.
3 while not converged do
4 Sample x(0) ∼ X
5 Sample η ∼ qφ(η|x(0))
6 Sample t ∼ Uniform({1, ..., T})
7 Sample x

(t)
1 , ...,x

(t)
m ∼ q(x(t)|x(0))

8

Lθ =

m∑
i=1

DKL

(
q(x

(t−1)
i |x(t),x

(0)
i )||pθ(x(t−1)|x(t)

i ,η)
)

Lφ = DKL

(
qφ(η|x(0))||p(η)

)
9 Compute the gradients of the Lθ +

1
T Lφ

10 Perform the gradient descent.
11 end

Algorithm 2: Sampling

1 Sampling data points: x(T ) ∼ N (0, I).
2 for t = T, ..., 1 do
3 ϵ ∼ N (0, I) if t ¿ 0, else ϵ = 0

4 x(t−1) = µθ(x
(t), t, η) + βtϵ

5 end
6 return x(0) as the unobserved confounders z

Algorithm 3: Learning algorithm of our model
1 Generating the unobserved confounders z1, ..., zm through Algorithm 2.
2 Indicate the observational data (x1, z1, t1, y1), ..., (xm, zm, tm, ym).
3 Indicate the scaling parameter α and β .
4 Initialize all the model parameters.
5 Indicate the epoch number E.
6 Compute u = 1

m

∑m
i=1 ti.

7 Compute wi =
ti
2u + 1−ti

2(1−u) for i = 1, ...,m

8 for e in [0, E] do
9 Sample mini-batch data B from D

10 Compute the gradients of the empirical loss:

g1 = ∇W
1

|B|

|B|∑
i=1

wiL(yi, f(Φ(xi, zi), ti))

11 Compute the gradients of the regularization:

g2 = ∇WβR(f)

12 Compute the gradients of the IPM term:

g3 = ∇WαIPMG(p̂
t=1
Φ , p̂t=0

Φ )

13 Obtain the step size scalar ρ with the Adam
14 Update the parameters:

W ←W − ρ(g1 + g2 + g3)

15 end
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